WO2004042038A1 - Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren - Google Patents

Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren Download PDF

Info

Publication number
WO2004042038A1
WO2004042038A1 PCT/DE2003/003765 DE0303765W WO2004042038A1 WO 2004042038 A1 WO2004042038 A1 WO 2004042038A1 DE 0303765 W DE0303765 W DE 0303765W WO 2004042038 A1 WO2004042038 A1 WO 2004042038A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
cells
cartilage
cell
bone
Prior art date
Application number
PCT/DE2003/003765
Other languages
English (en)
French (fr)
Inventor
Olivera Josimovic-Alasevic
Jeannette Libera
Hans-Peter Wiesmann
Ulrich Joos
Gordana Vunjak-Novakovic
Original Assignee
Co.Don Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Co.Don Ag filed Critical Co.Don Ag
Priority to EP03785503A priority Critical patent/EP1481055A1/de
Priority to AU2003294621A priority patent/AU2003294621A1/en
Priority to US10/501,520 priority patent/US20050074477A1/en
Priority to JP2004548677A priority patent/JP2006514562A/ja
Priority to DE10394045T priority patent/DE10394045D2/de
Priority to CA002473776A priority patent/CA2473776A1/en
Publication of WO2004042038A1 publication Critical patent/WO2004042038A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells

