WO2004036938A1 - Procede d'emplacement de station mobile et repeteur de station mobile - Google Patents

Procede d'emplacement de station mobile et repeteur de station mobile Download PDF

Info

Publication number
WO2004036938A1
WO2004036938A1 PCT/CN2003/000630 CN0300630W WO2004036938A1 WO 2004036938 A1 WO2004036938 A1 WO 2004036938A1 CN 0300630 W CN0300630 W CN 0300630W WO 2004036938 A1 WO2004036938 A1 WO 2004036938A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeater
mobile station
base station
signal
module
Prior art date
Application number
PCT/CN2003/000630
Other languages
English (en)
French (fr)
Inventor
Weiming Duan
Jin Tang
Huiping Duan
Original Assignee
Huawei Technologies Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32098075&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004036938(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Huawei Technologies Co., Ltd filed Critical Huawei Technologies Co., Ltd
Priority to US10/531,203 priority Critical patent/US7373155B2/en
Priority to DE60316975T priority patent/DE60316975T8/de
Priority to EP03808659A priority patent/EP1558045B8/en
Priority to AU2003248235A priority patent/AU2003248235A1/en
Publication of WO2004036938A1 publication Critical patent/WO2004036938A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations

Definitions

  • the present invention relates to the technical field of mobile communications, and in particular, to a method for positioning a mobile station and a repeater with an auxiliary positioning function.
  • the mobile station positioning technology needs to be introduced to locate the mobile station.
  • TOA Time Of Arrival
  • This method measures the time of arrival T0A of a mobile station to three or more base stations.
  • TDOA Time Difference Of Arrival
  • CELL-ID Cel l Ident if ier-area identifier
  • T0A Positioning combined positioning method This method first uses the cell identification symbol configured by the network to determine the location of the serving cell where the mobile station is located, and then uses the time of arrival T0A from the mobile station to the serving base station to further determine the mobile station's location within the cell. position.
  • repeaters are set up in areas that cannot be directly covered by some base stations.
  • the basic function of the repeater is to silently amplify radio frequency signals. It amplifies and forwards both the uplink signal transmitted by the mobile station and the downlink signal transmitted by the base station.
  • the donor day Line (antenna of the serving base station) picks up signals from the existing coverage area, filters out signals outside the signal band through a band-pass filter, amplifies the filtered signal and transmits it to the area to be covered after being amplified by the power amplifier; in the uplink direction, it covers The signals of the mobile stations in the area are transmitted to the corresponding base stations after similar processing, thereby realizing the signal transmission between the base stations and the mobile stations.
  • the introduction of the repeater enables the normal communication between the mobile stations and the base stations in its coverage area.
  • the introduction of repeaters has caused mobile stations within the coverage area of repeaters to fail to locate effectively.
  • the positioning failure of the TD0A positioning process may occur because the number of detectable base stations is too small; even if a sufficient number of base stations can be detected, due to the base station The signal passed through the repeater, and the measured value has a large deviation.
  • the measured TD0A can no longer accurately reflect the distance difference between the base stations. If this measurement result is used for positioning, the final determined mobile station position will appear very Large deviation; and the positioning system cannot determine whether the mobile station is in the coverage area of the repeater, and whether the measurement result is affected by the repeater.
  • An object of the present invention is to provide a mobile station positioning method and a repeater thereof, to realize accurate positioning of a mobile station within a coverage area of the repeater, thereby improving positioning accuracy of the mobile station in a mobile communication network.
  • a mobile station positioning method is: when a mobile communication network receives a mobile station positioning request, the repeater transmits an auxiliary positioning signal, and the mobile station The position estimation parameter is measured according to the received auxiliary positioning signal transmitted by the repeater and the downlink signal transmitted by the base station. Then, the position of the mobile station is estimated according to the measurement result to realize the positioning of the mobile station.
  • the mobile station positioning method further includes:
  • the mobile communication network After receiving the mobile station positioning request, the mobile communication network performs RTT (Round Trip Time) measurement between the serving base station and the mobile station, receives the measurement result reported by the serving base station, and sends a measurement control message to the mobile station;
  • RTT Random Trip Time
  • the mobile station performs a TD0A (Time Difference Of Arrival) measurement between the repeater and the mobile station according to the measurement control message sent by the mobile communication network and the auxiliary positioning signal transmitted by the repeater, and adds 4 The measurement result;
  • TD0A Time Difference Of Arrival
  • the mobile communication network or mobile station estimates the position of the mobile station based on the RTT of the serving base station and the mobile station, and the repeater and the TD0A of the mobile station to realize the positioning of the mobile station.
  • the auxiliary positioning parameters include: IPDL (Idle Period Down Link) parameters, a scrambling code number allocated to the repeater, and the frequency and power of the auxiliary positioning signal.
  • IPDL Interle Period Down Link
  • the auxiliary positioning signal is a discontinuous signal obtained by modulating a P-CPICH (Primary Common Pilot Channel) using a scrambling code synchronized with the base station and transmitted only during the IPDL period.
  • P-CPICH Primary Common Pilot Channel
  • the measurement control information described in step c includes: information of the serving base station and Information; the serving base station information includes the serving base station main scrambling code; the neighboring base station information includes the neighboring base station main scrambling code, the RTD (Relative Time Difference) between the neighboring base station and the serving base station, and the search window width.
  • the measurement control information also includes the repeater information corresponding to the information of the neighboring base station, including the repeater scrambling code, the RTD between the repeater and the serving base station, and the search window width.
  • the RTD is determined according to the distance between the repeater and the serving base station and IPDL parameters, or is measured by using an LMU (location measurement unit).
  • the repeater scrambling code is one of the 512 main scrambling codes and is different from the scrambling codes of the surrounding base stations.
  • the step d includes:
  • the mobile communication network or the mobile station searches for the TD0A measurement result according to the scramble code of the repeater, and judges whether the mobile station is located in the repeater coverage area according to the measurement result, and if so, performs step d2, otherwise, performs step d3;
  • the step dl includes:
  • step dl 1 The mobile communication network or the mobile station determines whether the TD0A measurement result of the mobile station includes a TD0A value according to the repeater scrambling code information, and the corresponding scrambling code is the scrambling code of the repeater. If it contains, then step dl2 is performed. Otherwise, perform step d3;
  • dl2 Determine the delay and coordinate information of the repeater according to the obtained repeater scrambling code, and calculate the distance between the repeater and the serving base station;
  • step dl 3 Determine whether the TD0A value corresponding to the repeater is approximately equal to the repeater and the service base. The distance between the station and the time value obtained by dividing the speed of light delay of the repeater and, if approximately equal, execute step d2, otherwise the repeater as a pseudo neighbor base stations, and step d3 0
  • the step d2 includes:
  • d21 Determine the T0A (Time of Arrival) value between the serving base station and the mobile station, the repeater delay, the distance between the repeater and the serving base station, the TD0A value between the neighboring base station and the serving base station, and the direct base station.
  • T0A Time of Arrival
  • the coordinates of the repeater and the coordinates of the neighboring base station are used to determine the position information of the mobile station.
  • the neighboring base station includes a repeater which is regarded as a fake neighboring base station.
  • a repeater for realizing the above mobile station positioning function method includes a downlink processing channel and an uplink processing channel.
  • An auxiliary positioning unit is added to the downlink processing channel, and the auxiliary positioning unit receives a downlink signal of a base station and a mobile communication network.
  • the signal carrying the auxiliary positioning parameter is sent, and the auxiliary positioning signal is generated and sent to the mobile station.
  • the auxiliary positioning unit includes:
  • Communication module receiving a signal from a mobile communication network that carries auxiliary positioning parameters
  • Frame timing recovery module Receives downlink signals from the base station, and obtains frame synchronization phase after processing Signals, and send them to the control timing generation module and the pilot modulation module, respectively;
  • Control timing module receiving a frame synchronization phase signal from the frame timing recovery module, generating a control pulse sequence, and sending it to the pilot modulation module;
  • Pilot modulation module Receives the frame synchronization phase signal from the frame timing recovery module and the pulse sequence from the control timing module, generates an auxiliary positioning signal, and sends it to the mobile station.
  • the downlink processing channel includes: a low-noise amplifier, a filter, and a power amplifier.
  • the auxiliary positioning unit further includes:
  • RF processing module It consists of an automatic gain control sub-module, a RF receiving filter sub-module and a down converter, and outputs RF signals to the IF processing module;
  • IF processing module It consists of IF filtering sub-module, analog-to-digital conversion sub-module and digital down-converter. It receives the RF signal from the RF processing module, processes and generates the baseband signal, and sends it to the frame timing recovery module.
  • the communication module receives auxiliary positioning parameters from a base station through signaling.
  • the communication module receives auxiliary positioning parameters through the operation and maintenance terminal of the repeater.
  • the input signal of the auxiliary positioning unit is directly coupled from the donor antenna.
  • the input signal of the auxiliary positioning unit is obtained from a certain node in the downlink processing channel of the repeater.
