WO2004039380A1 - 経口投与用吸着剤 - Google Patents

経口投与用吸着剤 Download PDF

Info

Publication number
WO2004039380A1
WO2004039380A1 PCT/JP2003/014011 JP0314011W WO2004039380A1 WO 2004039380 A1 WO2004039380 A1 WO 2004039380A1 JP 0314011 W JP0314011 W JP 0314011W WO 2004039380 A1 WO2004039380 A1 WO 2004039380A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
adsorbent
oral administration
spherical activated
diffraction
Prior art date
Application number
PCT/JP2003/014011
Other languages
English (en)
French (fr)
Inventor
Naohiro Sonobe
Susumu Morimoto
Hideyuki Yoshihara
Hiroyuki Hanatsuka
Makoto Arakawa
Original Assignee
Kureha Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Co., Ltd. filed Critical Kureha Chemical Industry Co., Ltd.
Priority to JP2004548106A priority Critical patent/JP3672200B2/ja
Priority to EP03770094A priority patent/EP1547605B1/en
Priority to DE60323112T priority patent/DE60323112D1/de
Priority to CA002504514A priority patent/CA2504514C/en
Priority to AU2003280689A priority patent/AU2003280689A1/en
Publication of WO2004039380A1 publication Critical patent/WO2004039380A1/ja
Priority to US10/948,314 priority patent/US7651974B2/en
Priority to HK06102947.4A priority patent/HK1082924A1/xx
Priority to US12/630,581 priority patent/US8309130B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes

Definitions

  • the present invention provides an adsorbent for oral administration comprising a spherical activated carbon having a unique pore structure, and a surface modification having the same unique pore structure, which is produced by further oxidizing and reducing the spherical activated carbon.
  • the present invention relates to an adsorbent for oral administration comprising porous spherical activated carbon.
  • the adsorbent for oral administration by this invention has the selective adsorption characteristic that the adsorption performance of a toxic toxic substance (Toxin) is large despite the low adsorbability of beneficial components in the body, such as a digestive enzyme. Furthermore, since it has a unique pore structure, the selective adsorption characteristics described above are significantly improved as compared with conventional adsorbents for oral administration. Therefore, it is particularly effective as an adsorbent for oral administration for patients with hepatic and renal diseases.
  • Toxin toxic toxic substance
  • the adsorbent described in Japanese Patent Publication No. 62-11611 consists of a porous spherical carbonaceous material having a specific functional group (hereinafter referred to as a surface-modified spherical activated carbon).
  • Li for the living body It has high safety and stability, and at the same time, has excellent adsorptivity of toxic substances even in the presence of bile acids in the intestine, and has beneficial selective adsorptivity of little intestinal beneficial components such as digestive enzymes.
  • the adsorbent described in Japanese Patent Publication No. Sho 62-1-11611 uses a pitch such as petroleum pitch as a carbon source, prepares a spherical activated carbon, and then performs an oxidation treatment and a reduction treatment. It was manufactured by. Disclosure of the invention
  • the inventor of the present invention has proposed a method for oral administration showing a more selective adsorption property than a conventional oral adsorbent comprising a porous spherical carbonaceous substance obtained by preparing spherical activated carbon from pitches and redox-reducing it.
  • the spherical activated carbon prepared using a thermosetting resin as a carbon source, despite being in the state before the oxidation and reduction treatments, It is considered to be one of the uremic substances in the living body./3 It has excellent adsorptivity for 3-aminoisobutyric acid, and has a low adsorptivity to beneficial substances such as digestive enzymes (for example, amylase).
  • the spherical activated carbon prepared from a thermosetting resin as a carbon source exhibits excellent adsorptivity to ⁇ -aminoisobutyric acid, so that other toxic substances having the same molecular size, for example, octopamine and monoaminobutyric acid, It is considered that it exhibits excellent adsorptivity to water-soluble basic and amphoteric substances such as dimethylamine, aspartic acid, or arginine, which are toxic substances in kidney disease and their precursors.
  • the spherical activated carbon prepared from pitches is further subjected to oxidation treatment. It was thought that the selective adsorptivity described above would be exhibited by introducing a functional group through a reduction treatment and a selective adsorption treatment in the state of the spherical activated carbon before the oxidation treatment and the reduction treatment. It is surprising that the inventor has found that the above-mentioned expression and the adsorbing ability are superior to those of the conventional adsorbent for oral administration.
  • the present inventor has reported that the surface-modified spherical activated carbon prepared by further subjecting the spherical activated carbon to an oxidation treatment and a reduction treatment is capable of adsorbing iS-aminoisobutyric acid, which is considered to be one of uremic substances in a living body.
  • the above-mentioned advantageous selective adsorption property which is excellent in absorbability and has low adsorptivity to beneficial substances such as digestive enzymes (for example, ⁇ -amylase), is disclosed in Japanese Patent Publication No. 62-116161. It has been found that the adsorbent is more improved than the adsorbent described.
  • ⁇ -aminoisobutyric acid such as octopamine and 0; -aminobutyric acid, and water-soluble substances such as toxic substances in kidney disease and their precursors such as dimethylamine, aspartic acid, and arginine. It is considered that even more basic and amphoteric substances exhibit better selective adsorption.
  • the present invention is based on such findings.
  • the diameter is 0.01 to 1 mm
  • the specific surface area determined by the Langmuir's adsorption equation is 1 000 m 2 Zg or more, and the equation (1):
  • 1 15 is a diffraction intensity diffraction angle by X-ray diffraction method (20) in 1 5 °, 1 35, the diffraction intensity der in the diffraction angle (20) is 35 ° according to X-ray diffractometry Li, 1 24, the diffraction angle by X-ray diffraction method (20) Ru diffraction intensity der in 24 °]
  • the present invention relates to an adsorbent for oral administration, comprising a spherical activated carbon having a diffraction intensity ratio (R value) determined by (1) of 1.4 or more.
  • the present invention has a diameter of 0.01 to 1 mm, a specific surface area determined by the Langmuir adsorption equation of not less than 1 000 m 2 Zg, and a total acid group of 0.40 to 1 mm.
  • 1.0 Ome qZg, the total basic group is 0.40-1.1 Ome qZg, and the formula (1):
  • 1 15 is a diffraction intensity diffraction angle by X-ray diffraction method (20) in 1 5 °, 1 35, the diffraction intensity der in the diffraction angle (20) is 35 ° according to X-ray diffractometry 1 and 24 are the diffraction intensities at a diffraction angle (2 ⁇ ) of 24 ° by the X-ray diffraction method. )
  • the present invention also relates to an adsorbent for oral administration, characterized by being made of a surface-modified spherical activated carbon having a diffraction intensity ratio (R value) of 1.4 or more.
  • Figure 1 shows the X-ray diffraction pattern of the surface-modified spherical activated carbon according to the conventional method (curve A), the X-ray diffraction pattern of the surface-modified spherical activated carbon paste according to the conventional method (curve B), and the oral administration of the present invention.
  • FIG. 2 is a scanning electron micrograph ( ⁇ 50) showing the surface structure of the surface-modified spherical activated carbon according to the present invention.
  • FIG. 3 is a scanning electron micrograph ( ⁇ 200) showing a cross-sectional structure of the surface-modified spherical activated carbon according to the present invention.
  • Fig. 4 is a scanning electron micrograph (50x) showing the surface structure of the surface-modified spherical activated carbon by the conventional method.
  • Figure 5 is a scanning electron micrograph ( ⁇ 200) showing the cross-sectional structure of the surface-modified spherical activated carbon obtained by the conventional method.
  • FIG. 6 is a graph showing the results obtained by examining the effect of the adsorbent for oral administration of the present invention on serum creatinine.
  • FIG. 7 is a graph showing the results of examining the effect of the adsorbent for oral administration of the present invention on blood urea nitrogen.
  • FIG. 8 is a graph showing the results of examining the effect of the adsorbent for oral administration of the present invention on creatinine ⁇ clearance.
  • FIG. 9 is a graph showing the results of examining the effect of the adsorbent for oral administration of the present invention on urinary protein excretion.
  • FIG. 10 is a graph showing the results obtained by examining the effect of the adsorbent for oral administration of the present invention on ICG (Indocyaninegreen: indocyanine green).
  • FIG. 11 shows GOT (glutamic-oxaloacetictransam inase; pertamic acid-oxaloacetic acid) using the adsorbent for oral administration of the present invention.
  • 9 is a graph showing the results of examining the effect of the present invention on transaminase.
  • FIG. 12 is a graph showing the results obtained by examining the effect of the adsorbent for oral administration of the present invention on GPT (glutamic-pyruVicrtransaminases; gnoretamic acid-pinolevate transaminase).
  • GPT glutamic-pyruVicrtransaminases; gnoretamic acid-pinolevate transaminase.
  • the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has a diffraction intensity ratio (R value) determined from the above formula (1) of 1.4 or more.
  • the spherical activated carbon or the surface-modified spherical activated carbon obtained by the preparation method found by the present inventor does not adsorb moisture, as shown by curve C in FIG. X-ray diffraction patterns of the trend are generally obtained.
  • the curve c itself is an X-ray diffraction pattern of the surface-modified spherical activated carbon obtained in Example 1 described later. That is, the scattering intensity of the curve C in the low angle region where the diffraction angle (20) is 15 ° or less tends to be clearly stronger than the scattering intensity of the curve A.
  • curves A, B, and C are normalized such that the diffraction intensity at a diffraction angle (20) of 24 ° is 100.
  • the pore structure of the porous body showing an X-ray diffraction pattern having a tendency like curve A in FIG. 1 and the multi-element L body showing an X-ray diffraction pattern having a tendency like curve C of FIG. The difference is clear.
  • the scattering intensity observed at the low angle side in the X-ray diffraction of the surface-modified spherical activated carbon is due to the pore structure. It has many pores.
  • the relationship between the scattering angle and the pore size is presumed to be such that the higher the scattering angle, the smaller the pore size.
  • the pore structure depends on differences in pore size, shape, size of adsorbed substance, and adsorption conditions. It is often difficult to analyze accurately.
  • the present inventor has reported that the scattering intensity around 15 °, which is estimated to be less affected by diffraction X-rays from the 02 plane and reflects scattering by micropores, is difficult to measure by the adsorption method. It is an indicator of the presence of micropores, and it is assumed that the presence of such micropores is effective in adsorbing the harmful substance aminoaminobutyric acid.
  • the spherical activated carbon or the surface-modified spherical activated carbon having a higher scattering intensity at a diffraction angle (20) of around 15 ° is more effective in adsorbing S-aminoisobutyric acid, which is a harmful substance.
  • the present inventor compared the conventional spherical activated carbon or the surface-modified spherical activated carbon showing an X-ray diffraction pattern having a tendency as shown by curve A in FIG. It has been experimentally confirmed that the spherical activated carbon or the surface-modified spherical activated carbon according to the present invention, which shows an X-ray diffraction pattern having a tendency like a curve C, shows superior selective adsorption performance.
  • the spherical activated carbon or the surface-modified spherical activated carbon is defined by the diffraction intensity ratio (R value) calculated by the equation (1).
  • I 5 is the diffraction intensity that put at diffraction angles (2 0) is 1 5 °, between curves A and C, Ru regions der diffraction intensity difference is large.
  • I 2 4 is a diffraction intensity diffraction angle (2 theta) is the 2 4 °, the curves A and C Is a region where the difference in diffraction intensity is small.
  • 1 3 5 is a diffraction intensity at a diffraction angle (2 0) 3 5 °, is introduced for the purpose of correcting the measurement error due to the background between the measurement sample.
  • the present inventors have confirmed the conventional well-known typical surface-modified spherical activated carbon for oral administration, and found that their diffraction intensity ratios (R values) are all less than 1.4, and that the diffraction intensity ratios (R values) are less than 1.4. ) Has not been found, as far as the present inventor knows.
  • the surface-modified spherical activated carbon having a diffraction intensity ratio (R value) of 1.4 or more is compared with the surface-modified spherical activated carbon having a diffraction intensity ratio (R value) of less than 1.4.
  • the adsorption ability of ⁇ -aminoisobutyric acid was improved, indicating that it is effective as an adsorbent for oral administration with improved selective adsorption of toxic substances.
  • the diffraction intensity ratio (R value) calculated by the above formula (1) is preferably 1.4 or more. And more preferably 1.5 or more, and still more preferably 1.6 or more.
  • spherical activated carbon or surface-modified spherical activated carbon having a diffraction intensity ratio (R value) of 1.4 or more is used, for example, as a carbon source of a conventional adsorbent for oral administration. It can be prepared by using a thermosetting resin as a carbon source instead of the pitches that have been used. Alternatively, it can be prepared by using a pitch as a carbon source, developing a crosslinked structure in the step of infusibilization, and disturbing the arrangement of the carbon hexagonal network, as in the case of a conventional adsorbent for oral administration.
  • thermosetting resin used as a carbon source
  • a spherical body made of a thermosetting resin is formed into an air stream reactive with carbon (for example, steam Activated at a temperature of 700 to 1 000 ° C. in water or carbon dioxide), the spherical activated carbon used as the adsorbent for oral administration of the present invention can be obtained.
  • carbon for example, steam Activated at a temperature of 700 to 1 000 ° C. in water or carbon dioxide
  • Activated carbon refers to a porous body obtained by heat-treating a carbon precursor such as a spherical thermosetting resin and then performing an activation treatment, and is a porous body having a specific surface area of 100 m 2 Zg or more. means. In the present invention, it is preferably at least 1,000 m 2 Zg.
  • the spherical body made of a thermosetting resin When the spherical body made of a thermosetting resin is softened by heat treatment and deformed into a non-spherical shape, or when the spherical bodies are fused together, the spherical body is made infusible before the activation treatment.
  • the oxidation treatment By performing the oxidation treatment at 150 to 400 ° C. in an atmosphere containing oxygen, the softening can be suppressed.
  • thermosetting resin spherical body when a large amount of pyrolysis gas or the like is generated when the thermosetting resin spherical body is subjected to heat treatment, preliminary firing is appropriately performed before the activation operation to remove the pyrolysis products in advance. Good.
  • the spherical activated carbon obtained in this manner is subsequently treated with an oxygen content of 0.1 to 50 V O I% (preferably "! To 30 V O I%, particularly preferred).
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention can be obtained by carrying out a reduction treatment by a heating reaction in a non-oxidizing gas atmosphere at the temperature of (1).
  • Porous spherical activated carbon is a porous material obtained by subjecting the above-mentioned spherical activated carbon to the above-mentioned oxidation and reduction treatments, and by adding acidic and basic points to the surface of the spherical activated carbon in a well-balanced manner, It has improved adsorption characteristics for toxic substances.
  • the spherical particles of the thermosetting resin used as a starting material preferably have a particle size of about 0.02 to 1.5 mm.
  • thermosetting resin used as a starting material is a resin capable of forming a spherical body, and it is important that the resin does not melt or soften and does not deform in a heat treatment at 500 ° C or lower. is there.
  • thermosetting resin that can avoid molten oxidation by so-called infusibilization treatment such as oxidation treatment. it can.
  • the thermosetting resin used as a starting material desirably has a high carbonization yield by heat treatment.
  • the carbonization yield is low, the strength of the spherical activated carbon becomes weak.
  • the bulk density of the spherical activated carbon decreases, and the specific surface area per unit volume decreases, which causes a problem that the administration volume increases and oral administration becomes difficult. . Therefore, the higher the carbonization yield of the thermosetting resin, the better, and the preferred value of the yield by heat treatment at 800 ° C. in a non-oxidizing gas atmosphere is 40% by weight or more, more preferably 4% by weight. 5% by weight or more.
  • thermosetting resin used as a starting material specifically, a phenol resin, for example, a novolak-type phenol resin, a resole-type phenol resin, a novolac-type alkyl phenol: an L-phenol resin, Alternatively, a resole-type alkyl phenol resin may be used, and in addition, a furan resin, a urea resin, a melamine resin, or an epoxy resin may be used. Further, as the thermosetting resin, a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid can be used.
  • an ion exchange resin can also be used as the thermosetting resin.
  • the ion exchange resin is generally composed of a copolymer of divinylbenzene and styrene, acrylonitrile, acrylic acid, or methacrylic acid (that is, a thermosetting resin), and basically has a three-dimensional network skeleton. Having a structure in which an ion-exchange group is bonded to a copolymer matrix.
  • the ion-exchange resin may be a strongly acidic ion-exchange resin having a sulfonic acid group, a weakly acidic ion-exchange resin having a carboxylic acid group or a sulfonic acid group, or a strongly basic ion exchange resin having a quaternary ammonium salt
  • Ion-exchange resins and weakly basic ion-exchange resins having primary or tertiary amines are also roughly classified.
  • a so-called hybrid ion exchange resin having both acid and base ion exchange groups is known. In the present invention, all of these ion exchange resins can be used as raw materials. In the present invention, it is particularly preferable to use phenol resin as a starting material.
  • a bicyclic or tricyclic aromatic compound having a boiling point of 200 ° C or more or a mixture thereof is added as an additive to a pitch such as a petroleum pitch or a coal pitch, and the mixture is heated and mixed.
  • a pitch such as a petroleum pitch or a coal pitch
  • the above-mentioned spherical activated carbon or surface-modified spherical activated carbon is for oral administration, its raw material must also have sufficient purity for safety and be stable in quality.
  • the above-mentioned pitch compact is dispersed and granulated in hot water with stirring to form microspheres. Further, an additive is extracted and removed from the pitch molded body with a solvent having low solubility in pitch and high solubility in the additive, and the obtained porous pitch is converted into an oxidizing agent. Oxidation with a Pd gives a thermally infusible porous pitch.
  • a gas stream reactive with carbon for example, steam or carbon dioxide gas
  • the spherical activated carbon thus obtained is subsequently subjected to an oxidation treatment under heating in an oxygen-containing atmosphere, and further subjected to a reduction treatment by a heating reaction in a non-oxidizing gas atmosphere, whereby the adsorbent for oral administration of the present invention is obtained.
  • Modified spherical activated carbon can be obtained.
  • an atmosphere containing a specific amount of oxygen pure oxygen, nitrogen oxide, air, or the like can be used as an oxygen source.
  • the atmosphere inert to carbon for example, nitrogen, argon, helium, or the like can be used alone or a mixture thereof.
  • the purpose of adding an aromatic compound to the above-mentioned raw material pitch is to improve the fluidity of the raw material pitch to facilitate microsphere formation and to extract and remove the additive from the formed pitch molded body.
  • the purpose of the present invention is to make the formed body porous, thereby facilitating the structure control and firing of the carbonaceous material by oxidation in a subsequent step.
  • an additive for example, naphthalene, methylnaphthalene, phenylnaphthalene, benzylnaphthalene, methylanthracene, phenanthrene, or biphenyl can be used alone, or a mixture of two or more thereof.
  • the amount added to the pitch is preferably in the range of 10 to 50 parts by weight of the aromatic compound per 100 parts by weight of the pitch.
  • the mixture of the pitch and the additive is preferably formed into particles having a particle diameter of about 0.01 to 1 mm in order to control the particle diameter (diameter) of the obtained spherical activated carbon or surface-modified spherical activated carbon. .
  • the molding may be performed in a molten state, or may be performed by a method such as grinding the mixture after cooling.
  • Solvents for extracting and removing additives from a mixture of pitch and additives include, for example, aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, and aliphatic hydrocarbons such as naphtha or keguchicin.
  • aliphatic hydrocarbons such as butane, pentane, hexane, or heptane
  • aliphatic hydrocarbons such as naphtha or keguchicin.
  • a mixture containing hydrogen as a main component, or an aliphatic alcohol such as methanol, ethanol, propanol, or butanol, or the like is suitable.
  • the additive By extracting the additive from the mixture molded body of pitch and additive with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that holes for the additive are formed in the molded product, and a pitch molded product having uniform porosity is obtained.
  • the porous pitch compact obtained in this manner is then subjected to infusibilization treatment, that is, oxidation treatment using an oxidizing agent, preferably at a temperature from room temperature to 300 ° C.
  • infusibilization treatment that is, oxidation treatment using an oxidizing agent, preferably at a temperature from room temperature to 300 ° C.
  • a porous infusible pitch molded product can be obtained.
  • oxygen gas (o 2 ) or a mixed gas obtained by diluting oxygen gas (o 2 ) with air, nitrogen, or the like can be given.
  • the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention is produced from a thermosetting resin or pitch as a raw material, for example, by the production method described above, and has a diameter of 0.01. ⁇ 1 mm.
  • the diameter of the spherical activated carbon or the surface-modified spherical activated carbon is less than 0.01 mm, the external surface area of the spherical activated carbon or the surface-modified spherical activated carbon increases, and the adsorption of beneficial substances such as digestive enzymes is likely to occur. Not so desirable.
  • the diameter is preferably between 0.02 and 0.8 mm.