Definitions

  • the invention relates to a new tissue replacement structure and a method for modifying a tissue lesion, as well as the
  • Hyaline cartilage consists of a single cell type, the chondrocytes, which synthesize an elastic extracellular matrix (EZM).
  • the healthy EZM mainly consists of collagens and proteoglycans (PG).
  • the predominant collagen in hyaline cartilage is type II, which forms very elastic fibers.
  • Proteoglycans ensure cross-linking of the collagen fibers.
  • In healthy cartilage there is a constant turnover of matrix components, which is important for the constant elasticity of the cartilage.
  • Enzymes and their inhibitors play an important role in the metabolism of the EZM.
  • Metalloproteinases which catalyze the breakdown of collagens and proteoglycans, are effective as enzymes in cartilage.
  • the activity of these enzymes is regulated by inhibitors (tissue inhibitors of metalloproteinases: TIMPs), which are also found in the cartilage be synthesized.
  • TIMPs tissue inhibitors of metalloproteinases
  • Cytokines and growth factors influence the synthesis of structural components of the cartilage matrix and of degrading enzymes and their inhibitors. In healthy cartilage there is a balance between the breakdown and new synthesis of matrix components and thus also between the expression of cytokines and growth factors, which is crucial for maintaining the elasticity of the cartilage and ensures a constant renewal of the "used" structural components. An increased presence of growth factors in the joint can support the ability of cartilage to regenerate in vivo.
  • TGFß transforming growth factor ß
  • PDGF platelet derived growth factor
  • FGF2 fibroblast growth factor 2
  • IGF insulin-like -Growth Factor
  • BMPs Bone Morphogenetic Proteins
  • IGF I is the dominant growth factor in adult tissue and promotes PG synthesis and inhibits the breakdown of cartilage matrix, even after stimulation with the cartilage-degrading cytokine IL-lß.
  • TGFß x has an anabolic effect in cartilage metabolism, since it stimulates the expression of TIMP, PG and collagen synthesis and promotes the growth of chondrocytes. In addition, TGFß x enhances the cartilage-regenerating effect by PDGF and IGF.
  • FGF 2 stimulates the proliferation of cultured chondrocytes and has a synergistic effect in combination with TGFß, a stimulation of matrix synthesis by FGF can also be demonstrated.
  • BMPs stimulate proteoglycan synthesis in chondrocytes and support the differentiation of progenitor cells (for example from the periosteum or bone marrow) to mature chondrocytes. Overall, they promote the differentiation of chondrocytes and thus support cartilage healing.
  • the mechanism of action of the classic ACT technique developed by Brittberg and Peterson is based on the ability of autologous chondrocytes that have been replicated in monolayers to form a hyaline or hyalin-like regulator in vivo, which resembles the surrounding hyaline articular cartilage and thus represents a functional regeneration of cartilage lesions.
  • chondrocytes which are obtained from a small biopsy, in monolayer culture.
  • the chondrocytes take on the typical form of mesenchymal cells and change their expression pattern compared to the in situ situation.
  • the ability of chondrocytes to re-express the markers of hyaline cartilage after multiplication in monolayer and subsequent transfer to 3D culture has, however, been proven in numerous studies in vitro.
  • chondrocytes increased purely autologously in monolayer - without the addition of Periosteum or growth factors - after transfer to a 3D culture without carrier, re-express collagen II and S-100 as cartilage markers.
  • the injection of growth factors promotes and strengthens the synthesis of specific cartilage markers in various cell culture systems and accelerates the healing of cartilage defects in animal models. It can therefore be assumed that the same mechanisms are effective in vivo after an ACT has been carried out. After application in those created by periosteum or collagen material.
  • the chondrocytes again show their in vivo expression pattern and regenerate hyaline cartilage with a clear expression of type II collagen. This was confirmed on the basis of biopsies that were taken from patients after performing an ACT. It has already been demonstrated in vitro that growth factors such as TGF ⁇ , IGF I and BMP-2 can be secreted by cultivated periosteum and can thus promote the regeneration of hyaline cartilage by the chondrocytes injected as part of the ACT.
  • TGF ⁇ , IGF I and BMP-2 growth factors such as TGF ⁇ , IGF I and BMP-2 can be secreted by cultivated periosteum and can thus promote the regeneration of hyaline cartilage by the chondrocytes injected as part of the ACT.
  • chondrocytes which are applied to the cartilage surface in a cell suspension, bind stably to the native tissue. This results in a stable and long-term integration of the cartilage newly formed according to ACT into the native surrounding cartilage.
  • articular cartilage During normal use of the joints, the hyaline articular cartilage covering them is exposed to extremely high pressure loads and damage to its structure or injuries have a major impact on the overall functionality of the system.
  • the natural regeneration capacity of the articular cartilage is very low. Chondrocytes normally no longer divide in healthy adult cartilage (Mankin 64). Only articular cartilage defects in which the subchondral bone plate is damaged have a certain capacity for repair due to the migration of stem cells from the medullary canal. In contrast, superficial chondral defects with an intact subchondral bone plate have practically no capacity for self-regeneration.
  • the object of the invention was therefore to provide a tissue replacement structure. or an in vitro tissue, in particular a cartilage replacement or a cartilage regeneration structure, and to provide a method for the treatment or modification of diseased, damaged and degenerated tissue, which is a simple, safe, efficient and effective treatment of tissue defects such as Example sick, damaged and degenerated cartilage tissue.
  • the invention solves this technical problem by providing a tissue replacement structure which (a) can produce a preformed three-dimensional tissue by extracting cells from a human or animal organism and cultivating them stationary in cell culture vessels with a hydrophobic surface and tapering soil as a suspension culture until a cell aggregate is formed in which differentiated cells are embedded and which has an outer area in which cells capable of proliferation and migration are present, (b) (i) an autologous tissue cell suspension can be produced from the body's own cells with the addition of the body's own serum and without the addition of growth-promoting compounds, (ii) implants or carrier materials and / or (iii) growth factors and / or
  • the invention relates to a three-dimensional fabric, accordingly, i.e. in vitro tissue for more effective, • tissue therapy - which may also be referred to as spheroids - of different sizes.
  • tissue replacement or tissue regeneration structures or spheroids are essentially composed of the cells contained in the spheroid and the matrix formed by these cells, which, in combination with individual suspension cells, with genetically modified single suspension cells, with carrier materials, with exogenous growth factors, active substances, exogenous DNA, RNA and / or with implants.
  • tissue replacement structures according to the invention serve to induce and accelerate the tissue regeneration or to enable it in the first place, for example when spheroids are used in combination with specific active substances, such as for example when building the heart muscle after a heart attack.
  • tissue replacement structures or spheroids according to the invention therefore on the one hand enable the transplantation of prefabricated tissue and a further effectiveness by combining a wide variety of tissue spheroids with individual cells and exogenous factors. For example, unlike in the prior art, growth factors are no longer released by carriers or carrier materials - whether in combination with cells or without them.
  • the new tissue replacement structures or spheroids can be used in combination with other factors that order tissue regeneration.
  • cartilage spheroids and cartilage cells according to the invention an improved genesis was achieved. This surprising improved genesis could also be observed in the combination of other spheroids and growth-promoting factors or cells.
  • tissue replacement structures or spheroids cannot be used in isolation in the diseased tissue region because, due to the circumstances after the transplant, they do not remain in one place and therefore
  • the spheroids can advantageously be fixed at the respective locations. This is advantageously done by combining it with a support or a membrane that anchors or surrounds itself in the defect area or in its vicinity
  • the adhesion of the spheroids is surprisingly promoted by the presence of individual cells, the individual cells establishing a contact bridge between the native tissue to be treated and the spheroids or tissue replacement structures.
  • the individual cells or the body's own cells can be genetically modified, for example in the tissue regeneration process
  • tissue regeneration promotion can be achieved by administering genetically modified cells in the defect area.
  • the regenerative process by using the tissue replacement structures according to the invention can preferably also be used after a transplantation of the spheroid into the tissue to be treated by a combination of the spheroid with growth factors or other factors if, for example, genetic modifications are not desired.
  • DNA or RNA molecules can be used as factors which, after unspecific uptake by the cells, for example, can also lead to a synthesis of the corresponding sequences.
  • Another advantage of the structures according to the invention is that they can also be used as a test system for medicines. This also applies in particular if the spheroids are obtained from diseased cells, for example from arthritic cartilage cells, or from tumor cells or from muscle cells in the event of muscle loss, on which active substances and medications are examined.
  • a further advantage of the tissue replacement structures according to the invention in addition to their rapid effectiveness and their use both in vivo and in vitro, is the fact that patients, who can be humans or animals, can be treated in a purely autologous manner and thus the risk of a defense reaction to the inserted graft is excluded can be. In particular, this significantly reduces hospital and rehabilitation times. The cost of the entire regeneration process is also reduced and the treated patients are restored more quickly.
  • the structures according to the invention can be used for screening active substances or generally as in vivo or in vitro test systems are used, e.g. B. to test drugs for their impact on tissue regeneration.
  • the preferred cells in the tissue that can be used are: muscle cells (striated (cardiac muscle and skeletal muscles and smooth muscle cells), cartilage cells (from hyaline cartilage, from fibrous cartilage, from elastic cartilage), bone cells (osteoblasts and osteocytes), skin cells (keratinocytes (for example spiked cells) ), Connective tissue cells from the corium and subcutis, cells from eccrine and apocrine sweat glands as well as sebaceous glands, cells of the hair system (for example mitotic hair bulb cells, cells from the nail system), endothelial cells, connective tissue cells (fibroblasts, fibrocytes, wandering cells, mast cells) - cells, pigment cells, reticulum cells), fat cells (adult fat cells and fat precursor cells), nerve tissue cells (nerve cells, neuroglial cells), mesenchymal stem cells from the bone marrow / peripheral blood, liver cells, epithelial cells from single-layer and multilayer epithelia and surface epithelia, duct epi
  • the cells for combination with the tissue can preferably be used: muscle cells (striated
  • Cartilage cells from hyaline cartilage, from fiber cartilage from elastic cartilage), bone cells (osteoblasts and osteocytes), skin cells (e.g. keratinocytes),. Endothelial cells, connective tissue cells (tendons and ligaments), fat cells (adult fat cells and fat precursor cells), nerve tissue cells (nerve cells, neuroglial cells), stem cells (from the bone marrow / peripheral blood, " from adult Tissues per se (for example pancreas, cornea), from embryos and fetuses), liver cells, epithelial cells from single-layer and multi-layer epithelia and surface epithelia, duct epithelia, gland epithelia, sensory epithelia, endoepithelia (cells from the stratum superficiale, stratum intermedium Stratum basale, stratum conveyum, stratum granulosum, stratum spinosum) and / or pancreatic cells.
  • endothelial cells connective tissue cells (tendons and ligaments), fat cells (adult
  • the cells in the tissue ie the preformed three-dimensional tissue, and the individual cells from the tissue cell suspension can be genetically modified.
  • the genetic modification can take place in such a way that in particular growth factors, cytokines, structural proteins, labeling proteins or regulatory active substances are expressed.
  • the structures according to the invention can advantageously be combined with implants or carrier materials, for example:
  • Polymers for example polylactides, polyglycolides, hyaluronic acids and all their derivatives, - preferably a neutral PGA / PLA mixture,
  • Fiber proteins fibrin-based carriers
  • Gels such as Aliginate, agarose, collagen gel, hydrogels, fibrin
  • tissue-specific growth factors can be used which cause the processes of tissue construction and remodeling at the respective location or are responsible for them or regulate them.
  • this is one of the following factors: transforming growth factor ß (TGFß), plate-derived-growth factor (PDGF), fibroblast growth factor 2 (FGF2; formerly basic (b) FGF) , Insulin Like Growth Factor (IGF) and the Bone Morphogenetic Proteins (BMPs); and for the bone for example BMP7 or for the muscle for example MGF.
  • TGFß transforming growth factor ß
  • PDGF plate-derived-growth factor
  • FGF2 fibroblast growth factor 2
  • IGF Insulin Like Growth Factor
  • BMPs Bone Morphogenetic Proteins
  • exogenous growth factors In addition to the exogenous growth factors, it is of course also possible to use other exogenous factors which contain all regulatory substances, such as cytokines or enzymes, but also RNA and DNA molecules or viruses or proteins normally produced or secreted by body cells such as: cytokines (IL-1, TNF-alpha), adhesion proteins, enzymes (lipases, proteinases), messenger substances (cAMP), matrix structural proteins (collagens, proteoglycans), proteins in general, lipids (phosphatidylserine).
  • cytokines IL-1, TNF-alpha
  • adhesion proteins enzymes
  • lipases proteinases
  • messenger substances cAMP
  • matrix structural proteins collagens, proteoglycans
  • proteins in general lipids (phosphatidylserine).
  • the invention relates to the provision of a cartilage replacement structure
  • a preformed three-dimensional cartilage tissue can be produced by producing cartilage cells, bone cells from a human or animal organism, or mesenchymal stem cells are obtained and these are cultivated stationary in cell culture vessels with a hydrophobic surface and tapering bottom as a suspension culture until a cell aggregate is formed which contains at least 40 vol. % contains extracellular matrix in which differentiated cells are embedded and which has an outer region in which cells capable of proliferation and migration are present, and
  • the patient's own tissue biopsies or samples or mesenchymal stem cells are used as the starting material for the preformed tissue - that is to say for a component of the tissue replacement structure.
  • the tissue-building cells are isolated from the biopsies by means of enzymatic digestion of the tissue, by emigration or by reagents that recognize target cells using customary methods.
  • These cells are then, according to the invention, cultivated in a simple manner using conventional culture medium in cell culture vessels with a hydrophobic surface and a tapering bottom in suspension until a three-dimensional cell aggregate is formed which contains at least 40% by volume, preferably at least 60% by volume. % to a maximum of 95 vol.%, extracellular matrix (ECM) contains, in which differentiated cells are embedded.
  • ECM extracellular matrix
  • the cells differentiate inside the aggregates and spheroids are formed, which consist of ECM, differentiated cells and a proliferation zone at the edge.
  • the process of forming this tissue-specific matrix with embedded cells is very similar to the process of tissue formation or new formation and reshaping in the body.
  • the spacing of the aggregated cells increases due to the formation ⁇ of the tissue-specific matrix.
  • a tissue histology is created inside the spheroids that is very similar to natural tissue.
  • the cells inside the spheroids are supplied solely by the diffusion of the nutrients.
  • the zone of cells capable of proliferation and migration forms at the edge of the spheroids.
  • This zone has the invaluable advantage that, after the spheroids have been introduced into defects, the cells located in this peripheral zone are able to migrate and actively establish contact with the surrounding tissue or enable the tissue formed in vitro to be integrated into its surroundings. This means that the tissue-specific cell aggregates are ideally suited for treating tissue defects and for rebuilding tissue in vitro and in vivo.
  • tissue defect to be treated it can be advantageous to remove larger tissue to transplant pieces to achieve a faster filling of the defect.
  • at least two, but better, more of the cell aggregates obtained are fused by cultivating them together under the same conditions and in the same culture vessels - as described above - to the desired size.
  • the cartilage or bone tissue obtained is extremely stable.
  • the cell aggregates can be compressed to% of their diameter without breaking or, for example, falling apart by means of a cannula when injected into the body. It is possible to remove these pieces of tissue from the cell culture vessel using tweezers or a pipette.
  • the cells obtained from the patient are first grown in a monolayer culture in a manner known per se.
  • the passage of the cells in monolayer culture is kept as low as possible.
  • the cells grown in monolayer are harvested and cultivated according to the method according to the invention in suspension, as described above.
  • a medium customary for suspension and monolayer culture for example Dulbecc ⁇ "s MEM, with the addition of serum, can be used as the cell culture medium.
