WO2004035942A1 - Internal excavation method through pile, and foundation pile structure - Google Patents

Internal excavation method through pile, and foundation pile structure Download PDF

Info

Publication number
WO2004035942A1
WO2004035942A1 PCT/JP2003/012522 JP0312522W WO2004035942A1 WO 2004035942 A1 WO2004035942 A1 WO 2004035942A1 JP 0312522 W JP0312522 W JP 0312522W WO 2004035942 A1 WO2004035942 A1 WO 2004035942A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
ready
ground
tip
hole
Prior art date
Application number
PCT/JP2003/012522
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Kiya
Original Assignee
Mitani Sekisan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitani Sekisan Co., Ltd. filed Critical Mitani Sekisan Co., Ltd.
Priority to JP2004544915A priority Critical patent/JP4625896B2/en
Priority to AU2003266716A priority patent/AU2003266716A1/en
Publication of WO2004035942A1 publication Critical patent/WO2004035942A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/62Compacting the soil at the footing or in or along a casing by forcing cement or like material through tubes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/28Placing of hollow pipes or mould pipes by means arranged inside the piles or pipes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0061Production methods for working underwater
    • E02D2250/0076Drilling
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0004Synthetics
    • E02D2300/0018Cement used as binder

Definitions

  • the present invention relates to a method of excavating a pile hole and burying a ready-made pile, and a foundation pile having a ready-made pile buried in a pile hole formed based on this method.
  • a method of excavating a pile hole and burying a ready-made pile, and a foundation pile having a ready-made pile buried in a pile hole formed based on this method Regarding the structure. Above all, ground
  • Non-Patent Document 1 a drilling head formed with a drilling head and an earth removal spiral is inserted into the hollow part of a ready-made pile, and the drilling hole protruding from the tip of the ready-made pile is inserted.
  • the existing piles were being laid while excavating the stratum.
  • the excavation diameter of the excavation head was slightly smaller (about minus 4 Omm) than the inner diameter of the ready-made pile to be buried (Non-Patent Document 1).
  • the excavation blade (Patent Literature 1) that swings to the excavating head and excavates can be extended perpendicular to the axis of the excavating rod.
  • the excavation blade protruding in the direction (horizontal direction) was formed, and the excavation of the expanded root compaction was performed.
  • Patent Literature 35 discloses an invention aimed at reducing the amount of unloaded soil, since the existing piles were exclusively used because they could not be used.
  • Patent Document 1 Japan. JP-A-8-291682
  • Patent Document 2 Japan. JP-A-2-108724
  • Patent Document 3 Japan. JP-A-57_74534
  • Patent Document 4 Japan. JP-A-2002-54135
  • Patent Document 5 Japan. Japanese Patent Application Laid-Open No. 2002-81059
  • Non-Patent Document 1 Japan. “Study on pile foundations: from design to construction”
  • drilling rods for digging have a structural limitation that they must pass through the hollow part of a ready-made pile (usually concrete), and even if the diameter can be expanded relatively easily (Patent Document 2), It must take three positions: the hollow part passing state (minimum diameter), the pile hole shaft excavation state (intermediate diameter), and the pile hole excavation part excavation state (maximum diameter).
  • the excavation diameter of the consolidation part is up to about 1.2 times the shaft diameter of the pile hole. Even if the excavating head was equipped with a swinging arm with an excavating blade, the limit was 1.5 times.
  • the tip of a ready-made pile is positioned directly above a drilling head, and excavation is performed while sinking the ready-made pile. It was not possible to excavate the enlarged diameter part.
  • a p Tip cross section of ready-made pile
  • the cross-sectional area of the tip of the ready-made pile corresponds to the area of adhesion to the soil cement layer that contributes to the propagation of shear force due to the load.
  • L The length of the ground that allows for the peripheral frictional force of the pile
  • N ave Average N value of the section that uses pile circumference fixative
  • An object of the present invention is to improve the outer peripheral portion of a shaft portion of a pile hole in order to increase Rf, and to improve the ground strength as a whole peripheral surface of a ready-made pile. This will secure and increase the overall frictional resistance of the peripheral surface of the ready-made pile, and increase the stress propagation area so that the stress can be widely relaxed and propagated. That is, in the above-described formula of R f , N or coefficient C is increased.
  • An object of the present invention is to form a rooted portion having a high solidification strength that can propagate. That is, in the above equation, ⁇ and Ap are increased.
  • Another object of the present invention is to reduce the amount of soil discharged from the hollow portion of a ready-made pile to the ground when excavating a pile hole in the excavation method.
  • Patent Document 3 discloses a method in which a steel pipe having a metal fitting which can be screwed into the ground at the tip in advance and which is used as a reinforcement is screwed into the ground as a casing.
  • An invention is disclosed that realizes a reduction in earth removal by a method of inserting a).
  • the ready-made pile is simply placed on the metal fittings, and there is no integration between the ready-made piles and the metal fittings, and the solidification of the soil cement layer, etc., that ensures the stress propagation between the ground and the ready-made piles Due to the lack of consideration for the mixed layer, high bearing capacity cannot be expected.
  • this method requires metal fittings, it cannot be applied to the excavation method at all.
  • the invention of Patent Document 4 is a pre-drilling method in which a pile hole having a diameter equal to the outer diameter of a ready-made pile is excavated, and then a ready-made pile having a spiral wing is buried. It is disclosed that the diameter of the shaft of the pile hole is made relatively small to reduce the amount of excavated soil.
  • the invention of Patent Document 4 when screwing the spiral wing, a large twist is generated in the ready-made pile, and when the ground is hard, a huge torsion is generated in the ready-made pile, and it is impossible to perform with a ready-made concrete pile. is there.
  • Patent Document 5 discloses that a propulsion head having a spiral wing and an excavating blade is fitted to the lower end of a hollow prefabricated pile, and the propulsion head is rotated by a rotating mouth through the prefabricated pile. A method of rotating and penetrating a ready-made pile without rotation is disclosed.
  • a pile hole including a shaft portion of a pile hole is excavated with a larger excavation diameter than the conventional one (relative to the pile diameter of a ready-made pile), and further excavation of the pile hole is performed.
  • a configuration was adopted in which a pile hole was excavated while forming a solidified mixed layer at least in an appropriate section within the desired depth range for design.
  • the excavation head of the excavation hole protrudes from the tip of the hollow part of the prefabricated pile, excavates the ground to lower the prefabricated pile while forming a pile hole, and
  • the pile excavation method of burying the ready-made pile in the hole
  • the second invention is characterized in that a drilling head of a drilling rod protrudes from the tip of the hollow portion of the ready-made pile, excavates the ground, lowers the ready-made pile while forming a pile hole, and places the ready-made pile in a predetermined pile hole.
  • a drilling head of a drilling rod protrudes from the tip of the hollow portion of the ready-made pile, excavates the ground, lowers the ready-made pile while forming a pile hole, and places the ready-made pile in a predetermined pile hole.
  • a solidified mixed layer is formed at a predetermined depth range determined by design to restore and strengthen the ground strength, and normal pile drilling is performed in depth ranges other than the depth range.
  • a cement hole is formed with a diameter larger than the outer diameter of a ready-made pile, and when excavating a predetermined depth range determined by design, cement milk is injected into excavated soil. 3.
  • a pile hole is formed with a diameter of 1.4 times or more the outer diameter of the ready-made pile, and a predetermined depth range determined by design is excavated. At this time, a method of excavating soil by injecting cement milk into the excavated soil and stirring and mixing the excavated soil to form a solidified mixed layer having a predetermined solidification strength.
  • the excavation head of the excavation rod is protruded from the tip of the hollow portion of the prefabricated pile, and the prefabricated pile is lowered while excavating the ground to form a pile hole.
  • Pile holes are formed with a diameter of at least 1.4 times the outer diameter of the ready-made pile, and cement milk is injected into the excavated soil in a depth section including a relatively soft stratum on the ground, and the excavated soil is formed.
  • This is a method for excavating piles, characterized by forming a solidified mixed layer with a predetermined solidification strength by stirring and mixing.
  • the drilling head of the drilling rod protrudes from the tip of the hollow portion of the ready-made pile, excavates the ground to lower the ready-made pile while forming a pile hole, and places the ready-made pile in a predetermined pile hole.
  • the pile digging method to bury the pile In the pile digging method to bury the pile,
  • the drilling head of the drilling rod protrudes from the tip of the hollow part of the ready-made pile, excavates the ground, lowers the ready-made pile while forming a pile hole, and moves the ready-made pile into a predetermined pile hole.
  • the pile digging method to bury the pile In the pile digging method to bury the pile,
  • the excavation head of the excavation hole protrudes from the tip of the hollow portion of the prefabricated pile, excavates the ground to lower the prefabricated pile while forming a pile hole, and In the pile excavation method of burying the ready-made pile in the hole,
  • a tip fitting is connected to a tip of the ready-made pile, and a drilling head is protruded from the tip of the tip fitting to excavate the ground to make a pile hole.
  • the tip fitting is provided with one or more support surfaces on the outer surface of the cylindrical base, which can transmit the shear force upward and downward and can be used as tip support force.
  • the excavation head is formed from the tip of the prefabricated pile by using a prefabricated pile having an uneven portion formed on the outer surface of the lower end of the pile shaft. And excavate the ground to form a pile hole, and the uneven portion of the ready-made pile propagates upward or downward on the outer surface of the lower end of the ready-made pile, as a tip supporting force.
  • This is a method of excavating piles, characterized by forming one or more support surfaces that can be used.
  • a tip fitting having a lateral projection formed on an outer surface of a cylindrical base is connected to a tip of the ready-made pile, and This is a method of excavating piles by protruding an excavation head from the tip and excavating the ground to form pile holes.
  • the outer diameter of the solidified mixed layer and the outer diameter of the pile-fixing portion of the pile hole are formed to be substantially the same outer diameter. It is a method of digging a pile.
  • a thirteenth invention is a foundation pile structure in which a ready-made pile is buried in a pile hole
  • the pile hole is constructed by restoring and improving the ground strength at least in a depth range predetermined by design, and the ready-made pile is provided with a tip fitting at a lower end thereof, and the tip fitting is an outer surface of a cylindrical base.
  • a foundation pile structure characterized in that a support surface capable of transmitting a shearing force and being used as a tip supporting force is formed at one or a plurality of locations in an obliquely upward or obliquely downward direction. It is.
  • the relatively soft stratum mentioned above is the ground where ready-made piles are to be buried, and one of the pile holes has a strength smaller than the assumed ground strength compared to the assumed ground strength.
  • ground with only ground strength For example, if the assumed ground strength is assumed to be "20" in an N value in sandy soil, it has a value significantly lower than the average N value, for example, an N value having a value smaller than "5". It refers to the ground that can hardly be considered as bearing capacity.
  • the assumed ground strength may be set for each pile hole, or may be set for the entire site.
  • cement milks refer to cement milk which solidifies after a lapse of a predetermined time if mixed into excavated soil and a hydraulic material equivalent to cement milk.
  • the “predetermined depth range determined by design” means that the normal ground is formed from strata of various ground strengths, and which depth range is set depends on the strength of the entire foundation pile structure. Determine the range to be enhanced. That is, when the soft stratum is defined as the “predetermined depth range”, or when the middle layer having relatively strong ground strength is defined as the “predetermined depth range”, the soft strata are appropriately combined and set as the “predetermined depth range”. Or a certain depth range is defined as a “predetermined depth range” regardless of the ground strength.
  • the “propagation of shear force” in the above refers to “a ready-made pile with the tip 13 attached” or “a pre-made pile with a convex portion on the outer surface of the lower end” in the solidified cement layer in the pile hole.
  • the “supporting surface that can transmit the shearing force” is a projection (for example, an annular projection) on the “outer surface of the cylindrical base (steel pipe body) 6 of the tip metal fitting” or the “outer surface of the lower end of the prefabricated pile”.
  • the lower surface of the projection 10 constitutes a support surface B to which the shear force can be propagated downward, and the upper surface of the projection 10 propagates the shear force upward.
  • a support surface A that can be Figure (a)
  • the upper and lower surfaces of the projection 10 are surfaces slightly inclined with respect to the vertical surface.
  • the direction in which the shear force propagates acts obliquely to the vertical plane, so that it is desirable to form the shear force at right angles to the propagation direction.
  • a side wall surface of the concave portion constitutes each of the support surfaces A and B.
  • the supporting surface is not limited to the protrusion or the concave portion, and a step is formed on the outer surface of the cylindrical base 6 to be the supporting surface A or the supporting surface B having the same function.
  • Fig. 4 (c) (d) the shape is arbitrary.
  • the outer surface of the cylindrical base 6 (the lower shaft 36 when the annular projection 37 is formed on the ready-made stake 1; FIG.
  • the cylindrical base 6 (or the lower shaft 36 in FIG. 2 (a)) is desirably cylindrical in view of the balance of stress propagation, but its shape such as a square tube is arbitrary.