  • the expression “the diameter is Dl to Du” refers to a cumulative particle size chart created in accordance with JISK1444 (described later in connection with the method of measuring the average particle diameter). ), The sieve passage percentage (%) corresponding to the range of the sieve aperture DI to Du is 90 ⁇ 1 ⁇ 2 or more.
  • the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has a specific surface area (hereinafter sometimes abbreviated as “SSA”) of 1000 m determined by the Langmuir adsorption equation. 2 Zg or more.
  • SSA specific surface area
  • Spherical activated carbon or surface-modified spherical activated carbon having an SS A of less than 1000 m 2 Zg is not preferred because the adsorption performance of toxic substances is reduced.
  • SSA is preferably 1 OOOm 2 Zg or more.
  • the upper limit of SSA is not particularly limited, but from the viewpoint of bulk density and strength, SSA is preferably 300 Om 2 ng or less.
  • the pore volume within a specific pore diameter range is not particularly limited.
  • Japanese Patent Publication No. 62-111611 discloses that the pore volume of a pore radius of 100 to 75,000 angstroms (that is, the pore volume of a pore diameter of 20 to 15000 nm) is 0. "!
  • An adsorbent consisting of a surface-modified spherical activated carbon of ⁇ 1 m LZg is described, but the spherical activated carbon or the surface-modified spherical activated carbon used as an adsorbent for oral administration according to the present invention has a pore diameter of 20 to
  • the pore volume at 15000 nm can be 0.1 to 1 mLZg, or 0.1 mLZg or less, while the pore volume at a pore diameter of 20 to 1000 nm is 1 mLZg. If it exceeds, the adsorbed amount of useful substances such as digestive enzymes may increase, so that the pore volume with a pore diameter of 20 to 1000 nm is preferably 1 mLg or less.
  • the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention has a pore volume of 7.5 to 15000 nm having a pore diameter of 7.5 to 15000 nm from the viewpoint of obtaining more excellent selective adsorption. It is preferably less than 0.25 mLZg, particularly preferably 0.2 mLZg or less.
  • the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention that is, the product produced by further oxidizing and reducing the above-mentioned spherical activated carbon
  • all the acidic groups are 0.40 to 1. OOme qZg
  • all basic groups are 0.40 to 1.1 Ome q / g .
  • the total acidic group is preferably 0.40 to 0.9 OmeqZg
  • the total basic group is preferably 0.40 to 1.0 Omeq / g.
  • the functional groups are composed of 0.40 to 1.0 Ome qZg for all acidic groups, 0.40 to 1.10 meqZg for all basic groups,
  • the phenolic hydroxyl group is in the range of 0.20 to 0.7 Ome qZg
  • the carboxy group is in the range of 0.15 meq / g or less
  • the ratio of all acidic groups (a) to all basic groups (b) (AZb) is 0.40 to 2.5
  • the relationship between the total basic group (b), the phenolic hydroxyl group (c), and the lipoxyl group (d) is ((b + c) — d). It is preferably 0.60 or more.
  • the physical property values of the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration according to the present invention that is, the average particle diameter, specific surface area, pore volume, all acidic groups, and all basic groups are as follows: It measures by the method of.
  • the average particle diameter is obtained by drawing the horizontal line on the horizontal axis from the intersection of the vertical line at 50% of the horizontal axis and the particle size cumulative line in the cumulative particle size diagram to determine the sieve opening (mm) indicated by the intersection. And the average particle diameter.
  • a gas adsorption method specific surface area measuring device for example, “ASAP2010” manufactured by MI CROMER ITI CS
  • measure the gas adsorption amount of a spherical activated carbon sample or a surface-modified spherical activated carbon sample and calculate the ratio using the Langmuir formula.
  • the surface area can be calculated. Specifically, a sample tube of spherical activated carbon or surface-modified spherical activated carbon is filled into a sample tube, dried at 300 ° C under reduced pressure, and the weight of the dried sample is measured.
  • the sample tube was cooled to -196 ° C, nitrogen was introduced into the sample tube, and nitrogen was adsorbed on the spherical activated carbon sample or the surface-modified spherical activated carbon sample.
  • the relationship between the nitrogen partial pressure and the adsorption amount (adsorption Isotherm). Assuming that the relative pressure of nitrogen is p and the amount of adsorption at that time is V (cm 3 / g STP), perform a Langmuir plot.
  • MA used 0.162 nm 2 as a cross-sectional area of a nitrogen molecule.
  • the pore volume can be measured using a mercury porosimeter (for example, “AUTOP ORE 9200” manufactured by MI CROMER ITICS).
  • a mercury porosimeter for example, “AUTOP ORE 9200” manufactured by MI CROMER ITICS.
  • the pore volume distribution of the spherical activated carbon sample or the surface-modified spherical activated carbon sample is measured from the relationship between the pressure at this time and the amount of mercury injected using the following formulas. Specifically, a spherical activated carbon sample or a surface-modified spherical activated carbon sample with a pore diameter of 22 jum (0.06 MPa) to the maximum pressure (414 MPa: equivalent to a pore diameter of 3 nm) Measure the volume of mercury injected.
  • the surface tension of mercury is 484 dyneZcm
  • the contact angle between mercury and carbon is 130 degrees
  • the pressure P is MPa
  • the pore diameter D is / And 1 ⁇ 5 self-expression:
  • the relationship between pressure P and pore diameter D is obtained from
  • the pore volume in the range of 20 to 1,000 nm in the pore diameter in the present invention corresponds to the volume of mercury injected from a mercury injection pressure of 1.27 MPa to 63.5 MPa.
  • R value Diffraction intensity ratio
  • applied voltage 40 kV applied voltage 40 kV
  • current 10 OmA current 10 OmA
  • divergence slit 1 Z2 °
  • light-receiving slit 0.15 mm
  • scattering slit 1/2 °.
  • the spherical activated carbon or the surface-modified spherical activated carbon used as the adsorbent for oral administration of the present invention is excellent in adsorbability of toxic substances in liver disease aggravating factor and kidney disease, as shown in Examples described later. Regardless, it has excellent selective adsorptivity because it has low adsorptivity to beneficial substances such as digestive enzymes, so it can be used as an adsorbent for oral administration for the treatment or prevention of renal diseases, or for the treatment of liver diseases or It can be used as an adsorbent for oral administration for prevention.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, Frose syndrome, renal sclerosis, interstitial nephritis, tubulopathy, lipid nephrosis, diabetic nephropathy, renal vascular hypertension, or hypertension syndrome, or secondary kidney disease associated with the above primary disease,
  • mild renal insufficiency before dialysis can be cited, and it can be used to improve the condition of mild renal insufficiency before dialysis and the condition during dialysis (Clinical Nephrology Asakura Shoten, Nishio Hyundai, Kenkichi Koiso , Kiyoshi Kurokawa, 1990 edition and "Nephrology", Medical School, Teruo Omae, edited by Satoshi Fujimi, 1980 edition).
  • liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, Mention tremor, encephalopathy, metabolic disorders, or dysfunction.
  • it can be used for treatment of diseases caused by harmful substances present in the body, ie, mental illness.
  • the adsorbent for oral administration according to the present invention when used as a remedy for renal diseases, the above-mentioned spherical activated carbon and Z or surface-modified spherical activated carbon are contained as active ingredients.
  • the adsorbent for oral administration of the present invention is used as a remedy for renal disease or a remedy for liver disease, its dosage depends on whether the subject is a human or another animal, and The dose may be outside the range given below, depending on the age, individual differences, or medical condition.However, in general, the oral dose for humans is 1 to 20 times a day. The g can be taken in 3 to 4 doses, and the dose can be adjusted according to the symptoms.
  • Administration forms can be powders, granules, tablets, dragees, capsules, suspensions, sticks, divided packages, emulsions and the like.
  • enteric capsules When taken as a capsule, enteric capsules can be used, if necessary, in addition to ordinary gelatin. When used as a tablet, it must be released into the original microparticles in the body. Further, it can be used in the form of a composite agent mixed with an electrolyte regulator such as aluminum gel silicate, which is another agent.
  • an electrolyte regulator such as aluminum gel silicate
  • Suction-filter with a 65 ⁇ m membrane filter remove about 2 OmL of the first filtrate, and take about 10 mL of the next filtrate as the sample solution.
  • test absorbance For the sample solution and the correction solution, conduct a test by the absorbance measurement method using a phosphate buffer of PH 7.4 as a control, and measure the absorbance at a wavelength of 282 nm. The difference between the absorbance of the sample solution and that of the correction solution is defined as the test absorbance.
  • the standard curve was prepared by diluting the unamylase stock solution to 25 mL, accurately dispensing 5 OmL, 75 mL, and 10 OmL into a volumetric flask, and making up to 10 OmL with pH 7.4 phosphate buffer. By measuring the absorbance at a wavelength of 282 nm.
  • the residual amount of one amylase (mgZd L) was calculated.
  • the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample was set to 0.500 g, and the test absorbance was measured in the same manner as above. And the remaining amount of amylase was calculated.
  • the test fluorescence intensity was determined in the same manner as described above, with the amount of the spherical activated carbon sample or the surface modified spherical activated carbon sample being 0.500 g. The remaining amount of DL- ⁇ -aminoisobutyric acid was calculated.
  • the amount of spherical activated carbon sample or surface-modified spherical activated carbon sample used is 0.500 g
  • the amount of residual amylase in the amylase adsorption test and similarly, the amount of spherical activated carbon sample or surface-modified spherical activated carbon sample used is Based on the DL-; 8-aminoisobutyric acid residue data in the DL- ⁇ -aminoisobutyric acid adsorption test at 0.5 g , the following formula is used:
  • Tr is the residual amount of DL- ⁇ -aminoisobutyric acid
  • Ur is the residual amount of ⁇ -amylase
  • the diffraction intensity of the obtained spherical activated carbon at a diffraction angle (20) 15 ° is 743 cps
  • the diffraction intensity at a diffraction angle (20) 35 ° is 90 cps
  • the diffraction angle is
  • Tables 1 and 2 show the properties of the obtained spherical activated carbon.
  • Curve C in FIG. 1 shows that the spherical activated carbon obtained in Example 1 was vacuum-dried at 120 ° C. for 2 hours and then measured by the same procedure as the above-mentioned “Diffraction intensity ratio (R value) J”. It is a diffraction curve obtained by the above.
  • “Spherical activated carbon” was obtained by repeating the method described in Example 1 except that phenolic resin spherical cured product ACS series PR—ACS—2—50 CJ) was used. The yield was 26.5%. Was.
  • the diffraction intensity of the obtained spherical activated carbon at a diffraction angle (20) of 15 ° is 788 cps
  • the diffraction intensity at a diffraction angle of (20) 35 ° is 72 cps
  • the diffraction angle is
  • Tables 1 and 2 show the properties of the obtained spherical activated carbon.
  • the spherical activated carbon obtained in Example 1 was further subjected to an oxygen concentration of 18.5 V o I% in a fluidized bed. Oxidation treatment at 470 ° C for 3 hours and 15 minutes in a mixed gas atmosphere of nitrogen and oxygen, and then reduction treatment at 900 ° C for 17 minutes in a fluidized bed under a nitrogen gas atmosphere to obtain a surface-modified spherical activated carbon Got.
  • the diffraction intensity of the obtained surface-modified spherical activated carbon at a diffraction angle (2 °) of 15 ° is 627 cps
  • the diffraction intensity at a diffraction angle (20) of 35 ° is 66 cps
  • the diffraction angle is 2 °.
  • the diffraction intensity at 24 ° was 400 cps. Therefore, the diffraction intensity ratio (R value) was 1.68.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • Example 3 The method described in Example 3 was repeated, except that the spherical activated carbon obtained in Example 2 was used as a starting material, to obtain a surface-modified spherical activated carbon.
  • the diffraction intensity of the obtained surface-modified spherical activated carbon at a diffraction angle (20) 15 ° is 702 cps
  • the diffraction intensity at a diffraction angle (2 °) 35 ° is 74 cps
  • the diffraction angle (20) 24 The diffraction intensity at 0 ° was 428 cps. Therefore, the diffraction intensity ratio (R value) was 1.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • the diffraction intensity of the obtained surface-modified spherical activated carbon at a diffraction angle (20) 15 ° is 765 cps
  • the diffraction intensity at a diffraction angle (20) 35 ° is 82 cps
  • the diffraction angle (20) 24 ° The diffraction intensity at was 485 cps. Therefore, the diffraction intensity ratio (R value) was 1.69.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • FIG. 2 shows a scanning electron micrograph ( ⁇ 50) showing the surface structure of the obtained surface-modified spherical activated carbon.
  • Fig. 3 shows a scanning electron micrograph (200x) showing the cross-sectional structure of the obtained surface-modified spherical activated carbon. Comparative example
  • the naphthalene in the pitch compact was extracted and removed with n-hexane, which is about 6 times the weight of the spherical pitch compact.
  • the porous spherical pitch obtained in this manner was heated to 235 ° C using a fluidized bed while passing heated air, and then oxidized by holding at 235 ° C for 1 hour.
  • a fusible porous spherical oxide pitch was obtained.
  • the oxygen content of the obtained porous spherical oxide pitch was 14% by weight.
  • the porous spherical oxide pitch was activated by using a fluidized bed in a nitrogen gas atmosphere containing 50 vo I% steam at 900 ° C for 170 minutes to obtain spherical activated carbon, which was further treated with a fluidized bed.
  • a mixed gas atmosphere of nitrogen and oxygen with an oxygen concentration of 18.5 V o I% oxidize at 470 ° C for 3 hours and 15 minutes, and then in a fluidized bed under a nitrogen gas atmosphere at 900 A reduction treatment was performed at ° C for 1 minute to obtain a surface-modified spherical activated carbon.
  • the diffraction intensity of the obtained surface-modified spherical activated carbon at a diffraction angle (20) of 15 ° is 647 cps, and the diffraction intensity at a diffraction angle (2 °) of 35 ° is 84 cps.
  • the diffraction intensity at ° was 546 cps. Therefore, the diffraction intensity ratio (R value) was 1.22.
  • Tables 1 and 2 show the properties of the obtained surface-modified spherical activated carbon.
  • Curve A in FIG. 1 shows that the surface-modified spherical activated carbon obtained in Comparative Example 1 was dried in a vacuum at 120 ° C. for 2 hours, and then subjected to the same procedure as the method for measuring the “diffraction intensity ratio (R value)”. It is a diffraction curve obtained by measurement.
  • Curve B in Fig. 1 shows the surface-modified spherical shape obtained in Comparative Example 1. It is a diffraction curve obtained by similarly measuring about 2 g of activated carbon and 2 to 3 drops of ion-exchanged water to form a paste and measuring the paste-like surface-modified spherical activated carbon.
  • FIG. Fig. 5 shows a scanning electron micrograph ( ⁇ 200) showing the cross-sectional structure of the obtained surface-modified spherical activated carbon.
  • a spherical activated carbon was obtained by repeating the method described in Comparative Example 1 except that the spherical activated carbon was not subjected to the oxidation treatment and the reduction treatment.
  • the diffraction intensity of the obtained spherical activated carbon at a diffraction angle (20) of 15 ° is 651 cps
  • the diffraction intensity at a diffraction angle of (20) 35 ° is 81 cps
  • the diffraction angle is
  • Tables 1 and 2 show the properties of the obtained spherical activated carbon.
  • Example 1 phenolic resin 2390 1860 0.0185 0.04 300
  • Example 2 phenolic resin 2100 1720 0.0272 0.06 430
  • Example 3 phenolic resin 2100 1670 0.0142 0.04 280
  • Example 4 phenolic resin 1930 1560 0.0185 0.06 410
  • Example 5 ion exchange resin 1630 1250 0.2437 0.42 350 Comparative Example 1 Pitch 2050 1540 0.0750 0.11 350 Comparative Example 2 Pitch 2100 1650 0.0850 0.15 350
  • the “pore volume (H gpore)” in Table 1 above is the pore diameter 20 to 1 000 nm determined by the mercury intrusion method. Corresponds to a pore volume in the range of
  • SSA BET formula
  • Nitrogen is adsorbed on the spherical activated carbon sample or surface-modified spherical activated carbon sample at 1 96 ° C in the same manner as the measurement of the specific surface area by the Langmuir's equation, and the relationship between the nitrogen partial pressure and the adsorption amount is as follows. 3014011
  • MA used the cross-sectional area of a nitrogen molecule of 0.162 nm 2 .
  • Residual amount (mgZdL) Residual amount (mg / dL) R value Adsorption rate meq / g meq / g 0.125g 0.50g 0.50g 2.50g
  • Example 1 0.27 0.82 9.1 9.1 5.9 0.1 4.6 1.71
  • Example 2 0.21 0.65 9.0 9.0 7.4 1.3 2.6 1.71
  • Example 3 0.67 0.72 9.1 8.9 4.8 0.2 4.7 1.68
  • Example 4 0.72 0.57 9.0 8.9 5.6 0.4 4.0 1.77
  • Example 5 0.65 0.59 8.9 7.2 4.1 0.1 2.1 1.69 Comparative example 1 0.67 0.54 8.5 7.2 5.24 0.14 1.7 1.22 Comparative example 2 0.18 0.58 8.6 7.7 8.46 4.3 0.7 1.22
  • Pharmacological effect confirmation test 1 Improvement of renal disease
  • a pharmacological effect confirmation test on renal failure by administration of the adsorbent for oral administration of the present invention was performed.
  • the adsorbent for oral administration obtained in Examples 1 and 3 was used as a sample.
  • the control group (6 animals; hereinafter referred to as C1 group) and the oral adsorbent administration group
  • P1 group the group for oral administration of the adsorbent of Example 3
  • P2 group the group for oral administration of the adsorbent of Example 3
  • Each group was fed a powdered diet.
  • the amount of food for each group is the average of 2 to 3 days for the C1 group. (Rule 26) JP2003 / 014011
  • the adsorbent for oral administration of the present invention can suppress or improve the progress of chronic renal failure, and can prevent and maintain a decrease in renal function.
  • a test was conducted to confirm the pharmacological effect of the adsorbent for oral administration of the present invention on liver disease.
  • the adsorbent for oral administration obtained in Examples 1 and 3 was used as a sample.
  • carbon tetrachloride was administered in an amount of 12 mg Zkg twice a week at a rate of twice daily pharmacological efficacy test. Subcutaneous administration was continued until termination (for about 4 months). Two months after the start of carbon tetrachloride administration, a decrease in liver function was confirmed.
  • the control group (6 animals; hereinafter, referred to as C2 group) was used to prevent the disease state from being unevenly distributed between the groups.
  • the group was divided into an oral administration adsorbent administration group (6 animals; hereinafter referred to as Q1 group) and an oral administration adsorbent administration group (6 animals; hereinafter referred to as Q2 group) in Example 3.
  • Each group was fed a powdered diet.
  • the amount of food for each group was the average intake of group C for 2-3 days. It was determined based on the amount of food.
  • groups Q1 and Q2 5% by weight of an adsorbent for oral administration was additionally mixed with the same powder feed as the group C2, and the mixture was administered for 2 months after grouping. The same experiment was performed on normal rats to which carbon tetrachloride was not administered (normal-group).
  • ICG Indocyanine green
  • GOT glutamic-oxaloacetic 'trans ana lnase
  • Glutamic acid Monooxacetacetate transaminase Glutamic acid Monooxacetacetate transaminase
  • GPT Glutamic-pyruvictransaminase
  • quinoleta-pyrovic trans-aminase The results 2 months after the start of the administration of the adsorbent for oral administration are shown in FIG. 10 (ICG), FIG. 11 (GOT), and FIG. 12 (GPT).
  • ICG Indocyanine green
  • GOT glutamic-oxaloacetic 'trans ana lnase
  • Glutamic acid Monooxacetacetate transaminase Glutamic acid Monooxacetacetate transaminase
  • GPT Glutamic-pyruvictransaminase
  • the sorbent for oral administration according to the present invention has a unique pore structure, and therefore, when taken orally, has low sorption of beneficial components such as digestive enzymes in the body, but has toxic toxicity. It has a selective adsorption property that the adsorption performance of the substance (Toxin) in the digestive system is excellent, and the selective adsorption property is remarkably improved as compared with the conventional adsorbent for oral administration.
  • the adsorbent for oral administration of the present invention can be used as an adsorbent for oral administration for treatment or prevention of kidney disease, or as an adsorbent for treatment or prevention of liver disease.
  • renal diseases include chronic renal failure, acute renal failure, chronic pyelonephritis, acute pyelonephritis, chronic nephritis, acute nephritis syndrome, acute progressive nephritis syndrome, chronic nephritis syndrome, Frose syndrome, renal sclerosis, interstitial nephritis, tubulopathy, lipoid nephrosis, diabetic nephropathy, renal vascular hypertension, or hypertension syndrome, or secondary renal disease associated with the above-mentioned underlying disease, and Mild renal insufficiency before dialysis can be cited, and it can be used to improve the condition of mild renal insufficiency before dialysis and also during dialysis (“Clinical Nephrology” Asakura Shoten, Nishio Hyundai, Kenkichi Koiso, Kurokawa Kiyoshi, 1990 edition, and “Nephrology”, Medical School, Teruo Omae, edited by Satoshi Fujim
  • liver diseases include fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, cirrhosis, liver cancer, autoimmune hepatitis, drug allergic liver disorder, primary biliary cirrhosis, Mention tremor, encephalopathy, metabolic disorders, or dysfunction.
  • it can be used for treatment of diseases caused by harmful substances present in the body, ie, mental illness.
  • the present invention has been described according to the specific embodiments. However, modifications and improvements obvious to those skilled in the art are included in the scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