  • DMEM and urine are preferably used in a ratio of 1: 1.
  • autogenous serum of the patient is preferably used as the serum, and it is also possible to use xenogeneic or allogeneic serum.
  • no antibiotics, fungistatics or other auxiliaries are added to the culture medium.
  • three-dimensional cell aggregates with tissue-specific properties are obtained after two days of suspension cultivation according to the invention.
  • the size depends on the number of cells introduced per volume of culture medium. If, for example, 1 x 10 7 cells are introduced into 300 ⁇ l of culture medium, three-dimensional spheroids with a diameter of 500-700 ⁇ m are formed within 1 week. For a 1 cm 2 tissue defect, approximately 100 such spheroids would have to be transplanted, for example injected.
  • the other possibility is the in vitro fusion of the small cell aggregates to larger ones - as described above - and the introduction of these into the defect.
  • preferably between 1 ⁇ 10 4 and 1 ⁇ 10 7 cells in 300 ⁇ l culture medium are used to produce the small cell aggregates, particularly preferably 1 ⁇ 10 s cells.
  • the spheroids formed after a few days are then used for at least 2 to 4 weeks depending on the cell type and the patient-specific characteristics are cultivated in the appropriate culture medium to induce the formation of the tissue-specific matrix.
  • individual spheroids can then be fused from about one week of cultivation in order to increase the size of the piece of tissue.
  • the cell culture vessels used for the cultivation according to the invention in suspension must be those with a hydrophobic, that is to say adhesion-preventing surface, such as, for example, polystyrene or Teflon.
  • Cell culture vessels with a non-hydrophobic surface can be made hydrophobic by coating with agar or agarose. No further additions are required.
  • Well plates are preferably used as cell culture vessels. For example, 96-well plates can be used for the production of the small cell aggregates and 24-well plates can be used for the production of the fused aggregates.
  • the cell culture vessels must have a tapered, preferably curved, bottom. It has been shown that the tissue according to the invention does not form in vessels with a flat bottom. The depression obviously serves to find the cells.
  • the preformed three-dimensional tissue obtained in this way forms in combination with the tissue cell suspension, preferably the cartilage cell suspension
  • the tissue replacement structure is a muscle replacement structure, in particular a smooth heart muscle replacement structure or a bone replacement structure.
  • the invention also relates to a method for modifying a tissue lesion, in which an autologous cell suspension produced from the body's own cells with the addition of the body's own serum and without the addition of growth-promoting compounds and into the tissue lesion (a)
  • Organism cells are obtained and these are cultivated stationary in cell culture vessels with a hydrophobic surface and tapering bottom as a suspension culture until a cell aggregate is formed in which differentiated cells are embedded and which has an outer area in which cells capable of proliferation and migration exist are introduced and / or
  • the invention relates to is a method for modifying a cartilage lesion, in which the " cartilage lesion
  • a preformed three-dimensional cartilage tissue can be produced by obtaining cartilage cells, bone cells, or mesenchymal stem cells from a human or animal organism and cultivating them stationary in cell culture vessels with a hydrophobic surface and tapering soil until a cell aggregate is formed at least 40 vol. % contains extracellular matrix in which differentiated cells are embedded and which has an outer region in which cells capable of proliferation and migration are present, are introduced and / or acted on the tissue according to (a) in vitro or in vivo becomes.
  • the tissue lesion is preferably a bone, cartilage and / or muscle lesion.
  • the method according to the invention makes use of the natural effect of growth factors which support regeneration of cartilage in order to accelerate the treatment of the defect, in particular compared to conventional therapy.
  • the three-dimensional tissue in particular cartilage tissue
  • a preformed three-dimensional cartilage tissue is accordingly applied in addition to an autologous cartilage cell suspension, the three-dimensional cartilage tissue synthesizing the growth factors necessary for stimulating the matrix synthesis, thereby healing or modifying the treated one Tissue damage, such as cartilage damage, is supported.
  • the cells of the cartilage suspension that are introduced together with the three-dimensional cartilage tissue which can also be referred to as 3D constructs, guarantee that the resulting regenerate is optimally integrated, in particular into the surrounding cartilage.
  • the growth factors synthesized by the three-dimensional tissue for example, stimulate the matrix formation of the suspension cells and thus accelerate the healing of the defect.
  • the method according to the invention is particularly advantageous because under completely autologous conditions, that is to say without the addition of substances that do not originate from the patient himself, a three-dimensional cartilage tissue has already been pre-shaped in vitro, which is very similar in its properties to native cartilage and thus immediately creates the basis for the further development of cartilage after the operation.
  • Another advantage is that the complex application of the periosteal flap can be avoided in accordance with the known methods, since the growth factors secreted by the periosteum, which are essential for the mechanism of action in the known method, in the method according to the invention by the preformed three-dimensional one Cartilage tissue is provided.
  • the preformed three-dimensional cartilage tissues are able to form a hyaline cartilage matrix even in vitro.
  • Collagen II in particular, as the characteristic protein of hyaline articular cartilage, is formed in large quantities by the preformed three-dimensional cartilage tissue and, above all, the growth factors are already actively produced at this time of the transplant.
  • the lesion is covered with a membrane.
  • the invention also relates to the use of cartilage cells, muscle cells, bone cells or mesenchymal stem cells obtained from a human or animal organism, which are cultivated stationary in cell culture vessels with a hydrophobic surface and tapering soil as a suspension culture until a cell aggregate is formed especially at least 40 vol. % contains extracellular matrix in which differentiated cells are embedded, and which has an outer region in which cells capable of proliferation and migration are present, as a supplier of messenger substances, structural, framework and / or matrix building blocks, in particular growth factors and / or cytokines.
  • cartilage cells obtained as a source of regeneration-promoting growth factors and already preformed hyaline cartilage matrix By using cartilage cells obtained as a source of regeneration-promoting growth factors and already preformed hyaline cartilage matrix, a significantly faster healing of cartilage defects can be achieved than is possible with previously known methods.
  • a major advantage that the use offers - in vivo or in vitro - in addition to its quick effectiveness, is the fact that the patient can be treated in a purely autologous manner and thus the risk of a defense reaction to the inserted graft can be excluded.
  • tissue lesion preferably a cartilage, bone and / or muscle lesion.
  • a lesion in the sense of the invention is understood to mean all diseases, degenerations or damage to cells or tissue structures.
  • structures of the invention for the treatment of the following diseases, ⁇ degeneration or damage can preferably be used: - heart muscle damage,
  • Osteoarthritis e.g. applying spheroids to the cartilage surface and covering with a membrane
  • rheumatism e.g., rheumatism, arthritis
  • Infarcts intravascular tissue necrosis, for example splenic infarction
  • Ischemia for example due to artery occlusion
  • malformations for example due to artery occlusion
  • lesions for example of organs / tissues of the nervous system and the neuromuscular system
  • Diseases and degeneration of the tissues in the eye for example cornea, conjunctiva
  • retinal detachment for example
  • neuroendocrine system e.g. hypothyroidism of the thyroid gland
  • cardiovascular system e.g. malformations of the heart, heart attack
  • respiratory tract damage e.g. hypothyroidism of the thyroid gland
  • esophagitis for example gastric mucous membrane build-up after gastritis
  • Bones non-healing fractures, bone build-up after tumors,
  • the tissue replacement structure according to the invention that is to say the combination preparation of preformed three-dimensional tissue and the respective additive, ie the tissue cell suspension, the implant or carrier material or the growth factors, can be used for all tissues from which cells are isolated and individually or for the production of the preformed three-dimensional fabric can be used.
  • tissue cell suspension ie the tissue cell suspension, the implant or carrier material or the growth factors
  • physical forces such as electromagnetic fields, mechanical stimulation and / or ultrasound to be used as an additive for the preformed three-dimensional tissue in the sense of the invention.
  • the preformed three-dimensional tissue is brought into contact with the aforementioned physical forces in vitro or in vivo in such a way that the lesion or the defect is healed.
  • tissue replacement structures according to the invention can also be used as organ replacement, for example for the restoration of one or more organ functions of the abovementioned tissues.
  • organs or tissues are, dopamine-producing structures and tissues in the treatment of Parkinson's or nerve degeneration diseases, insulin-producing structures in the treatment of pancreatic defects, thyroxine-producing tissues in the treatment of thyroid defects, but also liberine or Statin-producing replacement structures to restore hypotallamus function.
  • the invention also relates to a tissue replacement structure selected from the group comprising muscle, bandage, skin,
  • Fat, nerve, liver tissue, endothelia, epithelia and / or stem cells which can be produced by extracting cells from a human or animal organism and using them in cell culture vessels with a hydrophobic surface and a tapering bottom
  • Suspension culture is cultivated stationary until a cell aggregate is formed in which differentiated cells are embedded and which has an outer region in which cells capable of proliferation and migration are present.
  • the invention also relates to a kit which comprises the structures according to the invention and its use in diagnosis and therapy.
  • the kit may also include buffers, serums, salts, culture media, and information on combining these contents.
  • the invention thus relates to a tissue replacement structure and a method for modifying or treating tissue lesions, for example cartilage lesions, with only the body's own three-dimensional cultured one Cartilage in the form of so-called spheroids; this allows, for example, the restoration of degenerated arthrosis cartilage.
  • tissue lesions for example cartilage lesions
  • spheroids tissue lesions
  • a platform technology is provided for far-reaching further product innovations, with which the body's own cell regeneration of traumatically caused articular cartilage damage is possible.
  • This use of the patient's own growth factors produced by spheroids leads to a much faster formation of pressure-stable articular cartilage.
  • This spheroid technology is of course not limited to cartilage, but can be used for the regeneration of all human tissues.
  • a biopsy is taken from an area of hyaline, healthy cartilage from the patient.
  • the chondrocytes are isolated from this biopsy by means of enzymatic digestion by incubation with collagenase solution. After separation of the isolated cells from the undigested cartilage tissue, they are transferred to cell culture bottles and with the addition of DMEM / Hams F12 culture medium (l / l) and 10% autologous serum of the patient at 37 ° C and 5% C0 2 incubated. The medium is changed twice a week. After reaching the confluent stage, the cell layer is washed with physiological saline and harvested from the cell culture surface using trypsin. After a further wash, 1 x 10 5 cells are transferred to a cell culture vessel which is coated with agarose. After a day, the first cells arranged in aggregates. These aggregates are supplied with fresh medium every 2 days and cultivated for at least 2 weeks.
  • Collagen type II and proteoglycans were detected in the aggregates after just one week.
  • a specific antibody against type II collagen was used.
  • the primary antibody bound to type II collagen was detected with the help of a second antibody and an ABC system coupled to it. That is, the enzyme Alkaline phosphatase is coupled to the second antibody via avidin-biotin, which converts the substrate fuchsin, producing a red dye.
  • Type II collagen and proteoglycans are components of the cartilage matrix in vivo and represent the most important structural proteins that are of crucial importance for the function of the cartilage.
  • the protein S 100 which is specific for cartilage cells, was detected in the outer layer of the aggregates. S 100 is not expressed in bone tissue and connective tissue. Only these tissues could also be created. It was thus clearly demonstrated that the developed tissue is cartilage tissue. After 1 to 2 weeks of cultivation, the cells are still close together. The proportion of extracellular matrix increases and the proportion of cells decreases with increasing cultivation time. After one week, at least 40% ECM is detectable and after 3 weeks around 60% ECM has already been developed. After 3 months of cultivation of the cartilage tissue, the proportion of ECM rose to 80 to 90%. This means that cartilage-like tissue was built up inside the manufactured aggregates, which corresponds in structure to the in vivo cartilage and can also take over the function of cartilage tissue.
  • a bone biopsy is taken from the area of the cancellous bone from the patient.
  • the osteoblasts are isolated from this biopsy by means of enzymatic digestion by incubation with collagenase solution. After the isolated cells have been separated from the undigested bone tissue, they are transferred to cell culture bottles and incubated at 37 ° C. and 5% CO 2 with the addition of DMEM / Ham's F12 culture medium (l / l) and 10% autologous serum from the patient. The medium is changed twice a week. After reaching che 'of the confluent stage n is washed, the cell layer with physiological saline, and harvested by trypsin from the cell culture surface. After a further wash, 1 x 10 5 cells are transferred to a cell culture vessel which is coated with agarose. After a day, the first cells arranged in aggregates. These aggregates are supplied with fresh medium every 2 days and cultivated for at least 2 weeks.
  • Collagen type I and proteoglycans were detected in the aggregates after just one week. To do this, a specific antibody against type I collagen is used. The detection of collagen I showed beyond any doubt that it is not cartilage tissue. The primary antibody bound to type I collagen was detected with the help of a second antibody and an ABC system coupled to it. That is, the enzyme Alkaline phosphatase is coupled to the second antibody via avidin-biotin, which converts the substrate fuchsin, producing a red dye.
  • Type I collagen and proteoglycans are components of the bone matrix in vivo and represent the most important structural proteins that are of crucial importance for the function of the bone.
  • Bone cells capable of proliferation were detected in the outer layer of the aggregates at the same time.
  • the individual components obtained in this way can now be combined with cartilage suspension cells / single cell cells.
  • the growth factors produced and secreted by the cells in the three-dimensional in vitro tissues serve to promote the denovoregeneration of the articular cartilage or the bone structure and thus to increase the active ease in the treatment of cartilage or bone tissues.
  • the tissue or the tissue-regenerating processes is stimulated in vivo by means of electromagnetic fields.
  • an electromagnetic field with a carrier frequency of 5 KHz and different modulation frequencies (for example 16 Hz) stimulates the maturation of the spheroids made from bone cells.
  • different modulation frequencies for example 16 Hz
  • the spheroids which were made from bone cells, are used for the coating or ingrowth in the carrier material, such as neutral degrading PLA / PGA polymers and collagen fleece, which are implanted as framework substances in tissue engineering. It could be shown that after adding spheroids, made from bone cells on the surface of neutral-degrading PLA / PGA polymers, they overgrow the surface and form a final layer, but also migrate into the interior of the polymers. For clinical use, this means faster defect healing and faster conversion of the neutral degradable PLA / PGA polymer. The same could be shown for the combination of spheroids from bone cells with a collagen membrane.
  • Preformed three-dimensional mini-cartilage tissue is produced as described for cartilage tissue and combined outside of the body, for example during the operation, with a carrier material which specifies the mechanical stability and shape.
  • Three-dimensional muscle cells are produced analogously to the production of the cartilage cells and combined with an autologous muscle cell suspension, which consists of the body's own heart muscle cells or stem cells and also comprises the body's own serum, but without the addition of growth-promoting compounds.
  • an autologous muscle cell suspension which consists of the body's own heart muscle cells or stem cells and also comprises the body's own serum, but without the addition of growth-promoting compounds.
  • the three-dimensional preformed one can be used Tissue can also be applied to a membrane in order to then be inserted or applied to the muscle defect.
  • Another example relates to the production of spheroids from connective tissue cells which are genetically modified in such a way that they contain a vector for insulin synthesis.
  • the spheroids produced from these cells are encapsulated in an inert carrier material, which enables the diffusion of insulin to the outside.
  • This combination is implanted in the blood supplying artery. This procedure enables a particularly high insulin release due to the high cell concentration in the spheroids, which increases the therapeutic effect.