  • the output signal of the auxiliary positioning unit is output after a certain node in the downlink processing channel of the repeater is combined with the signal of the repeater.
  • the output signal of the auxiliary positioning unit is transmitted through a repeater antenna after being combined with the signal of the repeater before the power of the downlink processing channel of the repeater is amplified.
  • Positioning that is, the present invention can determine whether the mobile station is in the coverage area of the repeater and the coverage area of the repeater according to the measurement result of the mobile station, and correctly associate the measurement result with the reference point. Therefore, the present invention achieves the object of improving the positioning accuracy of the mobile station in the coverage area of the repeater; and the repeater with the auxiliary positioning function provided by the present invention can be implemented without affecting the structure and existing mobile stations. Signaling process.
  • FIG. 1 is a schematic structural diagram of an existing repeater
  • FIG. 2 is a schematic diagram of a network structure of a mobile communication network
  • FIG. 3 is an implementation flowchart of the method according to the present invention.
  • FIG. 4 is a flowchart of estimating a position of a mobile station
  • FIG. 5 is a schematic structural diagram of a repeater according to the present invention.
  • the networking diagram of a mobile communication network is shown in Figure 2.
  • Figure 3 The specific implementation is shown in Figure 3:
  • Step 1 The mobile communication network receives the mobile station positioning request information
  • Step 2 The mobile communication network sends an RTT (Round Trip Time Difference, Round Tr ip Time) measurement request;
  • Step 3 The serving base station measures the RTT value with the mobile station and reports the measurement result to the mobile station.
  • Step 4 Find and determine all repeaters that use the serving base station as the donor base station according to the information of the serving base station of the mobile station;
  • Step 5 The mobile communication network configures auxiliary positioning parameters for each repeater determined in step 4, and starts all repeaters to transmit auxiliary positioning signals;
  • Auxiliary positioning parameters include: IPDL (downlink idle period, Idle Period Do medical ink) parameters, the scrambling code corresponding to the repeater, and the frequency and power of the auxiliary positioning signal; configure assistance for each repeater determined in step 4.
  • the positioning parameters can receive auxiliary positioning parameters from the base station through signaling, and can also receive auxiliary positioning parameters through the operation and maintenance terminal of the repeater;
  • Step 6 The mobile communication network sends a measurement control message to the mobile station to be located.
  • the measurement control message includes information about the serving cell where the serving base station is located and information about its neighboring cells.
  • the serving cell information includes information such as the main scrambling code of the serving cell.
  • the information includes the neighboring cell's main scrambling code, the RTD (Relative Time Difference) between the neighboring cell and the serving cell, and the search window width.
  • the information of all repeaters determined in step 4 also corresponds to the internal and external information of the neighboring cell.
  • the cell information is sent together, including the scrambling code of the repeater, the RTD (Relative Time Difference) and the search window width between the repeater and the donor base station, where the scrambling code of the repeater is 512 main scrambling One of the codes is different from the scrambling codes of the surrounding base stations; the RTD is based on the distance between the repeater and the serving base station and the IPDL (Idle Period DownLink) parameter.
  • the RTD is based on the distance between the repeater and the serving base station and the IPDL (Idle Period DownLink) parameter.
  • LMU Location Measurement Unit, Measurement Measurement Unit
  • Step 7 After receiving the measurement control message, the mobile station performs TD0A measurement and reports the measurement result, and the mobile communication network or the mobile station estimates the position of the mobile station based on the measurement result, thereby positioning the mobile station.
  • the position estimation process of the mobile station described in step 7 specifically includes the following steps, as shown in FIG. 4:
  • Step 71 The mobile communication network or the mobile station obtains the RTT value measured by the serving base station and the TDO A value measured by the mobile station.
  • Step 72 Search the TD0A value measured by the mobile station according to the scrambling code information of the repeater, and determine whether it contains a TD0A value corresponding to the scrambling code information of a repeater of the serving cell. If it does not, perform step 73. Otherwise, go to step 74;
  • Step 73 Determine that the mobile station is not in the coverage area of the repeater, directly use the measured TD0A and RTT values, and combine the coordinate values of the serving base station and neighboring base stations to estimate the position of the mobile station according to the existing method, and perform the positioning of the mobile station;
  • Step 74 It is determined that the mobile station receives the auxiliary positioning signal of the repeater, and finds the time delay T and coordinate information of the repeater according to the repeater information;
  • Step 75 Calculate the distance D between the repeater and the serving base station based on the coordinate values of the repeater and the serving base station;
  • Step 76 Determine whether the TD0A value corresponding to the repeater determined in step 72 is approximately equal to D / C + T (that is, the distance between the repeater and the serving base station divided by the speed of light and the sum of the time delay of the repeater), Where C is the speed of light to further confirm the serving base station received by the mobile station Whether the signals have been forwarded by the repeater, if they are not approximately equal, go to step 77, if no, 'J, go to step 78;
  • Step 77 It is determined that the serving base station signal received by the mobile station has not been forwarded by the repeater, and step 73 is performed;
  • the reference point for positioning the mobile station is still the serving base station, and the repeater can be treated as a fake neighboring base station. It is used in position estimation when step 73 is performed.
  • the coordinates of the neighboring neighboring base stations include the coordinates of the fake neighboring base stations, that is, the coordinates of the repeater.
  • the neighboring base station TD0A used in the position estimation includes the fake neighboring base station TD0A, which is the TD0A corresponding to the repeater;
  • Step 78 It is determined that the serving base station signal received by the mobile station has been forwarded by the repeater, and the position of the mobile station is estimated by using the repeater as a reference point to realize the positioning of the mobile station.
  • the specific positioning method is as follows:
  • the corresponding T0A value is obtained according to the RTT measured by the serving base station, the time delay of the repeater is T, the distance between the repeater and the base station is D, and the measured time difference between the neighboring base station and the serving base station is TDOAi.
  • the measured time difference between the repeater and the serving base station is TDOAo, and the speed of light is C.
  • T0A 'between repeaters T0A-D / CT;
  • the position of the mobile station is calculated by combining the coordinate values of the repeater and the coordinate values of neighboring base stations.
  • the present invention also provides a repeater with an auxiliary positioning function.
  • the repeater is to add an auxiliary positioning unit to an existing downlink processing channel of the repeater to implement the above mobile station positioning method.
  • a traditional repeater includes a donor antenna and a repeater antenna. The received signal from the donor base station undergoes low-noise amplification, filtering, and power amplification in the downlink direction, and is finally transmitted through the repeater antenna for uplink signal processing. The process is the same as the downstream signal processing.
  • the specific structure of the repeater with the auxiliary positioning function according to the present invention is shown in FIG. 5.
  • An auxiliary positioning unit is added in the downlink direction of the repeater.
  • the auxiliary positioning unit receives the downlink signal of the base station and the mobile communication network sends it.
  • the auxiliary positioning unit mainly includes a communication module, a frame timing recovery module, a control timing generation module, and a pilot modulation module, wherein:
  • auxiliary positioning parameters include IPDL parameters, a scrambling code number of the repeater, and the frequency and power of the auxiliary positioning signal;
  • Frame timing recovery module receiving downlink signals from the base station, processing to obtain a frame synchronization phase signal, and sending them to the control timing generation module and the pilot modulation module, respectively, to assist in generating scrambling codes and pulse sequences;
  • Control timing module Receives the frame synchronization phase signal from the frame timing recovery module, generates a pulse sequence that controls the transmission and shutdown of the auxiliary positioning signal according to the IPDL parameters and the frame synchronization phase signal, and sends it to the pilot modulation module;
  • Pilot modulation module receive frame synchronization phase signal and control from the frame timing recovery module The pulse sequence sent by the timing module is generated. First, a scrambling code synchronized with the base station signal is generated according to the frame synchronization phase signal and the scrambling code number. Then, the scrambling code is used to modulate the P-CPICH to obtain a continuous auxiliary positioning signal; The pulse sequence modulates the continuous auxiliary positioning signal and sends it to the mobile station.
  • the input signal of the auxiliary positioning module can be directly coupled from the donor antenna, or can be input from other nodes in the downlink processing channel of the repeater.
  • the auxiliary positioning signal output by the auxiliary positioning module can pass before the amplifier of the downlink processing channel After being combined with the repeater downlink signal, it is sent to the forwarding antenna for transmission. It can also be output after other nodes combine with the repeater signal.
  • the auxiliary positioning unit also includes the required RF or IF processing modules.
  • the structures of these modules use the traditional structure.
  • the RF processing module includes an automatic gain control sub-module, a RF receiving filter sub-module, and a down converter.
  • the RF signal is output to the IF processing module.
  • the IF processing module includes an IF filtering sub-module, an analog-to-digital conversion sub-module, and a digital down converter, receives the RF signal sent by the RF processing module, and processes and generates the baseband signal to send to the frame timing recovery module. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Radio Relay Systems (AREA)