明 細 書 経口投与用吸着剤 技術分野
本発明は、 特異な細孔構造を有する球状活性炭からなる経口投与用吸着剤、 及 び前記球状活性炭を更に酸化処理及び還元処理することによって製造され、 同様 の特異な細孔構造を有する表面改質球状活性炭からなる経口投与用吸着剤に関す る。
本発明による経口投与用吸着剤は、 消化酵素等の体内の有益成分の吸着性が少 ないにもかかわらず、 有毒な毒性物質 (T o x i n ) の吸着性能が多いという選 択吸着特性を有し、 更に、 特異な細孔構造を有するので、 従来の経口投与用吸着 剤と比較すると、 前記の選択吸着特性が著しく向上する。 従って、 特に、 肝腎疾 患者用の経口投与用吸着剤として有効である。 背景技術
腎機能や肝機能の欠損患者らは、 それらの臓器機能障害に伴って、 血液中等の 体内に有害な毒性物質が蓄積したり生成したりするので、 尿毒症や意識障害等の 脳症をひきおこす。 これらの患者数は年々増加する傾向を示しているため、 これ ら欠損臓器に代わって毒性物質を体外へ除去する機能をもつ臓器代用機器あるい は治療薬の開発が重要な課題となっている。 現在、 人工腎臓としては、 血液透析 による有毒物質の除去方式が最も普及している。 しかしながら、 このような血液 透析型人工腎臓では、 特殊な装置を用いるために、 安全管理上から専門技術者を 必要とし、 また血液の体外取出しによる患者の肉体的、 精神的及び経済的負担が 高いなどの欠点を有していて、 必ずしも満足すべきものではない。
近年、 これらの欠点を解決する手段として、 経口的な服用が可能で、 腎臓や肝 臓の機能障害を治療することができる経口吸着剤が注目されている。 具体的には、 特公昭 6 2—1 1 6 1 1号公報に記載の吸着剤は、 特定の官能基を有する多孔性 の球形炭素質物質 (以後、 表面改質球状活性炭とよぶ) からなリ、 生体に対する 安全性や安定性が高く、 同時に腸内での胆汁酸の存在下でも有毒物質の吸着性に 優れ、 しかも、 消化酵素等の腸内有益成分の吸着が少ないという有益な選択吸着 性を有し、 また、 便秘等の副作用の少ない経口治療薬として、 例えば、 肝腎機能 障害患者に対して広く臨床的に利用されている。 なお、 前記特公昭 6 2—1 1 6 1 1号公報に記載の吸着剤は、 石油ピッチなどのピッチ類を炭素源とし、 球状活 性炭を調製した後、 酸化処理、 及び還元処理を行うことにより製造されていた。 発明の開示
本発明者は、 ピッチ類から球状活性炭を調製し、 酸化還元することにより得ら れる従来の多孔性球状炭素質物質からなる経口吸着剤よリも一層優れた選択的吸 着性を示す経口投与用吸着剤の探求を進めていたところ、 驚くべきことに、 熱硬 化性樹脂を炭素源として調製した球状活性炭は、 酸化処理及び還元処理を実施す る前の状態であるにもかかわらず、 生体内の尿毒症性物質のひとつと考えられる /3—ァミノイソ酪酸の吸着性に優れておリ、 しかも有益物質である消化酵素 (例 えば、 アミラーゼ) 等に対する吸着性が少ないという有益な選択吸着性を有 することを見出し、 更に、 その選択吸着性の程度が、 前記特公昭 6 2—1 1 6 1 1号公報に記載の吸着剤よリも優れていることを見出した。 熱硬化性樹脂を炭素 源として調製した前記球状活性炭は、 ^—アミノィソ酪酸に対して優れた吸着性 を示すので、 同様の分子サイズを有する他の毒性物質、 例えば、 ォクトパミンや 一ァミノ酪酸、 更に腎臓病での毒性物質及びその前躯体であるジメチルァミン、 ァスパラギン酸、 あるいはアルギニン等の水溶性の塩基性及び両性物質に対して も優れた吸着性を示すものと考えられる。
従来の多孔性球状炭素質物質、 すなわち、 前記特公昭 6 2— 1 1 6 1 1号公報 に記載の吸着剤で用いる表面改質球状活性炭では、 ピッチ類から調製される球状 活性炭を更に酸化処理及び還元処理して官能基を導入することによって、 前記の 選択吸着性が発現されることになると考えられていたので、 酸化処理及び還元処 理を実施する前の球状活性炭の状態で選択的吸着能を発現すること、 及びその吸 着能が従来の経口投与用吸着剤よりも優れているという本発明者による前記の発 見は、 驚くべきことである。 また、 本発明者は、 前記の球状活性炭を更に酸化処理及び還元処理することに よって調製した表面改質球状活性炭は、 生体内の尿毒症性物質のひとつと考えら れる iS—アミノィソ酪酸の吸着性に優れておリ、 しかも有益物質である消化酵素 (例えば、 α—アミラーゼ) 等に対する吸着性が少ないという前記の有益な選択 吸着性が、 前記特公昭 62— 1 1 6 1 1号公報に記載の吸着剤よりも一層向上す ることを見出した。 従って、 ^ーァミノイソ酪酸と同様の分子サイズを有する他 の毒性物質、 例えば、 ォクトパミンや 0;—ァミノ酪酸、 更に腎臓病での毒性物質 及びその前躯体であるジメチルァミン、 ァスパラギン酸、 あるいはアルギニン等 の水溶性の塩基性及び両性物質に関しても一層優れた選択吸着性を示すものと考 えられる。
本発明はこうした知見に基づくものである。
従って、 本発明は、
直径が 0. 0 1〜 1 mmであり、 ラングミュア (L a n gmu i r ) の吸着式に より求められる比表面積が 1 000m2Zg以上であり、 そして式 (1 ) :
R= ( I 15- I 35) / ( I 24" I 35) CD
〔式中、 1 15は、 X線回折法による回折角 (20) が 1 5° における回折強度で あり、 1 35は、 X線回折法による回折角 (20) が 35° における回折強度であ リ、 124は、 X線回折法による回折角 (20) が 24° における回折強度であ る〕
で求められる回折強度比 (R値) が 1. 4以上である球状活性炭からなることを 特徴とする、 経口投与用吸着剤に関する。
また、 本発明は、 直径が 0. 0 1〜 1 mmであり、 ラングミュア (L a n gm u i r) の吸着式により求められる比表面積が 1 000m2Zg以上であり、 全 酸性基が 0. 40〜 1. 0 Ome qZgであり、 全塩基性基が 0. 40〜 1. 1 Ome qZgであり、 そして式 (1 ) :
R= ( I 15- I 35) / ( 1 24- 1 35) (1 )
〔式中、 1 15は、 X線回折法による回折角 (20) が 1 5° における回折強度で あり、 1 35は、 X線回折法による回折角 (20) が 35° における回折強度であ リ、 124は、 X線回折法による回折角 (2 Θ) が 24° における回折強度であ る〕
で求められる回折強度比 (R値) が 1. 4以上 ある表面改質球状活性炭からな ることを特徴とする、 経口投与用吸着剤にも関する。 図面の簡単な説明
図 1は、 従来法による表面改質球状活性炭の X線回折図 (曲線 A) 、 従来法に よる表面改質球状活性炭ペースト体の X線回折図 (曲線 B) 、 及び本発明の経口 投与用吸着剤として用いる表面改質球状活性炭の X線回折図 (曲線 C) である。 図 2は、 本発明による表面改質球状活性炭の表面構造を示す走査型電子顕微鏡 写真 (50倍) である。
図 3は、 本発明による表面改質球状活性炭の断面構造を示す走査型電子顕微鏡 写真 (200倍) である。
図 4は、 従来法による表面改質球状活性炭の表面構造を示す走査型電子顕微鏡 写真 (50倍) である。
図 5は、 従来法による表面改質球状活性炭の断面構造を示す走査型電子顕微鏡 写真 (200倍) である。
図 6は、 本発明の経口投与用吸着剤による血清クレアチニンへの効果を調べた 結果を示すグラフである。
図 7は、 本発明の経口投与用吸着剤による血中尿素窒素への効果を調べた結果 を示すグラフである。
図 8は、 本発明の経口投与用吸着剤によるクレアチニン■クリアランスへの効 果を調べた結果を示すグラフである。
図 9は、 本発明の経口投与用吸着剤による尿蛋白排泄量への効果を調べた結果 を示すグラフである。
図 1 0は、 本発明の経口投与用吸着剤による I CG ( I n d o c y a n i n e g r e e n :インドシアニングリーン) への効果を調べた結果を示すグラフであ る。
図 1 1は、 本発明の経口投与用吸着剤による GOT (g l u t am i c— o x a l o a c e t i c t r a n s am i n a s e ;ヮルタミン酸ーォキサロ酢酸 トランスアミナーゼ) への効果を調べた結果を示すグラフである。
図 1 2は、 本発明の経口投与用吸着剤による GPT (g l u t am i c— p y r u V i c t r a n s am i n a s e ;グノレタミン酸一ピノレビン酸トランスァ ミナーゼ) への効果を調べた結果を示すグラフである。 発明を実施するための最良の形態
本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性 炭は、 前記のとおり、 前記式 (1 ) から求められる回折強度比 (R値) が 1. 4 以上である。
最初に、 回折強度比 (R値) について説明する。
前記特公昭 62— 1 1 61 1号公報の実施例 1〜 3に記載の従来法による表面 改質球状活性炭に対して、 粉末 X線回折を実施すると、 図 1の曲線 Aに示すよう な傾向の X線回折図形が得られる。 なお、 図 1の曲線 Aそれ自体は、 後述する比 較例 1によって得られた表面改質球状活性炭の X線回折図形である。 曲線 Aから 明らかなように、 回折角 (20) が 20° ~30° の近辺に 002面に由来する 回折ピークが現れ、 回折角 (20) が 30° より高角度側では回折 X線の減少に より強度が減少する。 一方、 回折角 (20) が 20° より低角度側では、 002 面からの回折 X線が殆ど観測されない回折角 1 5° 以下の領域でも、 強い X線が 観測される。 更に、 前記特公昭 62— 1 1 61 1号公報の実施例 1〜 3記載の表 面改質球状活性炭に水分を吸着させ、 粉末 X線回折の測定を実施すると、 図 1の 曲線 Bに示すような傾向の X線回折図形が得られる。 なお、 図 1の曲線 Bそれ自 体は、 後述する比較例 1によって得られた表面改質球状活性炭に水分を吸着させ た後に得られる X線回折図形である。 曲線 Bから明らかなように、 曲線 Aに比べ 曲線 Bの低角度側の X線強度が大幅に低下することがわかる。 これは低角度側の X線強度が微細な細孔に起因するものであり、 細孔内に水分を吸着することによ リ X線散乱強度が低下したものと解釈される。
一方、 後述する実施例に示すように、 本発明者が見出した調製方法によって得 られる球状活性炭又は表面改質球状活性炭では、 水分を吸着させていない状態で、 図 1の曲線 Cに示すような傾向の X線回折図が一般的に得られる。 なお、 図 1の 曲線 cそれ自体は、 後述する実施例 1によって得られた表面改質球状活性炭の X 線回折図形である。 すなわち、 回折角 (2 0 ) が 1 5 ° 以下の低角度領域におけ る曲線 Cの散乱強度が曲線 Aの散乱強度と比較して明らかに強い傾向にある。 な お、 図 1において、 曲線 A、 曲線 B、 及び曲線 Cは、 回折角 (2 0 ) が 2 4 ° に おける回折強度がいずれも 1 0 0となるように規格化してある。
図 1の曲線 Aのような傾向の X線回折図を示す多孔質体と、 図 1の曲線 Cのよ うな傾向の X線回折図を示す多子 L質体とでは、 その細孔構造が異なることは明ら かである。 また、 曲線 Aと曲線 Bの比較により表面改質球状活性炭の X線回折に おいて低角度側で観測される散乱強度が細孔構造に起因することは明らかであり、 散乱強度が強いほどより多くの細孔を有する。 散乱角と細孔径の関係は、 より高 角度側の散乱ほどその細孔径が小さいものと推測される。 細孔構造の解析には一 般に吸着法により細孔分布を求める方法が知られているが、 細孔の大きさ、 形状、 吸着物質の大きさ、 及び吸着条件等の違いにより細孔構造を精確に解析すること が困難な場合が多い。 本発明者は、 0 0 2面からの回折 X線による影響が少なく、 且つ、 微細孔による散乱を反映すると推定される 1 5 ° 付近の散乱強度が、 吸着 法で測定することが困難な超微細孔の存在を表す指標となリ、 このような微細孔 の存在が有害物質である —アミノィソ酪酸の吸着に有効であるものと推定して いる。 すなわち、 回折角 (2 0 ) が 1 5 ° 付近の散乱強度が強い球状活性炭又は 表面改質球状活性炭ほど、 有害物質である) S—ァミノイソ酪酸の吸着に有効であ ると推測している。
また、 後述する実施例で示すように、 本発明者は、 図 1の曲線 Aのような傾向 の X線回折図を示す従来の球状活性炭又は表面改質球状活性炭と比較して、 図 1 の曲線 Cのような傾向の X線回折図を示す本発明による球状活性炭又は表面改質 球状活性炭の方が、 優れた選択吸着性能を示すことを実験的に確認した。
そこで、 前記の関係を明確化するために、 本明細書においては前記式 (1 ) に よって計算される回折強度比 (R値) によって、 球状活性炭又は表面改質球状活 性炭を規定する。 前記式 (1 ) において、 I 5は回折角 (2 0 ) が 1 5 ° におけ る回折強度であり、 曲線 Aと曲線 Cとの間で、 回折強度差が大きくなる領域であ る。 I 2 4は回折角 ( 2 Θ ) が 2 4 ° における回折強度であり、 曲線 Aと曲線 Cと の間で、 回折強度差が小さくなる領域である。 なお、 1 3 5は回折角 (2 0 ) が 3 5 ° における回折強度であり、 各測定試料間のバックグラウンドによる測定誤差 を補正する目的で導入する。
従って、 前記式 (1 ) によって計算される回折強度比 (R値) は、 曲線 Aにつ いては、
R = t / u
となり、 曲線 Cについては、
R = s Z V
となる。
従来公知の代表的な経口投与用表面改質球状活性炭について、 本発明者が確認 したところ、 それらの回折強度比 (R値) はいずれも 1 . 4未満であり、 回折強 度比 (R値) が 1 . 4以上の経口投与用表面改質球状活性炭は、 本発明者の知る 限り、 見出されていない。 一方、 後述する実施例に示すとおり、 回折強度比 (R 値) が 1 . 4以上の表面改質球状活性炭は、 回折強度比 (R値) が 1 . 4未満の 表面改質球状活性炭と比較すると、 δ —アミノィソ酪酸の吸着能が向上しておリ、 毒性物質の選択吸着性が向上した経口投与用吸着剤として有効であることが分か る。
なお、 本発明の経口投与用吸着剤として用いる球状活性炭又は表面改質球状活 性炭においては、 前記式 (1 ) によって計算される回折強度比 (R値) が、 好ま しくは 1 . 4以上であり、 より好ましくは 1 . 5以上、 更に好ましくは 1 . 6以 上である。