Abstract

Die Erfindung betrifft eine Gewebeersatzstruktur, die (a) ein vorgeformtes dreidimensionales Gewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind, (b) (i) eine autologe Gewebezellsuspension herstellbar aus körpereigenen Zellen unter Zusatz von körpereigenem Serum und ohne Zusatz von wachstumsfördernden Verbindungen, (ii) Implantate oder Trägermaterialien und/oder (iii) Wachstumsfaktoren und/oder (c) die Einwirkung von elektromagnetischen Feldern, mechanischer Stimulierung und/oder Ultraschall auf das Gewebe nach (a) umfasst.

Description

Verfahren zur Behandlung von erkranktem, degeneriertem oder geschädigtem Gewebe unter Verwendung von in vitro hergestelltem dreidimensionalem Gewebe in Kombination mit Gewebezellen und/oder exogenen Faktoren
Beschreibung
Die Erfindung betrifft eine neue Gewebeersatzstruktur und ein Verfahren zur Modi ikation einer Gewebeläsion sowie die
Verwendung von vorgeformtem dreidimensionalem Gewebe als Lieferant von Botenstoffen und/oder Strukturbausteinen.
Hyalines Knorpelgewebe besteht aus einem einzigen Zelltyp, den Chondrozyten, die eine elastische extrazelluläre Matrix (EZM) synthetisieren. Die gesunde EZM setzt sich hauptsächlich aus Kollagenen und Proteoglykanen (PG) zusammen. Das im hyalinen Knorpel vorherrschende Kollagen ist vom Typ II, das sehr elastische Fasern bildet. Proteoglykane sorgen für eine QuerVe netzung der kollagenen Fasern. Im gesunden Knorpel findet ein ständiger Umsatz von Matrixkomponenten statt, der wichtig für die gleichbleibende Elastizität des Knorpels ist.
Eine wichtige Funktion für den Stoffwechsel der EZM haben Enzyme und ihre Inhibitoren. Als Enzyme im Knorpel wirksam sind Metalloproteinasen (MMPs) , die einen Abbau von Kollagenen und Proteoglykanen katalysieren. Die Aktivität dieser Enzyme wird über Inhibitoren (Tissue inhibitors of Metallo- proteinases: TIMPs) reguliert, die ebenfalls im Knorpel synthetisiert werden. Ein Gleichgewicht zwischen MMPs und TIMPs ist entscheidend für den Erhalt der Knorpelmatrix.
Cytokine und Wachstumsfaktoren beeinflussen die Synthese von Strukturkomponenten der Knorpelmatrix und von degradierenden Enzymen sowie deren Inhibitoren. Im gesunden Knorpel herrscht ein Gleichgewicht zwischen Abbau und Neusynthese von Matrixkomponenten und damit auch zwischen der Expression von Cytokinen und Wachstumsfaktoren, das ent- scheidend für den Erhalt der Elastizität des Knorpels ist und eine ständige Erneuerung der "verbrauchten" Strukturkomponenten gewährleistet. Eine verstärkte Präsenz von Wachstumsfaktoren im Gelenk kann die Regenerationsfähigkeit von Knorpel in vivo unterstützen.
Die wichtigsten für den Knorpel bekannten anabolen Wachstumsfaktoren stellen Transforming-Growth-Factor ß (TGFß) , Platelet-Derived-Growth-Factor (PDGF) , Fibroblast-Growth- Factor 2 (FGF2; früher basic (b) FGF) , Insulin-Like-Growth- Factor (IGF) und die Bone-Morphogenetic-Proteins (BMPs) dar. TGFß, IGF I und BMP-2 werden als wichtigste Faktoren für eine Förderung der Knorpelreifung angesehen.
Sowohl PDGF, als auch IGF stimulieren das Wachstum von hu- manen Chondrozyten. IGF I ist der dominante Wachstumsfaktor im adulten Gewebe und fördert die PG-Synthese und hemmt den Abbau von Knorpelmatrix, selbst nach einer Stimulation mit dem Knorpel-degradierenden Cytokin IL-lß.
TGFßx hat im Knorpelstoffwechsel eine anabole Wirkung, da er die Expression von TIMP, die PG- und Kollagen-Synthese stimuliert und das Wachstum von Chondrozyten fördert. Zusätzlich verstärkt TGFßx die Knorpel-regenerierende Wirkung von PDGF und IGF .
FGF 2 stimuliert die Proliferation von kultivierten Chondrozyten und hat in Kombination mit TGFß eine syner- gistische Wirkung, eine Stimulierung der Matrixsynthese durch FGF ist ebenfalls nachzuweisen.
BMPs regen die Proteoglykansynthese in Chondrozyten an und unterstützen die Differenzierung von Vorläuferzellen (zum Beispiel aus dem Periost oder Knochenmark) zu reifen Chondrozyten. Insgesamt treiben sie die Differenzierung von Chondrozyten voran und unterstützen damit die Knorpelheilung.
Der Wirkmechanismus der von Brittberg und Peterson entwickelten klassischen ACT-Technik beruht auf der Fähigkeit autologer, in Monolayer vermehrter Chondrozyten in vivo ein hyalines bzw. hyalinähnliches Regeήerat zu bilden, das dem umgebenden hyalinen Gelenkknorpel gleicht und damit eine funktioneile Regeneration von Knorpel-Läsionen darstellt.
Zur Behandlung der Patienten ist es notwendig, eine geringe Anzahl an Chondrozyten, die aus einer kleinen Biopsie gewonnen werden, in Monolayer-Kultur zu vermehren. Dabei neh- men die Chondrozyten die typische Form mesenchymaler Zellen an und ändern im Vergleich zur in situ-Situation ihr Expressionsmuster. Die Fähigkeit von Chondrozyten, nach einer Vermehrung in Monolayer und anschließender Überführung in 3D-Kultur erneut die Marker hyalinen Knorpels zu expri- mieren, wurde jedoch in vitro bereits in zahlreichen Studien nachgewiesen. An einem speziell entwickelten Zellkultur-System konnte auch gezeigt werden, dass rein autolog in Monolayer vermehrte Chondrozyten - ohne den Zusatz von Periost oder Wachstumsfaktoren - nach einer Überführung in eine 3D-Kultur ohne Träger Kollagen II und S-100 als Knor- pelmarker reexprimieren. Die Injektion von Wachstums-faktoren fördert und verstärkt in verschiedenen Zellkultur- Systemen die Synthese von spezifischen Knorpelmarkern und beschleunigt eine Heilung von Knorpeldefekten in Tiermodellen. Daher kann man davon ausgehen, dass in vivo nach der Durchführung einer ACT die selben Mechanismen wirksam werden. Nach Applikation in den durch Periost oder Kollagen- material geschaffenen . dreidimensionalen Raum im Gelenk zeigen die Chondrozyten wieder ihr in vivo Expressions- muster und regenerieren hyalinen Knorpel mit einer deutlichen Expression von Kollagen Typ II. Dies, wurde anhand von Biopsien, die Patienten nach Durchführung einer ACT ent- nommen wurden, bestätigt. In vitro konnte bereits nachgewiesen werden, dass durch kultiviertes Periost Wachstums- faktoren wie TGFß, IGF I und BMP-2 sekretiert werden und somit die Regeneration des hyalinen Knorpels durch die im Rahmen der ACT injizierten Chondrozyten fördern können.
In weiteren in vi tro Experimenten mit Gelenkknorpel verschiedener Spezies wurde gezeigt, dass sich Chondrozyten, die in einer Zellsuspension auf die Knorpeloberfläche aufgebracht werden, stabil mit dem nativen Gewebe verbinden. So kommt es zu einer stabilen und langfristigen Integration des nach ACT neugebildeten Knorpels in den nativen Umgebungsknorpel .
Beim normalen Gebrauch der Gelenke ist der sie überziehende hyaline Gelenkknorpel enorm hohen Druckbelastungen ausgesetzt und Schädigungen seiner Struktur oder Verletzungen haben große Auswirkungen auf die gesamte Funktionalität des Systems . Die natürliche Regenerationskapazität des Gelenkknorpels ist sehr gering. Im gesunden erwachsenen Knorpel teilen sich die Chondrozyten normalerweise nicht mehr (Mankin 64) . Lediglich Gelenkknorpeldefekte, bei denen die subchondrale Knochenplatte beschädigt wird, besitzen aufgrund des Ein- wanderns von Stammzellen aus dem Markraum eine gewisse Kapazität zur Reparatur. Dagegen haben oberflächliche chondrale Defekte mit intakter subchondraler Knochenplatte praktisch keine Kapazität zur Selbstregeneration.
Ist der Knorpel einmal geschädigt, weitet sich die Degeneration aufgrund einer Stimulierung von knorpeldegradierenden Einflüssen kontinuierlich aus. Daher besteht nach einer Verletzung des Knorpels für die betroffenen Patienten ein deutlich erhöhtes Arthroserisiko, was letztendlich häufig den Einsatz einer Gelenkendoprothese nötig macht.
Auf dem Gebiet der regenerativen Medizin werden gemäß dem oben Ausgeführten seit längerem Lösungen zur Wieder- herstellung der Funktion von Geweben bzw. zum Aufbau von Geweben gesucht, die geschädigt, degeneriert oder krank sind bzw. waren. Bisher werden hierzu zum einen körpereigene Zellen mit und ohne Trägermaterial verwendet und zum anderen ausschließlich Trägermaterialien, wobei je nach Indikation resorbierbare oder nicht resorbierbare Materialien eingesetzt werden können.
Aufgabe der Erfindung war es daher, eine Gewebeersatzstruk-. tur bzw. ein in vitro Gewebe, insbesondere eine Knorpel- ersatz- oder eine Knorpelregenerationsstruktur, und ein Verfahren zur Behandlung bzw. Modifikation von erkranktem, beschädigtem und degeneriertem Gewebe bereitzustellen, das eine einfache, sichere, effiziente und wirksame Behandlung von Gewebedefekten, wie zum Beispiel erkranktem, beschädig- tem und degeneriertem Knorpelgewebe, ermöglicht.
Die Erfindung löst dieses technische Problem durch die Bereitstellung einer Gewebeersatzstruktur, die (a) ein vorgeformtes dreidimensionales Gewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind, (b) (i) eine autologe Gewebezellsuspension herstellbar aus körpereigenen Zellen unter Zusatz von körpereigenem Serum und ohne Zusatz von Wachstumsfördernden Verbindungen, (ii) Implantate oder Trägermaterialien und/oder (iii) Wachstumsfaktoren und/oder
(c) die Einwirkung von elektromagnetischen Feldern, mechanischer Stimulierung und/oder Ultraschall auf (a)
umfasst .
Die Erfindung betrifft demgemäß ein dreidimensionales Gewebe, das heißt in vitro Gewebe, für die Effektivierung der Gewebetherapie - die auch als Sphäroide bezeichnet werden können - von unterschiedlicher Größe. Diese Gewebeersatz- oder Geweberegenerationsstrukturen bzw. Sphäroide sind im Wesentlichen zusammengesetzt aus der durch die im Sphäroid enthaltenen Zellen und der durch diese Zellen gebildeten Matrix, die in Kombinationen mit Einzelsuspensionszellen, mit genetisch modifizierten Einzelsuspensionszellen, mit Trägermaterialien, mit exogenen Wachstumsfaktoren, Wirkstoffen, exogener DNA, RNA und/oder mit Implantaten vorliegen. Derartige Sphäroide können zur Behandlung bei er- kranktem, degeneriertem und/oder geschädigtem Gewebe als in vitro TestSysteme für biologische und chemische Wirkstoffe und physikalische Faktoren sowie als Organersatz bzw. als GewebeersatzStrukturen eingesetzt werden. Die erfindungsgemäßen Gewebeersatzstrukturen dienen dazu, die Geweberegene- ration zu induzieren und zu beschleunigen oder diese erst zu ermöglichen, beispielsweise wenn Sphäroide in Kombination mit spezifischen Wirkstoffen verwendet werden, wie zum Beispiel beim Herzmuskelaufbau nach einem Herzinfarkt.
Während im Stand der Technik körpereigene Zellen mit und ohne Trägermaterial oder nur resorbierbare bzw. nicht resorbierbare Trägermaterialien verwendet werden, werden mit den erfindungsgemäßen Strukturen in vitro hergestellte, strukturell und funktionell vorgefertigte dreidimensionale Gewebe zur Herstellung von Organ- und Gewebsfunktionen verwendet und transplantiert, das heißt, es kommen keine Einzelzellen gemäß den bekannten Verfahren und Strukturen zum Einsatz . Die erfindungsgemäßeri Gewebeersatzstrukturen bzw. Sphäroide ermöglichen daher zum einen die Transplanta- tion von vorgefertigtem Gewebe und eine weitere Effektivie- rung durch die Kombination von unterschiedlichsten Gewebe- sphäroiden mit Einzelzellen und exogenen Faktoren. So werden beispielsweise Wachstumsfaktoren anders als im Stand der Technik nicht mehr durch Träger oder Trägermaterialien - ob in Kombination mit Zellen oder ohne diese - freigesetzt. Überraschend konnte gezeigt werden, dass die neuen GewebeersatzStrukturen oder Sphäroide zum Kombinieren mit anderen geweberegenerations ordernden Faktoren eingesetzt werden können. Insbesondere bei der Verwendung von erfin- dungsgemäßen Knorpelsphäroiden und Knorpelzellen konnte eine verbesserte Genese erreicht wurde. Diese überraschende verbesserte Genese konnte auch bei der Kombination von anderen Sphäroiden und Wachstumsfördernden Faktoren bzw. Zellen beobachtet werden.
5
Bei vielen Erkrankungen können Gewebeersatzstrukturen oder Sphäroide nicht isoliert in die erkrankte Geweberegion eingesetzt werden, da sie aufgrund der Gegebenheiten nach der Transplantation nicht an einem Ort verbleiben und somit
10 keine gezielte Geweberegeneration einleiten können. Vorteilhafterweise können die Sphäroide an den jeweiligen Orten fixiert werden. Dies geschieht mit Vorteil durch die Kombination mit einem Träger oder einer Membran, die selbst im Defektbereich bzw. in dessen Umgebung verankert bzw.