Description

一种移动台定位方法及其直放站
技术领域
本发明涉及移动通信技术领域,尤其涉及一种移动台定位方法及 具有辅助定位功能的直放站。
背景技术
为了使移动通信网络能够提供一些新的业务,需要引入移动台定 位技术对移动台进行定位。在蜂窝移动通信网络中, 基本的定位方法 有三种: 1 ) TOA ( Time Of Arrival——到达时间)定位方法, 这种 方法通过测量移动台到三个或三个以上的基站的到达时间 T0A 来获 取移动台到相应基站的距离, 然后求解圆方程组来估计移动台的位 置; 2 ) TDOA ( Time Difference Of Arrival——到达时间差)定位 方法, 这种方法通过测量移动台到三个或三个以上的基站的时间差 TD0A 来获取移动台到相应基站的距离差, 然后求解双曲线方程组来 估计移动台的位置;; 3 ) CELL-ID ( Cel l Ident if ier——区域标识符) 与 T0A定位相结合的定位方法, 这种方法首先利用网络配置的小区 识别符号来确定移动台所处的服务小区的位置,然后利用移动台到服 务基站间的到达时间 T0A来进一步确定移动台在小区内的位置。
但是, 在现有的移动通信系统中, 为了保证移动台与基站的正常 通信, 在一些基站无法直接覆盖的区域设置了直放站, 直放站的基本 功能是对射频信号的默向放大,它对移动台发射的上行信号和基站发 射的下行信号都进行放大转发, 如图 1所示, 在下行方向, 由施主天 线(服务基站的天线)从现有的覆盖区域中拾取信号, 通过带通滤波 器滤除信号频带外的信号,将滤波的信号经功放放大后再次发射到待 覆盖区域; 在上行方向,覆盖区域内的移动台的信号经过类似处理过 程后发射到相应基站,从而实现基站与移动台的信号传递, 直放站的 引入实现了其覆盖区域内的移动台和基站间的正常通信。
直放站的引入,导致处于直放站覆盖区域内的移动台无法有效地 定位。 当要求定位的移动台处于直放站覆盖区域内时, 对于 TD0A定 位方法, 会出现因可检测到的基站个数太少导致 TD0A定位过程定位 失败; 即使可以检测到足够多的基站, 由于基站信号经过了直放站的 转发, 测量值有很大的偏差, 测到的 TD0A已经不能正确地反映基站 间的距离差, 如果将这个测量结果用于定位, 最后确定的移动台位置 将出现很大的偏差;而且定位系统无法判断移动台是否处于直放站的 覆盖区域, 测量结果是否受到了直放站的影响。 同样, 当请求定位的 移动台处于直放站覆盖区域内时, 对于 T0A与 CELL - ID相结合的移 动台定位方法, 则会因为直放站时延的影响, 导致产生较大的 T0A误 差, 严重降低了 T0A定位的精度, 无法准确对移动台进行定位。 发明内容
本发明的目的是提供一种移动台定位方法及其直放站,实现处于 直放站覆盖区域内的移动台的准确定位,从而提高移动通信网络中移 动台的定位精度。
本发明的目的是这样实现的: 一种移动台定位方法, 为: 移动通 信网络收到移动台定位请求时,令直放站发射辅助定位信号, 移动台 根据所接收的直放站发射的辅助定位信号和基站发射的下行信号进 行位置估计参数的测量; 然后, 根据测量结果进行移动台位置估计, 实现移动台的定位。
所述的移动台定位方法进一步包括:
a、 移动通信网络接收移动台定位请求后, 进行服务基站与移动 台的 RTT (往返时间差, Round Tr ip Time ) 测量, 并接收服务基站 上报的测量结果, 同时, 向移动台发送测量控制消息;
b、 确定将服务基站作为施主基站的所有直放站, 为其配置辅助 定位参数, 并向移动台发射辅助定位信号;
c、 移动台根据移动通信网络发来的测量控制消息, 及直放站发 射的辅助定位信号,并进行直放站与移动台的 TD0A(到达时间差, Time Difference Of Arr ival )测量, 并上 4艮测量结果;
d、 移动通信网络或移动台根据接收的服务基站与移动台的 RTT 及直放站与移动台的 TD0A进行移动台位置的估计, 实现移动台的定 位。
所述的辅助定位参数包括: IPDL (下行链路空闲周期, Idle Per iod DownLink )参数、 为直放站分配的扰码号及辅助定位信号的 频点和功率。
所述的辅助定位信号为利用与基站同步的扰码对 P-CPICH (主公 共导频信道, Pr imary Common Pi lot Channel )进行调制得到、 并只 在 IPDL期间发射的非连续信号。
步骤 c中所述的测量控制信息包括:服务基站的信息和邻基站的 信息; 服务基站信息包括服务基站主扰码; 邻基站信息包括邻基站主 扰码、 邻基站与服务基站之间的 RTD (相对时间差, Relat ive Time Difference)以及搜索窗宽度。
所述的测量控制信息还包括对应于放置在邻基站信息中的直放 站信息,包括直放站扰码、直放站与服务基站间的 RTD及搜索窗宽度。
所述的 RTD是根据直放站与服务基站间的距离及 IPDL参数确定, 或使用 LMU (定位测量单元)测量得到。
所述的直放站扰码为 512个主扰码之一,且与周围基站的扰码各 不相同。
所述的步驟 d包括:
dl、 移动通信网络或移动台根据直放站的扰码搜索 TD0A测量结 果,并根据测量结果判断移动台是否位于直放站覆盖区域中,如果是, 执行步骤 d2 , 否则, 执行步骤 d3;
d2、 对测量结果进行修正, 并得到移动台的位置信息; d3、 直接利用测量结果得到移动台的位置信息。
所述的步骤 dl包括:
dl 1、 移动通信网络或移动台根据直放站扰码信息判断移动台的 TD0A测量结果是否包含一个 TD0A值,其对应的扰码为直放站的扰码, 如果包含, 则执行步骤 dl2 , 否则, 执行步骤 d3;
dl2、 根据得到的直放站扰码确定直放站的时延和坐标信息, 并 计算出该直放站与服务基站间的距离;
dl 3、判断该直放站对应的 TD0A值是否近似等于直放站与服务基 站间的距离除以光速所得时间值与直放站时延之和, 如果近似等于, 则执行步骤 d2 , 否则, 该直放站作为一个伪的邻基站, 并执行步骤 d30
所述的步骤 d2包括:
d21、 确定服务基站与移动台间的 T0A (到达时间, Time of arr ival )值、 直放站的时延、 直放站到服务基站间的距离、 邻基站 与服务基站间的 TD0A值及直放站与服务基站间的 TD0A值;
d22、将邻基站与服务基站间的 TD0A值减去直放站与服务基站间 的 TD0A值, 得到邻基站与直放站间的 TD0A; 将服务基站与移动台间 的 T0A减去直放站与服务基站间的距离除以光速所得时间值,再减去 直放站时延, 得到移动台与直放站间的 T0A;
d23、 根据邻基站与直放站间的 TD0A和移动台与直放站间的 T0A 值, 结合直放站的坐标和邻基站的坐标进行移动台位置信息的确定。
所述的邻基站包括被当作伪的邻基站的直放站。
一种实现上述移动台定位功能方法的直放站,其结构包括下行处 理通道和上行处理通道, 在所述的下行处理通道中增加辅助定位单 元 ,辅助定位单元接收基站的下行信号及移动通信网络发送来的携带 有辅助定位参数的信号, 并产生辅助定位信号向移动台发送。
所述的辅助定位单元包括:
通信模块:接收移动通信网络发送来的携带有辅助定位参数的信 号 ;
帧定时恢复模块: 接收基站的下行信号, 处理后得到帧同步相位 信号, 并分别发送给控制时序产生模块和导频调制模块;
控制时序模块: 接收帧定时恢复模块发来的帧同步相位信号, 产 生控制脉冲序列, 并发送给导频调制模块;
导频调制模块:接收帧定时恢复模块发来的帧同步相位信号及控 制时序模块发来的脉冲序列, 产生辅助定位信号, 并发送给移动台。
所述的下行处理通道包括:低噪声放大器、滤波器及功率放大器。 所述的辅助定位单元根据直放站的实际结构还包括:
射频处理模块: 由自动增益控制子模块、射频接收滤波子模块和 下变频器组成, 输出射频信号给中频处理模块;
中频处理模块: 由中频滤波子模块、模数变换子模块和数字下变 频器组成,接收射频处理模块发来的射频信号, 并处理生成基带信号 发送给帧定时恢复模块。
所述的通信模块通过信令从基站接收辅助定位参数。
所述的通信模块通过直放站的操作维护终端接收辅助定位参数。 所述的辅助定位单元的输入信号是直接从施主天线之后耦合得 到。
所述的辅助定位单元的输入信号是从直放站的下行处理通道中 某一节点获得。