  • the outer diameter D " is of the tubular base part 6 of the end bracket 1 3, if a diameter smaller than the outer diameter of the prefabricated pile 1 (Du ⁇ D ⁇ ;) , the outer diameter D 01 of the prefabricated pile 1 desirable since it suffices drilling Kuiana corresponding. in this case, the upper end of the tubular base part 6, to form a large diameter portion 7 corresponding to the outer diameter D 01 of the prefabricated pile 1 (FIG. 2 (b )).
  • the outer diameter D 13 of the annular projection 10 forming a supporting lifting surface the outer diameter D 01 of the prefabricated pile 1 (i.e., a smaller diameter than the outer diameter) of the large diameter portion 7 (D 13 ⁇ D 01), or the outer diameter D 13 can in be a larger diameter than the outer diameter D 01 of the prefabricated pile 1 (D 01 ⁇ D 13) .
  • D 13 D 01, it is also to possible.
  • the outer diameter D 13 is better not greater than D 01 resistance when the input ⁇ prefabricated pile is small, it is effective in the construction of the ground, such as high ground intensity (or density of the soil).
  • the outer diameter D i of the tubular base 6 is made equal to the outer diameter D 01 of the ready-made pile 1 (Doi ⁇ Di!), Or the outer diameter D cruof the tubular base 1 is changed to the outer diameter of the ready-made pile 1. Can be larger than D 01 These dimensions can be selected depending on the ground strength, soil density, required strength of foundation piles, and so on.
  • a small diameter lower shaft portion 36 is formed in the ready-made pile 1.
  • the annular projections 37, 37 are formed in this portion (FIG. 2 (a))
  • the outer surface 1 of the cylindrical base 6 corresponds to the outer surface of the lower shaft portion, and is set to have the same configuration.
  • a solidified mixed layer is formed in a predetermined section, and the ground is pressed by the outer peripheral wall of the ready-made pile without discharging excavated soil. As a result, it is possible to demonstrate about twice the bearing capacity.
  • N value when drilling a pile hole with a large diameter in an appropriate section and injecting cement milk to form a solidified mixed layer, it is possible to further restore and reinforce the pile circumferential friction force Therefore, it is expected that the support capacity will surely be increased.
  • the conventional excavation method has the disadvantage that a large amount of excavated soil is discharged, but in the present invention, the diameter is larger than the outer diameter of the ready-made pile (for example, about 1.4 times or more the outer diameter of the ready-made pile).
  • the diameter is larger than the outer diameter of the ready-made pile (for example, about 1.4 times or more the outer diameter of the ready-made pile).
  • the solidified mixed layer is formed in the excavated pile hole, if the solidified mixed layer can adhere to the outer peripheral surface of the ready-made pile integrally, a ready-made pile having a large-diameter annular protrusion on the outer periphery can be constructed, so it is adjacent If the solidified mixed layer is formed at the same depth with the foundation pile and can be constructed before solidification, adjacent solidified mixed layers can be connected to each other, realizing a stronger foundation pile structure as an interconnected group it can.
  • the outer diameter of the solidified mixed layer By making the outer diameter of the solidified mixed layer approximately the same as the diameter of the piled-up part, the drilling work for the pile hole is simplified, the control process is simplified, and the reliability of the drilling head is also improved. improves. Also, the outer diameter of the solidified mixed layer can be more than 1.5 times the outer diameter of the foundation pile. Drilling heads can be easily realized.
  • this construction method can significantly reduce The amount of soil can be reduced.
  • FIG. 1 (a) shows a ready-made pile and a drilling rod according to an embodiment of the present invention, and is an enlarged front view of a broken ready-made pile
  • FIG. 1 (b) is a basic pile of the present invention. Structure.
  • FIG. 2 is an enlarged front view of a reinforced portion of the foundation pile structure, and (a) and (b) are embodiments of the present invention.
  • FIG. 3 is a vertical cross-sectional view for explaining the excavation method of the present invention.
  • FIGS. 4 (a;) to (d) are schematic longitudinal sectional views for explaining the support surface of the tip fitting and the propagation of shearing force according to the present invention.
  • FIG. 5 is a front view of another excavating head used for carrying out the present invention.
  • Fig. 6 is an enlarged front view of the foundation of the foundation pile structure, showing a comparative example excavated by the pre-drilling method.
  • the excavated head 18 excavates the pile hole 28 and lowers the ready-made pile 1 into the pile hole 28 formed by loosening the ground (Fig. 3 (a) to (c). )).
  • the excavation diameter of the pile hole 28 excavated by the excavation head 18 is larger than the outer diameter of the ready-made pile 1 to be set, for example, about 1.4 to 1.5 times as large as the excavation from the ground 25.
  • the excavated soil is not discharged during excavation and when the ready-made piles are laid, it is not always necessary to provide a conventional function for discharging soil (such as a spiral) in the middle of the excavated rod.
  • the drilling rod When excavating ground with high ground strength or ground with very high soil density, if the application speed is to be increased, the drilling rod must be partially connected to the drilling rod in order to reduce the penetration resistance of the ready-made pile. It is also effective to form a normal spiral (discharge function) or to form a small-diameter spiral and to discharge a little amount of soil.
  • the outer periphery of the ready-made pile 1 immediately reaches the ground through a pile fixed liquid layer having a thickness of 1 to 2 cm, but in the present invention, in the solidified mixed layer, the solidified mixed layer is It is formed thick, and the entire outer periphery of the solidified mixed layer (outer diameter) is in contact with the ground.
  • the outer diameter of the ready-made pile 1 is 600 mm
  • the outer diameter of the solidified mixed layer will be about 840 to 90 Omm, and in order to secure a sufficient thickness for transmitting the stress, the solidified mixed layer
  • the thickness (vertical length) is preferably lm or more from the viewpoint of strength.
  • the large-diameter excavation of the present invention appropriately loosens and loosens the ground, so even though the excavated soil is not discharged, concrete-made pre-fabricated piles with irregularities on the outer surface can also be laid, so almost all The foundation pile without soil can be created.
  • steel pipe precast piles which are thinner than concrete precast piles, are easier to settle down, so steel pipe precast piles can also be used.
  • the excavated soil that has been injected due to the solidification agent is discharged, so it is desirable that the solidified mixed layer be as small as possible.
  • a solidifying agent for example, high-concentration cement milk is used, poured into the excavated soil, and stirred and mixed with the excavating head 18 to form a solidified mixed layer (soil cement layer) 29 A, 29 B
  • the adhesive strength between the inner peripheral surface of the solidified mixed layer (soil cement layer) 29 A and 29 B and the outer peripheral surface of the ready-made pile 1 is equal to the outer peripheral surface of the solidified mixed layer 29 A and 29 B. Greater than the bond strength with the ground surface is necessary to improve stress propagation It is.
  • the donut-shaped solidified mixed layers 29 A and 29 B attached to the outer periphery of the ready-made pile 1 solidify and act as annular projections of the ready-made pile. That is, a vertical load or pulling force is applied to the ready-made pile 1 and a shear force can be propagated from the upper and lower surfaces of the solidified mixed layer to the upper and lower ground layers, thereby enhancing the vertical supporting force and pulling force (Fig. 1 (b)). (Shown by a chain line arrow).
  • the excavating head 18 is closed, and the excavated pile 1 is pulled up to the ground 25 through the hollow part 2 of the pile 1 (Fig. 3 (3)).
  • the tip of the ready-made stake 1 is sunk into the stake of the pile hole 28, which is filled with cement milk (exists in the form of soil cement), and the lower surface of the stake 1 is fixed from the bottom of the stake. Leave only the length.
  • the burying of the ready-made pile 1 is completed, and after the cement milk solidifies, the foundation pile structure 33 is formed (Fig. 1 (b)).
  • an excavation port provided with a spiral for excavation and agitation on the body or upper part of the excavation head 18 (shown in the figure). Absent). The purpose is to remove excavated soil as much as possible from the embankment, or to mix and mix cement milk and excavated soil for + minutes to form a high-quality embankment layer 30.
  • the ready-made pile 1 used in the middle digging method according to the present invention is integrated with the stiffening layer 30 in the stiffening layer 30 made of cement milk formed in the stiffening portion, and has a high vertical bearing capacity. And a projection with a large attachment area (or Prefabricated pile 1 with spiral wings) is desirable.
  • the tip fitting 13 with the cylindrical steel pipe main body 6 with a projection as the base is replaced with the ready-made pile 1 It is desirable to mount it on the tip 3.
  • this tip metal fitting 13 has a cylindrical steel pipe main body 6 that is not larger than the outer diameter of the prefabricated pile 1 in order to increase the adhesion area with the protrusion, and the outer diameter of the protrusion is at the top to reduce the pushing resistance.
  • the outer diameter should be equal to or less than the outer diameter of the ready-made pile 1 to be mounted, and the number of projections should be the number that matches the required area of attachment with the required consolidation layer 30. Appropriate in terms of power balance.
  • the ready-made pile 1 is laid, it is necessary to prevent the soil and mud from adhering to the protruding surface of the tip fitting 13 and to increase the adhesion in the consolidation layer 30. It is desirable to increase the attachment area by slightly increasing the outer diameter of the prefabricated pile 1 or to taper the upper and lower surfaces of the projection.
  • the initial settlement after the solidification layer 30 is solidified can be prevented.
  • the outer diameter of the steel pipe main body 6 located at the base of the projection should be as small as possible, and the outer diameter of the projection should be set at the upper part so as to minimize penetration resistance when laying the existing pile. It is desirable that the dimensions be approximately the same as the outer diameter of 1 and not too large. In other words, considering the propagation of shear force generated from the projecting surface involved in bearing capacity, at least the outer surface (lower surface or upper surface) of the protrusion has the required size and shape, and the soil cement layer has a higher solidification strength than the ground strength. Is indispensable.
  • the surface area of the protruding part of the tip fitting 13 is designed to be large in order to secure the bonding strength between the surface of each part of the tip fitting 13 and the stiffening layer (soil cement layer) 30 of the stiffening part.
  • mud adheres to the surface of It is necessary to prevent the wearing strength from decreasing.
  • the height position where the pile hole 28 is excavated to form the soil cement Since the tip 3 of the ready-made pile 1 is located directly above (the position of the excavation head 18), consideration must be given to the attachment between the tip fitting 13 and the rooting layer 30.
  • the upper and lower surfaces of the protruding portion are not horizontal but inclined surfaces, so that they are knotted or slightly larger than the outer diameter of the upper pile to prevent soil and mud from being caught on the upper surface when protruding.
  • the drilling rod 15 used in the inner digging method of the present invention can excavate a pile hole with an outer diameter of 1.5 to 1.5 times the outer diameter of the ready-made pile 1 when opened.
  • a drilling head 18 that can be closed with an outer diameter less than its inner diameter so that it can pass through the hollow part 2 of the ready-made pile 1 by diameter. That is, the excavating head 18 needs a structure having a large ratio between the diameter reduction and the diameter expansion.
  • a digging arm 21 having a digging blade 22 at its tip is swingably attached to both sides of a head body 19 that can be connected to the mouth body 16 (Fig. 1 (a)). .
  • the outer diameter of the protrusion of the tip metal fitting of the ready-made pile 1 (or the protrusion formed on the outer periphery of the lower end of the ready-made pile) is larger than the outer diameter of the shaft of the ready-made pile. Even if it does, the ready-made pile 1 can be easily penetrated and buried in the pile hole 28 if it has a shape (for example, a spiral wing, etc.) in consideration of the resistance at the time of penetration.
  • the excavation head 18 used in this method is Since a drilling diameter of at least 1.4 to 1.5 times the outer diameter of the ready-made pile 1 is required, The use of two excavating heads 18 with a structure having the excavating arms 21 and a structure having high rigidity and strength was achieved by using two excavating arms.
  • the rod body 16 of the excavation rod 15 can omit a spiral mainly used for earth removal as in a conventional drilling hole for a middle excavation.
  • Stabilizer function for aligning the core of pile hole 2 8 and the core of hollow part 2 of ready-made pile 1 with the core of drilling rod 15 and a member with the function of stirring the excavated soil around drill rod 15 ( Figure 1 (a)).
  • the size of the excavation diameter is adjusted (by adjusting the ratio of the excavation diameter of the excavation head 18 to the outer diameter of the ready-made pile 1).
  • the ready-made pile 1 can be sunk quickly and the setting speed of the ready-made pile 1 can be controlled, an excavation head suitable for large-diameter excavation is required in order to further improve the excavation and crushability of the ground.
  • the outer cylinder 41 is attached to the cylindrical head body 19 so as to be able to move up and down, the upper arm 42 at the upper end of the head body 19, and the lower arm at the lower end of the outer cylinder 41.
  • the lower end of 43 can be connected with a pin, and the lower end of the upper arm 42 and the upper end of the lower arm 43 can be connected with a pin to form the excavating head 18 (Fig. 5).
  • the excavating arm 21 is composed of the upper arm 4 2 and the lower arm 4 3, and the excavating blades 20 and 20 are provided at the lower end of the outer cylinder 4 1, and the excavating blades 2 and 2 are provided on the lower surface side of the upper arm 4 3. 2 is formed.