15 immobilisiert werden kann. Künstliche dreidimensionale Gewebebildungen, wie zum Beispiel die so genannten Zellkugeln aus Knochenzellen, besitzen noch nicht so eine hohe mechanische Festigkeit, als dass man diese allein in einen Knochendefekt einbringen kann. Die erfindungsgemäßen Gewe-
20 beersatzstrukturen bzw. Sphäroide werden in Kombination mit einem dreidimensionalen Träger eingebracht . Überraschenderweise konnte gezeigt werden, das Sphäroide besonders gut mit dem Trägermaterial wechselwirken, adhärieren und sich integrieren. Dies ermöglicht mit Vorteil eine gute Fixie-
25 rung der Sphäroide im Defektbereich. Die Adhäsion der Sphäroide wird überraschenderweise durch die Anwesenheit von Einzelzellen gefördert, wobei die Einzelzellen eine Kontaktbrücke zwischen dem nativen zu behandelnden Gewebe und den Sphäroiden bzw. Gewebeersatzstrukturen herstellen.
30 Dies konnte insbesondere bei der Verwendung von Knorpel- aggregaten mit Knorpelzellen an und im nativen Knorpelgewebe gezeigt werden. Die Einzelzellen bzw. die körpereigenen Zellen können erfindungsgemäß gentechnisch modifiziert sein, um zum Beispiel den Geweberegenerationsprozess
35 zu fördern. Insbesondere wenn Sphäroide nicht gentechnisch transfiziert werden können, kann die Wirkung der Geweberegenerationsförderung durch Gabe von gentechnisch veränderten Zellen im Defektbereich erreicht werden.
Der regenerative Prozess durch die Verwendung der erfindungsgemäßen Gewebeersatzstrukturen kann bevorzugt auch nach einer Transplantation des Sphäroides in das zu behandelnde Gewebe durch eine Kombination des Sphäroides mit Wachstumsfaktoren oder anderen Faktoren verwendet werden, wenn beispielsweise gentechnische Modifikationen nicht gewünscht sind. Als Faktoren können beispielweise DNA- oder RNA-Moleküle eingesetzt werden, die zum Beispiel nach unspezifischer Aufnahme durch die Zellen ebenfalls zu einer Synthese der entsprechenden Sequenzen führen können.
Ein weiterer Vorteil der erfindungsgemäßen Strukturen ist, dass sie auch als Testsystem für Medikamente verwendet werden können. Dies gilt insbesondere auch dann, wenn die Sphäroide aus erkrankten Zellen, zum Beispiel aus arthroti- sehen Knorpelzellen, gewonnen werden oder aus Tumorzellen oder aus Muskelzellen bei Muskelschwund, an denen Wirkstoffe und Medikamente untersucht werden. Ein weiterer Vorteil der erfindungsgemäßen Gewebeersatzstrukturen ist neben der schnellen Wirksamkeit und ihrer Verwendung sowohl in vivo als auch in vitro die Tatsache, dass Patienten, die Menschen oder Tiere sein können, rein autolog behandelt werden können und somit das Risiko einer Abwehrreaktion auf das eingebrachte Transplantat ausgeschlossen werden kann. Insbesondere werden hierdurch die Krankenhaus- und Reha- bilitationszeiten signifikant vermindert. Ebenfalls vermindert werden die Kosten des gesamten Regenerationsverfahrens und es wird eine schnellere Wiederherstellung der behandelten Patienten erreicht . Weiterhin können die erfindungsgemäßen Strukturen zum Screening von Wirkstoffen oder allgemein als in vivo- oder in vitro-TestSystem verwendet werden, z. B. um Arzneimittel auf ihren Einfluss auf die Geweberegeneration zu testen.
Als Zellen in dem Gewebe können bevorzugt verwendet werden: Muskelzellen (quergestreifte (Herzmuskel und Skelettmuskeln und glatte Muskelzellen) , Knorpelzellen (aus hyalinem Knorpel, aus Faserknorpel, aus elastischem Knorpel) , Knochenzellen (Osteoblasten und Osteozyten) , Hautzellen (Keratinozyten (zum Beispiel Stachelzellen) , Bindegewebs- zellen aus dem Corium und der Subcutis, Zellen aus ekkrinen und apokrinen Schweißdrüsen sowie Talgdrüsen, Zellen der Haaranlage (zum Beispiel mitotisch aktive Haarzwiebel- zellen, Zellen aus der Nagelanlage) , Endothelzellen, Bindegewebszellen (Fibroblasten, Fibrozyten, Wanderzellen, Mast- zellen, Pigmentzellen, Retikulumzellen) , Fettzellen (adulte Fettzellen und Fettvorläuferzellen) , Nervengewebszellen (Nervenzellen, Neurogliazellen) , mesenchymale Stammzellen aus dem Knochenmark/peripheren Blut, Leberzellen, Epithelzellen aus einschichtigen und mehrschichtigen Epithelien und Oberflächenepithelien, Gangepithelien, Drüsenepithe- lien, Sinnesepithelien, Endoepithelien (Zellen aus dem Stratum superficiale, stratum intermedium, Stratum basale, Stratum vorneum, Stratum granulosum, Stratum spinosum) und/oder Bauchspeicheldrüsenzellen .
Die Zellen zur Kombination mit dem Gewebe können dabei bevorzugt eingesetzt werden: Muskelzellen (quergestreifte
(Herzmuskel und Skelettmuskeln und glatte Muskelzellen) ,
Knorpelzellen (aus hyalinem Knorpel, aus Faserknorpel aus elastischem Knorpel), Knochenzellen (Osteoblasten und Osteozyten) , Hautzellen (zum Beispiel Keratinozyten) , . Endothelzellen, Bindegewebszellen (Sehnen und Bänder) , Fettzellen (adulte Fettzellen und Fettvorläuferzellen) , Nervengewebszellen (Nervenzellen, Neurogliazellen) , Stamm- zellen (aus dem Knochenmark/peripheren Blut," aus adulten Geweben an sich (zum Beispiel Pankreas, Cornea) , ' von Embryonen und Föten) , Leberzellen, Epithelzellen aus einschichtigen und mehrschichtigen Epithelien und Oberflächen- epithelien, Gangepithelien, Drüsenepithelien, Sinnesepithe- lien, Endoepithelien (Zellen aus dem Stratum superficiale, stratum intermedium, Stratum basale, Stratum vorneum, Stratum granulosum, Stratum spinosum) und/oder Bauch- speicheldrüsenzellen. Die Zellen in dem Gewebe, das heißt dem vorgeformten dreidimensionalen Gewebe, und die ein- zelnen Zellen aus der Gewebezellsuspension können genetisch modifiziert sein. Die genetische Modifizierung kann der- gestalt erfolgen, dass insbesondere Wachstumsfaktoren, Cytokine, Strukturp oteine, Markierungsproteine oder regulatorische Wirkstoffe exprimiert werden.
Vorteilhafterweise können die erfindungsgemäßen Strukturen mit Implantaten oder Trägermaterialien kombiniert werden, zum Beispiel:
Biokompartible, abbaubare oder nicht abbaubare (resor- bierbare) , allogene, autologe, xenogene und synthetische Materialien, die selber noch exogene Faktoren (wie Wachstumsfaktoren) tragen können,
Polymere (zum Beispiel Polylactide, Polyglykolide, Hyaluronsäuren und all deren Derivate, - vorzugsweise ein neutrales PGA/PLA-Gemisch,
Kalziumkarbonate, Hydroxyapatite, Kalziumphosphate, tierische natürliche vorbehandelte Knochenmatrix,
Faserproteine, Fibrin-basierte Träger,
Gele (wie Aliginate, Agarose, Kollagengel, Hydrogele, Fibrin) ,
- Membranen, Fleeze, Skaffolds (3D Träger) und/oder Prothesen (Titan, diverse metallische und edelmetallische Werkstoffe)..
Weiterhin ist es möglich, die erfindungsgemäßen Strukturen, aber auch die Gewebezellsuspension oder das vorgeformte dreidimensionale Gewebe mit exogenen Wachstumsfaktoren zu kombinieren. Es können hierbei die jeweils gewebespezifischen Wachstumsfaktoren eingesetzt werden, die an dem jeweiligen Ort die Prozesse des Gewebeaufbaus und -umbaus bewirken oder für diese verantwortlich sind bzw. diese regu- lieren. Bei Knorpel ist dies zum Beispiel einer der folgenden Faktoren: Transforming-Growth-Factor ß (TGFß) , Plate- let-Derived-Growth-Factor (PDGF) , Fibroblast-Growth-Factor 2 (FGF2; früher basic (b) FGF), Insulin-Like-Growth-Factor (IGF) und die Bone-Morphogenetic-Proteins (BMPs) ; und für den Knochen beispielsweise BMP7 oder für den Muskel beispielsweise MGF.
Selbstverständlich können neben den exogenen Wachstumsfaktoren auch andere exogene Faktoren eingesetzt werden, die sämtliche regulatorisch wirksame Stoffe, wie zum Beispiel Cytokine oder Enzyme, aber auch RNA- und DNA-Moleküle oder aber Viren oder üblicherweise von Körperzellen hergestellte oder sezernierte Proteine wie zum Beispiel: Cytokine (IL-1, TNF-alpha) , Adhäsionsproteine, Enzyme (Lipasen, Proteinasen) , Botenstoffe (cAMP) , Matrixstrukturproteine (Kollagene, Proteoglykane) , Proteine allgemein, Lipide (Phosphatidylserin) .
Weiterhin betrifft die Erfindung in einer bevorzugten Aus- führungsform die Bereitstellung einer Knorpelersatzstruktur, wobei diese
(a) ein vorgeformtes dreidimensionales Knorpelgewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Knorpelzellen, Knochenzellen, oder mesenchymale Stammzellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, das zu mindestens 40 Vol . % extrazelluläre Matrix beinhaltet, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind, und
(b) eine autologe Knorpelzellsuspension hergestellt aus körpereigenen Zellen unter Zusatz von körpereigenem
Serum und ohne Verwendung von wachstumsfördernden
Verbindungen und/oder die Einwirkung von physikalischen Faktoren auf das Gewebe nach (a) umfasst .
Erfindungsgemäß werden als Ausgangsmaterial für das vorgeformte Gewebe - das heißt für einen Bestandteil der Gewebeersatzstruktur - patienteneigene Gewebebiopsien oder -proben oder mesenchymale Stammzellen, zum Beispiel aus dem peripheren Blut oder Knochenmark, verwendet. Aus den Biopsien werden die gewebeaufbauenden Zellen mittels enzymatischem Verdau des Gewebes, durch Auswandern oder durch Reagenzien, die Zielzellen erkennen, mit üblichen Methoden isoliert. Diese Zellen werden dann er indungsgemäß in einfacher Weise mit üblichem Kulturmedium in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden in Suspension so lange stationär kultiviert, bis ein dreidimensionales Zellaggregat entsteht, das zu mindestens 40 Vol.%, vorzugsweise mindestens 60 Vol . % bis maximal 95 Vol.%, extrazelluläre Matrix (ECM) beinhaltet, in welche differenzierte Zellen eingebettet sind. Das entstandene Zellaggregat weist einen äußeren Bereich auf, in welchem proliferations- und migrationsfähige Zellen vorhanden sind.
Es ist erstaunlich, dass alle Zellen, die in den nach dieser Erfindung hergestellten Sphäroiden integriert sind, überleben und auch nach fortschreitender Kultivierungsdauer die Zellen im Inneren nicht absterben. Mit fortschreitender Kultivierungsdauer differenzieren die Zellen im Inneren der Aggregate aus und es bilden sich Sphäroide, die aus ECM, differenzierten Zellen und einer Proliferationszone am Rand bestehen. Der Prozess der Bildung dieser gewebespezifischen Matrix mit eingebetteten Zellen ist dem Prozess der Gewebs- entstehung bzw. -neubildung und -Umbildung im Körper sehr ähnlich. Während der Differenzierung in Zellkultur wird der Abstand der aggregierten Zellen durch Bildung der gewebespezifischen Matrix immer größer. Es entsteht im Inneren der Sphäroide eine Gewebehistologie, die dem natürlichen Gewebe sehr ähnlich ist. Die Versorgung der Zellen im In- neren der Sphäroide erfolgt, wie im natürlichen Knorpel auch, allein durch die Diffusion der Nährstoffe. Während der weiteren Herstellung der Sphäroide bildet sich die Zone proliferationsfähiger und migrationsfähiger Zellen am Rand der Sphäroide. Diese Zone hat den unschätzbaren Vorteil, dass nach Einbringen der Sphäroide in Defekte, die in dieser Randzone befindlichen Zellen in der Lage sind, auszuwandern und aktiv den Kontakt zum umliegenden Gewebe herzustellen bzw. eine Integration des in vitro gebildeten Gewebes in seine Umgebung ermöglichen. Damit sind die her- gestellten gewebespezifischen Zellaggregate hervorragend zur Behandlung von Gewebsdefekten und zum Neuaufbau von Gewebe in vitro und in vivo geeignet.
In Abhängigkeit von der Größe des zu behandelnden Gewebe- defektes kann es von Vorteil sein, bereits größere Gewebe- stücke zu transplantieren, um ein schnelleres Auffüllen des Defektes zu erreichen. Für diesen Fall werden mindestens zwei, besser aber mehr der erhaltenen Zellaggregate fusioniert, indem sie gemeinsam unter den gleichen Bedingungen und in den gleichen Kulturgefäßen - wie oben beschrieben - bis zur gewünschten Größe weiterkultiviert werden.
Das erhaltene Knorpel- oder Knochengewebe ist außerordentlich stabil. Die Zellaggregate können auf % ihres Durchmes- sers komprimiert werden, ohne dass sie zerbrechen oder beispielsweise beim Injizieren in den Körper mittels einer Kanüle auseinanderfallen. Es ist möglich, diese Gewebestückchen mit einer Pinzette oder einer Pipette aus dem Zellkulturgefäß zu entnehmen.
Um ausreichend Knorpel- oder Knochenzellen für die erfindungsgemäße Suspensionskultivierung zur Verfügung zu haben, werden die vom Patienten gewonnenen Zellen in einer vorteilhaften Ausführungsform der Erfindung zunächst in an sich bekannter Art und Weise in Monolayerkultur vermehrt . Die Passage der Zellen in Monolayerkultur wird so gering wie möglich gehalten. Nach Erreichen des konfluenten Stadiums werden die in Monolayer gewachsenen Zellen geerntet und gemäß des erfindungsgemäßen Verfahrens in Suspension, wie oben beschrieben, kultiviert.