本発明者が見出したところによれば、 回折強度比 (R値) が 1 . 4以上の球状 活性炭又は表面改質球状活性炭は、 例えば、 従来の経口投与用吸着剤の炭素源と して用いられてきたピッチ類に代えて、 炭素源として熱硬化性樹脂を用いること により調製することができる。 あるいは、 従来の経口投与用吸着剤同様に、 炭素 源としてピッチ類を用い、 不融化処理の工程で架橋構造を発達させ、 炭素六角網 面の配列を乱すことにより調製することができる。
最初に、 炭素源として熱硬化性樹脂を用いる場合の調製方法を説明する。
熱硬化性樹脂からなる球状体を、 炭素と反応性を有する気流 (例えば、 スチー ム又は炭酸ガス) 中で、 700〜 1 000°Cの温度で賦活処理すると、 本発明の 経口投与用吸着剤として用いる球状活性炭を得ることができる。 ここで、 球状
「活性炭」 とは、 球状の熱硬化性樹脂などの炭素前駆体を熱処理した後に、 賦活 処理を行うことによって得られる多孔質体であり、 球状で比表面積が 1 00m2 Zg以上であるものを意味する。 本発明においては 1 000m2Zg以上が好ま しい。
なお、 熱硬化性樹脂からなる前記球状体が、 熱処理により軟化して形状が非球 形に変形するか、 あるいは球状体同士が融着する場合には、 前記の賦活処理の前 に、 不融化処理として、 酸素を含有する雰囲気にて、 1 50°C〜400°Cで酸化 処理を行うことによリ軟化を抑制することができる。
また、 前記の熱硬化性樹脂球状体を熱処理すると、 多くの熱分解ガスなどが発 生する場合には、 賦活操作を行う前に適宜予備焼成を行い、 予め熱分解生成物を 除去してもよい。
更に、 選択吸着性を一層向上させるには、 こうして得られた球状活性炭を、 続 いて、 酸素含有量 0. 1〜 50 V o I % (好ましくは"!〜 30 V o I %、 特に好 ましくは 3〜20 v o I %) の雰囲気下、 300〜800°C (好ましくは 320 〜600°C) の温度で酸化処理し、 更に 800〜 1 200°C (好ましくは 800 ~1 000°C) の温度下、 非酸化性ガス雰囲気下で加熱反応による還元処理をす ることにより、 本発明の経口投与用吸着剤として用いる表面改質球状活性炭を得 ることができる。 ここで、 表面改質球状活性炭とは、 前記の球状活性炭を、 前記 の酸化処理及び還元処理して得られる多孔質体であり、 球状活性の表面に酸性点 と塩基性点とをバランスよく付加することにより腸管内の有毒物質の吸着特性を 向上させたものである。
出発材料として用いる前記の熱硬化性樹脂球状体は、 粒径が約 0. 02〜1. 5mmであることが好ましい。
出発材料として用いる前記の熱硬化性樹脂としては、 球状体を成形することが 可能な樹脂であり、 500°C以下の熱処理においては溶融又は軟化せずに、 形状 変形も起こさないことが重要である。 また、 酸化処理などのいわゆる不融化処理 によリ、 溶融酸化を回避することのできる熱硬化性樹脂であれば使用することが できる。
出発材料として用いる前記の熱硬化性樹脂としては、 熱処理による炭素化収率 が高いことが望ましい。 炭素化収率が低いと、 球状活性炭としての強度が弱くな る。 また、 不必要な細孔が形成されるため、 球状活性炭の嵩密度が低下して、 体 積あたりの比表面積が低下するので、 投与体積が増加し、 経口投与が困難になる という問題を引き起こす。 従って、 熱硬化性樹脂の炭素化収率は高いほど好まし く、 非酸化性ガス雰囲気中 8 0 0 °Cでの熱処理による収率の好ましい値は 4 0重 量%以上、 更に好ましくは 4 5重量%以上である。
出発材料として用いる前記の熱硬化性樹脂として、 具体的には、 フ: cノール樹 脂、 例えば、 ノボラック型フ Iノール樹脂、 レゾール型フヱノール樹脂、 ノボラ ック型アルキルフ: Lノ一ル樹脂、 若しくはレゾール型アルキルフ: Eノ一ル樹脂を 挙げることができ、 その他にもフラン樹脂、 ユリア樹脂、 メラミン樹脂、 又はェ ポキシ樹脂などを用いることができる。 熱硬化性樹脂としては、 更に、 ジビニル ベンゼンと、 スチレン、 アクリロニトリル、 アクリル酸、 又はメタクリル酸との 共重合体を用いることができる。
また、 前記の熱硬化性樹脂として、 イオン交換樹脂を用いることもできる。 ィ オン交換樹脂は、 一般的に、 ジビニルベンゼンと、 スチレン、 アクリロニトリル、 アクリル酸、 又はメタクリル酸との共重合体 (すなわち、 熱硬化性樹脂) からな リ、 基本的には三次元網目骨格をもつ共重合体母体に、 イオン交換基が結合した 構造を有する。 イオン交換樹脂は、 イオン交換基の種類により、 スルホン酸基を 有する強酸性イオン交換樹脂、 カルボン酸基又はスルホン酸基を有する弱酸性ィ オン交換樹脂、 第四級アンモニゥ厶塩を有する強塩基性イオン交換樹脂、 第一級 又は第三級ァミンを有する弱塩基性イオン交換樹脂に大別され、 このほか特殊な 樹脂として、 酸及び塩基両方のイオン交換基を有するいわゆるハイブリツド型ィ オン交換樹脂があり、 本発明においては、 これらのすべてのイオン交換樹脂を原 料として使用することができる。 本発明においては、 出発材料としてフ: Lノール 樹脂を用いるのが特に好ましい。
次に、 炭素源としてピッチ類を用い、 不融化処理の工程で架橋構造を発達させ、 炭素六角網面の配列を乱すことにより、 経口投与用吸着剤として用いる球状活性 炭又は表面改質球状活性炭を調製する方法を説明する。
最初に、 石油ピッチ又は石炭ピッチ等のピッチに対し、 添加剤として、 沸点 2 0 0 °C以上の 2環式又は 3環式の芳香族化合物又はその混合物を加えて加熱混合 した後、 成形してピッチ成形体を得る。 なお、 前記の球状活性炭又は表面改質球 状活性炭は経口投与用であるので、 その原料も、 安全上充分な純度を有し、 且つ 品質的に安定であることが必要である。
次に、 熱水中で前記のピッチ成形体を撹拌下に分散造粒して微小球体化する。 更に、 ピッチに対して低溶解度を有し、 かつ前記添加剤に対して高溶解度を有す る溶剤で、 ピッチ成形体から添加剤を抽出除去し、 得られた多孔性ピッチを、 酸 化剤を用いて酸化すると、 熱に対して不融性の多孔性ピッチが得られる。 こうし て得られた不融性多孔性ピッチを、 更に炭素と反応性を有する気流 (例えば、 ス チーム又は炭酸ガス) 中で、 加熱処理すると、 球状活性炭を得ることができる。 こうして得られた球状活性炭を、 続いて、 酸素含有雰囲気下にて加熱下で酸化 処理し、 更に非酸化性ガス雰囲気下で加熱反応による還元処理をすることにより、 本発明の経口投与用吸着剤として用いる表面改質球状活性炭を得ることができる。 前記の製造方法において、 特定量の酸素を含有する雰囲気としては、 純粋な酸 素、 酸化窒素又は空気等を酸素源として用いることができる。 また、 炭素に対し て不活性な雰囲気としては、 例えば、 窒素、 アルゴン、 又はヘリウム等を単独で 用いるか、 あるいはそれらの混合物を用いることができる。
前記の原料ピッチに対して、 芳香族化合物を添加する目的は、 原料ピッチの流 動性を向上させ微小球体化を容易にすること及び成形後のピッチ成形体からその 添加剤を抽出除去させることによリ成形体を多孔質とし、 その後の工程の酸化に よる炭素質材料の構造制御ならびに焼成を容易にすることにある。 このような添 加剤としては、 例えば、 ナフタレン、 メチルナフタレン、 フエ二ルナフタレン、 ベンジルナフタレン、 メチルアントラセン、 フエナンスレン、 又はビフエニル等 を単独で、 又はそれらの 2種以上の混合物を用いることができる。 ピッチに対す る添加量は、 ピッチ 1 0 0重量部に対し芳香族化合物 1 0〜5 0重量部の範囲が 好ましい。
ピッチと添加剤との混合は、 均一な混合を達成するために、 加熱して溶融状態 で行うのが好ましい。 ピッチと添加剤との混合物は、 得られる球状活性炭又は表 面改質球状活性炭の粒径 (直径) を制御するため、 粒径約 0 . 0 1〜 1 mmの粒 子に成形することが好ましい。 成形は溶融状態で行ってもよく、 また混合物を冷 却後に粉砕する等の方法によってもよい。
ピッチと添加剤との混合物から添加剤を抽出除去するための溶剤としては、 例 えば、 ブタン、 ペンタン、 へキサン、 又はヘプタン等の脂肪族炭化水素、 ナフサ、 又はケ口シン等の脂肪族炭化水素を主成分とする混合物、 あるいはメタノール、 エタノール、 プロパノール、 又はブタノール等の脂肪族アルコール類等が好適で のる。
このような溶剤でピッチと添加剤との混合物成形体から添加剤を抽出すること によって、 成形体の形状を維持したまま、 添加剤を成形体から除去することがで きる。 この際に、 成形体中に添加剤の抜け穴が形成され、 均一な多孔性を有する ピッチ成形体が得られるものと推定される。
こうして得られた多孔性ピッチ成形体を、 次いで不融化処理、 すなわち酸化剤 を用いて、 好ましくは常温から 3 0 0 °Cまでの温度で酸化処理することにより、 熱に対して不融性の多孔性不融性ピツチ成形体を得ることができる。 ここで用い る酸化剤としては、 例えば、 酸素ガス (o 2) 、 あるいは酸素ガス (o 2) を空気 や窒素等で希釈した混合ガスを挙げることができる。
本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性 炭は、 熱硬化性樹脂、 あるいはピッチを原料として、 例えば前記製造方法によつ て製造すると共に、 直径が 0 . 0 1〜 1 m mである。 球状活性炭又は表面改質球 状活性炭の直径が 0 . 0 1 mm未満になると、 球状活性炭又は表面改質球状活性 炭の外表面積が増加し、 消化酵素等の有益物質の吸着が起こリ易くなるので好ま しくない。 また、 直径が 1 mmを越えると、 球状活性炭又は表面改質球状活性炭 の内部への毒性物質の拡散距離が増加し、 吸着速度が低下するので好ましくない。 直径は、 好ましくは 0 . 0 2〜0 . 8 mmである。 なお、 本明細書で 「直径が D l 〜D uである」 という表現は、 J I S K 1 4 7 4に準じて作成した粒度累 積線図 (平均粒子径の測定方法に関連して後で説明する) において、 ふるいの目 開き D I 〜D uの範囲に対応するふるい通過百分率 (%) が 9 0 <½以上であるこ とを意味する。
本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性 炭は、 ラングミュア (La n gmu i r ) の吸着式により求められる比表面積 (以下 「SSA」 と省略することがある) が 1000m2Zg以上である。 SS Aが 1000m2Zgより小さい球状活性炭又は表面改質球状活性炭では、 毒性 物質の吸着性能が低くなるので好ましくない。 SSAは、 好ましくは 1 OOOm 2Zg以上である。 SS Aの上限は特に限定されるものではないが、 嵩密度及び 強度の観点から、 SSAは、 300 Om2ノ g以下であることが好ましい。
本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性 炭において、 特定細孔直径範囲内の細孔容積は特に限定されない。 例えば、 前記 特公昭 62— 1 1 61 1号公報には、 細孔半径 100~ 75000オングス卜口 ームの空隙容積 (すなわち、 細孔直径 20〜 15000 nmの細孔容積) が 0. "!〜 1 m LZgの表面改質球状活性炭からなる吸着剤が記載されているが、 本発 明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性炭にお いては、 細孔直径 20〜 1 5000 nmの細孔容積が 0. 1〜 1 mLZgである ことも、 あるいは 0. 1 mLZg以下であることもできる。 なお、 細孔直径 20 〜 1000 n mの細孔容積が 1 m LZ gを越えると消化酵素等の有用物質の吸着 量が増加することがあるので、 細孔直径 20〜 1000 n mの細孔容積が 1 m L g以下であることが好ましい。
なお、 本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球 状活性炭においては、 一層優れた選択吸着性を得る観点から、 細孔直径 7. 5〜 1 5000 nmの細孔容積が 0. 25 m LZ g未満、 特に 0. 2mLZg以下で あることが好ましい。
本発明による経口投与用吸着剤として用いる表面改質球状活性炭 (すなわち、 前記の球状活性炭を更に酸化処理及び還元処理することによって製造される生成 物) では、 官能基の構成において、 全酸性基が 0. 40〜1. OOme qZgで あり、 全塩基性基が 0. 40〜1. 1 Ome q/gである。 官能基の構成におい て、 全酸性基が 0. 40〜1. 0 Ome qZgであり、 全塩基性基が 0. 40〜 1. OOme qZgの条件を満足すると、 前記の選択吸着特性が向上し、 特に前 記の有毒物質の吸着能が高くなるので好ましい。 官能基の構成において、 全酸性 基は 0. 40〜0. 9 Ome qZgであることが好ましく、 全塩基性基は 0. 4 0〜 1. 0 Ome q / gであることが好ましい。
本発明の吸着剤を肝腎疾患治療薬として用いる場合、 その官能基の構成は、 全 酸性基が 0. 40~1. 0 Ome qZg、 全塩基性基が 0. 40〜1. 1 0me qZg、 フエノール性水酸基が 0. 20〜0. 7 Ome qZg、 及びカルボキシ ル基が 0. 1 5me q/g以下の範囲にあり、 且つ全酸性基 (a) と全塩基性基 (b) との比 (aZb) が 0. 40〜2. 5であり、 全塩基性基 (b) とフエノ —ル性水酸基 (c) と力ルポキシル基 (d) との関係 〔 (b + c) — d〕 が 0. 60以上であることが好ましい。
本発明による経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性 炭が有する各物性値、 すなわち、 平均粒子径、 比表面積、 細孔容積、 全酸性基、 及び全塩基性基は、 以下の方法によって測定する。
(1 ) 平均粒子径
球状活性炭又は表面改質球状活性炭について J I S K 1 474に準じて粒 度累積線図を作成する。 平均粒子径は、 粒度累積線図において、 横軸の 50%の 点の垂直線と粒度累積線との交点から、 横軸に水平線を引いて交点の示すふるい の目開き (mm) を求めて、 平均粒子径とする。
(2) 比表面積 (ラングミュアの式による比表面積の計算法)