  • the outer cylinder 41 and the head body 19 are moved up and down relatively so that the upper arm 42 and the lower arm 43 of the excavation arm 21 overlap (horizontally).
  • the drilling diameter can be enlarged and the driving range can be extended, so that the diameter of the drilling arm is reduced compared to a normal drilling head (the upper arm 4 2 and the lower arm 4 3 of the drilling arm 21 are arranged vertically).
  • the drilling blades can be formed in multiple stages, so that the grinding performance can be controlled. Therefore, with this excavating head 18, large-diameter excavation and agitation with a pile diameter ratio of at least twice the diameter of an existing pile is possible, and it is possible to exert a greater supporting force.
  • the excavation head 18 may be provided with a plurality of stoppers in a vertical direction (not shown), and in this case, different excavation diameters can be easily accommodated. Therefore, by using the excavation head 18, the excavator (the rod body 16 of the excavation opening head 15) is mounted with one excavation head 18 while changing the excavation position and changing the diameter. Pile of When drilling holes, continuous excavation is possible only by adjusting the stopper. Also,
  • the drilling diameter can be easily changed only by adjusting the stopper, and a solidified mixed layer with a different diameter is provided. Construction of the foundation pile to be performed becomes easy.
  • a solidified mixed layer can be formed on a predetermined ground by excavating to about 1.4 to 1.5 times the outer diameter of the ready-made pile 1, so that the high-concentration
  • the solidified mixed layer made of the cement also functions as an annular projection formed on the outer periphery of the ready-made pile 1.
  • a solidified mixed layer with an outer diameter of about 120 to 1200 mm is formed. That is, the protrusion height (horizontal direction) (Projection distance)
  • An annular projection of 160 to 20 O mm can be formed.
  • the ready-made pile 1 and the solidified mixed layer 29 A, 29 B act integrally, so that the outer surface area of the ready-made pile is increased to increase the adhesion to the ground, and the vertical load or When a pull-out force is applied, the upper and lower surfaces of the solidified mixed layers 29A and 29B act as stress propagation surfaces, and the shear force effectively propagates from the upper and lower surfaces to the ground located above and below the soft ground To increase the bearing capacity (Fig. 1 (b)).
  • the loosening of the ground reduces the frictional force around the piles of the ready-made piles.
  • the frictional forces at the periphery of the piles of the ready-made piles can be restored by appropriately forming a solidified mixed layer, etc. It can be reinforced, and if it is constructed so that the adhesion between the solidified mixed layers 29 A and 29 B and the outer surface of the ready-made pile 1 is sufficiently enhanced, the support exerted on the shaft of the conventional ready-made pile 1 You can get about twice the supporting force.
  • the surface area of the ready-made piles is substantially increased, and the stress propagation area of the ready-made piles is widened, so that the transmitted load stress (stress per area) to the surrounding weak ground is reduced and relaxed, Increase load capacity.
  • the ready-made piles 1 were sequentially pushed in, The pushing resistance (penetration resistance) of the ready-made pile 1 is reduced, and the ready-made pile can be easily laid.
  • the excavated rod does not need to have a spoiler-shaped excavated soil discharge mechanism, and the total amount of excavated soil can be reduced.
  • the excavation diameter is significantly larger than before (for example, 1.4 times or more the diameter of ready-made piles) while loosening and loosening the ground.
  • the excavation diameter is made larger than the outer diameter of the ready-made pile (for example, 1.4 times or more of the outer diameter of the ready-made pile) by the inside excavation method, thereby making it possible to reduce the amount of earth removal as a whole At the same time, a high bearing capacity can be realized.
  • a cylindrical concrete pile with the following shape and size will be adopted. If the required proof stress is large, steel pipe-coated concrete piles (SC piles) can be selected (Fig. 1 (a), Fig. 2 (b)).
  • SC piles steel pipe-coated concrete piles
  • the large-diameter portion 7 forms a partially conical inclined slope in which the upper surface 8 has a horizontal plane shape and the lower surface 9 has a gradually decreasing diameter.
  • the outer diameter of the connecting portion, i.e., the outer diameter D 13 of the large diameter portion 7 is a substantially equal to the outer diameter of the prefabricated pile 1 to be connected (the outer diameter of D 01 lower end).
  • the width (height) of the large-diameter portion 7 is formed by a leaf 13 .
  • the upper surface 11 of the annular projection 10 is formed in a horizontal plane, the lower surface 12 forms a partially conical slope, and the lower end of the slope reaches the lower end of the steel pipe body 6.
  • the width of the annular projection 10 (height) is formed by L 13 (FIG. 2 (b)).
  • the dimensions are formed as follows.
  • the inner diameter of the steel pipe main body 6 is the inner diameter D of the ready-made pile 1 connected to the upper part. 2 and the thickness ti of the steel pipe body 6 is about 15 to 40 mm, so that the outer diameter D of the knot-shaped steel material of the annular projection 10! 3 is the outer diameter of the ready-made pile 1 at the top.
  • the projection area the area of adhesion to soil cement
  • the excavating head 18 is configured by swingably mounting the upper ends of the excavating arms 21 and 21 on both sides of a head body 19 that can be connected to the mouth head body 16 (FIG. 1 (a)).
  • the head body 19 has a flat portion that tapers from the middle portion to the lower end portion, and excavation blades 20 and 20 project from the tip of the flat portion.
  • the excavating arm 21 has an upper end attached to the head body 19 with a rotating shaft 24, and a middle part directed downward so that the head body 1 extends along the flat part of the head body 19.
  • the lower end formed with the digging blades 22 and 22 is bent so as to approach downward and open outward together with the digging blades 22 and 22.
  • the excavating arms 21 and 21 have low rotational resistance, are easy to swing, and the entire excavating head 18 is compact, so that it is easy to penetrate the hollow portion of the ready-made pile. Therefore, large-diameter excavation becomes easier.
  • the head body 19 is provided with stoppers 23, 23 for limiting the range in which the excavating arms 21, 21 swing in accordance with the excavating diameter of the pile hole 28.
  • the rod body 16 is provided with horizontal plates 17 and 17 symmetrically in diameter at predetermined heights (for example, 5 m), omitting the spiral for discharging the earth.
  • the horizontal plates 17 and 17 combine the function of a stabilizer for aligning (centering) the axis of the drilling rod 15 with the axis of the pile hole 28 or the axis of the ready-made pile 1, and the function of stirring the excavated soil. Have.
  • the operation mode of the excavating head 18 is as follows when excavating the pile hole 28 (during excavation of the shaft portion of the pile hole, excavating to form a solidified mixed layer, agitating, excavating the agglomeration section, and agitating) and the hollow space of the ready-made pile 1. It has been simplified to a two-step method when passing through part 2. By moving the excavating arm 21, the outer diameter is about 1.5 times (1200mm) of the outer diameter of the ready-made pile 1, and even if the excavating rod 15 does not have a discharging mechanism, reliable and stable excavation and agitation can be achieved. It was realized. [4] Excavation method
  • the ground where the ready-made pile 1 is to be buried (mainly sandy soil) is from 25 above the ground, and 6.
  • the excavation hole 15 passes through the hollow part 2 of the pre-made pile 1 with the tip fitting 12 and the hollow part 6 a of the tip fitting 13 and the tip fitting 13
  • the drilling head 18 protrudes from the tip 14 of the drill.
  • the drilling arm 21 swings until it is regulated by the stopper 23, and the swing angle
  • the pile hole 28 can be excavated with the excavating blades 2 2 and 2 2 of the excavating arm and the excavating blades 20 and 20 of the head body 19 while maintaining the same.
  • the shaft of the pile hole 28 having a diameter larger than the outer diameter of the ready-made pile 1 is excavated. While excavating, the excavating rod 15 is lowered and the ready-made pile 1 is lowered (Fig. 3 (a)).
  • the height position where the solidified mixed layer is formed can be roughly grasped by the N value obtained by a standard penetration test in advance, it is desirable to form the solidified mixed layer at the height position where the N value is applicable. That is, the current value of the motor of the auger that rotates and raises and lowers the excavation hole 15 during excavation is measured, and the integrated current value is calculated for each predetermined height range (for example, 5 Ocm). If this is done, the ground strength can be compared at the same depth as the N value of the standard penetration test, and the height position indicating the integrated current value will be the corresponding ground to be improved. As a result, a solidified mixed layer can be formed at an accurate depth section.
  • the ready-made piles 1 are sequentially laid while the ground is being improved, the outflow of the soil cement can be prevented, and the solidified mixed layers 29A and 29B can be reliably formed.
  • cement milk solidification strength: 20 N / mm
  • a pile hole is excavated to a predetermined depth (approximately 21 m), which is the supporting ground (N value: 30)
  • cement milk solidification strength: 20 N / mm
  • the excavated soil can be replaced with cement milk by discharging cement milk from the bottom of the consolidation section to push up the excavated soil.
  • a stopper can be attached to the side of the head body 19 of the excavating head 18 where the excavating arms 21 and 21 swing when the excavating head 15 rotates in the reverse direction. In this case, in this case, if the drilling head 18 is pulled up while rotating in the reverse direction, the inner wall of the hollow part 2 of the ready-made pile 1 is not damaged, and the drilling head can be reliably recovered.
  • the constructed foundation pile structure 33 is constructed (Fig. 1 (b), Fig. 2 (b)).
  • this foundation pile structure 33 When constructing this foundation pile structure 33, the excavated soil is hardly discharged with a small amount of soil removal equivalent to the amount of cement milk injected, so the surrounding ground strength is compacted and high in the load test. A bearing capacity of 9300 kN (maximum load) is obtained. In addition, improvement in variation in settlement characteristics can be expected.
  • the conventional inner digging method does not use the tip metal fittings 13 of this method, but uses the same diameter as the outer diameter 60 Omm of the tip metal fittings 13 in the consolidation layer of this method. This is compared with the conventional excavation method using a pre-made concrete pile. When a ready-made pile with an outer diameter of 60 O mm was used and the tip of the ready-made pile was similarly anchored in the consolidation layer, the maximum load was about 310 kN on the same ground.
  • the timing for lowering the ready-made stake 1 is arbitrary as in the conventional digging method.
  • the formed soil cement layers 29 A and 29 B it is desirable to install the ready-made pile 1 immediately after the formation of the layers.
  • a solidified mixed layer was formed in which two sections of the formations 26A and 26B were improved and replaced with high-concentration soil cement layers 29A and 29B. Regardless of the size, it is possible to appropriately form a high-concentration soil cement layer in other sections to increase the bearing capacity of the shaft (not shown). Further, in the above-described embodiment, the solidified mixed layer is formed only in the section where the N value is particularly small, and a comprehensive solidified mixed layer having a high bearing capacity enhancing effect is created with a small amount of processing. Wataruconnection solidified strength full depth of 2 8 0. 5 NZmm 2 to form a solidified mixture layer below 1 high solidification strength for example in the ground have a better. oN / mm 2 approximately Soirusemento layer (the solidified mixture layer ) Can also be formed.
  • the amount of excavated soil is not equal to the amount of newly added cement milk, etc. In order to reduce the amount of excavated soil, etc., it is desirable to minimize the injection of cement milk, etc.
  • the ready-made pile 1 having the tip metal fitting 13 fixed at the lower end is buried.
  • another ready-made pile 1 without using the tip metal fitting 13 can be used.
  • a lower shaft portion 36 which is thinner than the upper shaft portion 34 is formed at a lower end portion, and a step portion (boundary portion) between the upper shaft portion 34 and the lower shaft portion 36, above the step portion, below the step portion ( Annular protrusions 37, 37 are formed on the lower shaft portion).
  • a connecting pile, a lower pile as the above-mentioned ready-made pile, a steel pipe-coated concrete pile (SC pile) as the upper pile, etc.
  • SC pile steel pipe-coated concrete pile
  • the interval 2 between the annular projections 37 and 37 and the length L i 4 of the annular projection 37 from the lower shaft portion 36 are equal to the interval L t 2 between the large-diameter portion 7 and the annular projection 10 in the embodiment.
  • the annular projection 37 has an inclined upper surface 37a and an inclined lower surface 37b, and the inclined lower surface 37b has the same function as the lower surface 9 of the large diameter portion of the steel pipe body 6 and the lower surface 12 of the annular projection 10.
  • the inclined upper surface 37a is similarly formed.
  • the length L 14 of the annular projection 37 is configured so that the inclined upper and lower surfaces 37 a and 37 b of the annular projection 37 can be as large as possible without protruding from the outer surface of the upper shaft portion 34. also, set in relation to the L 12 as described above.
  • this prefabricated pile 1 is buried in the pile hole 28 in the same process as the prefabricated pile 1 to which the tip fitting 13 of the above-mentioned embodiment is fixed to form a foundation pile structure 33 (FIG. 2 ( a)).