Als Zellkulturmedium kann sowohl ein für die Suspensions- als auch für die Monolayerkultur übliches Medium, zum Beispiel Dulbeccό"s MEM, unter Zusatz von Serum, verwendet werden. Vorzugsweise wird DMEM und Harns im Verhältnis 1 : 1 eingesetzt. Um jedoch immunologische Reaktionen des Patienten auf das in vitro hergestellte Gewebe zu vermeiden, wird als Serum vorzugsweise autogenes Serum des Patienten eingesetzt. Es ist auch möglich, xenogenes oder allogenes Serum zu verwenden. Dem Kulturmedium werden erfindungsgemäß keine Antibiotika, Fungistatika oder andere Hilfsstoffe zugesetzt . Es hat sich gezeigt, dass nur die autogene, xenogene oder allogene Kultivierung der Zellen und Zellaggregate sowie die Kultivierung ohne Antibiotika und Fungistatika eine unbeein- flusste Morphologie sowie Differenzierung der Zellen in der Monolayerkultur und eine ungestörte Bildung der spezifischen Matrix in den Zellaggregaten ermöglicht. Weiterhin sind durch den Verzicht sämtlicher Zusatzstoffe während der Herstellung nach Einbringen des in vitro hergestellten Gewebes in den menschlichen und auch tierischen Organismus sämtliche immunologische Reaktionen ausgeschlossen.
Es ist allerdings überraschend, dass weder bei der Suspensionskultivierung, noch bei der Monolayerku.ltivierung Wachstumsfaktoren oder andere wachstumsfördernde Zusätze notwendig sind. Trotz des Fehlens dieser Zusätze werden bereits nach zweitägiger erfindungsgemäßer Suspensionskul- tivierung dreidimensionale Zellaggregate mit gewebespezifischen Eigenschaften erhalten. Die Größe hängt natürlich von der eingebrachten Zellzahl pro Volumen Kulturmedium ab. Werden beispielsweise 1 x 107 Zellen in 300 μl Kulturmedium eingebracht, so entstehen innerhalb von 1 Woche dreidimen- sionale Sphäroide von cal 500-700 μm Durchmesser. Für einen 1 cm2-Gewebedefekt müssten zirka 100 solcher Sphäroide transplantiert, zum Beispiel injiziert, werden. Die andere Möglichkeit ist die in vitro-Fusion der kleinen Zellaggregate zu größeren - wie oben beschrieben - und das Ein- bringen dieser in den Defekt. Vorzugsweise werden erfin- dungsgemäß zwischen 1 x 104 und 1 x 107 Zellen in 300 μl Kulturmedium zur Herstellung der kleinen Zellaggregate verwendet, besonders bevorzugt 1 x 10s Zellen. Die nach einigen Tagen gebildeten Sphäroide werden dann für min- destens 2 bis 4 Wochen in Abhängigkeit von der Zellart und den patientenspezifischen Charakteristika in dem geeigneten Kulturmedium kultiviert, um die Ausbildung der gewebespezifischen Matrix zu induzieren. Im besonderen Falle können dann einzelne Sphäroide ab zirka einer Woche Kultivierung fusioniert werden, um die Größe des Gewebestückes zu erhöhen.
Als Zellkulturgefäße müssen für die erfindungsgemäße Kultivierung in Suspension solche mit hydrophober, also ad- häsionsverhindernder Oberfläche, wie zum Beispiel Polystyrol oder Teflon, eingesetzt werden. Zellkulturgefäße mit nichthydrophober Oberfläche können durch Beschichten mit Agar oder Agarose hydrophobiert werden. Weitere Zusätze sind nicht erforderlich. Vorzugsweise dienen als Zellkul- turgefaße Napfplatten. Dabei können für die Herstellung der kleinen Zellaggregate beispielsweise 96-Napfplatten und für die Herstellung der fusionierten Aggregate 24-Napfplatten Verwendung finden.
Erfindungsgemäß müssen die Zellkulturgefäße einen sich verjüngenden, vorzugsweise gewölbten Boden aufweisen. Es hat sich gezeigt, dass sich das erfindungsgemäße Gewebe in Gefäßen mit flachem" Boden nicht bildet. Offensichtlich dient die Vertiefung zum Finden der Zellen. Das so gewon- nene vorgeformte dreidimensionale Gewebe bildet in Kombination mit der Gewebezellsuspension, bevorzugt der Knorpel- zellsuspens.ion, die Gewebe-, bevorzugt KnorpelersatzStruktur. Es ist jedoch ebenfalls bevorzugt, das vorgeformte dreidimensionale Gewebe kombiniert mit Trägermaterialien oder Wachstumsfaktoren zu verwenden. Weiterhin ist es bevorzugt, auf das vorgeformte Gewebe physikalische Kräfte wie elektromagnetische Felder, mechanische Stimulierung und/oder Ultraschall wirken zu lassen. Diese physikalischen Kräfte können während der Herstellung der Ersatzstruktur in vitro - zum Beispiel im Kulturgefäß - oder in vivo - im Patienten - auf das vorgeformte Gewebe einwirken.
Bevorzugt ist, dass die Gewebeersatzstruktur eine Muskel- ersatzstruktur, insbesondere eine glatte Herzmuskelersatz- struktur oder eine KnochenersatzStruktur ist.
Die Erfindung betrifft auch ein Verfahren zur Modifikation einer Gewebeläsion, bei dem in die Gewebeläsion (a) eine autologe Zellsuspension hergestellt aus körpereigenen Zellen unter Zusatz von körpereigenem Serum und ohne Zusatz von wachstumsfördernden Verbindungen und
(b) ein vorgeformtes dreidimensionales Gewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen
Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind eingebracht werden und/oder
(c) mit elektromagnetischen Feldern, mechanischer Stimulierung und/oder Ultraschall auf das Gewebe nach
(a) in vivo oder in vitro eingewirkt wird,
eingebracht werden.
Die Erfindung betrifft in einer weiteren bevorzugten Aus- führungsform ein Verfahren zur Modifikation einer Knorpelläsion, bei dem in die "Knorpelläsion
(a) eine autologe Knorpelzellsuspension hergestellt aus körpereigenen Zellen unter Zusatz von körpereigenem Serum und ohne Zusatz vom Wachstumsfördernden Verbindungen und
(b) ein vorgeformtes dreidimensionales Knorpelgewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Knorpelzellen, Knochenzellen, oder mesenchymale Stammzellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden bis ein Zellaggregat entsteht, das zu mindestens 40 Vol . % extrazelluläre Matrix beinhaltet, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind, eingebracht werden und/oder mit physikalischen Faktoren auf das Gewebe nach (a) in vitro oder in vivo eingewirkt wird.
Bevorzugt ist die Gewebeläsion eine Knochen-, Knorpel- und/oder Muskelläsion.
Durch das erfindungsgemäße Verfahren wird die natürliche Wirkung von Wachstumsfaktoren, die eine Regeneration von Knorpel unterstützen, genutzt, um die Behandlung des Defektes, insbesondere gegenüber der klassischen Therapie zu beschleunigen. Mit Hilfe des dreidimensionalen Gewebes, insbesondere Knorpelgewebes, ist es möglich, eine Expres- sion von völlig natürlichen autologen Wachstumsfaktoren direkt im behandelten Defekt zu erreichen und damit die Bildung eines funktionsfähigen Regenerates zu beschleunigen. Im Rahmen einer Behandlung der Modifikation einer Gewebeläsion, insbesondere einer Knorpelläsion, werden demgemäß neben einer autologen Knorpelzellsuspension auch ein vor- geformtes dreidimensionales Knorpelgewebe appliziert, wobei das dreidimensionale Knorpelgewebe die für die Stimulation der Matrixsynthese notwendigen Wachstumsfaktoren synthetisiert, wodurch die Heilung bzw. Modifikation des behandelten GewebeSchadens, wie zum Beispiel des KnorpelSchadens, unterstützt wird. Die gemeinsam mit dem dreidimensionalen Knorpelgewebe, welche auch als 3D Konstrukte bezeichnet werden können, eingebrachten Zellen der Knorpelsuspension garantieren, dass eine optimale Integration des entstehenden Regenerates, insbesondere in den Umgebungsknorpel er- folgt. Durch die von dem dreidimensionalen Gewebe synthetisierten Wachstumsfaktoren wird zum Beispiel die Matrixbildung der Suspensionszellen verstärkt angeregt und damit die Heilung des Defektes beschleunigt .
Das erfindungsgemäße Verfahren ist insbesondere deshalb vorteilhaft, da unter völlig autologen Bedingungen, das heißt ohne den Zusatz von Stoffen, die nicht vom Patienten selbst stammen, bereits in vitro ein dreidimensionales Knorpelgewebe vorgeformt wurde, das in seinen Eigenschaften nativem Knorpel sehr ähnlich ist und damit sofort nach der Operation die Grundlage für den weiteren Aufbau von Knorpelsubstanz schafft.
Ein weiterer Vorteil ist, dass die aufwendige Applikation des Periostlappens gemäß den bekannten Verfahren damit umgangen werden kann, da die durch das Periost sezernierten Wachstumsfaktoren, die in dem bekannten Verfahren essentiell für den Wirkmechanismus sind, in dem erfindungsgemäßen Verfahren durch das vorgeformte dreidimensionale Knorpelgewebe bereitgestellt werden. Es konnte erfindungsgemäß nachgewiesen werden, dass die vorgeformten dreidimensionalen Knorpelgewebe in der Lage sind, bereits in vi tro eine hyaline Knorpelmatrix zu bilden. Insbesondere Kollagen II, als das charakteristische Protein hyalinen Gelenkknorpels, wird durch die vorgeformten dreidimensionalen Knorpelgewebe in großen Mengen gebildet und vor allem werden die Wachstumsfaktoren zu diesem Zeitpunkt der Transplantation bereits aktiv hergestellt .
In einer besonderen Ausführungsform der Erfindung wird nach dem Einbringen der Knorpelzellsuspension und des Knorpelgewebes die Läsion mit einer Membran abgedeckt .
Die Erfindung betrifft auch die Verwendung von aus einem menschlichen oder tierischen Organismus gewonnenen Knorpel- zellen, Muskelzellen, Knochenzellen, oder mesenchymale Stammzellen, die in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, das insbesondere zu mindestens 40 Vol . % extrazelluläre Matrix beinhaltet, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vor- handen sind, als Lieferant von Botenstoffen, Struktur-, Gerüst- und/oder Matrixbausteinen, insbesondere Wachstums- faktoren und/oder Cytokinen.
Durch die Verwendung von gewonnenen Knorpelzellen als Quelle von regenerationsfördernden Wachstumsfaktoren und bereits vorgeformter hyaliner Knorpelmatrix kann eine bedeutend schnellere Heilung von Knorpeldefekten erreicht werden als dies mit bisher bekannten Methoden möglich ist. Ein wesentlicher Vorteil, den die Verwendung - in vivo oder in vitro - neben der schnellen Wirksamkeit bietet, ist die Tatsache, dass der Patient rein autolog behandelt werden kann und so das Risiko einer Abwehrreaktion auf das ein- gebrachte Transplantat ausgeschlossen werden kann.
In einer weiteren vorteilhaften Ausführungsform der Erfindung erfolgt die Verwendung in vivo oder in vitro .
In einer weiteren, besonders bevorzugten Ausführungsform erfolgt die Verwendung zur Behandlung einer Gewebeläsion, bevorzugt einer Knorpel-, Knochen- und/oder Muskelläsion.
Unter einer Läsion im Sinne der Erfindung sind alle Erkrankungen, Degenerationen oder Schädigungen von Zellen oder GewebeStrukturen zu verstehen. So können die erfindungsgemäßen Strukturen zur Behandlung von folgenden Erkrankungen, ~ Degenerationen oder Schädigungen bevorzugt eingesetzt werden: - Herzmuskelgewebeschädigungen,
Arthrose (zum Beispiel Aufbringen Sphäroide auf Knorpeloberfläche und Abdeckung mit einer Membran) , Rheuma, Arthritis,
Erkrankungen aufgrund von Gendefekten oder Genveränderungen,
Infarkte (intravitale Gewebsnekrosen zum Beispiel Milzinfarkt) ,
Ischämien (zum Beispiel aufgrund von Arterie - verschluss) , - Fehlbildungen, Läsionen und Degeneration von Organen/Geweben des • Nervensystems und des neuromuskulären Systems, - Erkrankungen und Degeneration der Gewebe im Auge (zum Beispiel Hornhaut, Bindehaut) , zum Beispiel Netzhaut- ablösung,
Erkrankungen und Degeneration des neuroendokrinen Systems (zum Beispiel Hypothyreosen der Schilddrüse) , Kardiovaskuläres System (zum Beispiel Fehlbildungen am Herzen, Herzinfarkt) , RespirationstraktSchädigungen,
- Verdauungstrakt (Ösophagitis, zum Beispiel Magenschleim- hautaufbau nach Gastritiden) ,
Knochen: nicht-heilende Frakturen, Knochenaufbau nach Tumoren,
- Gelenke: Meniskuserkrankungen und Schädigungen, Bandscheiben, Sehnen, Bänder und - HautSchädigungen (zum Beispiel Hypotrichosen) .