ガス吸着法による比表面積測定器 (例えば、 M I CROMER I T I CS社製 「ASAP 201 0」 ) を用いて、 球状活性炭試料又は表面改質球状活性炭試料 のガス吸着量を測定し、 ラングミュアの式により比表面積を計算することができ る。 具体的には、 試料である球状活性炭又は表面改質球状活性炭を試料管に充填 し、 300°Cで減圧乾燥した後、 乾燥後の試料重量を測定する。 次に、 試料管を - 1 96°Cに冷却し、 試料管に窒素を導入し球状活性炭試料又は表面改質球状活 性炭試料に窒素を吸着させ、 窒素分圧と吸着量の関係 (吸着等温線) を測定する。 窒素の相対圧力を p、 その時の吸着量を V (cm3/g STP) とし、 ラン グミュアプロットを行う。 すなわち、 縦軸に pZv、 横軸に pを取り、 pが 0. 05〜0. 3の範囲でプロットし、 そのときの傾きを b (g/cm3) とすると 比表面積 S (単位 = m 2Zg) は下記の式により求められる s MAx {6.02 1023)
22414xl0lb b
ここで、 MAは窒素分子の断面積で 0. 1 62 nm2を用いた。
(3) 水銀圧入法による細孔容積
水銀ポロシメ一ター (例えば、 M I CROMER I T I CS社製 「AUTOP ORE 9200」 ) を用いて細孔容積を測定することができる。 試料である球 状活性炭又は表面改質球状活性炭を試料容器に入れ、 2. 67 P a以下の圧力で 30分間脱気する。 次いで、 水銀を試料容器内に導入し、 徐々に加圧して水銀を 球状活性炭試料又は表面改質球状活性炭試料の細孔へ圧入する (最高圧力 =41 4MP a) 。 このときの圧力と水銀の圧入量との関係から以下の各計算式を用い て球状活性炭試料又は表面改質球状活性炭試料の細孔容積分布を測定する。 具体的には、 細孔直径 22 jumに相当する圧力 (0. 06MP a) から最高圧 力 (41 4MP a :細孔直径 3 nm相当) までに球状活性炭試料又は表面改質球 状活性炭試料に圧入された水銀の体積を測定する。 細孔直径の算出は、 直径 (D) の円筒形の細孔に水銀を圧力 (P) で圧入する場合、 水銀の表面張力を 「r」 とし、 水銀と細孔壁との接触角を 「0」 とすると、 表面張力と細孔断面に 働く圧力の釣り合いから、 次式:
-π θ γ c o s θ = π (D/2) 2 - P
が成り立つ。 従って
D= (- 4 c o s Θ ) /P
となる。
本明細書におし'、ては、 水銀の表面張力を 484 d y n eZcmとし、 水銀と炭 素との接触角を 1 30度とし、 圧力 Pを MP aとし、 そして細孔直径 Dを/ で し、 1^5己式:
D= 1. 27/P
により圧力 Pと細孔直径 Dの関係を求める。 例えば、 本発明における細孔直径 2 0~ 1 000 n mの範囲の細孔容積とは、 水銀圧入圧 1. 27MP aから 63. 5MP aまでに圧入された水銀の体積に相当する。 (4) 回折強度比 (R値)
球状活性炭試料又は表面改質球状活性炭試料を 1 20°Cで 3時間減圧乾燥した 後、 アルミニウム試料板 (35 X 50mm2、 t = 1. 5 mmの板に 20x 1 8 mm2の穴をあけたもの) に充填し、 グラフアイトモノクロメーターにより単色 化した Cu KQf線 (波長 λ = 0. 1 541 8) を線源とし、 反射式デフラクトメ 一ター法により回折角 (20) が 1 5° 、 24° 、 及び 35° のそれぞれの角度 における回折強度 I 15、 I 24、 I 35を測定する。 X線発生部及びスリッ卜の条 件は、 印加電圧 40 k V、 電流 1 0 OmA、 発散スリット= 1 Z2° 、 受光スリ ッ卜 =0. 1 5mm, 散乱スリット =1 /2° である。 回折図形の補正には、 口 一レンツ偏光因子、 吸収因子、 原子散乱因子等に関する補正を行わず、 標準物質 用高純度シリコン粉末の (1 1 1 ) 回折線を用いて回折角を補正した。
(5) 全酸性基
0. 05規定の N a OH溶液 5 OmL中に、 200メッシュ以下に粉砕した球 状活性炭試料又は表面改質球状活性炭試料 1 gを添加し、 48時間振とうした後、 球状活性炭試料又は表面改質球状活性炭試料をろ別し、 中和滴定によリ求められ る N a OHの消費量である。
(6) 全塩基性基
0. 05規定の HC I溶液 5 OmL中に、 200メッシュ以下に粉砕した球状 活性炭試料又は表面改質球状活性炭試料 1 gを添加し、 24時間振とうした後、 球状活性炭試料又は表面改質球状活性炭試料をろ別し、 中和滴定によリ求められ る H C Iの消費量である。
本発明の経口投与用吸着剤として用いる球状活性炭又は表面改質球状活性炭は、 後述する実施例において示すように、 肝疾患憎悪因子や腎臓病での毒性物質の吸 着性に優れているにもかかわらず、 有益物質である消化酵素等に対する吸着性が 少ないという選択吸着性に優れているので、 腎疾患の治療用又は予防用経口投与 用吸着剤として用いるか、 あるいは、 肝疾患の治療用又は予防用経口投与用吸着 剤として用いることができる。
腎疾患としては、 例えば、 慢性腎不全、 急性腎不全、 慢性腎盂腎炎、 急性腎盂 腎炎、 慢性腎炎、 急性腎炎症候群、 急性進行型腎炎症候群、 慢性腎炎症候群、 ネ フローゼ症候群、 腎硬化症、 間質性腎炎、 細尿管症、 リポィドネフローゼ、 糖尿 病性腎症、 腎血管性高血圧、 若しくは高血圧症候群、 あるいは前記の原疾患に伴 う続発性腎疾患、 更に、 透析前の軽度腎不全を挙げることができ、 透析前の軽度 腎不全の病態改善や透析中の病態改善にも用いることができる ( 「臨床腎臓学」 朝倉書店、 本田西男、 小磯謙吉、 黒川清、 1 9 9 0年版及び 「腎臓病学」 医学書 院、 尾前照雄、 藤見惺編集、 1 9 8 1年版参照) 。
また、 肝疾患としては、 例えば、 劇症肝炎、 慢性肝炎、 ウィルス性肝炎、 アル コール性肝炎、 肝線維症、 肝硬変、 肝癌、 自己免疫性肝炎、 薬剤アレルギー性肝 障害、 原発性胆汁性肝硬変、 振せん、 脳症、 代謝異常、 又は機能異常を挙げるこ とができる。 その他、 体内に存在する有害物質による病気、 すなわち、 精神病等 の治療にも用いることができる。
従って、 本発明による経口投与用吸着剤を腎臓疾患治療薬として用いる場合に は、 前記の球状活性炭及び Z又は表面改質球状活性炭を有効成分として含有する。 本発明の経口投与用吸着剤を腎臓疾患治療薬又は肝臓疾患治療薬として用いる場 合、 その投与量は、 投与対象がヒ卜であるかあるいはその他の動物であるかによ リ、 また、 年令、 個人差、 又は病状などに影響されるので、 場合によっては下記 範囲外の投与量が適当なこともあるが、 一般にヒ卜を対象とする場合の経口投与 量は 1日当り 1〜2 0 gを 3 ~ 4回に分けて服用し、 更に症状によって適宜増減 することができる。 投与形態は、 散剤、 顆粒、 錠剤、 糖衣錠、 カプセル剤、 懸濁 剤、 スティック剤、 分包包装体、 又は乳剤等であることができる。 カプセル剤と して服用する場合は、 通常のゼラチンの他に、 必要に応じて腸溶性のカプセルを 用いることもできる。 錠剤として用いる場合は、 体内でもとの微小粒体に解錠さ れることが必要である。 更に他の薬剤であるアルミゲルゃケィキサレー卜などの 電解質調節剤と配合した複合剤の形態で用いることもできる。 実施例
以下、 実施例によって本発明を具体的に説明するが、 これらは本発明の範囲を 限定するものではない。
以下の実施例において、 一アミラーゼ吸着試験及び D L— ーァミノイソ酪 酸吸着試験は以下の方法で実施し、 選択吸着率は以下の方法で計算した。
(1 ) ひ一アミラーゼ吸着試験
球状活性炭試料又は表面改質球状活性炭試料を乾燥した後、 乾燥試料 0. 1 2
5 gを正確に量って共栓付三角フラスコにとる。 一方、 一アミラーゼ (液化 型) 0. 1 00 gを正確に秤量して、 p H7. 4のリン酸塩緩衝液を加えて溶か し、 正確に 1 00 OmLとした液 (原液) 5 OmLを、 前記の共栓付三角フラス コに正確に加え、 37 ± 1 °Cで 3時間振り混ぜる。 フラスコの内容物をろ孔 0.
65〃mのメンブランフィルターで吸引ろ過し、 はじめのろ液約 2 OmLを除き、 次のろ液約 1 0 m Lを取って試料溶液とする。
—方、 p H7. 4のリン酸塩緩衝液を用いて同じ操作を行い、 そのろ液を補正 液とする。 試料溶液及び補正液につき、 P H 7. 4のリン酸塩緩衝液を対照とし、 吸光度測定法により試験を行い、 波長 282 nmにおける吸光度を測定する。 試 料溶液の吸光度と補正液の吸光度の差を試験吸光度とする。
検量線は 一アミラーゼ原液を OmL、 25mし、 5 OmL, 75mL、 及び 1 0 OmLの量でメスフラスコに正確に分取し、 p H7. 4リン酸塩緩衝液で 1 0 OmLにメスアップして波長 282 n mにおける吸光度を測定することにより 作成した。
試験吸光度と検量線より、 一アミラーゼ残存量 (mgZd L) を計算した。 球状活性炭試料又は表面改質球状活性炭試料の量の依存性を測定するため、 球 状活性炭試料又は表面改質球状活性炭試料の量を 0. 500 gとし、 上記方法と 同様の方法で試験吸光度を測定し、 —アミラーゼ残存量を計算した。
(2) Dし一 —ァミノイソ酪酸吸着試験
球状活性炭試料又は表面改質球状活性炭試料を乾燥した後、 乾燥試料 2. 50 0 gを正確に量って共栓付三角フラスコにとる。 一方、 Dし一) S—ァミノイソ酉各 酸 0. 1 00 gを正確に量り、 p H7. 4のリン酸塩緩衝液を加えて溶かし、 正 確に 1 00 OmLとした液 (原液) 5 OmLを、 前記の共栓付三角フラスコに正 確に加え、 37± 1 °Cで 3時間振り混ぜる。 フラスコの内容物をろ孔 0. 65〃 mのメンブランフィルターで吸引ろ過し、 はじめのろ液約 2 OmLを除き、 次の ろ液約 1 OmLを取って試料溶液とする。 試料溶液 0. 1 m Lを試験管に正確に取リ、 p H 8. 0のリン酸塩緩衝液 5 m Lを正確に加えて混合した後、 フルォレスカミン 0. 1 00 gを非水滴定用ァセ トン 1 00 m Lに溶かした液 1 m Lを正確に加えて混合した後で、 1 5分間静置 する。 この液につき、 蛍光光度法により試験を行い、 励起波長 390 nm、 及び 蛍光波長 475 n mで蛍光強度を測定する。
DL— yS—ァミノイソ酪酸原液を Orr、し、 1 5mL、 50mL、 75mし、 及 び 1 0 OmLの量と p Hフ. 4リン酸塩緩衝液とで 1 00m Lにして攪拌し、 ろ 過し、 ろ液 0. 1 m Lを試験管に正確に取リ、 p H 8. 0のリン酸塩緩衝液 5 m Lを正確に加えて混合した後、 フルォレスカミン 0. 1 00 gを非水滴定用ァセ トン 1 00 m Lに溶かした液 1 m Lを正確に加えて混合した後で、 1 5分間静置 する。 これらの液につき、 蛍光光度法により試験を行い、 励起波長 390 nm、 及び蛍光波長 475 nmで蛍光強度を測定し、 検量線を作成する。 最後に D L— j8—ァミノイソ酪酸の残存量 (mgZd L) を上記検量線を用いて計算する。 球状活性炭試料又は表面改質球状活性炭試料の量の依存性を測定するため、 球 状活性炭試料又は表面改質球状活性炭試料の量を 0. 500 gとして上記方法と 同様の方法で試験蛍光強度を測定し、 DL— ιδ—アミノィソ酪酸の残存量を計算 した。
(3) 選択吸着率
球状活性炭試料又は表面改質球状活性炭試料の使用量が 0. 500 gの場合の 一アミラーゼ吸着試験における 一アミラーゼ残存量、 及び同様に、 球状活性 炭試料又は表面改質球状活性炭試料の使用量が 0. 500 gの場合の D L— ^一 アミノィソ酪酸吸着試験における D L— ;8—アミノィソ酪酸残存量のそれぞれの データに基づいて、 以下の計算式:
A= (1 0-T r) / (1 0-U r )
(ここで、 Aは選択吸着率であり、 T rは DL— ^—アミノィソ酪酸の残存量で あり、 U rは α—アミラーゼの残存量である)
から計算した。
実施例 1
球状のフエノール樹脂 (粒子径= 1 0〜 700 m:商品名 「高機能真球樹脂 マリリン H F500タイプ」 ;群栄化学株式会社製) を目開き 25 O imの篩で 篩分し、 微粉末を除去した後、 微粉除去した球状のフエノール樹脂 1 50 gを目 皿付き石英製縦型反応管に入れ、 窒素ガス気流下 1. 5時間で 350°Cまで昇温 し、 更に 900°Cまで 6時間で昇温した後、 900°Cで 1時間保持して、 球状炭 素質材料 68. 1 gを得た。 その後、 窒素ガス (3 N LZm i n) と水蒸気 (2. 5 N LXm ί η) との混合ガス雰囲気中、 900°Cで賦活処理を行った。 球状活 性炭の充填密度が 0. 5mLZgまで減少した時点で賦活処理を終了とし、 球状 活性炭 29. 9 g (収率 1 9. 9 w t %) を得た。
得られた球状活性炭の回折角 (20) 1 5° における回折強度は 743 c p s であり、 回折角 (20) 35° における回折強度は 90 c p sであり、 回折角
(2 Θ) 24° における回折強度は 473 c p sであった。 従って、 回折強度比
(R値) は 1. 71であった。
得られた球状活性炭の特性を表 1及び表 2に示す。
図 1の曲線 Cは、 実施例 1で得られた球状活性炭を 1 20°Cで 2時間真空乾燥 した後で、 前記の 「回折強度比 (R値) J の測定方法と同様の手順で測定して得 られた回折曲線である。
実施例 2
実施例 1で用いたフ Iノール樹脂 (群栄化学株式会社製) に代えて、 住友べ一 クライ卜株式会社製の球状のフエノール樹脂 (平均粒径 = 700 m :商品名
「フエノール樹脂球状硬化物 ACSシリーズ P R— ACS— 2— 50 CJ ) を使用したこと以外は、 実施例 1に記載の方法を繰り返して、 球状活性炭を得た。 収率は 26. 5%であった。
得られた球状活性炭の回折角 (20) 1 5° における回折強度は 788 c p s であり、 回折角 (20) 35° における回折強度は 72 c p sであり、 回折角
(2 Θ) 24° における回折強度は 492 c p sであった。 従って、 回折強度比
(R値) は 1. 7 1であった。
得られた球状活性炭の特性を表 1及び表 2に示す。
実施例 3
実施例 1で得られた球状活性炭を更に流動床にて、 酸素濃度 1 8. 5 V o I % の窒素と酸素との混合ガス雰囲気下 470°Cで 3時間 1 5分間酸化処理し、 次に 流動床にて窒素ガス雰囲気下 900°Cで 1 7分間還元処理を行い、 表面改質球状 活性炭を得た。
得られた表面改質球状活性炭の回折角 (2 Θ) 1 5° における回折強度は 62 7 c p sであり、 回折角 (20) 35° における回折強度は 66 c p sであり、 回折角 (2 Θ) 24° における回折強度は 400 c p sであった。 従って、 回折 強度比 (R値) は 1. 68であった。