  • the outer circumference of the tip of the annular projection 37 has the largest outer diameter, soil and mud are likely to adhere thereto. Therefore, if the annular projections 37, 37 are covered by an appropriate method (not shown). However, a stable and larger supporting force can be exhibited in the root consolidation layer 30.
  • a projection can be formed from a non-annular projection obtained by cutting the annular projection or a projection that is dispersedly arranged (not shown).
  • an annular concave portion can be formed instead of the annular protrusion (convex portion) 37 (see FIG. Not shown).
  • a drilling rod 15 having no spiral for discharging in the rod body 16 from the viewpoint of reducing the discharging. It is also possible to use a drilling rod in which a spiral having a smaller outer diameter is formed in a part or the whole of the mouth body 16 (not shown). This is effective when priority is given to increasing the excavation speed in areas where the ground strength is high, or when priority is given to removing excavated soil as much as possible from the inside of the consolidation.
  • the drilling rod is provided with a certain amount of earth discharging mechanism to control the earth discharging amount, so that the construction speed and the earth discharging amount (the earth discharging processing amount). It can be seen that the foundation pile can be constructed more economically than in the past, because and can be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Earth Drilling (AREA)

Abstract

An internal excavation method through a pile, comprising the steps of (a) fitting a tip metal device (13) to an existing concrete pile (1), inserting an excavating rod (15) without a soil discharging mechanism into the existing concrete pile, and excavating by a rotary excavating arm (21) of an excavator head (18) to immerse the existing pile (1), (b, c, d) excavating a ground, while loosening, with a diameter 1.4 times the outer diameter of the existing pile (1) or more and stamping the loosened excavated soil to the outside by the outer face of the exiting pile (1), and filling, agitating, and mixing cement mill in stratums (26A, 26B) designated by design to form solidified mixed layers (29A, 29B) with recovered or improved ground strength, (e) forming a foot protection layer (30) filled with cement mill on a pile hole bottom (31) side, and (f) raising the excavating head (18) to the ground, lowering the existing pile (1), and positioning the tip metal device (13) in the foot protection layer (30), whereby a supporting force of approx. two times that of an existing internal excavation method can be developed, and a soil discharge amount can be remarkably decreased.

Description

杭の中掘工法、 基礎杭構造 技術分野 本発明は、 杭穴を掘削しつつ既製杭を埋設する中掘工法、 この工法に基づき施 ェされた杭穴内に既製杭を埋設してなる基礎杭構造に関する。 とりわけ、 地盤途 明 Technical field of the invention The present invention relates to a method of excavating a pile hole and burying a ready-made pile, and a foundation pile having a ready-made pile buried in a pile hole formed based on this method. Regarding the structure. Above all, ground
中に比較的軟弱な地盤の層を含み、 その層では十分な支持力が得られない場合に 特に有効である。 This is particularly effective when the ground contains a relatively soft ground layer and the layer does not provide sufficient bearing capacity.
書 背景技術 一般的な杭の中掘工法では、 既製杭の中空部に、 掘削ヘッドおよび排土スパイ ラルを形成した掘削口ッドを揷入して、 既製杭の先に突出した掘削口ッドで、 地 層を掘削しながら、 既製杭を沈設させていた。 この場合、 掘削ヘッドの掘削径は 、 埋設する既製杭の内径より若干小さい (マイナス 4 O mm程度) 寸法としてい た (非特許文献 1 )。 そして、 この杭穴内にそのまま既製杭を押し込め、 あるいは 杭穴内壁と既製杭の隙間にセメントミルクを注入して既製杭を押し込めていた ( 例えば、 特許文献 1、 5頁左上より 2〜 3行目)。  Background art In a typical pile drilling method, a drilling head formed with a drilling head and an earth removal spiral is inserted into the hollow part of a ready-made pile, and the drilling hole protruding from the tip of the ready-made pile is inserted. At the same time, the existing piles were being laid while excavating the stratum. In this case, the excavation diameter of the excavation head was slightly smaller (about minus 4 Omm) than the inner diameter of the ready-made pile to be buried (Non-Patent Document 1). Then, the ready-made pile was pushed into the pile hole as it was, or cement milk was injected into the gap between the inner wall of the pile hole and the ready-made pile, and the ready-made pile was pushed in (for example, Patent Document 1, 2 to 3 from the upper left of page 5, line 3) ).
また、 中掘工法で、 根固め部を拡径して、 先端支持力を増加させる場合、 掘削 へッドに揺動して拡大掘削できる掘削刃 (特許文献 1 ) や掘削ロッドの軸に直交 する方向 (水平方向) に突出する掘削刃を形成して、 拡大根固め部の掘削をして レヽた。  In addition, in the case of using the excavation method to increase the diameter of the solidified portion to increase the bearing capacity at the tip, the excavation blade (Patent Literature 1) that swings to the excavating head and excavates can be extended perpendicular to the axis of the excavating rod. The excavation blade protruding in the direction (horizontal direction) was formed, and the excavation of the expanded root compaction was performed.
また、 既製杭の埋設に先立ち、 掘削口ッドで杭穴の全部を掘削した後に既製杭 を埋設して基礎杭を埋設する工法 (先掘工法) では、 掘削ロッドの中間部に拡開 刃を形成して、 杭穴の軸部に拡径部を掘削する工法も提案されているが (特許文 献 2 )、 軟らかい地層等では採用できず、 使用範囲が限られていた。  In addition, prior to burial of ready-made piles, in the method of digging all pile holes with a drilling hole and then burying ready-made piles and burying foundation piles (first digging method), a widening blade is inserted in the middle of the drilling rod. A method has been proposed to excavate the enlarged diameter part in the shaft of a pile hole by forming a hole (Patent Document 2). However, this method cannot be used in soft geological formations and the like, and the range of use has been limited.
また、 中掘工法では、 上記のように、 既製杭の外径より小さな径の杭穴を掘削 するので、 先掘工法で使用するような、 外側面に節などの囬凸を形成した既製杭 を使用することができず、 専ら円筒形状の既製杭を使用していた, また、 排土を減らすことを目的とした発明として、 特許文献 3 5が開示され ている。 In addition, in the borehole method, as described above, a pile hole with a diameter smaller than the outer diameter of the ready-made pile is excavated. Patent Literature 35 discloses an invention aimed at reducing the amount of unloaded soil, since the existing piles were exclusively used because they could not be used.
(特許文献 1 ) 日本国. 特開平 8— 291 682号公報  (Patent Document 1) Japan. JP-A-8-291682
(特許文献 2) 日本国. 特開平 2— 108724号公報  (Patent Document 2) Japan. JP-A-2-108724
(特許文献 3) 日本国. 特開昭 57_ 74534号公報  (Patent Document 3) Japan. JP-A-57_74534
(特許文献 4) 日本国. 特開 2002— 54135号公報  (Patent Document 4) Japan. JP-A-2002-54135
(特許文献 5) 日本国. 特開 2002— 81059号公報  (Patent Document 5) Japan. Japanese Patent Application Laid-Open No. 2002-81059
(非特許文献 1 ) 日本国. 「杭基礎の調査 '設計から施工まで」  (Non-Patent Document 1) Japan. “Study on pile foundations: from design to construction”
(第 2回改訂版)  (2nd revised edition)
(財) 土質工学会 平成 5年 5月 25日初版発行 Japan Society of Geotechnical Engineers First edition issued May 25, 1993
425〜431頁 発明の開示 425-431 Disclosure of the Invention
1. 発明が解決しょうとする課題 1. Problems that the Invention is to Solve
(1) いわゆる先掘工法では、 既製杭の埋設に先立ち、 杭穴の全部を掘削した後 に既製杭を埋設して、 掘削ドラムで杭穴壁を均してセメントミルクを撹拌 ·充填 できるが、 中掘工法では、 一般に、 掘削土の大部分を掘削ロッドで排出しており 、 更に構造上から掘削ロッドに練付ドラムを取付け難いので、 杭穴壁を均すこと もできなつた。 従って、 既製杭と杭穴との間の杭周部を支持力として十分に利用 できなかった。  (1) In the so-called pre-drilling method, prior to burying the ready-made piles, after excavating all the pile holes, the ready-made piles can be buried, and the wall of the pile holes can be leveled by the drilling drum and the cement milk can be stirred and filled. However, in the excavation method, generally, most of the excavated soil is discharged by a drill rod, and it is difficult to attach a kneading drum to the drill rod from the structure, so that the pile hole wall cannot be leveled. Therefore, the periphery of the pile between the ready-made pile and the pile hole could not be sufficiently used as the bearing capacity.
また、 中掘用の掘削ロッドでは、 既製杭 (通常はコンクリート系) の中空部を 通過させなければならないという構造上の制限があり、 比較的拡径が容易な場合 (特許文献 2) でも、 中空部通過状態 (最小径)、 杭穴軸部掘削状態 (中間径)、 杭穴拡底部掘削状態 (最大径) の 3位置を取らなければならず、 複雑な構造で設 計強度上限られていた。 また、 通常の掘削径の 2段切替式では、 拡底根固め部を 形成する場合には、 根固め部の掘削径は、 杭穴の軸部径の 1. 2倍程度までであ り、 前記掘削ヘッドに掘削刃付きの揺動腕を設けた場合であっても、 1. 5倍が 限度であった。 特に外径 1000 等の大径の既製杭を使用した場合には、 1 - 2倍程度に制限されていた。 In addition, drilling rods for digging have a structural limitation that they must pass through the hollow part of a ready-made pile (usually concrete), and even if the diameter can be expanded relatively easily (Patent Document 2), It must take three positions: the hollow part passing state (minimum diameter), the pile hole shaft excavation state (intermediate diameter), and the pile hole excavation part excavation state (maximum diameter). Was. In addition, in the case of a two-stage switching of the normal excavation diameter, in the case of forming an expanded bottom consolidation part, the excavation diameter of the consolidation part is up to about 1.2 times the shaft diameter of the pile hole. Even if the excavating head was equipped with a swinging arm with an excavating blade, the limit was 1.5 times. In particular, when a large-diameter ready-made pile with an outer diameter of 1000, etc. is used, 1- It was limited to about twice.
また、 中堀工法では、 一般に掘削ヘッドの直上に既製杭の先端を位置させて、 該既製杭を沈設しながら掘削するので、 前記特許文献 2のように掘削ロッドの中 間部に拡径刃を形成して拡径部を掘削することができなかった。  In addition, in the Nakahori method, generally, the tip of a ready-made pile is positioned directly above a drilling head, and excavation is performed while sinking the ready-made pile. It was not possible to excavate the enlarged diameter part.
従って、 中掘工法では、 掘削速度を速くするためには、 掘削土の排出を多くせ ざるを得ず、 結果として環境面からも好ましくなく、 施工する土質も限られてい た。 即ち、 掘削土の排出を良くするため各種の工夫が成されていた (日本国. 特 開平 5— 3353号公報の空気の吹き出し等)。  Therefore, in the excavation method, in order to increase the excavation speed, the excavated soil had to be discharged more, and as a result, it was not preferable from the environmental point of view, and the soil to be constructed was limited. That is, various measures were taken to improve the discharge of excavated soil (air blowing in Japan, Japanese Patent Publication No. 5-3353).
(2) また、 一般に、 砂質土、 礫質土等の地盤に、 拡底根固め部を形成する中掘 工法では、  (2) In general, in the excavation method for forming the expanded bottom solidified part on the ground such as sandy soil and gravel soil,
総支持力 Ra=lZ3 (Rp + Rf) (kN/本) Total bearing capacity R a = lZ3 (R p + R f ) (kN / piece)
で、 算定される。 It is calculated by
ここで、 Rp=aXNa veXAp Where R p = aXN a ve XA p
a :支持力定数 (通常 250程度)  a: Bearing capacity constant (usually around 250)
Nave :杭先端平均 N値 N ave : Pile tip average N value
Ap :既製杭の先端断面積 A p : Tip cross section of ready-made pile
である。 尚、 ここで既製杭の先端断面積は、 荷重によるせん断力の伝搬に寄与す るソィルセメント層との付着面積に相当する。 It is. Here, the cross-sectional area of the tip of the ready-made pile corresponds to the area of adhesion to the soil cement layer that contributes to the propagation of shear force due to the load.
また、 Rfは、 杭周面摩擦抵抗力で、 杭周固定液の使用の有無により、 ■杭周固定液使用時: Rf = CXNaveXLX <i> R f is the frictional resistance of the pile surface. It depends on the use of the fixation solution around the pile. ■ When using the fixation solution around the pile: R f = CXN ave XLX <i>
(C= 2〜 3)  (C = 2-3)
■杭周固定液不使用時: R f = C X L X φ ■ When pile circumference fixing fluid is not used: R f = CXLX φ
(C= l 5)  (C = l 5)
の値を使用する。 Use the value of
また、 ここで、 Also, where
L:杭の周面摩擦力を考慮し得る地盤の長さ  L: The length of the ground that allows for the peripheral frictional force of the pile
Φ :杭の周長  Φ: Perimeter of pile
Nave:杭周固定液を使用する区間の平均 N値 N ave : Average N value of the section that uses pile circumference fixative
である。 It is.