Aus der Offenbarung der erfindungsgemäßen Verwendung kann der Fachmann jedoch weitere äquivalente Verwendungen selbst ableiten. Die erfindungsgemäße Gewebeersatzstruktur, also das Kombinationspräparat aus vorgeformtem dreidimensionalem Gewebe und dem jeweiligen Zusatz, das heißt der Gewebezellsuspension, dem Implantat oder Trägermaterial oder den Wachstumsfaktoren, kann für alle Gewebe angewandt werden, aus denen Zellen isoliert und einzeln oder für die Herstel- lung des vorgeformten dreidimensionalen Gewebes verwendet werden können. Selbstverständlich ist es auch möglich, dass als Zusatz für das vorgeformte dreidimensionale Gewebe im Sinne der Erfindung physikalische Kräfte, wie elektromagnetische Felder, mechanische Stimulierung und/oder Ultra- schall angewendet werden können. In einem solchen Falle wird das vorgeformte dreidimensionale Gewebe in vitro oder in vivo mit den genannten physikalischen Kräften so in Kontakt gebracht, dass eine Heilung der Läsion oder des Defektes erfolgt . Weiterhin können die erfindungsgemäßen Gewebeersatzstrukturen auch als Organersatz verwendet werden, beispielweise für die Wiederherstellung einer oder mehrerer Organfunktionen der oben genannten Gewebe . Weitere bevorzugte Organe oder Gewebe sind, Dopamin-produzierende Strukturen und Gewebe bei der Behandlung von Parkinson oder Nervendege- nerationserkrankungen, Insulin-produzierende Strukturen bei der Behandlung von Bauchspeicheldrüsendefekten, Thyroxin- produzierende Gewebe bei der Behandlung von Schilddrüsen- defekten, aber auch Liberine- oder Statine-produzierende Ersatzstrukturen zur Wiederherstellung der Hypotallamus- funktion.
Die Erfindung betrifft auch eine GewebeersatzStruktur ausgewählt aus der Gruppe umfassend Muskel-, Binde-, Haut-,
Fett-, Nerven-, Lebergewebe, Endothelien, Epithelien und/oder Stammzellen, die dadurch herstellbar ist, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als
Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind.
Die Erfindung betrifft auch einen Kit, der die erfindungsgemäßen Strukturen umfasst und dessen Verwendung in der Diagnose und Thera ie. Der Kit kann zusätzlich Puffer, Seren, Salze, Kulturmedien sowie Informationen zum Kombinieren dieser Inhalte umfassen.
Die Erfindung betrifft also eine Gewebeersatzstruktur und ein Verfahren zur Modifikation bzw. Behandlung von Gewebeläsionen, beispielsweise von Knorpelläsionen, mit aus- schließlich körpereigenem dreidimensionalem gezüchteten Knorpel in Form so genannter Sphäroide; hiermit ist beispielsweise die Wiederherstellung von degeneriertem Arthroseknorpel möglich. Mit Hilfe dieser Sphäroid- technologie bzw. der Sphäroide wird eine Plattfor - technologie für weitreichende weitere Produktinnovationen bereitgestellt, womit die körpereigene Zellregeneration von traumatisch bedingten Gelenk-Knorpelschäden möglich ist. Dieser Einsatz von patienteneigenen, durch Sphäroide produzierten Wachstumsfaktoren führt zu einer wesentlich schnelleren Ausbildung von druckstabilem Gelenkknorpel . Erreicht wird dies insbesondere durch gezieltes monospezifisches Heranwachsen von Knorpel, wodurch eine minimal invasive, arthroskopische autologe Condrozytentransplan- tationsbehandlung möglich ist. Insbesondere werden hier- durch die Krankenhaus- und Rehabilitationszeiten signifikant vermindert. Ebenfalls vermindert werden die Kosten und es wird eine schnellere Wiederherstellung des behandelten Patienten erreicht. Diese Sphäroidtechnologie ist selbstverständlich nicht auf Knorpel' beschränkt, sondern kann zur Regeneration von allen menschlichen Geweben eingesetzt werden.
Im Folgenden soll die Erfindung anhand von Beispielen näher erläutert werden, ohne auf diese beschränkt zu sein.
Ausführunqsbeispiele
Herstellung der ersten Komponente (Knorpel) des Kombinationspräparates (GewebeersatzStruktur)
Vom Patienten wird aus einem Bereich hyalinen, gesunden Knorpels eine Biopsie entnommen. Aus dieser Biopsie werden mittels enzymatischen Verdaus durch Inkubation mit Kollagenaselösung die Chondrozyten isoliert. Nach Trennung der isolierten Zellen vom unverdauten Knorpelgewebe werden diese in Zellkulturflaschen überführt und unter Zugabe von DMEM/Hams F12 Kulturmedium (l/l) und 10 % autologem Serum des Patienten bei 37 °C und 5 % C02 inkubiert. Zweimal wöchentlich wird ein Mediumwechsel durchgeführt . Nach Erreichen des konfluenten Stadiums wird die Zellayer mit physiologischer Kochsalzlösung gewaschen und mittels Tryp- sin von der Zellkulturober läche geerntet. Nach einer weiteren Waschung werden 1 x 105 Zellen in je ein Zell- kulturgefäß überführt, das mit Agarose beschichtet ist. Nach einem Tag haben sich die ersten Zellen in Aggregaten angeordnet. Diese Aggregate werden alle 2 Tage mit frischem Medium versorgt und für mindestens 2 Wochen kultiviert.
Bereits nach einer Woche wurden Kollagen Typ II und Proteo- glycane in den Aggregaten nachgewiesen. Dazu wurde ein spezifischer Antikörper gegen Kollagen Typ II verwendet. Der an Kollagen Typ II gebundene Primärantikörper wurde mit Hilfe eines Zweitantikörpers und daran' gekoppeltem ABC- System nachgewiesen. Das heißt, an dem 2. Antikörper ist über Avidin- Biotin das Enzym Alkalische Phosphatase gekoppelt, welches das Substrat Fuchsin umsetzt, wobei ein roter Farbstoff entsteht .
Die Proteoglycane wurden mittels Goldnerfärbung nachgewiesen. Kollagen Typ II und Proteoglykane sind Bestandteile der Knorpelmatrix in vivo und stellen die wichtigsten Strukturproteine dar, die für die Funktion des Knorpels von entscheidender Bedeutung sind.
In der äußeren Schicht der Aggregate wurde zum gleichen Zeitpunkt das für Knorpelzellen spezifische Protein S 100 nachgewiesen. S 100 wird nicht in Knochengewebe und Bindegewebe exprimiert . Nur diese Gewebe könnten hierbei auch entstehen. Somit wurde eindeutig nachgewiesen, dass das entwickelte Gewebe Knorpelgewebe ist. Nach 1 bis 2 Wochen Kultivierung liegen die Zellen noch dicht beieinander. Mit steigender Kultivierungsdauer nimmt der Anteil an extrazellulärer Matrix zu und der Anteil an Zellen ab. Nach einer Woche ist mindestens 40 % ECM nach- weisbar und nach 3 Wochen wurde bereits zirka 60 % ECM entwickelt. Nach 3 Monaten Kultivierung der Knorpelgewebe ist der Anteil an ECM auf 80 bis 90 % angestiegen. Das heißt, im Inneren der hergestellten Aggregate wurde knorpelartiges Gewebe aufgebaut, welches im Aufbau dem in vivo Knorpel entspricht und auch die Funktion von Knorpelgewebe übernehmen kann.
Herstellung einer weiteren ersten Komponente (Knochengewebe)
Vom Patienten wird eine Knochenbiopsie aus dem Bereich des Spongiosaknochens entnommen. Aus dieser Biopsie werden mittels enzymatischen Verdaus durch Inkubation mit Kollagenaselösung die Osteoblasten isoliert. Nach Trennung der isolierten Zellen vom unverdauten Knochengewebe werden diese in Zellkulturflaschen überführt und unter Zugabe von DMEM/Hams F12 Kulturmedium (l/l) und 10 % autologem Serum des Patienten bei 37 °C und 5 % C02 inkubiert. Zweimal wöchentlich wird ein Mediumwechsel vorgenommen. Nach Errei- che'n des konfluenten Stadiums wird die Zelllayer mit physiologischer Kochsalzlösung gewaschen und mittels Trypsin von der Zellkulturoberfläche geerntet . Nach einer weiteren Waschung werden 1 x 105 Zellen in je ein Zellkulturgefäß überführt, das mit Agarose beschichtet ist. Nach einem Tag haben sich die ersten Zellen in Aggregaten angeordnet . Diese Aggregate werden alle 2 Tage mit frischem Medium versorgt und für mindestens 2 Wochen kultiviert .
Bereits nach einer Woche wurden Kollagen Typ I und Proteo- glycane in den Aggregaten nachgewiesen. Dazu wurde ein spezifischer Antikörper gegen Kollagen Typ I verwendet. Durch den Nachweis von Kollagen I wurde zweifelsfrei nachgewiesen, dass es sich nicht um Knorpelgewebe handelt. Der an Kollagen Typ I gebundene Primärantikörper wurde mit Hilfe eines Zweitantikörpers und daran gekoppeltem ABC- System nachgewiesen. Das heißt, an dem 2. Antikörper ist über Avidin- Biotin das Enzym Alkalische Phosphatase gekoppelt, welches das Substrat Fuchsin umsetzt, wobei ein roter Farbstoff entsteht.
Die Proteoglycane wurden wie in Beispiel 1 mittels Goldnerfärbung nachgewiesen. Kollagen Typ I und Proteoglykane sind Bestandteile der Knochenmatrix in vivo und stellen die wichtigsten Strukturproteine dar, die für die Funktion des Knochens von entscheidender Bedeutung sind.
In der äußeren Schicht der Aggregate wurden zum gleichen Zeitpunkt proliferationsfähige Knochenzellen nachgewiesen.
Nach 2 Wochen Kultivierung liegen die Zellen noch dicht beieinander. Mit steigender Kultivierungsdauer nimmt der Anteil an extrazellulärer Matrix zu und der Anteil an Zellen ab. Nach einer Woche ist mindestens 40 % ECM nachweisbar und nach 3 Wochen wurde bereits zirka 60% ECM ent- wickelt. Das heißt, im Inneren der hergestellten Aggregate wurde knochenartiges Gewebe aufgebaut, welches in der Zusammensetzung dem in vivo Knochen entspricht und auch die Funktion von Knochengewebe übernehmen kann.
Die so gewonnenen Einzelkomponenten können nun mit Knorpel- suspensionszellen/Einzellzellen kombiniert werden. Hierbei dienen die in den dreidimensionalen in vitro Geweben durch die Zellen hergestellten und sezernierten Wachstumsfaktoren der Förderung der Denovoregeneration des Gelenkknorpels bzw. der Knochenstruktur und damit der Steigerung der Wirk- samkeit bei der Behandlung von Knorpel- oder Knochengeweben.
Kombination aus vorgeformten , dreidimensionalen Gewebe (Sphäroiden) aus Knochenzellen mit elektromagnetischen Feldern
Während der Herstellung der Knochenzell-basierten Sphäroide und/oder nach dem Einbringen der Knochensphäroide in ein erkranktes, degeneriertes oder zerstörtes Gewebe, die Gewebe bzw. die Gewebe regenerierenden Prozesse wird in vivo mittels elektromagnetischen Feldern stimuliert. Erstaunlicherweise wurde festgestellt, dass bei Applikation eines elektromagnetischen Feldes mit einer Trägerfrequenz von 5 KHz und unterschiedlichen Modulationsfrequenzen (zum Beispiel 16 Hz) die Reifung der Sphäroide hergestellt aus Knochenzellen stimuliert ist. Weiterhin ist es möglich, die Sphäroide mit Wachstumsfaktoren zu kombinieren. Es wurde überraschenderweise festgestellt, dass nach Zugabe von exo- genen Wachstumsfaktoren während der Herstellung der Sphäroide aus Knorpelzellen das Wachstum der Knorpelzellen, aber auch die Matrixbildung und -reifung positiv beein- flusst werden kann.
Herstellung von Sphäroiden aus gentechnisch manipulierten Knorpelzellen in Kombination mit Knorpelzellen in Suspension
Es wurde gezeigt, dass man Infektionen von humanen Knorpel- zellen und Herstellung aus diesen von Sphäroiden die Reifung des gebildeten Knorpelgewebes gefördert wird. Dies bedeutet insbesondere für die klinische Anwendung eine Beschleunigung der Defekteheilung bzw. der Gewebe der Regeneration. Kombinationen aus Sphäroiden mit PLA/PGA Polymeren
Die Sphäroide, die aus Knochenzellen hergestellt wurden, werden für die Beschichtung oder für das Einwachsen im Trägermaterial verwendet, wie zum Beispiel neutral abbauende PLA/PGA Polymere und Kollagenfleece, welche als Gerüstsubstanzen im Tissue Engineering implantiert werden. Es konnte gezeigt werden, dass nach Zugabe von Sphäroiden, hergestellt aus Knochenzellen auf der Oberfläche von neu- tral abbauenden PLA/PGA Polymeren, diese die Oberfläche bewachsen und eine Abschlussschicht bilden, aber auch ins Innere der Polymere einwandern. Für die klinische Anwendung wird dadurch eine schnellere Defektheilung und ein schnellerer Umbau des neutral abbaubaren PLA/PGA Polymers er- reicht. Gleiches konnte für die Kombination von Sphäroiden aus Knochenzellen mit Kollagenmembran gezeigt werden.
Miniskus
Vorgeformtes dreidimensionales Miniskusknorpelgewebe wird wie für Knorpelgewebe beschrieben hergestellt und außerhalb des Körpers, zum Beispiel während der Operation, mit einem Trägermaterial kombiniert, welches die mechanische Stabilität und Form vorgibt.
Muskel
Dreidimensionale Muskelzellen werden analog der Herstellung der Knorpelzellen hergestellt und mit einer autologen Muskelzellsuspension kombiniert, wobei diese aus körpereigenen Herzmuskelzellen oder Stammzellen besteht und weiterhin körpereigenes Serum, aber ohne den Zusatz von wachstumsfördernden Verbindungen, umfasst. Anstelle der autologen Muskelzellsuspension aus körpereigenen Herzzellen und/oder Stammzellen kann das dreidimensionale vorgeformte Gewebe auch auf eine Membran aufgebracht werden, um dann in den Muskeldefekt ein- bzw. aufgebracht zu werden.
Bindegewebszellen
Ein weiteres Beispiel betrifft die Herstellung von Spheroiden aus Bindegewebszellen, die gentechnisch dahingehend modifiziert werden, dass sie einen Vektor für die Insulinsynthese enthalten. Die aus diesen Zellen hergestellten Spheroide werden in ein inertes Trägermaterial eingekapselt, durch welches die Diffusion von Insulin nach außen ermöglicht wird. Diese Kombination wird implantiert in die blutzuführende Arterie. Durch diese Vorgehensweise wird aufgrund der hohen Zellkonzentration in den Spheroiden eine besonders hohe Insulinausschüttung ermöglicht, wodurch die therapeutische Wirkung erhöht wird.