所述的辅助定位单元的输出信号是在直放站的下行处理通道中 某一节点与直放站信号合路后输出。
所述的辅助定位单元的输出信号为在直放站下行处理通道的功 率放大之前与直放站信号合路后通过转发天线发射出去。 由上述技术方案可以看出,本发明所提供的移动台定位方法及其 直放站, 首先确定移动台是否处于直放站覆盖的区域, 如果处于直放 站覆盖的区域, 则以相应的直放站为参考点确定移动台的位置,提高 了处于直放站覆盖区域内的移动台的定位 4青度; 如果移动台没有处 于直放站覆盖的区域, 则按现有的移动台定位方法进行定位, 即本发 明根据移动台的测量结果,可以判断出移动台是否处于直放站覆盖区 域以及处于哪个直放站的覆盖区域,对测量结果和参照点进行正确地 关联。 因此, 本发明实现了提高处于直放站覆盖区域的移动台的定位 精度的发明目的;而且本发明提供的具有辅助定位功能的直放站实现 筒单, 且不影响现有移动台的结构和信令流程。
附图说明
图 1为现有直放站的结构示意图;
图 2为移动通信网络的组网结构示意图;
图 3为本发明所述的方法的实施流程图;
图 4为进行移动台的位置估计的流程图;
图 5为本发明所述的直放站的结构示意图。
具体实施方式
移动通信网络的组网示意图如图 2所示,为提高引入直放站的移 动通信网络中移动台定位的准确性,本发明提供了一种移动台定位方 法, 具体实施方式如图 3所示:
步骤 1 : 移动通信网络收到移动台定位请求信息;
步驟 2 : 移动通信网络向服务基站发送 RTT (往返时间差, Round Tr ip Time )测量请求;
步骤 3: 服务基站进行与移动台间 RTT值的测量, 并向上报测量 结果;
步骤 4: 根据移动台的服务基站的信息, 查找确定以该服务基站 为施主基站的所有直放站;
步骤 5: 移动通信网络为步驟 4确定的各直放站配置辅助定位参 数, 并启动所有的直放站进行辅助定位信号的发射;
辅助定位参数包括: IPDL (下行链路空闲周期, Idle Period Do醫 l ink )参数、 直放站对应的扰码及辅助定位信号的频点和功率; 为步骤 4 确定的各直放站配置辅助定位参数可以通过信令从基 站接收辅助定位参数,也可以通过直放站的操作维护终端接收辅助定 位参数;
步骤 6: 移动通信网络向待定位的移动台发送测量控制消息; 测量控制消息中包含服务基站所在的服务小区信息及与其相邻 小区信息, 服务小区信息包括服务小区主扰码等信息, 邻小区信息包 括邻小区主扰码、 邻小区与服务小区之间的 RTD (相对时间差, Relat ive Time Difference)以及搜索窗宽度, 步骤 4确定的所有直 放站的信息也对应到邻小区信息中与部小区信息一起进行发送,包括 直放站的扰码、直放站与施主基站之间的 RTD (相对时间差: Relat ive Time Difference )和搜索窗宽度, 其中直放站的扰码是 512个主扰 码之一, 与周围基站的扰码都不相同; RTD根据该直放站和服务基站 的距离以及 IPDL (下行链路空闲周期, Idle Period DownLink )参 数来确定, 或使用 LMU (定位测量单元, Loca t ion Measurement Uni t ) 测量得到;
步骤 7: 移动台收到测量控制消息后进行 TD0A的测量, 并上报 测量结果,由移动通信网络或移动台根据测量结果进行移动台位置的 估计, 从而为移动台定位。
步驟 7所述的移动台的位置估计过程具体包括以下步骤, 如图 4 所示:
步驟 71 : 移动通信网络或移动台获取服务基站测到的 RTT值和 移动台测到的 TDO A值信息;
步骤 72 : 根据直放站的扰码信息对移动台测量的 TD0A值进行搜 索,并判断是否包含一个与服务小区某一个直放站的扰码信息对应的 TD0A值, 如果不包含, 执行步驟 73 , 否则, 执行步骤 74 ;
步骤 73 : 确定该移动台未处于直放站覆盖区域, 直接利用测量 的 TD0A和 RTT值, 结合服务基站和邻基站坐标值按照现有的方法进 行移动台的位置估计, 进行移动台的定位;
步骤 74 : 确定该移动台接收到了直放站的辅助定位信号, 并根 据直放站信息查找该直放站的时延 T和坐标信息;
步骤 75 : 据该直放站和服务基站的坐标值, 计算该直放站和 服务基站之间的距离 D;
步驟 76: 判断步骤 72中确定的直放站对应的 TD0A值是否近似 等于 D/C+T (即直放站与服务基站的距离除以光速所得时间值与直放 站时延之和), 其中 C为光速, 以进一步确认移动台收到的服务基站 信号是否经过了直放站的转发, 如果不近似相等, 执行步骤 77, 否 贝' J , 执行步骤 78 ;
步骤 77 : 确定移动台接收到的服务基站信号没有经过直放站转 发, 执行步驟 73;
虽然移动台收到了某一直放站发射的辅助定位信号,但进行移动 台定位的参照点仍是服务基站 ,而该直放站可以作为一个伪的邻基站 对待, 执行步骤 73时位置估计中用到的邻基站坐标包括伪的邻基站 的坐标, 也就是直放站的坐标, 位置估计中用到的邻基站 TD0A包括 伪的邻基站的 TD0A, 也就是直放站对应的 TD0A;
步驟 78 : 确定移动台接收到的服务基站信号经过了直放站的转 发,并以直放站为参照点进行移动台的位置估计,实现移动台的定位; 具体的定位方法如下:
假设根据服务基站测到的 RTT得到对应的 T0A值,直放站的时延 为 T, 直放站到基站的距离为 D, 相邻基站和服务基站之间的到达时 间差测量值为 TDOAi , 直放站和服务基站之间的到达时间差测量值为 TDOAo , 光速为 C, 那么以直放站为参照点, 邻基站和直放站之间的 到达时间差为 TDOAi ' =TD0Ai- TDOAo, 移动台和直放站之间 T0A' =T0A-D/C-T;
根据 TDOAi ' 和 T0A' 值, 结合直放站的坐标值和相邻基站的坐 标值进行移动台的位置计算, 进行移动台的定位。
经过上述过程,实现了在设置有直放站的移动通信网络中对移动 台的准确定位。 基于上述方法, 本发明还提供了一种具有辅助定位功能的直放 站, 该直放站是在现有的直放站下行处理通道中增加辅助定位单元, 以实现上述移动台定位方法。 如图 1所示,传统的直放站包含一个施 主天线和一个转发天线,在下行方向对接收到的施主基站的信号经过 低噪放、 滤波和功放, 最后经转发天线发射出去, 上行信号处理过程 与下行信号处理相同。
本发明所述的具有辅助定位功能的直放站的具体结构如图 5 所 示, 在直放站的下行方向上增加一个辅助定位单元, 辅助定位单元接 收基站的下行信号及移动通信网絡发送来的携带有辅助定位参数的 信号, 并产生辅助定位信号向移动台发送; 所述的辅助定位单元主要 由通信模块、 帧定时恢复模块、控制时序产生模块以及导频调制模块 组成, 其中:
通信模块:接收移动通信网络发送来的携带有辅助定位参数的信 号 ; 辅助定位参数包括 IPDL参数、直放站的扰码号以及辅助定位信 号的频点和功率;
帧定时恢复模块: 接收基站的下行信号, 处理后得到帧同步相位 信号, 并分别发送给控制时序产生模块和导频调制模块, 以辅助产生 扰码以及脉冲序列;
控制时序模块: 接收帧定时恢复模块发来的帧同步相位信号, 根 据 IPDL参数和帧同步相位信号产生控制辅助定位信号发射和关闭的 脉冲序列, 并发送给导频调制模块;
导频调制模块:接收帧定时恢复模块发来的帧同步相位信号及控 制时序模块发来的脉冲序列; 首先,根据帧同步相位信号和扰码号产 生与基站信号同步的扰码; 然后, 用这个扰码对 P-CPICH进行调制得 到连续的辅助定位信号;再使用脉冲序列对连续辅助定位信号进行调 制, 并发送给移动台。
辅助定位模块的输入信号可以直接从施主天线之后耦合得到,也 可以从直放站的下行处理通道的其他节点输入,辅助定位模块输出的 辅助定位信号可以在直放站下行处理通道的功放之前通过合路后与 直放站下行信号一起送到转发天线发射,也可以在其他节点与直放站 信号合路后输出。
才艮据输入信号的不同,辅助定位单元还包括所需的射频或中频处 理模块, 这些模块的结构都使用传统结构; 射频处理模块包括自动增 益控制子模块、射频接收滤波子模块以及下变频器, 输出射频信号给 中频处理模块; 中频处理模块包括中频滤波子模块、模数变换子模块 以及数字下变频器, 接收射频处理模块发来的射频信号, 并处理生成 基带信号发送给帧定时恢复模块。