総じて、 N値が低い場合 (例えば 10以下) は、 既製杭として通常の円筒杭を 使用した場合は、 節杭など利用した基礎杭構造に比べ R f (杭周面摩擦抵抗力) が小さくなっていた。 In general, when the N value is low (for example, 10 or less), a normal cylindrical pile is used as a ready-made pile. When used, R f (pile surface frictional resistance) was smaller than that of a foundation pile structure using a nodal pile.
従って、 中掘工法において、 支持力を増加する為には、 R p、 R fのいずれか又 は両方を増加させることが必要であった。 Therefore, it was necessary to increase one or both of R p and R f to increase the bearing capacity in the excavation method.
この発明では、 R fを大きくするために、 杭穴の軸部外周部を改良して、 既製 杭の周面全体として地盤強度を向上させることを目的とする。 これにより、 既製 杭の周面の全体的な摩擦抵抗力を確保 ·増加させると共に、 応力伝搬面積を大き くして応力が広く緩和して伝搬できるようにする。 即ち、 上記 R fの式において 、 Nあるいは係数 C等を大きくする。 An object of the present invention is to improve the outer peripheral portion of a shaft portion of a pile hole in order to increase Rf, and to improve the ground strength as a whole peripheral surface of a ready-made pile. This will secure and increase the overall frictional resistance of the peripheral surface of the ready-made pile, and increase the stress propagation area so that the stress can be widely relaxed and propagated. That is, in the above-described formula of R f , N or coefficient C is increased.
(3) また、 R p (先端支持力) を増強するために、 杭下端部 (先端部) の杭外表 面を広くしソィルセメントとの付着面積を増強すると共に、 付着面よりの応力が 充分に伝搬できる高固化強度の根固め部を形成することを目的とする。 即ち、 上 記式において、 α及び A pを大きくする。 (3) In order to enhance the R p (tip bearing capacity), pile lower end as well as enhance the adhesion area with the widened pile outside table surface of the (tip) Soirusemento, sufficiently stress than deposition surface An object of the present invention is to form a rooted portion having a high solidification strength that can propagate. That is, in the above equation, α and Ap are increased.
また、 この発明は、 中掘工法において、 杭穴掘削時に、 既製杭の中空部より地 上に排出される排土を少なくすることを目的とする。  Another object of the present invention is to reduce the amount of soil discharged from the hollow portion of a ready-made pile to the ground when excavating a pile hole in the excavation method.
(4) また、 特許文献 3の発明は、 予め先端に地中にねじ込みできかつ補強とな る金具を付けた鋼管を、 ケーシングとして地中にねじ込み、 その後鋼管内に、 既 製杭 (コンクリート製) を挿入する工法で、 排土の削減を実現する発明が開示さ れている。 し力 し、 この工法では、 既製杭を金具に載せただけであり、 既製杭と 金具の一体性が無く、 更に地盤と既製杭との間の応力伝搬を確実にするソィルセ メント層などの固化混合層の配慮が無く、 高支持力の発揮は期待できない。 また 、 この工法は、 金具を必須としているので、 中掘工法への応用は一切できない。 また、 特許文献 4の発明は、 既製杭の外径と等しい径の杭穴を掘削し、 その後 らせん翼を有する既製杭を埋設する先掘工法である。 杭穴の軸部の径を相対的に 小さくすることにより、 掘削土の排出量を軽減する点が開示されている。 しかし 、 特許文献 4の発明は、 らせん翼をねじ込む際に、 大きなねじれが既製杭に生じ 、 地盤が固い場合には特に既製杭に巨大なねじれが生じ、 コンクリート製の既製 杭では実施不可能である。 また、 地層に軟らかい層が含まれている場合には、 杭 穴径が小さいので、 杭穴壁と既製杭の外側面との隙間にセメントミルク等と固化 混合層の形成ができ難いので、 周辺摩擦力の発揮が困難である。 また、 特許文献 5の発明は、 中空の既製杭の下端部にらせん翼と掘削刃を有す る推進へッドを嵌め合わせて、 既製杭を通した回転口ッドで推進へッドを回転し て、 既製杭を無回転で貫入させる工法が開示されている。 しかし、 特許文献 5の 発明は、 埋設される推進ヘッドと既製杭との一体性が不確実で、 また拡大掘削が できないので、 推進ヘッドを使った有効な支持地盤周辺での支持力強化が図れな い。 また、 中間深さの地層に軟らかい層が含まれている場合には、 その部分での 固化混合層の形成ができず、 周辺摩擦力の強化が図れない。 更に、 複雑な構造の 推進ヘッドを支持地盤から回収できず、 コストを要する。 2. 課題を解決するための手段 (4) Also, the invention of Patent Document 3 discloses a method in which a steel pipe having a metal fitting which can be screwed into the ground at the tip in advance and which is used as a reinforcement is screwed into the ground as a casing. An invention is disclosed that realizes a reduction in earth removal by a method of inserting a). However, in this method, the ready-made pile is simply placed on the metal fittings, and there is no integration between the ready-made piles and the metal fittings, and the solidification of the soil cement layer, etc., that ensures the stress propagation between the ground and the ready-made piles Due to the lack of consideration for the mixed layer, high bearing capacity cannot be expected. In addition, since this method requires metal fittings, it cannot be applied to the excavation method at all. Also, the invention of Patent Document 4 is a pre-drilling method in which a pile hole having a diameter equal to the outer diameter of a ready-made pile is excavated, and then a ready-made pile having a spiral wing is buried. It is disclosed that the diameter of the shaft of the pile hole is made relatively small to reduce the amount of excavated soil. However, in the invention of Patent Document 4, when screwing the spiral wing, a large twist is generated in the ready-made pile, and when the ground is hard, a huge torsion is generated in the ready-made pile, and it is impossible to perform with a ready-made concrete pile. is there. Also, if the formation contains a soft layer, the pile hole diameter is small, and it is difficult to form a solidified mixed layer with cement milk etc. in the gap between the pile hole wall and the outer surface of the ready-made pile. It is difficult to exert frictional force. Also, the invention of Patent Document 5 discloses that a propulsion head having a spiral wing and an excavating blade is fitted to the lower end of a hollow prefabricated pile, and the propulsion head is rotated by a rotating mouth through the prefabricated pile. A method of rotating and penetrating a ready-made pile without rotation is disclosed. However, in the invention of Patent Document 5, since the integrity of the buried propulsion head and the ready-made pile is uncertain and the excavation cannot be performed, it is possible to use the propulsion head to enhance the supporting force around the effective supporting ground. Absent. In addition, if the formation at the middle depth contains a soft layer, a solidified mixed layer cannot be formed at that part, and the peripheral frictional force cannot be enhanced. Furthermore, the propulsion head with a complicated structure cannot be recovered from the supporting ground, which requires cost. 2. Means to solve the problem
前記課題を解決するために、 この発明では、 杭穴軸部も含めて、 従来に比べて 掘削径の大きい (既製杭の杭径に対して) 杭穴を掘削し、 更に当該杭穴の掘削中 に、 少なくとも設計上望ましい深度範囲の適宜区間に固化混合層を形成しつつ杭 穴を掘削する構成とした。  In order to solve the above-mentioned problems, in the present invention, a pile hole including a shaft portion of a pile hole is excavated with a larger excavation diameter than the conventional one (relative to the pile diameter of a ready-made pile), and further excavation of the pile hole is performed. In addition, a configuration was adopted in which a pile hole was excavated while forming a solidified mixed layer at least in an appropriate section within the desired depth range for design.
即ち、 第 1の発明は、 既製杭の中空部の先端から掘削口ッドの掘削へッドを突 出させ、 地盤を掘削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記 既製杭を埋設する杭の中掘工法において、  That is, in the first invention, the excavation head of the excavation hole protrudes from the tip of the hollow part of the prefabricated pile, excavates the ground to lower the prefabricated pile while forming a pile hole, and In the pile excavation method of burying the ready-made pile in the hole,
当該地盤中で、 設計で定めた所定の深度範囲に固化混合層を形成し、 当該深度範 囲以外の深度範囲では、 通常の杭穴掘削をすることを特徴とした杭の中掘工法で ある。 This is a pile excavation method in which a solidified mixed layer is formed at a predetermined depth range determined by design in the ground, and ordinary pile drilling is performed in depth ranges other than the depth range. .
また、 第 2の発明は、 既製杭の中空部の先端から掘削ロッドの掘削ヘッドを突 出させ、 地盤を掘削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記 既製杭を埋設する杭の中掘工法において、  Further, the second invention is characterized in that a drilling head of a drilling rod protrudes from the tip of the hollow portion of the ready-made pile, excavates the ground, lowers the ready-made pile while forming a pile hole, and places the ready-made pile in a predetermined pile hole. In the pile digging method to bury the pile,
当該地盤中で、 設計で定めた所定の深度範囲に固化混合層を形成して地盤強度を 復元及び強化し、 当該深度範囲以外の深度範囲では、 通常の杭穴掘削をすること を特徴とした杭の中掘工法である。 In the ground, a solidified mixed layer is formed at a predetermined depth range determined by design to restore and strengthen the ground strength, and normal pile drilling is performed in depth ranges other than the depth range This is a method of digging piles.
また、 第 3の発明は、 既製杭の外径より大径の径で杭穴を形成して、 設計で定 めた所定の深度範囲を掘削する際に、 掘削土にセメントミルク類を注入して、 該 掘削土を撹拌混合して、 所定固化強度の固化混合層を形成することを特徴とした 請求の範囲第 1項又は第 2項記載の杭の中掘工法である。 また、 第 4の発明は、 前記第 1〜第 3の発明において、 既製杭の外径の 1 . 4 倍以上の径で杭穴を形成して、 設計で定めた所定の深度範囲を掘削する際に、 掘 削土にセメントミルク類を注入して、 該掘削土を撹拌混合して、 所定固化強度の 固化混合層を形成することを特徴とした杭の中掘工法である。 In the third invention, a cement hole is formed with a diameter larger than the outer diameter of a ready-made pile, and when excavating a predetermined depth range determined by design, cement milk is injected into excavated soil. 3. The pile excavation method according to claim 1, wherein said excavated soil is stirred and mixed to form a solidified mixed layer having a predetermined solidification strength. In a fourth aspect, in the first to third aspects, a pile hole is formed with a diameter of 1.4 times or more the outer diameter of the ready-made pile, and a predetermined depth range determined by design is excavated. At this time, a method of excavating soil by injecting cement milk into the excavated soil and stirring and mixing the excavated soil to form a solidified mixed layer having a predetermined solidification strength.
また、 第 5の発明は、 既製杭の中空部の先端から掘削ロッドの掘削ヘッドを突 出させ、 地盤を掘削して杭穴を形成しつつ前記既製杭を下降して、 所定杭穴内に 前記既製杭を埋設する杭の中掘工法において、  In a fifth aspect of the present invention, the excavation head of the excavation rod is protruded from the tip of the hollow portion of the prefabricated pile, and the prefabricated pile is lowered while excavating the ground to form a pile hole. In the pile digging method to bury ready-made piles,
前記既製杭の外径の 1 . 4倍以上の径で杭穴を形成して、 前記地盤で比較的軟弱 な地層を含む深度区間において、 掘削土にセメントミルク類を注入して、 該掘削 土を撹拌混合して、 所定固化強度の固化混合層を形成することを特徴とした杭の 中掘工法である。 Pile holes are formed with a diameter of at least 1.4 times the outer diameter of the ready-made pile, and cement milk is injected into the excavated soil in a depth section including a relatively soft stratum on the ground, and the excavated soil is formed. This is a method for excavating piles, characterized by forming a solidified mixed layer with a predetermined solidification strength by stirring and mixing.
また、 第 6の発明は、 既製杭の中空部の先端から掘削ロッドの掘削ヘッドを突 出させ、 地盤を掘削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記 既製杭を埋設する杭の中掘工法において、  In a sixth aspect of the present invention, the drilling head of the drilling rod protrudes from the tip of the hollow portion of the ready-made pile, excavates the ground to lower the ready-made pile while forming a pile hole, and places the ready-made pile in a predetermined pile hole. In the pile digging method to bury the pile,
中間部に排土機構を有しない掘削ロッドを使用して、 前記既製杭の外径の 1 . 4 倍以上の径で地盤をほぐしながら掘削し、 ほぐした掘削土を、 前記既製杭の外面 で外側に押し固めながら、 前記既製杭を沈設することを特徴とした杭の中掘工法 である。 Using an excavating rod without an unloading mechanism in the middle, excavating the ground with a diameter of at least 1.4 times the outer diameter of the ready-made pile, and excavating the loosened soil on the outer surface of the ready-made pile This is a method of digging a pile, wherein the ready-made pile is laid down while being compacted to the outside.