Claims

Patentansprüche
1. Gewebeersatzstruktur, dadurch gekennzeichnet, dass sie
(a) ein vorgeformtes dreidimensionales Gewebe herstellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem prolife- rations- und migrationsfähige Zellen vorhanden sind,
(b) (i) eine autologe Gewebezellsuspension herstellbar aus körpereigenen Zellen unter Zusatz von körper- eigenem Serum und ohne Zusatz von Wachstums- fördernden Verbindungen, (ii) Implantate oder Trägermaterialien und/oder (iii) Wachstumsfaktoren und/oder
(c) die Einwirkung von elektromagnetischen Feldern, mechanischer Stimulierung und/oder Ultraschall auf das Gewebe nach (a)
umfasst .
2. Gewebeersatzstruktur nach Anspruch 1, dadurch gekennzeichnet, dass die GewebeersatzStruktur eine Knorpelersatzstruktur ist, wobei die Gewebezellsuspension eine Knorpelzellsuspension ist, das dreidimensionale Gewebe ein Knorpelgewebe ist, aus dem Organismus Knorpelzellen, Knochenzellen und/oder mesenchymale Stammzellen gewonnen werden und das Zellaggregat mindestens 40 Vol . % extrazelluläre Matrix beinhaltet .
3. Gewebeersatzstruktur nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie eine Muskulatur-, Knochen-, Bindegewebs- , Haut-, Fett-, Nerven-, Leber-, Endothelien- und/oder Epithe- lienersatzstruktur ist, insbesondere eine glatte Herzmuskelersatzstruktur.
4. Gewebeersatzstruktur ausgewählt aus der Gruppe umfassend Muskel-, Binde-, Haut-, Fett-, Nerven-, Lebergewebe, Endothelien, Epithelien und/oder Stammzellen, dadurch gekennzeichnet, dass es dadurch herstellbar ist, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welchem differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proliferations- und migrationsfähige Zellen vorhanden sind.
5. Verfahren zur Modifikation einer Gewebeläsion, dadurch gekennzeichnet, dass in die Gewebeläsion
(a) ein vorgeformtes dreidimensionales Gewebe her- stellbar dadurch, dass aus einem menschlichen oder tierischen Organismus Zellen gewonnen werden und diese in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proli- ferations- und migrationsfähige Zellen vorhanden sind und
(b) eine autologe Zellsuspension herstellbar aus körpereigenen Zellen unter Zusatz von körpereigenem Serum und ohne Zusatz von wachstumsfördernden Verbindungen eingebracht werden und/oder
(c) mit elektromagnetischen Feldern, mechanischer Stimulierung und/oder Ultraschall auf das Gewebe nach (a) eingewirkt wird.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Gewebeläsion eine Knochen-, Knorpel- und/oder
Muskelläsion ist .
7. Verfahren nach Anspruch 6 , dadurch gekennzeichnet, dass bei der Modifikation der Knorpelläsion als die Zellsuspension eine Knorpelzellsuspension als das drei- dimensionale Gewebe ein Knorpelgewebe hergestellt wird, wobei aus dem Organismus Knorpelzellen, Knochenzellen und/oder mesenchymale Stammzellen gewonnen werden und das Zellaggregat zu mindestens 40 Vol.% extrazelluläre Matrix beinhaltet .
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass nach Einbringen der Knorpelzellsuspension und des Knorpelgewebes die Läsion mit einer Membran abgedeckt wird.
9. Verwendung von aus einem menschlichen oder tierischen Organismus gewonnenen Knorpelzellen, Muskelzellen, Knochenzellen und/oder mesenchymale Stammzellen, die in Zellkulturgefäßen mit hydrophober Oberfläche und sich verjüngendem Boden als Suspensionskultur stationär so lange kultiviert werden, bis ein Zellaggregat entsteht, in welche differenzierte Zellen eingebettet sind, und das einen äußeren Bereich aufweist, in welchem proli- ferations- und migrationsfähige Zellen vorhanden sind, als Lieferant von intrazellulären Botenstoffen, Struk- tur- , Gerüst- und/oder Matrixbausteinen.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass die intrazellulären Botenstoffe Wachstumsfaktoren und/oder Cytokinen sind.
11. Verwendung nach Anspruch 9 oder 10 in vivo oder in vi tro .
12. Verwendung einer Gewebeersatzstruktur nach einem der Ansprüche 1 bis 4 zur Behandlung einer Gewebeläsion.
13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, dass die Gewebeläsion eine Knorpel-, Knochen- und/oder Muskelläsion ist.
14. Verwendung einer Gewebeersatzstruktur nach einem der Ansprüche 1 bis 4 als in vitro oder in vivo Testsystem, insbesondere zum Screening von Wirkstoffen.
15. Kit umfassend mindestens eine Gewebeersatzstruktur nach einem der Ansprüche 1 bis 4, gegebenenfalls zusammen mit einer Information zum Kombinieren der Inhalte des Kits.
PCT/DE2003/003765 2002-11-07 2003-11-07 Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren WO2004042038A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03785503A EP1481055A1 (de) 2002-11-07 2003-11-07 Verfahren zur behandlung von erkranktem, degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren
AU2003294621A AU2003294621A1 (en) 2002-11-07 2003-11-07 Method for the treatment of diseased, degenerated, or damaged tissue using three-dimensional tissue produced in vitro in combination with tissue cells and/or exogenic factors
US10/501,520 US20050074477A1 (en) 2002-11-07 2003-11-07 Method for the treatment of diseased, degenerated, or damaged tissue using three dimensional tissue produced in vitro in combination with tissue cells and/or exogenic factors
JP2004548677A JP2006514562A (ja) 2002-11-07 2003-11-07 試験管内で生産された三次元組織を組織細胞及び/又は外因性因子と組合わせて用いた罹患組織、変性組織又は損傷組織の治療方法
DE10394045T DE10394045D2 (de) 2002-11-07 2003-11-07 Verfahren zur Behandlung von erkranktem, degeneriertem oder geschädigtem Gewebe unter Verwendung von in vitro hergestelltem dreidimensionalem Gewebe in Kombination mit Gewebezellen und/oder exogenen Faktoren
CA002473776A CA2473776A1 (en) 2002-11-07 2003-11-07 Method for the treatment of diseased, degenerated, or damaged tissue using three-dimensional tissue produced in vitro in combination with tissue cells and/or exogenic factors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10253066.1 2002-11-07
DE10253066A DE10253066A1 (de) 2002-11-07 2002-11-07 Gewebeersatzstruktur, Verfahren zur Modifikation einer Gewebeläsion und Verwendung von vorgeformtem dreidimensionalem Gewebe als Lieferant von Botenstoffen und/oder Strukturbausteinen

Publications (1)

Publication Number Publication Date
WO2004042038A1 true WO2004042038A1 (de) 2004-05-21

Family

ID=32185651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003765 WO2004042038A1 (de) 2002-11-07 2003-11-07 Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren

Country Status (7)

Country Link
US (1) US20050074477A1 (de)
EP (1) EP1481055A1 (de)
JP (1) JP2006514562A (de)
AU (1) AU2003294621A1 (de)
CA (1) CA2473776A1 (de)
DE (2) DE10253066A1 (de)
WO (1) WO2004042038A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649875A1 (de) * 2003-07-31 2006-04-26 Iwamoto, Yukihide Verfahren zur herstellung eines künstlichen gelenks

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744869B2 (en) * 2003-08-20 2010-06-29 Ebi, Llc Methods of treatment using electromagnetic field stimulated mesenchymal stem cells
KR100684932B1 (ko) 2005-04-13 2007-02-20 (주)필미아젠 중간엽 줄기세포와 초음파 자극을 이용하여 연골조직을재생하는 방법
US20070093905A1 (en) * 2005-10-21 2007-04-26 O'neil Michael J Degenerative disc regeneration techniques
WO2007107038A1 (fr) * 2006-03-20 2007-09-27 Hua Liu Construction d'un modèle tumoral in vitro et application
US20070293893A1 (en) * 2006-06-14 2007-12-20 Craig Stolen Method and apparatus for preconditioning of cells
WO2008124843A2 (en) * 2007-04-10 2008-10-16 Rush University Medical Center Combined use of ultrasound and growth factors to stimulate bone formation
WO2009017267A1 (en) * 2007-08-01 2009-02-05 Regenprime Co., Ltd. Method for differenciating mesenchymal stem cell and culturing chondrocytes using alginate coated fibrin/ha composite scaffold
FR2979634A1 (fr) * 2011-09-01 2013-03-08 Centre Nat Rech Scient Procedes d'aggregation et de differenciation de cellules souches magnetisees
KR101836475B1 (ko) * 2016-08-02 2018-03-08 아주대학교산학협력단 연골 재생용 조성물 및 이의 제조방법
US11560557B2 (en) 2016-11-18 2023-01-24 The Regents Of The University Of California Acoustic wave based particle agglomeration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723331A (en) * 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
WO1999022747A1 (en) * 1997-10-30 1999-05-14 The General Hospital Corporation Bonding of cartilaginous matrices using isolated chondrocytes
WO2001068811A2 (de) * 2000-03-13 2001-09-20 Co.Don Aktiengesellschaft Verfahren zur in vitro-herstellung von dreidimensionalem, vitalem knorpel- oder knochengewebe und dessen verwendung als transplantationsmaterial
WO2002010351A2 (de) * 2000-07-31 2002-02-07 Schmitt-Waldburg Gbr Autologe bindegewebe, verfahren zu ihrer herstellung und ihre verwendung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032508A (en) * 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723331A (en) * 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
WO1999022747A1 (en) * 1997-10-30 1999-05-14 The General Hospital Corporation Bonding of cartilaginous matrices using isolated chondrocytes
WO2001068811A2 (de) * 2000-03-13 2001-09-20 Co.Don Aktiengesellschaft Verfahren zur in vitro-herstellung von dreidimensionalem, vitalem knorpel- oder knochengewebe und dessen verwendung als transplantationsmaterial
WO2002010351A2 (de) * 2000-07-31 2002-02-07 Schmitt-Waldburg Gbr Autologe bindegewebe, verfahren zu ihrer herstellung und ihre verwendung

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANDERER URSULA ET AL: "In vitro engineering of human autogenous cartilage.", JOURNAL OF BONE AND MINERAL RESEARCH, vol. 17, no. 8, August 2002 (2002-08-01), pages 1420 - 1429, XP009026956, ISSN: 0884-0431 (ISSN print) *
BRITTBERG M ET AL: "Autologous chondrocytes used for articular cartilage repair: an update.", CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, (2001 OCT) (391 SUPPL) S337-48. REF: 39, XP009027036 *
BRITTBERG M ET AL: "TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION", NEW ENGLAND JOURNAL OF MEDICINE, THE, MASSACHUSETTS MEDICAL SOCIETY, WALTHAM, MA, US, vol. 331, no. 14, 1994, pages 889 - 895, XP001015827, ISSN: 0028-4793 *
MEYER U ET AL: "Mechanical tension in distraction osteogenesis regulates chondrocytic differentiation.", INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY. DENMARK DEC 2001, vol. 30, no. 6, December 2001 (2001-12-01), pages 522 - 530, XP009027141, ISSN: 0901-5027 *
NISHIKORI T ET AL: "Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen(R) gel", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 59, no. 2, February 2002 (2002-02-01), pages 201 - 206, XP002272584, ISSN: 0021-9304 *
OCHI MITSUO ET AL: "Current concepts in tissue engineering technique for repair of cartilage defect", ARTIFICIAL ORGANS, vol. 25, no. 3, March 2001 (2001-03-01), pages 172 - 179, XP002272583, ISSN: 0160-564X *
WIESMANN H P ET AL: "Extracorporal biophysical stimulation of osteoblast cultures for bone tissue engineering.", TISSUE ENGINEERING, vol. 9, no. 4, August 2003 (2003-08-01), Second Meeting of the European Tissue Engineering Society;Genoa, Italy; September 03-06, 2003, pages 796 - 797, XP009026955, ISSN: 1076-3279 (ISSN print) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1649875A1 (de) * 2003-07-31 2006-04-26 Iwamoto, Yukihide Verfahren zur herstellung eines künstlichen gelenks
EP1649875A4 (de) * 2003-07-31 2008-02-13 Yukihide Iwamoto Verfahren zur herstellung eines künstlichen gelenks

Also Published As

Publication number Publication date
EP1481055A1 (de) 2004-12-01
US20050074477A1 (en) 2005-04-07
JP2006514562A (ja) 2006-05-11
CA2473776A1 (en) 2004-05-21
DE10253066A1 (de) 2004-05-27
AU2003294621A1 (en) 2004-06-07
DE10394045D2 (de) 2005-09-22

Similar Documents

Publication Publication Date Title
EP1265986B1 (de) Verfahren zur in vitro-herstellung von dreidimensionalem, vitalem knorpel- oder knochengewebe
AU731768B2 (en) Composition and method for repairing neurological tissue
DE60018576T2 (de) In vitro heilung von knochen- und/oder knorpelschäden
EP1242129B1 (de) Biologisches gelenkkonstrukt
EP2273997B1 (de) Verfahren und zusammensetzung zur regeneration von gewebe mit hilfe von stamm- oder knochenmarkzellen
DE10139783C1 (de) Zellzusammensetzungen zur Behandlung von Osteoarthrose, sowie Verfahren zu deren Herstellung
EP1231932A1 (de) Implantierbare substrate zur heilung von bindegewebe
DE10026789B4 (de) Knorpelersatz und Verfahren zu dessen Herstellung
DE112008001609T5 (de) Reparatur und Behandlung von Knochendefekten unter Verwendung von mittels einem Wirkstoff induzierten Zellen, der von hypertrophierungsfähigen Chondrozyten hergestellt wird, und eines Gerüsts
WO2004042038A1 (de) Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren
EP1706157B1 (de) Verfahren zur herstellung von bandscheibenzelltransplantaten und deren anwendung als transplantationsmaterial
KR20200087748A (ko) 지방 유래 줄기세포를 포함하는 생체재료 및 이를 생산하는 방법
WO2005014027A1 (de) Verwendung von chemokinen und diese enthaltende pharmazeutische zubereitungen
EP1450827B1 (de) Verwendung von zwei-komponenten zusammensetzungen zur in situ herstellung von fibroblasten und keratinozyten umfassenden zelltransplantaten
EP2125052A2 (de) Therapeutische zusammensetzung und verwendung einer zellfreien substanz
DE102004043449B4 (de) Verfahren zur Herstellung von Bandscheibenzelltransplantaten und deren Anwendung als Transplantationsmaterial
EP1430899B1 (de) Gewebetransplantat aus der Magensubmukosa zur Reparatur neurologischen Gewebes
DE19652033A1 (de) Neuropeptid (CGRP) als Modulator zur Zelldifferenzierung und Proliferation
EP1338285A1 (de) Plasmagel
WO2012055851A1 (de) Chondrone zur knorpeltherapie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2473776

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003294621

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004548677

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003785503

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10501520

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003785503

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003785503

Country of ref document: EP

REF Corresponds to

Ref document number: 10394045

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10394045

Country of ref document: DE