得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
実施例 4
出発材料として、 実施例 2で得られた球状活性炭を使用したこと以外は、 実施 例 3に記載の方法を繰リ返して、 表面改質球状活性炭を得た。
得られた表面改質球状活性炭の回折角 (20) 1 5° における回折強度は 70 2 c p sであり、 回折角 (2 Θ) 35° における回折強度は 74 c p sであり、 回折角 (20) 24° における回折強度は 428 c p sであった。 従って、 回折 強度比 (R値) は 1. フフであった。
得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
実施例 5
フエノール樹脂に替えてイオン交換性樹脂 (スチレン系;有効径 =0. 50〜 0. 65 mm:商品名 「Am b e r I ί t e 1 5WE T」 ;オルガノ株式会社 製) を使用したこと以外は、 実施例 3に記載の方法を繰り返して、 表面改質球状 活性炭を得た。
得られた表面改質球状活性炭の回折角 (20) 1 5° における回折強度は 76 5 c p sであり、 回折角 (20) 35° における回折強度は 82 c p sであり、 回折角 (20) 24° における回折強度は 485 c p sであった。 従って、 回折 強度比 (R値) は 1. 69であった。
得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
また、 得られた表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真 (50倍) を図 2に示す。 更に、 得られた表面改質球状活性炭の断面構造を示す 走査型電子顕微鏡写真 ( 200倍) を図 3に示す。 比較例
石油系ピッチ (軟化点 = 21 0°C;キノリン不溶分 = 1重量%以下; HZC原 子比 =0. 63) 68 k gと、 ナフタレン 32 k gとを、 攪拌翼のついた内容積 300 Lの耐圧容器に仕込み、 1 80°Cで溶融混合を行った後、 80〜90°Cに 冷却して押し出し、 紐状成形体を得た。 次いで、 この紐状成形体を直径と長さの 比が約"!〜 2になるように破砕した。
0. 23重量0 /οのポリビニルアルコール (ゲン化度 =88%) を溶解して 9 3°Cに加熱した水溶液中に、 前記の破砕物を投入し、 攪拌分散により球状化した 後、 前記のポリビニルアルコール水溶液を水で置換することにより冷却し、 2 0°Cで 3時間冷却し、 ピッチの固化及びナフタレン結晶の析出を行い、 球状ピッ チ成形体スラリーを得た。
大部分の水をろ過によリ除いた後、 球状ピッチ成形体の約 6倍重量の n—へキ サンでピッチ成形体中のナフタレンを抽出除去した。 このようにして得た多孔性 球状ピッチを、 流動床を用いて、 加熱空気を通じながら、 235°Cまで昇温した 後、 235°Cにて 1時間保持して酸化し、 熱に対して不融性の多孔性球状酸化ピ ツチを得た。 得られた多孔性球状酸化ピッチの酸素含有率は 1 4重量%であった。 続いて、 多孔性球状酸化ピッチを、 流動床を用い、 50 v o I %の水蒸気を含 む窒素ガス雰囲気中 900°Cで 1 70分間賦活処理して球状活性炭を得、 更にこ れを流動床にて、 酸素濃度 1 8. 5 V o I %の窒素と酸素との混合ガス雰囲気下 で 470°Cで 3時間 1 5分間、 酸化処理し、 次に流動床にて窒素ガス雰囲気下 9 00°Cで 1 フ分間還元処理を行い、 表面改質球状活性炭を得た。
得られた表面改質球状活性炭の回折角 (20) 1 5° における回折強度は 64 7 c p sであり、 回折角 (2 Θ) 35° における回折強度は 84 c p sであり、 回折角 (20) 24° における回折強度は 546 c p sであった。 従って、 回折 強度比 (R値) は 1. 22であった。
得られた表面改質球状活性炭の特性を表 1及び表 2に示す。
図 1の曲線 Aは比較例 1で得られた表面改質球状活性炭を 1 20°Cで 2時間真 空乾燥した後に、 前記 「回折強度比 (R値) 」 の測定方法と同様の手順で測定し て得られた回折曲線であり、 図 1の曲線 Bは、 比較例 1で得られた表面改質球状 活性炭 20 Omgにイオン交換水 2〜3滴を滴下してペース卜状にし、 そのぺー ス卜状表面改質球状活性炭に関して同様に測定して得られた回折曲線である。
また、 得られた表面改質球状活性炭の表面構造を示す走査型電子顕微鏡写真
(50倍) を図 4に示す。 更に、 得られた表面改質球状活性炭の断面構造を示す 走査型電子顕微鏡写真 (200倍) を図 5に示す。
比較例 2
球状活性炭の酸化処理及び還元処理を行わないこと以外は、 比較例 1に記載の 方法を繰り返して、 球状活性炭を得た。
得られた球状活性炭の回折角 (20) 1 5° における回折強度は 651 c p s であり、 回折角 (20) 35° における回折強度は 81 c p sであり、 回折角
(20) 24。 における回折強度は 548 c p sであった。 従って、 回折強度比
(R値) は 1. 22であった。
得られた球状活性炭の特性を表 1及び表 2に示す。
表 1
S S A Hg細孔容O L積
平均粒子径 原 料 Langmu i r BET
o U m m2/ g m2/g 20〜誦 o
nm
実施例 1 フエノール樹脂 2390 1860 0.0185 0.04 300 実施例 2 フエノール樹脂 2100 1720 0.0272 0.06 430 実施例 3 フエノール樹脂 2100 1670 0.0142 0.04 280 実施例 4 フエノール樹脂 1930 1560 0.0185 0.06 410 実施例 5 イオン交換樹脂 1630 1250 0.2437 0.42 350 比較例 1 ピッチ 2050 1540 0.0750 0.11 350 比較例 2 ピッチ 2100 1650 0.0850 0.15 350 前記表 1に記載の 「細孔容積 (H g p o r e) 」 は、 水銀圧入法により求め た細孔直径 20〜 1 000 nmの範囲の細孔容積に相当する。
前記表 1に記載の 「SSA (BET式) 」 は、 参考として記載した比表面積の 測定値であり、 以下の方法によって測定した。
ラングミュアの式による比表面積の測定と同様にして一 1 96°Cで球状活性炭 試料又は表面改質球状活性炭試料に窒素を吸着させ、 窒素分圧と吸着量の関係 羔蓉 ffl ]9p^ 3014011
23
(吸着等温線) を測定する。
窒素の相対圧力を p、 その時の吸着量を V (cm3Zg STP) とし、 BE Tプロットを行う。 すなわち、 縦軸に pZ ( V (1— p) ) 、 横軸に pを取り、 pが 0. 05〜0. 3の範囲でプロットし、 そのときの傾き b (単位 =gZcm 3) 、 及び切片 c (単位 =gZcm3) から、 比表面積 S (単位 = m2Zg) は下 記の式により求められる。 MAx (6.02 χΐθ23)
~ 22414xlOI8x(b + c)
ここで、 MAは窒素分子の断面積で 0. 162 nm2を用いた。
表 2
-アミラーゼ DL- -ァミノイソ酪酸
全酸性基 全塩基性基 選択
残存量 (mgZdL) 残存量 (mg/dL) R値 吸着率 meq/g meq/g 0.125g 0.50g 0.50g 2.50g
実施例 1 0.27 0.82 9.1 9.1 5.9 0.1 4.6 1.71 実施例 2 0.21 0.65 9.0 9.0 7.4 1.3 2.6 1.71 実施例 3 0.67 0.72 9.1 8.9 4.8 0.2 4.7 1.68 実施例 4 0.72 0.57 9.0 8.9 5.6 0.4 4.0 1.77 実施例 5 0.65 0.59 8.9 7.2 4.1 0.1 2.1 1.69 比較例 1 0.67 0.54 8.5 7.2 5.24 0.14 1.7 1.22 比較例 2 0.18 0.58 8.6 7.7 8.46 4.3 0.7 1.22 薬理効果確認試験 1 :腎疾患の改善作用
腎臓の 3 4を摘出して作製した腎不全モデルラットを用い、 本発明の経口投 与用吸着剤の投与による腎不全に対する薬理効果確認試験を行った。 試料として は、 前記実施例 1及び実施例 3で得られた経口投与用吸着剤を使用した。 確認試 験は、 モデルラット作製から 6週間経過時点で群間に偏りのないように、 対照群 (6匹; 以下 C 1群と呼ぶ) 、 実施例 1の経口投与用吸着剤投与群 (6匹;以下 P 1群と呼ぶ) 及び実施例 3の経口投与用吸着剤投与群 (6匹;以下与 P 2群と 呼ぶ) に分けた。
各群に粉末飼料を与えた。 各群に対する給餌量は C 1群の 2〜 3日間の平均摂 差替え用紙 (規則 26) JP2003/014011
24 餌量を基準にして決めた。 P 1群及び P 2群に対しては、 前記 C 1群と同様の粉 末飼料に、 経口投与用吸着剤 5重量%を追加混合して与えた。 経口投与用吸着剤 の投与を開始してから 8週目に、 血清中のクレアチニン、 尿素窒素、 尿中のクレ ァチニン、 クレアチニン,クリアランス、 及び蛋白排泄量を測定した。 なお、 腎 臓を摘出していない正常ラット (6匹) についても同様の実験を行った (正常 群) 。
結果を図 6〜図 9に示す。 血清中のクレアチニン (図 6) 及び尿素窒素 (図 7) は、 C 1群に比して P 1群及び P 2群において、 投与開始から 8週間経過時 でそれぞれ有意に低値を示した。 腎機能の指標であるクレアチニン■クリアラン ス (図 8) は、 C 1群において低下が認められ、 P 1群及び P 2群においては、 C 1群で認められた低下に対して有意な抑制が認められた。 一方、 尿細管機能の 指標となる蛋白排泄量 (図 9) は、 C 1群で増加が認められたが、 P 1群及び P 2群においては、 その増加を有意に抑制することが認められた。 なお、 尿中のク レアチニンついても同様の結果が得られた。
以上の結果から、 本発明の経口投与用吸着剤は、 慢性腎不全の進行を抑制、 あ るいは改善し、 腎機能の低下を防止及び維持することができることが明らかとな つた。
薬理効果確認試験 2 :肝疾患の改善作用
四塩化炭素誘発肝疾患モデルラットを用い、 本発明の経口投与用吸着剤の投与 による肝疾患に対する薬理効果確認試験を行った。 試料としては、 前記実施例 1 及び実施例 3で得られた経口投与用吸着剤を用いた。
具体的には、 S p r a g u e— Da u l e yラット (日本クレア製;雄性 7週 齢) を用い、 四塩化炭素を 1 2mgZk gの量で、 週 2回の割合にて、 本薬理効 果確認試験の終了時まで (約 4力月間) 皮下投与を継続した。 四塩化炭素の投与 を開始してから 2ヶ月後に、 肝機能の低下が確認されたので、 病態が群間に偏り のないように、 対照群 (6匹;以下 C2群と呼ぶ) 、 実施例 1の経口投与用吸着 剤投与群 (6匹;以下 Q 1群と呼ぷ) 及び実施例 3の経口投与用吸着剤投与群 (6匹;以下与 Q 2群と呼ぶ) に分けた。
各群に粉末飼料を与えた。 各群に対する給餌量は C 2群の 2〜 3日間の平均摂 餌量を基準にして決めた。 Q 1群及び Q 2群に対しては、 前記 C2群と同様の粉 末飼料に、 経口投与用吸着剤 5重量%を追加混合して、 群分け後 2ヶ月間投与し た。 四塩化炭素を投与しない正常ラットについても同様の実験を行った (正常- 群) 。
経口投与用吸着剤投与を開始してから投与実験が完了するまでの約 2ヶ月間に わたリ、 I CG ( I n d o c y a n i n e g r e e n :イン卜シァニンクリー ン) 、 GOT g l u t am i c— o x a l o a c e t i c 't r a n s ana l n a s e ; グルタミン酸一ォキサ口酢酸トランスアミナーゼ) 、 及び G P T (g l u t am i c— p y r u v i c t r a n s am i n a s e ; クノレタ ¾ノ酉変一 ピルビン酸トランスアミナーゼ) を測定した。 経口投与用吸着剤の投与開始から 2ヶ月後の結果を図 1 0 ( I CG) 、 図 1 1 (GOT) 、 及び図 1 2 (GPT) に示す。 肝実質機能を反映する I CGテストを比較すると、 C2群に比して、 Q 1.群及び Q 2群は、 いずれも有意に低値を示した。 更に、 逸脱酵素である GOT 及び GPTでも、 C 2群に比して、 01群及び02群は、 いずれも有意に低値を 示した。
以上の結果から、 本発明の経口投与用吸着剤は、 肝機能の低下を改善すること ができることが明らかとなった。 産業上の利用可能性
本発明による経口投与用吸着剤は、 特異な細孔構造を有しているので、 経口服 用した場合に、 消化酵素等の体内の有益成分の吸着性が少ないにもかかわらず、 有毒な毒性物質 (T o x i n) の消化器系内における吸着性能が優れるという選 択吸着特性を有し、 従来の経口投与用吸着剤と比較すると、 前記の選択吸着特性 が著しく向上する。
本発明の経口投与用吸着剤は、 腎疾患の治療用又は予防用経口投与用吸着剤と して用いるか、 あるいは、 肝疾患の治療用又は予防用吸着剤として用いることが できる。
腎疾患としては、 例えば、 慢性腎不全、 急性腎不全、 慢性腎盂腎炎、 急性腎盂 腎炎、 慢性腎炎、 急性腎炎症候群、 急性進行型腎炎症候群、 慢性腎炎症候群、 ネ フローゼ症候群、 腎硬化症、 間質性腎炎、 細尿管症、 リポイドネフローゼ、 糖尿 病性腎症、 腎血管性高血圧、 若しくは高血圧症候群、 あるいは前記の原疾患に伴 う続発性腎疾患、 更に、 透析前の軽度腎不全を挙げることができ、 透析前の軽度 腎不全の病態改善や透析中の病態改善にも用いることができる ( 「臨床腎臓学」 朝倉書店、 本田西男、 小磯謙吉、 黒川清、 1 9 9 0年版及び 「腎臓病学」 医学書 院、 尾前照雄、 藤見惺編集、 1 9 8 1年版参照) 。
また、 肝疾患としては、 例えば、 劇症肝炎、 慢性肝炎、 ウィルス性肝炎、 アル コール性肝炎、 肝線維症、 肝硬変、 肝癌、 自己免疫性肝炎、 薬剤アレルギー性肝 障害、 原発性胆汁性肝硬変、 振せん、 脳症、 代謝異常、 又は機能異常を挙げるこ とができる。 その他、 体内に存在する有害物質による病気、 すなわち、 精神病等 の治療にも用いることができる。 以上、 本発明を特定の態様に沿って説明したが、 当業者に自明の変形や改良は 本発明の範囲に含まれる。