また、 第 7の発明は、 既製杭の中空部の先端から掘削ロッドの掘削ヘッドを突 出させ、 地盤を掘削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記 既製杭を埋設する杭の中掘工法において、  In a seventh aspect of the present invention, the drilling head of the drilling rod protrudes from the tip of the hollow part of the ready-made pile, excavates the ground, lowers the ready-made pile while forming a pile hole, and moves the ready-made pile into a predetermined pile hole. In the pile digging method to bury the pile,
前記既製杭の外径の 1 . 4倍以上の径で地盤をほぐしながら掘削し、 ほぐした掘 削土を、 前記既製杭の外面で外側に押し固めながら、 前記既製杭を沈設すること を特徴とした杭の中掘工法である。 Excavating the ground with a diameter of at least 1.4 times the outer diameter of the ready-made pile, and submerging the ready-made pile while pressing the loosened excavated soil outward on the outer surface of the ready-made pile. This is a method of digging a pile.
また、 第 8の発明は、 既製杭の中空部の先端から掘削口ッドの掘削へッドを突 出させ、 地盤を掘削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記 既製杭を埋設する杭の中掘工法において、  In the eighth invention, the excavation head of the excavation hole protrudes from the tip of the hollow portion of the prefabricated pile, excavates the ground to lower the prefabricated pile while forming a pile hole, and In the pile excavation method of burying the ready-made pile in the hole,
中間部に排土機構を有しない掘削ロッドを使用し、 当該地盤中で、 設計で定めた 所定の深度範囲を、 前記既製杭の外径の 1 . 4倍以上の径で地盤をほぐしながら 掘削し、 ほぐした掘削土を、 前記既製杭の外面で外側に押し固めて、 あるいは設 計で定めた所定深度範囲には所定固化強度の固化混合層を形成し、 当該深度範囲 以外の深度範囲では、 通常の杭穴掘削をすることを特徴とした杭の中掘工法であ る。 Intermediate portion using the drill rod having no earth unloading mechanism, in the in the ground, a predetermined depth range defined in the design, while loosening the ground 1. More than four times the diameter of the outer diameter of the prefabricated pile excavation The loosened excavated soil is pressed outward on the outer surface of the ready-made pile, This is a method of excavating a pile with a feature that a solidified mixed layer with a predetermined solidification strength is formed in a predetermined depth range determined by the total, and ordinary pile hole excavation is performed in a depth range other than the depth range.
また、 第 9の発明は、 前記第 1〜第 8の発明において、 既製杭の先端に先端金 具を連結して、 該先端金具の先端から掘削ヘッドを突出して、 地盤を掘削して杭 穴を形成し、 前記先端金具は、 筒状基部の外側面に、 上方又は下方に向けて、 せ ん断カを伝搬させ先端支持力として利用することができる支持面を、 1つ又は複 数箇所に形成することを特徴とした杭の中掘工法である。  According to a ninth invention, in the first to eighth inventions, a tip fitting is connected to a tip of the ready-made pile, and a drilling head is protruded from the tip of the tip fitting to excavate the ground to make a pile hole. The tip fitting is provided with one or more support surfaces on the outer surface of the cylindrical base, which can transmit the shear force upward and downward and can be used as tip support force. This is a method of excavating piles, which is characterized by being formed in a pile.
また、 第 1 0の発明は、 前記第 1〜第 8の発明において、 杭軸部の下端部外側 面に凹凸部を形成した既製杭を使用して、 該既製杭の先端から掘削へッドを突出 して、 地盤を掘削して杭穴を形成し、 前記既製杭の凹凸部は、 前記既製杭の下端 部外側面に、 上方又は下方に向けて、 せん断力を伝搬させ先端支持力として利用 することができる支持面を、 1つ又は複数箇所に形成することを特徴とした杭の 中掘工法である。  In a tenth aspect, in the first to eighth aspects, the excavation head is formed from the tip of the prefabricated pile by using a prefabricated pile having an uneven portion formed on the outer surface of the lower end of the pile shaft. And excavate the ground to form a pile hole, and the uneven portion of the ready-made pile propagates upward or downward on the outer surface of the lower end of the ready-made pile, as a tip supporting force. This is a method of excavating piles, characterized by forming one or more support surfaces that can be used.
また、 第 1 1の発明は、 前記第 1〜第 8の発明において、 既製杭の先端に、 筒 状基部の外側面に横方向の突起を形成した先端金具を連結して、 該先端金具の先 端から掘削へッドを突出して、 地盤を掘削して杭穴を形成することを特徴とする 杭の中掘工法である。  Also, in the eleventh invention, in the first to eighth inventions, a tip fitting having a lateral projection formed on an outer surface of a cylindrical base is connected to a tip of the ready-made pile, and This is a method of excavating piles by protruding an excavation head from the tip and excavating the ground to form pile holes.
また、 第 1 2の発明は、 前記第 1〜第 8の発明において、 固化混合層の外径と 、 杭穴の根固め部の外径とを略同一外径に形成することを特徴とする杭の中掘ェ 法である。  According to a twelfth invention, in the first to eighth inventions, the outer diameter of the solidified mixed layer and the outer diameter of the pile-fixing portion of the pile hole are formed to be substantially the same outer diameter. It is a method of digging a pile.
また、 第 1 3の発明は、 杭穴内に既製杭を埋設して構成した基礎杭構造であつ て、  A thirteenth invention is a foundation pile structure in which a ready-made pile is buried in a pile hole,
前記杭穴は、 少なくとも設計で予め定めた深度範囲の地盤強度を復元及び改良し て構成し、 前記既製杭は下端部に、 先端金具を取り付けてなり、 該先端金具は筒 状基部の外側面に、 斜め上方又は斜め下方に向けて、 せん断力を伝搬させ先端支 持力として利用することができる支持面を、 1つ又は複数箇所に形成して構成し たことを特徴とする基礎杭構造である。 The pile hole is constructed by restoring and improving the ground strength at least in a depth range predetermined by design, and the ready-made pile is provided with a tip fitting at a lower end thereof, and the tip fitting is an outer surface of a cylindrical base. A foundation pile structure characterized in that a support surface capable of transmitting a shearing force and being used as a tip supporting force is formed at one or a plurality of locations in an obliquely upward or obliquely downward direction. It is.
前記における比較的軟弱な地層とは、 既製杭の埋設予定の地盤で、 その 1つの 杭穴で、 予め想定した地盤強度に対して、 その想定した地盤強度より小さな強度 しか有しない地盤強度の地盤を指す。 例えば、 想定する地盤強度を、 砂質土にお いて、 N値で " 2 0 " とした場合、 その平均 N値より大幅に低い値、 例えば " 5 " より小さな値を有する N値を有する、 支持力としてほとんど考慮できない地盤 を指す。 この場合、 予め想定する地盤強度は、 1本の杭穴毎に設定される場合、 あるいは敷地全体に対して設定される場合、 等がある。 The relatively soft stratum mentioned above is the ground where ready-made piles are to be buried, and one of the pile holes has a strength smaller than the assumed ground strength compared to the assumed ground strength. Refers to ground with only ground strength. For example, if the assumed ground strength is assumed to be "20" in an N value in sandy soil, it has a value significantly lower than the average N value, for example, an N value having a value smaller than "5". It refers to the ground that can hardly be considered as bearing capacity. In this case, the assumed ground strength may be set for each pile hole, or may be set for the entire site.
また、 前記において、 セメントミルク類とは、 掘削土に混入して撹拌混合すれ ば、 所定時間経過後に固化するセメントミルク及びセメントミルクと同等の水硬 性の材料を指す。  Further, in the above, cement milks refer to cement milk which solidifies after a lapse of a predetermined time if mixed into excavated soil and a hydraulic material equivalent to cement milk.
また、前記において、 「設計で定めた所定の深度範囲」 は、通常地盤は各種地盤 強度の地層から形成されており、 どの深度範囲を設定するかは、 基礎杭構造の総 体として、 強度を高められる範囲を定める。 即ち、 軟弱な地層を 「所定の深度 範囲」 に定める場合、 あるいは比較的地盤強度の強い中間層を 「所定の深度範囲 」 と定める場合、 軟弱の層を適宜を組み合わせて 「所定の深度範囲」 とする場合 、 あるいは、 地盤強度によらず、 ある深度範囲を 「所定の深度範囲」 に定める場 合等がある。  In the above, the “predetermined depth range determined by design” means that the normal ground is formed from strata of various ground strengths, and which depth range is set depends on the strength of the entire foundation pile structure. Determine the range to be enhanced. That is, when the soft stratum is defined as the “predetermined depth range”, or when the middle layer having relatively strong ground strength is defined as the “predetermined depth range”, the soft strata are appropriately combined and set as the “predetermined depth range”. Or a certain depth range is defined as a “predetermined depth range” regardless of the ground strength.
また、前記において、 「既製杭の外径の 1 . 4倍以上で掘削」 としたが、 特に杭 穴の軸部においては、 上限は無く、 大径とすればそれだけ既製杭の埋設は容易で あり、 かつ支持力の増加が期待できる。 しカゝし、 大径とすればそれだけ大きな掘 削口ッドを必要とし、 また掘削速度も遅くなり、 施工効率が悪くなる。 従って、 上記及び基礎杭 (既製杭) の設置間隔等を比較調整して、 通常は、 根固め部で高 い先端支持力が得られる掘削径と同一寸法である 1 . 4〜1 . 5倍程度が望まし レ、。  In the above, “excavation was performed at least 1.4 times the outer diameter of the ready-made pile”, but there is no upper limit especially for the shaft of the pile hole, and the larger the diameter is, the easier it is to bury the ready-made pile. Yes, and can be expected to increase support capacity. However, a larger diameter requires a larger excavation hole, and lowers the excavation speed, resulting in poor construction efficiency. Therefore, by comparing and adjusting the installation interval of the above and the foundation piles (ready piles), the excavation diameter is usually 1.4 to 1.5 times the same as the excavation diameter at which the high tip support force can be obtained at the foundation. Desired degree,
また、 前記における 「せん断力の伝搬」 とは 「先端金具 1 3を取り付けた既製 杭」 あるいは 「下端部外側面に囬凸部を設けた既製杭」 を杭穴内の固化したソィ ルセメント層内に埋設した場合に当該ソィルセメント層へ向けてせん断力を伝搬 できることをいう。 また「せん断力を伝搬させることができる支持面」 は、 「先端 金具の筒状基部 (鋼管本体) 6の外側面」 あるいは 「既製杭の下端部外側面」 に 突起 (例えば環状突起) 1 0を形成した場合には、 当該突起 1 0の下面が下方に 向けてせん断力を伝搬されることができる支持面 Bを構成し、 当該突起 1 0の上 面が上方に向けてせん断力を伝搬されることができる支持面 Aを構成する (第 4 図 (a))。 この場合、 突起 10の上下面は、 垂直面に対して多少傾斜した面であ ることが望ましい。 また、 実験によれば、 せん断力の伝搬する方向は、 垂直面に 対して斜めに作用しているので、 当該伝搬する方向と直角に形成することが望ま しいことが分かっている。 In addition, the “propagation of shear force” in the above refers to “a ready-made pile with the tip 13 attached” or “a pre-made pile with a convex portion on the outer surface of the lower end” in the solidified cement layer in the pile hole. When buried, means that shear force can be propagated toward the soil cement layer. Also, the “supporting surface that can transmit the shearing force” is a projection (for example, an annular projection) on the “outer surface of the cylindrical base (steel pipe body) 6 of the tip metal fitting” or the “outer surface of the lower end of the prefabricated pile”. When the projections are formed, the lower surface of the projection 10 constitutes a support surface B to which the shear force can be propagated downward, and the upper surface of the projection 10 propagates the shear force upward. Constitute a support surface A that can be Figure (a)). In this case, it is desirable that the upper and lower surfaces of the projection 10 are surfaces slightly inclined with respect to the vertical surface. Also, according to experiments, it has been found that the direction in which the shear force propagates acts obliquely to the vertical plane, so that it is desirable to form the shear force at right angles to the propagation direction.
また、 突起部を広く取るために、 上下方向のせん断力の作用する支持面を筒状 基部 1の外側面に凹部として形成した場合には、 凹部の側壁面が各支持面 A、 B を構成する (第 4図 (b))D 更に、 支持面は、 突起や凹部に限らず、 筒状基部 6 の外側面に段差を形成して同様の機能を有する支持面 A又は支持面 Bとすること もでき (第 4図 (c) (d))、 その形状は任意である。 要は、 筒状基部 6 (既製杭 1に環状突起 37を形成する場合には、下部軸部 36。 第 2図 (a)) の外側面に せん断力の伝搬に有効な何らかの手段 (例えば段差部等) が形成され、 先端支持 力として利用できれば、 凹凸の形状に関係なく支持面を構成できる。 When the support surface on which the shear force in the vertical direction acts is formed as a concave portion on the outer surface of the cylindrical base 1 in order to increase the protrusion, a side wall surface of the concave portion constitutes each of the support surfaces A and B. (Fig. 4 (b)) D Further, the supporting surface is not limited to the protrusion or the concave portion, and a step is formed on the outer surface of the cylindrical base 6 to be the supporting surface A or the supporting surface B having the same function. (Fig. 4 (c) (d)), and the shape is arbitrary. In short, the outer surface of the cylindrical base 6 (the lower shaft 36 when the annular projection 37 is formed on the ready-made stake 1; FIG. 2 (a)) is provided on the outer surface with some means effective for transmitting the shear force (for example, a step). Part) is formed, and if it can be used as the tip support force, the support surface can be configured irrespective of the shape of the unevenness.