Claims

权 利 要 求
1、 一种移动台定位方法, 其特征在于: 移动通信网络收到移动 台定位请求时, 令直放站发射辅助定位信号, 移动台才艮据所接收的直 放站发射的辅助定位信号和基站发射的下行信号进行位置估计参数 的测量; 然后, 才艮据测量结果进行移动台位置估计, 实现移动台的定 位。
2、 根据权利要求 1所述的移动台定位方法, 其特征在于该方法 进一步包括:
a、 移动通信网络接收移动台定位请求后, 进行服务基站与移动 台的 RTT (往返时间差, Round Tr ip Time ) 测量, 并接收服务基站 上报的测量结果, 同时, 向移动台发送测量控制消息;
b、 确定将服务基站作为施主基站的所有直放站, 为其配置辅助 定位参数, 并向移动台发射辅助定位信号;
c、 移动台根据移动通信网络发来的测量控制消息, 及直放站发 射的辅助定位信号,并进行直放站与移动台的 TD0A(到达时间差, Time
Difference Of Arr ival ) 测量, 并上报测量结果;
d、 移动通信网络或移动台根据接收的服务基站与移动台的 RTT 及直放站与移动台的 TD0A进行移动台位置的估计, 实现移动台的定 位。
3、 根据权利要求 2所述的移动台定位方法, 其特征在于所述的 辅助定位参数包括: IPDL(下行链路空闲周期, Idle Per iod DownLink ) 参数、 为直放站分配的扰码号及辅助定位信号的频点和功率。
4、 根据权利要求 2所述的移动台定位方法, 其特征在于所述的 辅助定位信号为利用与基站同步的扰码对 P- CPICH (主公共导频信 道, Primary Common Pi lot Channel )进行调制得到、 并只在 IPDL期 间发射的非连续信号。
5、 根据权利要求 2所述的移动台定位方法, 其特征在于步骤 c 中所述的测量控制信息包括: 服务基站的信息和邻基站的信息; 服务 基站信息包括服务基站主扰码; 邻基站信息包括邻基站主扰码、邻基 站与服务基站之间的 RTD (相对时间差, Relat ive Time Difference) 以及搜索窗宽度。
6、 根据权利要求 5所述的移动台定位方法, 其特征在于所述的 测量控制信息还包括对应于放置在邻基站信息中的直放站信息,包括 直放站扰码、 直放站与服务基站间的 RTD及搜索窗宽度。
7、 根据权利要求 6所述的移动台定位方法, 其特征在于所述的 RTD是根据直放站与服务基站间的距离及 IPDL参数确定,或使用 LMU (定位测量单元) 测量得到。
8、 根据权利要求 5所述的移动台定位方法, 其特征在于所述的 直放站扰码为 512个主扰码之一, 且与周围基站的扰码各不相同。
9、 根据权利要求 6所述的移动台定位方法, 其特征在于所述的 步驟 d包括:
dl、 移动通信网络或移动台根据直放站的扰码搜索 TD0A测量结 果,并根据测量结果判断移动台是否位于直放站覆盖区域中,如果是, 执行步骤 d2 , 否则, 执行步骤 d3; d2、 对测量结果进行修正, 并得到移动台的位置信息; d3、 直接利用测量结果得到移动台的位置信息。
10、根据权利要求 9所述的移动台定位方法, 其特征在于所述的 步骤 dl包括:
dll、 移动通信网络或移动台根据直放站扰码信息判断移动台的
TD0A测量结果是否包含一个 TD0A值,其对应的扰码为直放站的扰码, 如果包含, 则执行步骤 dl2, 否则, 执行步驟 d3;
dl2、 根据得到的直放站扰码确定直放站的时延和坐标信息, 并 计算出该直放站与服务基站间的距离;
dl 3、判断该直放站对应的 TD0A值是否近似等于直放站与服务基 站间的距离除以光速所得时间值与直放站时延之和, 如果近似等于, 则执行步骤 d2, 否则, 该直放站作为一个伪的邻基站, 并执行步骤 d3。
11、 根据权利要求 9或 10所述的移动台定位方法, 其特征在于 所述的步骤 d2包括:
d2K 确定服务基站与移动台间的 T0A (到达时间, Time of arrival )值、 直放站的时延、 直放站到服务基站间的距离、 邻基站 与服务基站间的 TD0A值及直放站与服务基站间的 TD0A值;
d22、将邻基站与服务基站间的 TD0A值減去直放站与服务基站间 的 TD0A值, 得到邻基站与直放站间的 TD0A; 将服务基站与移动台间 的 T0A减去直放站与服务基站间的距离除以光速所得时间值,再减去 直放站时延, 得到移动台与直放站间的 T0A; d23、 根据邻基站与直放站间的 TD0A和移动台与直放站间的 T0A 值, 结合直放站的坐标和邻基站的坐标进行移动台位置信息的确定。
12、 根据权利要求 11所述的移动台定位方法, 其特征在于所述 的邻基站包括被当作伪的邻基站的直放站。
13、一种实现上述移动台定位方法的直放站, 其结构包括下行处 理通道和上行处理通道,其特征在于在所述的下行处理通道中增加辅 助定位单元,辅助定位单元接收基站的下行信号及移动通信网络发送 来的携带有辅助定位参数的信号, 并产生辅助定位信号向移动台发 送。
14、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元包括:
通信模块:接收移动通信网络发送来的携带有辅助定位参数的信 号 ;
帧定时恢复模块: 接收基站的下行信号, 得到帧同步相位信号, 并分别发送给控制时序产生模块和导频调制模块;
控制时序模块: 接收帧定时恢复模块发来的帧同步相位信号, 产 生控制脉冲序列, 并发送给导频调制模块;
导频调制模块:接收帧定时恢复模块发来的帧同步相位信号及控 制时序模块发来的脉冲序列, 产生辅助定位信号, 并发送给移动台。
15、 根据权利要求 13所述的直放站, 其特征在于所述的下行处 理通道包括: 低噪声放大器、 滤、波器及功率放大器。
16、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元根据直放站的实际结构还包括:
射频处理模块: 由自动增益控制子模块、射频接收滤波子模块和 下变频器组成, 输出射频信号给中频处理模块;
中频处理模块: 由中频滤波子模块、模数变换子模块和数字下变 频器组成, 接收射频处理模块发来的射频信号, 并处理生成基带信号 发送给帧定时恢复模块。
17、 根据权利要求 13所述的直放站, 其特征在于所述的通信模 块通过信令从基站接收辅助定位参数。
18、 根据权利要求 13所述的直放站, 其特征在于所述的通信模 块通过直放站的操作维护终端接收辅助定位参数。
19、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元的输入信号是直接从施主天线之后耦合得到。
20、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元的输入信号是从直放站的下行处理通道中某一节点获得。
21、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元的输出信号是在直放站的下行处理通道中某一节点与直放站 信号合路后输出。
22、 根据权利要求 13所述的直放站, 其特征在于所述的辅助定 位单元的输出信号为在直放站下行处理通道的功率放大之前与直放 站信号合路后通过转发天线发射出去。
PCT/CN2003/000630 2002-10-15 2003-08-05 Procede d'emplacement de station mobile et repeteur de station mobile WO2004036938A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/531,203 US7373155B2 (en) 2002-10-15 2003-08-05 Method for positioning mobile station and repeater thereof
DE60316975T DE60316975T8 (de) 2002-10-15 2003-08-05 Verfahren zum finden einer mobilstation und eines zwischenverstaerkers der mobilstation
EP03808659A EP1558045B8 (en) 2002-10-15 2003-08-05 A method for locating mobile station and a repeater of the mobile station
AU2003248235A AU2003248235A1 (en) 2002-10-15 2003-08-05 A method for locating mobile station and a repeater of the mobile station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02144169.3 2002-10-15
CN02144169.3A CN1266976C (zh) 2002-10-15 2002-10-15 一种移动台定位方法及其直放站

Publications (1)

Publication Number Publication Date
WO2004036938A1 true WO2004036938A1 (fr) 2004-04-29

Family

ID=32098075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000630 WO2004036938A1 (fr) 2002-10-15 2003-08-05 Procede d'emplacement de station mobile et repeteur de station mobile

Country Status (7)

Country Link
US (1) US7373155B2 (zh)
EP (1) EP1558045B8 (zh)
CN (1) CN1266976C (zh)
AT (1) ATE376339T1 (zh)
AU (1) AU2003248235A1 (zh)
DE (1) DE60316975T8 (zh)
WO (1) WO2004036938A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300151A (zh) * 2010-06-24 2011-12-28 无锡中星微电子有限公司 一种定位提醒的方法及移动终端
CN109343094A (zh) * 2018-11-15 2019-02-15 天津七二通信广播股份有限公司 一种具有高精度定位功能的平面调车系统及其实现方法