Claims

27
1. 直径が 0. 01〜1 mmであり、 ラングミュアの吸着式により求められる比 表面積が 1000m2Zg以上で り、 そして式 (1 ) :
R= ( I 15— I 35) ( I 24— I 35) (1 )
〔式中、 115は、 X線回折法による回折角 (20) 力《15° における回折強度で あり、 135は、 X線回折法による回折角 (20) が 35° における回折強度であ
α=青
リ、 124は、 X線回折法による回折角 (20) が 24° における回折強度であ る〕
で求められる回折強度比 (R値) が 1. 4以上である球状活性炭からなることを 特徴とする、 経口投与用吸着剤。
2. 直径が 0. 01〜1 mmであり、 ラングミュアの吸着式により求められる比 表面積が 1000 m2Z g以上であり、 全酸性基が 0. 40〜1. OOme q/ gであり、 全塩基性基が 0. 40〜1. 1 Ome qZgであり、 そして式
(1) :
= ( I 15_ I 35) ノ ( I 24- I 35) (1 )
〔式中、 115は、 X線回折法による回折角 (20) が 1 5° における回折強度で あり、 135は、 X線回折法による回折角 (20) が 35° における回折強度であ り、 124は、 X線回折法による回折角 (20) が 24。 における回折強度であ る〕
で求められる回折強度比 (R値) が 1. 4以上である表面改質球状活性炭からな ることを特徴とする、 経口投与用吸着剤。
3. 請求項 1又は 2に記載の経口投与用吸着剤を有効成分とする、 腎疾患治療又 は予防剤。
4. 請求項 1又は 2に記載の経口投与用吸着剤を有効成分とする、 肝疾患治療又 は予防剤。
5. 請求項 1又は 2に記載の経口投与用吸着剤と薬剤学的に許容可能な担体又は 希釈剤とを含む、 腎疾患治療又は予防剤。
6. 請求項 1又は 2に記載の経口投与用吸着剤と薬剤学的に許容可能な担体又は 28 希釈剤とを含む、 肝疾患治療又は予防剤。
7 . 請求項 1又は 2に記載の経口投与用吸着剤の有効量を、 腎疾患治療又は予防 が必要な患者に投与することを含む、 腎疾患治療又は予防方法。
8 . 請求項 1又は 2に記載の経口投与用吸着剤の有効量を、 肝疾患治療又は予防 が必要な患者に投与することを含む、 肝疾患治療又は予防方法。
9 . 腎疾患治療又は予防剤の製造のための、 請求項 1又は 2に記載の経口投与用 吸着剤の使用。
1 0 . 肝疾患治療又は予防剤の製造のための、 請求項 1又は 2に記載の経口投与 用吸着剤の使用。
PCT/JP2003/014011 2002-11-01 2003-10-31 経口投与用吸着剤 WO2004039380A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004548106A JP3672200B2 (ja) 2002-11-01 2003-10-31 経口投与用吸着剤
EP03770094A EP1547605B1 (en) 2002-11-01 2003-10-31 Adsorbents for oral administration
DE60323112T DE60323112D1 (de) 2002-11-01 2003-10-31 Adsorbentien zur oralen verabreichung
CA002504514A CA2504514C (en) 2002-11-01 2003-10-31 Adsorbent for oral administration
AU2003280689A AU2003280689A1 (en) 2002-11-01 2003-10-31 Adsorbents for oral administration
US10/948,314 US7651974B2 (en) 2002-11-01 2004-09-24 Adsorbent for oral administration
HK06102947.4A HK1082924A1 (en) 2002-11-01 2006-03-07 Adsorbents for oral administration
US12/630,581 US8309130B2 (en) 2002-11-01 2009-12-03 Adsorbent for oral administration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002320254 2002-11-01
JP2002-320254 2002-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/948,314 Continuation-In-Part US7651974B2 (en) 2002-11-01 2004-09-24 Adsorbent for oral administration

Publications (1)

Publication Number Publication Date
WO2004039380A1 true WO2004039380A1 (ja) 2004-05-13

Family

ID=32211847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014011 WO2004039380A1 (ja) 2002-11-01 2003-10-31 経口投与用吸着剤

Country Status (13)

Country Link
EP (1) EP1547605B1 (ja)
JP (1) JP3672200B2 (ja)
KR (1) KR100680449B1 (ja)
CN (1) CN100558370C (ja)
AT (1) ATE405278T1 (ja)
AU (1) AU2003280689A1 (ja)
CA (1) CA2504514C (ja)
DE (1) DE60323112D1 (ja)
ES (1) ES2312825T3 (ja)
HK (1) HK1082924A1 (ja)
RU (1) RU2306941C2 (ja)
TW (1) TWI341732B (ja)
WO (1) WO2004039380A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033341A1 (ja) * 2004-09-22 2006-03-30 Kureha Corporation 糖尿病性神経障害治療又は予防剤
JP2007169274A (ja) * 2005-12-19 2007-07-05 Bluecher Gmbh 活性炭の使用及び活性炭を用いた薬剤調合品
US7651974B2 (en) 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
JP2011084454A (ja) * 2009-10-15 2011-04-28 Chan Sieh Enterprises Co Ltd 球形活性炭及びその製造方法
WO2012121202A1 (ja) 2011-03-04 2012-09-13 株式会社クレハ 錠剤型の経口投与用組成物及びその製造方法
JP2013523772A (ja) * 2010-04-01 2013-06-17 サイトソーベンツ・コーポレーション 炎症を治療する方法
US8920796B2 (en) 2003-10-22 2014-12-30 Kureha Corporation Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
JP2015151324A (ja) * 2014-02-18 2015-08-24 住友電気工業株式会社 活性炭及び活性炭の製造方法
JP2017507126A (ja) * 2014-02-07 2017-03-16 テウォン ファーム カンパニー リミテッド 強度の増加された経口投与型医薬用吸着剤

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051870A (ja) 2010-08-02 2012-03-15 Asahi Organic Chemicals Industry Co Ltd 経口投与用吸着剤及びその製造方法並びにそれを用いた薬剤
AR088255A1 (es) 2011-10-07 2014-05-21 Teijin Pharma Ltd Adsorbentes para la administracion oral
TWI520751B (zh) 2013-02-22 2016-02-11 吳羽股份有限公司 經口投予用吸附劑及腎疾病治療劑及肝疾病治療劑
TWI532508B (zh) * 2013-02-22 2016-05-11 吳羽股份有限公司 經口投予用吸附劑及腎疾病治療劑及肝疾病治療劑

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029715A1 (en) * 1979-11-22 1981-06-03 Kureha Kagaku Kogyo Kabushiki Kaisha Porous spherical carbonaceous product and production thereof
JPS58213613A (ja) * 1982-06-03 1983-12-12 Sumitomo Bakelite Co Ltd 球型活性炭の製造方法
EP0595715A1 (en) * 1992-10-29 1994-05-04 Kureha Chemical Industry Co., Ltd. Activated carbon as antinephrotic syndrome agent
EP0711561A2 (en) * 1994-11-15 1996-05-15 Kureha Chemical Industry Co., Ltd. Agent for reducing nephrotoxicity due to medicine containing an activated spherical carbon
JPH11292771A (ja) * 1998-04-10 1999-10-26 Kureha Chem Ind Co Ltd 活性型ビタミンd代謝の改善剤
JPH11292770A (ja) * 1998-04-10 1999-10-26 Kureha Chem Ind Co Ltd マトリックス形成亢進抑制剤
EP1249241A1 (en) * 2001-04-11 2002-10-16 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489010A (en) * 1977-12-27 1979-07-14 Kureha Chem Ind Co Ltd Spherical activated charcoal antidote
JPS565313A (en) * 1979-06-26 1981-01-20 Kureha Chem Ind Co Ltd Detoxificating spherical active carbon and preparing the same
JP3585043B2 (ja) * 2003-01-22 2004-11-04 メルク・ホエイ株式会社 医薬用吸着剤及びその製法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029715A1 (en) * 1979-11-22 1981-06-03 Kureha Kagaku Kogyo Kabushiki Kaisha Porous spherical carbonaceous product and production thereof
JPS58213613A (ja) * 1982-06-03 1983-12-12 Sumitomo Bakelite Co Ltd 球型活性炭の製造方法
EP0595715A1 (en) * 1992-10-29 1994-05-04 Kureha Chemical Industry Co., Ltd. Activated carbon as antinephrotic syndrome agent
EP0711561A2 (en) * 1994-11-15 1996-05-15 Kureha Chemical Industry Co., Ltd. Agent for reducing nephrotoxicity due to medicine containing an activated spherical carbon
JPH11292771A (ja) * 1998-04-10 1999-10-26 Kureha Chem Ind Co Ltd 活性型ビタミンd代謝の改善剤
JPH11292770A (ja) * 1998-04-10 1999-10-26 Kureha Chem Ind Co Ltd マトリックス形成亢進抑制剤
EP1249241A1 (en) * 2001-04-11 2002-10-16 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651974B2 (en) 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
US8309130B2 (en) 2002-11-01 2012-11-13 Kureha Corporation Adsorbent for oral administration
US8920796B2 (en) 2003-10-22 2014-12-30 Kureha Corporation Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
WO2006033341A1 (ja) * 2004-09-22 2006-03-30 Kureha Corporation 糖尿病性神経障害治療又は予防剤
CN101022817B (zh) * 2004-09-22 2010-05-05 株式会社吴羽 糖尿病性神经障碍治疗或预防剂
JP2007169274A (ja) * 2005-12-19 2007-07-05 Bluecher Gmbh 活性炭の使用及び活性炭を用いた薬剤調合品
JP2011084454A (ja) * 2009-10-15 2011-04-28 Chan Sieh Enterprises Co Ltd 球形活性炭及びその製造方法
JP2013523772A (ja) * 2010-04-01 2013-06-17 サイトソーベンツ・コーポレーション 炎症を治療する方法
JP2016175914A (ja) * 2010-04-01 2016-10-06 サイトソーベンツ・コーポレーション 炎症を治療する方法
WO2012121202A1 (ja) 2011-03-04 2012-09-13 株式会社クレハ 錠剤型の経口投与用組成物及びその製造方法
JP2017507126A (ja) * 2014-02-07 2017-03-16 テウォン ファーム カンパニー リミテッド 強度の増加された経口投与型医薬用吸着剤
JP2015151324A (ja) * 2014-02-18 2015-08-24 住友電気工業株式会社 活性炭及び活性炭の製造方法

Also Published As

Publication number Publication date
KR20050042263A (ko) 2005-05-06
KR100680449B1 (ko) 2007-02-08
CA2504514C (en) 2008-08-12
CN1691948A (zh) 2005-11-02
CN100558370C (zh) 2009-11-11
CA2504514A1 (en) 2004-05-13
JP3672200B2 (ja) 2005-07-13
RU2306941C2 (ru) 2007-09-27
ATE405278T1 (de) 2008-09-15
EP1547605A1 (en) 2005-06-29
TWI341732B (en) 2011-05-11
JPWO2004039380A1 (ja) 2006-02-23
ES2312825T3 (es) 2009-03-01
RU2005116683A (ru) 2006-01-20
AU2003280689A1 (en) 2004-05-25
DE60323112D1 (de) 2008-10-02
EP1547605B1 (en) 2008-08-20
EP1547605A4 (en) 2005-11-02
HK1082924A1 (en) 2006-06-23
TW200413005A (en) 2004-08-01

Similar Documents

Publication Publication Date Title
JP3835698B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
US8309130B2 (en) Adsorbent for oral administration
CA2811279C (en) Medical adsorbent and method for producing same
JP3522708B2 (ja) 経口投与用吸着剤
RU2396965C2 (ru) Адсорбент для перорального введения и средство для лечения или профилактики заболевания почек или печени
WO2004039380A1 (ja) 経口投与用吸着剤
US20090181095A1 (en) Oxidative stress inhibitor
JP2006070047A (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
WO2014129617A1 (ja) 経口投与用吸着剤並びに腎疾患治療剤及び肝疾患治療剤
JP5985027B2 (ja) 経口投与用医薬用吸着剤の製造方法
JP2006143736A (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP4311923B2 (ja) 経口投与用肝疾患治療又は予防剤
JP4471959B2 (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2006096769A (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2006077028A (ja) 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2006328085A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004548106

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10948314

Country of ref document: US

Ref document number: 2003770094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A04391

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047018248

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2504514

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1020047018248

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 00913/KOLNP/2005

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005116683

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003770094

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003770094

Country of ref document: EP