また、 前記における筒状基部 6 (あるいは、 下部軸部 36。 第 2図 (a)) は、 応力の伝搬バランス上、 円筒状とすることが望ましいが、 角筒等その形状は任意 である。  The cylindrical base 6 (or the lower shaft 36 in FIG. 2 (a)) is desirably cylindrical in view of the balance of stress propagation, but its shape such as a square tube is arbitrary.
また、 前記において、 先端金具 1 3の筒状基部 6の外径 D„は、 既製杭 1の外 径 より小径に形成すれば(Du^D^;)、既製杭 1の外径 D01に応じた杭穴 を掘削すれば良いので望ましい。 この場合には、 筒状基部 6の上端部に、 既製杭 1の外径 D01に応じた大径部 7を形成する (第 2図 (b))。 また、 この場合、 支 持面を形成する環状突起 10の外径 D13を、既製杭 1の外径 D01 (即ち、 大径部 7の外径) より小径とし (D13<D01)、 あるいは、 外径 D13を既製杭 1の外径 D01より大径とすることもでできる (D01<D13)。 また、 当然、 D13 = D01 、 とすることもできる。 また、外径 D13を D01より大きくしない方が既製杭を揷 入する際の抵抗が少ないので、 高い地盤強度 (あるいは土質の密度) 等の地盤の 施工では有効である。 Further, in the above, the outer diameter D "is of the tubular base part 6 of the end bracket 1 3, if a diameter smaller than the outer diameter of the prefabricated pile 1 (Du ^ D ^;) , the outer diameter D 01 of the prefabricated pile 1 desirable since it suffices drilling Kuiana corresponding. in this case, the upper end of the tubular base part 6, to form a large diameter portion 7 corresponding to the outer diameter D 01 of the prefabricated pile 1 (FIG. 2 (b )). in this case, the outer diameter D 13 of the annular projection 10 forming a supporting lifting surface, the outer diameter D 01 of the prefabricated pile 1 (i.e., a smaller diameter than the outer diameter) of the large diameter portion 7 (D 13 < D 01), or the outer diameter D 13 can in be a larger diameter than the outer diameter D 01 of the prefabricated pile 1 (D 01 <D 13) . in addition, of course, D 13 = D 01, it is also to possible. also, since the outer diameter D 13 is better not greater than D 01 resistance when the input揷prefabricated pile is small, it is effective in the construction of the ground, such as high ground intensity (or density of the soil).
また、 筒状基部 6の外径 D i を、 既製杭 1の外径 D01と同等とし (Doi^Di !), あるいは、筒状基部 1の外径 D„を、既製杭 1の外径 D01より大径とするこ ともできる
Figure imgf000011_0001
これらの寸法は、 地盤強度や土質の密度、 基礎杭に 求められる所要耐カ等により使い分けることができる。
Also, the outer diameter D i of the tubular base 6 is made equal to the outer diameter D 01 of the ready-made pile 1 (Doi ^ Di!), Or the outer diameter D „of the tubular base 1 is changed to the outer diameter of the ready-made pile 1. Can be larger than D 01
Figure imgf000011_0001
These dimensions can be selected depending on the ground strength, soil density, required strength of foundation piles, and so on.
また、 先端金具 13を使用せずに、 既製杭 1に細径の下部軸部 36を形成して 該部に環状突起 3 7、 3 7を形成した場合には (第 2図 (a ) ) 筒状基部 6の外面 1 下部軸部の外面に相当し、 同様な構成となるように設定する。 Also, without using the tip metal fittings 13, a small diameter lower shaft portion 36 is formed in the ready-made pile 1. When the annular projections 37, 37 are formed in this portion (FIG. 2 (a)), the outer surface 1 of the cylindrical base 6 corresponds to the outer surface of the lower shaft portion, and is set to have the same configuration.
また、前記において、筒状基部 6の内径 2を既製杭 1の内径 D 0 2と同等以上 とすることが望ましレ、。 該部を掘削へッドを揷通することが容易となるからであ る。 Further, in the above, Shi desired to the inner diameter 2 of the tubular base part 6 and ready pile 1 having an inner diameter D 0 2 equal or les. This is because it becomes easy to pass the excavation head through the section.
3 . 発明の効果 3. Effect of the invention
(1) 所定の区間で固化混合層を形成し、 更に、 掘削土を排出せず既製杭の外周 壁で、 地盤を押圧するので、 同径の既製杭を使用した従来の中掘工法に比して、 約 2倍の支持力を発揮することが可能である。  (1) A solidified mixed layer is formed in a predetermined section, and the ground is pressed by the outer peripheral wall of the ready-made pile without discharging excavated soil. As a result, it is possible to demonstrate about twice the bearing capacity.
また、 N値の大小に関わらず、 適宜区間を大径で杭穴掘削をしてセメントミル ク類を注入して固化混合層を形成する場合には、 更に杭周摩擦力を復元及び補強 できるので確実に支持力の増強が見込まれる。  Regardless of the value of N value, when drilling a pile hole with a large diameter in an appropriate section and injecting cement milk to form a solidified mixed layer, it is possible to further restore and reinforce the pile circumferential friction force Therefore, it is expected that the support capacity will surely be increased.
(2) 従来の中掘工法は、 掘削土の排出が多いのが難点であつたが、 本発明では 既製杭の外径より大径 (例えば、 既製杭の外径の約 1 . 4倍以上の大径) の杭穴 をほぐして形成することにより、 特に掘削口ッドに排土機構を設けることなく既 製杭を沈設することもできるので、 排土量を、 セメントミルク等の杭穴内へ注入 した注入物量程度にまで低減できる。 また、 比較的軟弱で支持力の期待できない 地層 (良くない地層) を含む深度区間のみに、 掘削土にセメントミルク類を注入 して撹拌混合して固化混合層を形成することもできる。 更に、 大径の杭穴を既製 杭の外径の約 1 . 4倍以上の径で掘削する場合には、 高支持力が得られる根固め 部が形成されるので、 より高耐カを有する基礎杭も同時に構築できる。  (2) The conventional excavation method has the disadvantage that a large amount of excavated soil is discharged, but in the present invention, the diameter is larger than the outer diameter of the ready-made pile (for example, about 1.4 times or more the outer diameter of the ready-made pile). By unraveling the pile hole of large diameter, it is possible to settle the existing pile without the need for an earth removal mechanism, especially at the excavation hole. Can be reduced to about the amount of injected material. It is also possible to form a solidified mixed layer by injecting and mixing cement milk into the excavated soil only in the depth section that includes a relatively soft and unbearable formation (poor formation). Furthermore, when excavating a large-diameter pile hole with a diameter of about 1.4 times or more the outer diameter of a ready-made pile, a rooted part that can obtain a high bearing capacity is formed, so it has higher resistance to power. Foundation piles can be built at the same time.
(3) 掘削した杭穴内に固化混合層を形成するので、 固化混合層が既製杭の外周 面と一体に付着できれば、 外周に大径の環状突起を有する既製杭を構成できるの で、 隣接する基礎杭で固化混合層を略同一深さに形成し、 かつ固化前に施工でき れば、 隣接する固化混合層を相互に連結することもでき、 相互連結群としてより 強力な基礎杭構造を実現できる。  (3) Since the solidified mixed layer is formed in the excavated pile hole, if the solidified mixed layer can adhere to the outer peripheral surface of the ready-made pile integrally, a ready-made pile having a large-diameter annular protrusion on the outer periphery can be constructed, so it is adjacent If the solidified mixed layer is formed at the same depth with the foundation pile and can be constructed before solidification, adjacent solidified mixed layers can be connected to each other, realizing a stronger foundation pile structure as an interconnected group it can.
(4) 固化混合層の外径と杭穴の根固め部の径とを略同一とすることにより、 杭 穴掘削工事が単純になり、 制御プロセスが簡素化され、 かつ掘削ヘッドの信頼性 も向上する。 また、 固化混合層の外径を、 基礎杭の外径の 1 . 5倍以上にできる 掘削へッドも容易に実現できる。 (4) By making the outer diameter of the solidified mixed layer approximately the same as the diameter of the piled-up part, the drilling work for the pile hole is simplified, the control process is simplified, and the reliability of the drilling head is also improved. improves. Also, the outer diameter of the solidified mixed layer can be more than 1.5 times the outer diameter of the foundation pile. Drilling heads can be easily realized.
また、 施工地盤が硬い、 あるいは密度が高い場合に、 掘削ロッドに多少の排土 機構を設け施工速度を高めた構成とした場合でも、 本施工方法を組み合わせれば 、 従来に比べて大幅に排土量を低減できる。  In addition, when the construction ground is hard or high in density, even if the construction speed is increased by providing a little soil removal mechanism on the excavation rod, this construction method can significantly reduce The amount of soil can be reduced.
(5) また、 先端金具を使用することが望ましいが、 下端部に凹凸部を形成した コンクリート製の既製杭を採用して同様の高支持力を得ることができる効果があ る。 この場合、 凹凸部を先端金具と同様な構成として、 同様の施工方法を採用で きるので、 従来の先掘工法によつて下端部に凹凸部を形成したコンクリート製の 既製杭を埋設した場合と同様な根固め部を形成することにより、 高支持力を得る ことができる。  (5) Although it is desirable to use metal fittings at the tip, it is possible to obtain the same high bearing capacity by using a pre-made concrete pile with an uneven portion at the lower end. In this case, the same construction method can be adopted by making the uneven parts the same configuration as the tip metal fittings.Therefore, there is a case where a concrete precast pile with uneven parts formed at the lower end by the conventional excavation method is buried. By forming a similar rooting portion, a high supporting force can be obtained.
図面の簡単な説明 第 1図 (a ) は、 この発明の実施例の既製杭と掘削ロッドを表し、 既製杭を破折 した拡大正面図、 第 1図 (b ) は、 この発明の基礎杭構造である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) shows a ready-made pile and a drilling rod according to an embodiment of the present invention, and is an enlarged front view of a broken ready-made pile, and FIG. 1 (b) is a basic pile of the present invention. Structure.
第 2図は、 基礎杭構造の根固め部の拡大正面図で、 (a ) ( b ) はこの発明の実施 例である。 FIG. 2 is an enlarged front view of a reinforced portion of the foundation pile structure, and (a) and (b) are embodiments of the present invention.
第 3図は、 この発明の、 中掘工法を説明する縦断面図である。 FIG. 3 is a vertical cross-sectional view for explaining the excavation method of the present invention.
第 4図 (a;) 〜 (d ) は、 この発明の先端金具の支持面とせん断力の伝搬を説明 する概略した縦断面図である。 FIGS. 4 (a;) to (d) are schematic longitudinal sectional views for explaining the support surface of the tip fitting and the propagation of shearing force according to the present invention.
第 5図は、 この発明の実施に使用する他の掘削へッドの正面図である。 FIG. 5 is a front view of another excavating head used for carrying out the present invention.
第 6図は、 基礎杭構造の根固め部の拡大正面図で、 先掘り工法で掘削した比較例 を表す。 Fig. 6 is an enlarged front view of the foundation of the foundation pile structure, showing a comparative example excavated by the pre-drilling method.
発明を実施するための最良の形態 1 . 基本的な実施形態 BEST MODE FOR CARRYING OUT THE INVENTION 1. Basic Embodiment
(1) 既製杭 1を埋設する予定の地盤で、 既製杭 1の中空部 2を揷通して突出し た掘削へッド 1 8で、 杭穴 2 8を掘削しつつ、 地盤をほぐして形成した杭穴 2 8 内に、 既製杭 1を下降して沈設する (第 3図 (a ) 〜 (c ) )。 掘削ヘッド 1 8で 掘削する杭穴 2 8の掘削径は、 沈設する既製杭 1の外径以上、 例えば、 1 . 4〜 1 . 5倍程度の大径で地面 2 5から掘削する。 ここで、 掘削時及び既製杭の沈設 時に掘削土の排出をしないため、 掘削ロッドの中間部においては、 従来のような 排土用の機能 (スパイラル等) は必ずしも設ける必要はない。 (1) On the ground where ready-made pile 1 is to be buried, project through hollow part 2 of ready-made pile 1 The excavated head 18 excavates the pile hole 28 and lowers the ready-made pile 1 into the pile hole 28 formed by loosening the ground (Fig. 3 (a) to (c). )). The excavation diameter of the pile hole 28 excavated by the excavation head 18 is larger than the outer diameter of the ready-made pile 1 to be set, for example, about 1.4 to 1.5 times as large as the excavation from the ground 25. Here, since the excavated soil is not discharged during excavation and when the ready-made piles are laid, it is not always necessary to provide a conventional function for discharging soil (such as a spiral) in the middle of the excavated rod.