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760772B2 (en) 2000-12-15 2004-07-06 Qualcomm, Inc. Generating and implementing a communication protocol and interface for high data rate signal transfer
US8812706B1 (en) 2001-09-06 2014-08-19 Qualcomm Incorporated Method and apparatus for compensating for mismatched delays in signals of a mobile display interface (MDDI) system
ATE460822T1 (de) * 2003-05-12 2010-03-15 Qualcomm Inc Verfahren und vorrichtung zur verwendung in einem kommunikationssystem
ATE517500T1 (de) 2003-06-02 2011-08-15 Qualcomm Inc Erzeugung und umsetzung eines signalprotokolls und schnittstelle für höhere datenraten
US8483717B2 (en) 2003-06-27 2013-07-09 Qualcomm Incorporated Local area network assisted positioning
RU2006107561A (ru) 2003-08-13 2007-09-20 Квэлкомм Инкорпорейтед (US) Сигнальный интерфейс для высоких скоростей передачи данных
CN101764804A (zh) 2003-09-10 2010-06-30 高通股份有限公司 高数据速率接口
CA2542649A1 (en) 2003-10-15 2005-04-28 Qualcomm Incorporated High data rate interface
WO2005043862A1 (en) 2003-10-29 2005-05-12 Qualcomm Incorporated High data rate interface
KR100800738B1 (ko) * 2003-10-31 2008-02-01 삼성전자주식회사 이동통신망에서 중계기 시간 지연 판단 방법
WO2005048562A1 (en) 2003-11-12 2005-05-26 Qualcomm Incorporated High data rate interface with improved link control
EP1690404A1 (en) * 2003-11-25 2006-08-16 QUALCOMM Incorporated High data rate interface with improved link synchronization
KR100906319B1 (ko) 2003-12-08 2009-07-06 퀄컴 인코포레이티드 링크 동기화를 갖는 고 데이터 레이트 인터페이스
US8669988B2 (en) 2004-03-10 2014-03-11 Qualcomm Incorporated High data rate interface apparatus and method
JP4519903B2 (ja) 2004-03-17 2010-08-04 クゥアルコム・インコーポレイテッド 高速データレートインタフェース装置及び方法
CA2560744C (en) 2004-03-24 2012-12-04 Qualcomm Incorporated High data rate interface apparatus and method
DE102004044785A1 (de) * 2004-04-10 2005-10-27 Leica Microsystems Semiconductor Gmbh Vorrichtung und Verfahren zur Bestimmung von Positionierkoordinaten für Halbleitersubstrate
US8650304B2 (en) 2004-06-04 2014-02-11 Qualcomm Incorporated Determining a pre skew and post skew calibration data rate in a mobile display digital interface (MDDI) communication system
MXPA06014097A (es) 2004-06-04 2007-03-07 Qualcomm Inc Metodo y aparato de interfaz de datos de alta velocidad.
CN100369523C (zh) * 2004-08-31 2008-02-13 中兴通讯股份有限公司 一种直放站支持移动定位业务的方法
CN100364360C (zh) * 2004-09-23 2008-01-23 华为技术有限公司 一种定位直放站的扰码资源分配及其辅助定位方法
CN100455103C (zh) * 2004-09-30 2009-01-21 中兴通讯股份有限公司 直放站监控系统及利用该系统实现移动定位的方法
US20060161691A1 (en) * 2004-11-24 2006-07-20 Behnam Katibian Methods and systems for synchronous execution of commands across a communication link
US8539119B2 (en) 2004-11-24 2013-09-17 Qualcomm Incorporated Methods and apparatus for exchanging messages having a digital data interface device message format
US8692838B2 (en) 2004-11-24 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8667363B2 (en) 2004-11-24 2014-03-04 Qualcomm Incorporated Systems and methods for implementing cyclic redundancy checks
US8723705B2 (en) 2004-11-24 2014-05-13 Qualcomm Incorporated Low output skew double data rate serial encoder
US8699330B2 (en) 2004-11-24 2014-04-15 Qualcomm Incorporated Systems and methods for digital data transmission rate control
US8873584B2 (en) 2004-11-24 2014-10-28 Qualcomm Incorporated Digital data interface device
US20060148401A1 (en) * 2004-12-02 2006-07-06 Spotwave Wireless Canada Inc. Method and apparatus for enabling generation of a low error timing reference for a signal received via a repeater
CN100401682C (zh) * 2005-06-01 2008-07-09 中兴通讯股份有限公司 一种直放站网管协议数据传输方法
CN100407869C (zh) * 2005-06-28 2008-07-30 华为技术有限公司 一种实现下行空闲周期的装置
CN100411485C (zh) * 2005-11-03 2008-08-13 重庆邮电学院 直放站环境下蜂窝网定位方法
US8692839B2 (en) 2005-11-23 2014-04-08 Qualcomm Incorporated Methods and systems for updating a buffer
US8730069B2 (en) 2005-11-23 2014-05-20 Qualcomm Incorporated Double data rate serial encoder
WO2007133045A1 (en) * 2006-05-16 2007-11-22 Ktfreetel Co., Ltd. Method and system for measuring location using round trip time information in mobile communication network
JP2009545752A (ja) * 2006-08-01 2009-12-24 クゥアルコム・インコーポレイテッド 位置特定サーバに情報更新を供給するためのシステムおよび/または方法
CN100455130C (zh) * 2006-08-16 2009-01-21 华为技术有限公司 一种增强移动台定位的方法和系统及无线网络控制器
US20100041417A1 (en) * 2006-12-28 2010-02-18 Hans Lind System for determining network structure and positions of mobile devices in a wireless communication network
CN101622799B (zh) 2007-03-02 2014-04-16 高通股份有限公司 中继器的配置
CN101202573B (zh) * 2007-03-30 2012-01-11 厦门特力通信息技术有限公司 一种智能直放站及其参数自动调整方法
JP5135946B2 (ja) * 2007-08-14 2013-02-06 富士通株式会社 無線測位システム
US8983580B2 (en) * 2008-01-18 2015-03-17 The Board Of Trustees Of The University Of Illinois Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors
US8483706B2 (en) 2008-04-15 2013-07-09 Qualcomm Incorporated Location services based on positioned wireless measurement reports
CN101562834B (zh) * 2008-04-16 2014-04-09 三星电子株式会社 支持宏基站到家用基站切换的方法和系统
CN102057294B (zh) * 2008-06-06 2014-03-26 上海贝尔股份有限公司 用于分布式天线系统中室内无线定位的设备和方法
US8103287B2 (en) * 2008-09-30 2012-01-24 Apple Inc. Methods and apparatus for resolving wireless signal components
WO2010110709A1 (en) * 2009-03-27 2010-09-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for enabling estimation of a position of a mobile terminal
EP2462461A1 (en) 2009-08-05 2012-06-13 Andrew LLC System and method for hybrid location in an lte network
US8244275B2 (en) * 2009-08-05 2012-08-14 Andrew, Llc System and method for hybrid location in a UMTS network
DE102009051739A1 (de) 2009-11-03 2011-05-05 Rohde & Schwarz Gmbh & Co. Kg Messvorrichtung und Messverfahren zur Vermessung von Mobilfunk-Relay-Stationen
US20110177827A1 (en) * 2010-01-19 2011-07-21 Cellular Specialties, Inc. Pilot Beacon System
CN102238581B (zh) * 2010-04-28 2014-06-04 华为技术有限公司 一种确定终端移动性状态的方法和装置
US8744340B2 (en) * 2010-09-13 2014-06-03 Qualcomm Incorporated Method and apparatus of obtaining timing in a repeater
CN102457349B (zh) * 2010-10-22 2015-01-28 中兴通讯股份有限公司 一种多点协作传输接收系统测量上报方法及系统
CN102958154B (zh) 2011-08-24 2015-05-27 华为技术有限公司 用户设备的定位方法及装置
CN102310449A (zh) * 2011-10-14 2012-01-11 巫溪县发瑞木制品专业合作社 梳子的制作方法
CN102833850A (zh) * 2012-08-28 2012-12-19 镁思锑科技(杭州)有限公司 一种用于移动终端定位的数据传输方法
US9699052B2 (en) * 2013-05-30 2017-07-04 Qualcomm Incorporated Methods and systems for enhanced round trip time (RTT) exchange
CN104284415B (zh) * 2013-07-01 2019-03-22 北京亿阳信通科技有限公司 一种移动终端定位方法和装置
CN105025465B (zh) * 2014-04-25 2019-09-24 中兴通讯股份有限公司 用户终端位置上报方法、基站、移动管理实体及系统
US9179285B1 (en) 2014-05-19 2015-11-03 Disney Enterprises, Inc. Reflection-based location detection
CN104684082A (zh) * 2015-03-06 2015-06-03 苏州海博智能系统有限公司 基于基站信号放大装置实现建筑物内定位的系统和方法
WO2017113397A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 终端设备及定位系统
CN106714299A (zh) 2016-12-13 2017-05-24 上海华为技术有限公司 一种定位方法、辅助站点及系统
EP3749974A4 (en) * 2018-02-09 2021-09-15 Telefonaktiebolaget Lm Ericsson (Publ) METHOD, EQUIPMENT, AND SYSTEM FOR DETERMINING A POSITION OF A WIRELESS DEVICE
CN111526581B (zh) * 2019-02-03 2022-02-11 华为技术有限公司 一种用户定位的方法、网元、系统及存储介质
US11943738B2 (en) * 2021-03-03 2024-03-26 Qualcomm Incorporated Shared requirement for a double differential timing procedure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228908A (zh) * 1996-07-25 1999-09-15 诺基亚电信公司 采用频率转换中继站的时分蜂窝系统中的小区扩展
WO2000065731A1 (en) * 1999-04-22 2000-11-02 Netline Communications Technologies (Nct) Ltd. Method and system for providing location specific services to mobile stations
CN1290458A (zh) * 1998-12-10 2001-04-04 三星电子株式会社 移动通信系统中定位移动台的装置和方法
CN1413057A (zh) * 2001-10-18 2003-04-23 华为技术有限公司 一种移动台位置的估计方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671864B2 (ja) * 1995-05-12 1997-11-05 日本電気株式会社 無線通信システム
US5937332A (en) * 1997-03-21 1999-08-10 Ericsson, Inc. Satellite telecommunications repeaters and retransmission methods
GB0000528D0 (en) * 2000-01-11 2000-03-01 Nokia Networks Oy Location of a station in a telecommunications system
FI109839B (fi) 2000-08-22 2002-10-15 Nokia Corp Menetelmä matkaviestimen paikantamiseksi
JP3936834B2 (ja) * 2000-09-11 2007-06-27 株式会社日立製作所 加入者系無線アクセスシステム及びそれに用いる装置
WO2002041511A1 (en) * 2000-11-15 2002-05-23 At & T Wireless Services, Inc. Operations, administration and maintenance of components in a mobility network
US7039418B2 (en) * 2000-11-16 2006-05-02 Qualcomm Incorporated Position determination in a wireless communication system with detection and compensation for repeaters
US7181171B2 (en) * 2001-07-20 2007-02-20 Kyocera Wireless Corp. System and method for providing auxiliary reception in a wireless communications system
US6868254B2 (en) * 2001-08-30 2005-03-15 Qualcomm Incorporated Repeater with diversity transmission
US6832090B2 (en) * 2001-09-10 2004-12-14 Qualcomm Incorporated System and method for identification of transmitters with limited information
TWI309928B (en) * 2001-11-20 2009-05-11 Qualcomm Inc Method and apparatus for controlling output power for a repeater and for controlling noise in a donor base station, repeater, method of providing signal coverage and wireless communication system
US20030114103A1 (en) * 2001-12-19 2003-06-19 Radio Frequency Systems, Inc. Repeater for use in a wireless communication system
US20030157943A1 (en) * 2002-01-29 2003-08-21 John Sabat Method and apparatus for auxiliary pilot signal for mobile phone location
CN1192650C (zh) * 2002-04-26 2005-03-09 华为技术有限公司 一种直放站及其实现移动台定位的方法
US6873823B2 (en) * 2002-06-20 2005-03-29 Dekolink Wireless Ltd. Repeater with digital channelizer
JP2004048126A (ja) * 2002-07-09 2004-02-12 Hitachi Ltd 無線通信制限装置および無線通信中継局および無線通信基地局
CN1225849C (zh) * 2003-07-18 2005-11-02 大唐移动通信设备有限公司 一种对无线信号进行双向同步转发的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228908A (zh) * 1996-07-25 1999-09-15 诺基亚电信公司 采用频率转换中继站的时分蜂窝系统中的小区扩展
CN1290458A (zh) * 1998-12-10 2001-04-04 三星电子株式会社 移动通信系统中定位移动台的装置和方法
WO2000065731A1 (en) * 1999-04-22 2000-11-02 Netline Communications Technologies (Nct) Ltd. Method and system for providing location specific services to mobile stations
CN1413057A (zh) * 2001-10-18 2003-04-23 华为技术有限公司 一种移动台位置的估计方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300151A (zh) * 2010-06-24 2011-12-28 无锡中星微电子有限公司 一种定位提醒的方法及移动终端
CN109343094A (zh) * 2018-11-15 2019-02-15 天津七二通信广播股份有限公司 一种具有高精度定位功能的平面调车系统及其实现方法

Also Published As

Publication number Publication date
DE60316975T8 (de) 2008-12-11
CN1266976C (zh) 2006-07-26
US7373155B2 (en) 2008-05-13
CN1491064A (zh) 2004-04-21
ATE376339T1 (de) 2007-11-15
EP1558045B8 (en) 2008-01-02
AU2003248235A1 (en) 2004-05-04
US20060128399A1 (en) 2006-06-15
DE60316975T2 (de) 2008-07-31
EP1558045A4 (en) 2006-08-16
DE60316975D1 (de) 2007-11-29
EP1558045A1 (en) 2005-07-27
EP1558045B1 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
WO2004036938A1 (fr) Procede d'emplacement de station mobile et repeteur de station mobile
US7283787B2 (en) Direct amplifying station and positioning method for mobile station thereof
US11129127B2 (en) Network calibration with round-trip-time (RTT)-based positioning procedures
US8953503B2 (en) Isolation measurement and self oscillation prevention in TDD-OFDM repeater for wireless broadband distribution to shadowed areas
US7974640B2 (en) System for automatically determining cell transmitter parameters to facilitate the location of wireless devices
CN102474843B (zh) 管理在确定定位中使用的位置基准信号接收的无线终端和方法
US8175028B2 (en) Isolation measurement and self-oscillation prevention in TDD-OFDM repeater for wireless broadband distribution to shadowed areas
CN113728578B (zh) 用于定位参考信号交错配置的系统和方法
US20080132244A1 (en) Subscriptionless location of wireless devices
US20120302254A1 (en) Apparatus and method for determining a location of wireless communication devices
MX2015004138A (es) Metodo y aparato para estimacion metrica de rendimiento de rf.
SK10662000A3 (sk) Spôsob časovej synchronizácie využitím mobilných staníc v cdma komunikačnom systéme
WO2003065757A1 (en) Method and apparatus for auxiliary pilot signal for mobile phone location
CN113728692A (zh) 用于新无线电定位的波束组报告的系统和方法
WO2010093294A1 (en) Method and arrangement for determining terminal position
WO2020018235A1 (en) Beam-specific timing advance for timing response transmission for round-trip-time estimation
CN110545121A (zh) 一种卫星通信方法及模组
US7358899B1 (en) Distance estimation in a communication system
US20060148401A1 (en) Method and apparatus for enabling generation of a low error timing reference for a signal received via a repeater
KR100683906B1 (ko) 주파수 옵셋을 이용한 위치 탐지 서비스 제공 방법 및시스템
KR100766602B1 (ko) Cdma망에서 왕복 지연 정보를 이용한 위치 추정 방법및 시스템
CA2382140C (en) Distance estimation in a communication system
US20230032067A1 (en) Method and apparatus for acquisition of reliable time in a wireless network
KR20110085889A (ko) 기지국, 중계기, 및 그들의 동작 방법
CZ2000959A3 (cs) Způsob synchronizace časování první základnové stanice s referenční základnovou stanicí

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003808659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003808659

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006128399

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531203

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003808659

Country of ref document: EP