尚、 地盤強度が高い地盤や土質の密度が非常に高い地盤等を掘削する際で、 施 ェ速度を上げたい場合には、 既製杭の貫入抵抗を減らすために、 掘削ロッドに部 分的に通常のスパイラル (排土機能) を形成し、 あるいは小径のスパイラル形成 した構造とし、 多少の排土をすることも有効である。  When excavating ground with high ground strength or ground with very high soil density, if the application speed is to be increased, the drilling rod must be partially connected to the drilling rod in order to reduce the penetration resistance of the ready-made pile. It is also effective to form a normal spiral (discharge function) or to form a small-diameter spiral and to discharge a little amount of soil.
この際、 改良予定地盤に相当する地層 2 6 A、 2 6 Bを掘削する際には、 掘削 へッド 1 8から掘削土内へ固化剤を注入しながら掘削■撹拌し所定固化強度の改 良地盤を造成し、 併行して順次、 既製杭 1を沈設する。  At this time, when excavating the formations 26 A and 26 B corresponding to the ground to be improved, excavation and agitation were performed while pouring the solidification agent into the excavated soil from the excavation head 18 to improve the specified solidification strength. A good ground will be created, and the ready-made pile 1 will be laid down in parallel.
従来の中掘工法では、 既製杭 1の外周には厚さ 1 ~ 2 c mの杭周固定液層を介 して直ぐに地盤に至るが、 この発明では、 固化混合層においては、 固化混合層が 厚く形成され、 固化混合層 (外径) の外周全体が地盤に接する。  According to the conventional drilling method, the outer periphery of the ready-made pile 1 immediately reaches the ground through a pile fixed liquid layer having a thickness of 1 to 2 cm, but in the present invention, in the solidified mixed layer, the solidified mixed layer is It is formed thick, and the entire outer periphery of the solidified mixed layer (outer diameter) is in contact with the ground.
例えば、 既製杭 1の外径 6 0 0 mmの場合、 固化混合層の外径は 8 4 0〜 9 0 O mm程度となり、 応力が伝搬する十分な厚さを確保するために、 固化混合層の 厚さ (上下方向の長さ) は強度上から l m以上が望ましい。  For example, if the outer diameter of the ready-made pile 1 is 600 mm, the outer diameter of the solidified mixed layer will be about 840 to 90 Omm, and in order to secure a sufficient thickness for transmitting the stress, the solidified mixed layer The thickness (vertical length) is preferably lm or more from the viewpoint of strength.
ここで、 この発明の大径掘削により適切に地盤がほぐされ緩められるため、 特 に掘削土の排出をしないでも、 外側面に凹凸のあるコンクリート製の既製杭も沈 設ができるので、 ほとんど排土のない基礎杭の造成ができる。 もちろん、 コンク リート製の既製杭より肉厚が薄い鋼管製の既製杭の方が沈設は容易となるので、 鋼管製の既製杭を使用することもできる。 また、 固化剤等の注入分の掘削土の排 出はあるので、 固化混合層はできる限り少ない方が望ましい。  Here, the large-diameter excavation of the present invention appropriately loosens and loosens the ground, so even though the excavated soil is not discharged, concrete-made pre-fabricated piles with irregularities on the outer surface can also be laid, so almost all The foundation pile without soil can be created. Of course, steel pipe precast piles, which are thinner than concrete precast piles, are easier to settle down, so steel pipe precast piles can also be used. In addition, the excavated soil that has been injected due to the solidification agent is discharged, so it is desirable that the solidified mixed layer be as small as possible.
(2) 固化剤として、 例えば、 高濃度のセメントミルクを使用し、 掘削土内に注 入し、 掘削ヘッド 1 8で撹拌混合して、 固化混合層 (ソィルセメント層) 2 9 A 、 2 9 Bを形成する。 この場合、 固化混合層 (ソィルセメント層) 2 9 A、 2 9 Bの内周面と既製杭 1の外周面との付着強度が、 固化混合層 2 9 A、 2 9 Bの外 周面と原地盤面との付着強度より大きいことが、 応力の伝搬性向上のために必要 である。 (2) As a solidifying agent, for example, high-concentration cement milk is used, poured into the excavated soil, and stirred and mixed with the excavating head 18 to form a solidified mixed layer (soil cement layer) 29 A, 29 B To form In this case, the adhesive strength between the inner peripheral surface of the solidified mixed layer (soil cement layer) 29 A and 29 B and the outer peripheral surface of the ready-made pile 1 is equal to the outer peripheral surface of the solidified mixed layer 29 A and 29 B. Greater than the bond strength with the ground surface is necessary to improve stress propagation It is.
この既製杭 1の外周に付着したドーナツ状の固化混合層 2 9 A、 2 9 Bが固ィ匕 して、 既製杭の環状突起として作用する。 即ち、 既製杭 1に垂直荷重又は引抜力 が固化混合層の上下面から上下の原地盤に対してせん断力の伝搬が図れ、 鉛直支 持力、 引抜き力を増強する (第 1図 (b ) 鎖線矢示図示)。  The donut-shaped solidified mixed layers 29 A and 29 B attached to the outer periphery of the ready-made pile 1 solidify and act as annular projections of the ready-made pile. That is, a vertical load or pulling force is applied to the ready-made pile 1 and a shear force can be propagated from the upper and lower surfaces of the solidified mixed layer to the upper and lower ground layers, thereby enhancing the vertical supporting force and pulling force (Fig. 1 (b)). (Shown by a chain line arrow).
(3) 固化混合層を形成しない層では、 掘削土に固化剤を注入しないので、 既製 杭 1の外周には、 ほぐされ緩められた掘削土が、 そのまま沈設される既製杭の外 周により押圧された状態で蓄積される。 即ち、 固化混合層 2 9 Aと固化混合層 2 9 Bとの間の層 (深度範囲) では、 既製杭の外周側に放射状に押圧された掘削土 層が形成される。  (3) In the layer that does not form the solidified mixed layer, no solidifying agent is injected into the excavated soil.Therefore, loosened and loosened excavated soil is pressed around the perimeter of the ready-made pile 1 by the outer circumference of the ready-made pile that is settled as it is. It is accumulated in the state where it was done. In other words, in the layer (depth range) between the solidified mixed layer 29A and the solidified mixed layer 29B, a radially pressed excavated soil layer is formed on the outer peripheral side of the ready-made pile.
(4) 以上のように、 所定の深さ位置で固化混合層 2 9 A、 2 9 Bを形成しなが ら、 所定深さまで杭穴 2 8を掘削したならば (第 3図 (a ) 〜 (c ) )、 続いて根 固め部を形成する。 即ち、 根固め部では掘削ヘッド 1 8の下端部から高濃度のセ メントミルクを注入しながら杭穴の下端部のみを撹拌混合して、 必要により、 掘 削泥土を上方に押し上げ、 根固め部内の掘削泥土をセメントミルクと置換等して 、 根固め層 3 0を形成する (第 3図 (d ) ( e ) )。 根固め層 3 0には、 地盤強度以 上の固化強度を有するセメントミルクを充填する。 続いて、 掘削ヘッド 1 8を閉 じて、 既製杭 1の中空部 2を通って、 地上 2 5に引き上げる (第 3図 (ί ) )。 同時に、 セメントミルクで満たされた (ソィルセメント状で存在する) 杭穴 2 8の根固め部内に、 既製杭 1の先端部を沈設して、 既製杭 1の下面が根固め部の 底から所定の長さだけ空ける。 以上のようにして、 既製杭 1の埋設が完了し、 セ メントミルクが固化発現後に、 基礎杭構造 3 3を形成する (第 1図 (b ) )。 この場合、 根固め部の強化のためには、 掘削ヘッド 1 8の本体部あるいは上部 に揚土及び撹拌を目的とするスパイラルを設けた掘削口ッドを使用することもで きる (図示していない)。 根固め部からできるだけ掘削土を排除し、 あるいは、 + 分にセメントミルクと掘削土を撹拌混合して、 良質の根固め層 3 0を形成するた めである。  (4) As described above, if the pile hole 28 was excavated to the predetermined depth while forming the solidified mixed layers 29 A and 29 B at the predetermined depth position (Fig. 3 (a) -(C)), followed by the formation of the root compaction. In other words, in the consolidation section, high-concentration cement milk is injected from the lower end of the excavation head 18 and only the lower end of the pile hole is stirred and mixed. The excavated mud is replaced with cement milk, etc. to form the root consolidation layer 30 (Fig. 3 (d) (e)). The root consolidation layer 30 is filled with cement milk having a solidification strength equal to or higher than the ground strength. Subsequently, the excavating head 18 is closed, and the excavated pile 1 is pulled up to the ground 25 through the hollow part 2 of the pile 1 (Fig. 3 (3)). At the same time, the tip of the ready-made stake 1 is sunk into the stake of the pile hole 28, which is filled with cement milk (exists in the form of soil cement), and the lower surface of the stake 1 is fixed from the bottom of the stake. Leave only the length. As described above, the burying of the ready-made pile 1 is completed, and after the cement milk solidifies, the foundation pile structure 33 is formed (Fig. 1 (b)). In this case, in order to reinforce the foundation, it is also possible to use an excavation port provided with a spiral for excavation and agitation on the body or upper part of the excavation head 18 (shown in the figure). Absent). The purpose is to remove excavated soil as much as possible from the embankment, or to mix and mix cement milk and excavated soil for + minutes to form a high-quality embankment layer 30.
(5) 本発明の中掘り工法で使用する既製杭 1は、 根固め部において形成された セメントミルクからなる根固め層 3 0内で、 根固め層 3 0と一体となり、 高い鉛 直支持力及び引抜き力を発揮するために、 付着面積の大きい突起 (あるいは、 節 、 らせん翼) 付き既製杭 1が望ましい。 特に、 既製杭 1を沈設する際の押し入れ 抵抗が少なく容易に押し入れでき、 かつ付着表面積の大きくする為に、 突起付き 円筒形の鋼管本体 6を基体とする先端金具 1 3を、 既製杭 1の先端 3に装着して 構成することが望ましい。 (5) The ready-made pile 1 used in the middle digging method according to the present invention is integrated with the stiffening layer 30 in the stiffening layer 30 made of cement milk formed in the stiffening portion, and has a high vertical bearing capacity. And a projection with a large attachment area (or Prefabricated pile 1 with spiral wings) is desirable. In particular, in order to reduce the push-in resistance when laying the ready-made pile 1 and to easily push it in and to increase the adhesion surface area, the tip fitting 13 with the cylindrical steel pipe main body 6 with a projection as the base is replaced with the ready-made pile 1 It is desirable to mount it on the tip 3.
この中掘工法を採用する場合、 使用する既製杭 1の下端部に形成した、 あるい はあるいは先端金具 1 3に形成した大径の突起、 例えば、 比較的貫入抵抗の小さ い構造で、 かつ大径のらせん翼等を形成して、 更に、 高い支持力を有する基礎杭 を構築することもできる。  In the case of adopting this excavation method, a large-diameter projection formed at the lower end of the pre-made pile 1 to be used or formed at the end fitting 13, for example, a structure having relatively small penetration resistance, and By forming a spiral wing with a large diameter, a foundation pile with high bearing capacity can be constructed.
また、 この先端金具 1 3は、 突起で付着面積を大きく取る為に、 円筒形の鋼管 本体 6を既製杭 1の外径より大きくせず、 押し込み抵抗を小さくする為に突起外 径は上部に装着する既製杭 1の外径と同等又は外径以下とし、 突起の個数は、 必 要とされる根固め層 3 0との必要な付着面積に合致させた枚数にすることが、 所 要支持力のバランスの点から適当である。 更に、 既製杭 1を沈設する際に、 先端 金具 1 3の突起面への土泥が付着することを防ぎ、 根固め層 3 0内での付着を高 める必要から、 突起部の外径を既製杭 1の外径より若干大きくして付着面積を增 加したり、 突起の上下面にテーパー状の傾斜を付けることが望ましい。  In addition, this tip metal fitting 13 has a cylindrical steel pipe main body 6 that is not larger than the outer diameter of the prefabricated pile 1 in order to increase the adhesion area with the protrusion, and the outer diameter of the protrusion is at the top to reduce the pushing resistance. The outer diameter should be equal to or less than the outer diameter of the ready-made pile 1 to be mounted, and the number of projections should be the number that matches the required area of attachment with the required consolidation layer 30. Appropriate in terms of power balance. Furthermore, when the ready-made pile 1 is laid, it is necessary to prevent the soil and mud from adhering to the protruding surface of the tip fitting 13 and to increase the adhesion in the consolidation layer 30. It is desirable to increase the attachment area by slightly increasing the outer diameter of the prefabricated pile 1 or to taper the upper and lower surfaces of the projection.
また、 突起面への土泥の付着を防止する処理をすることにより、 根固め層 3 0 が固化後の初期沈下を防止できる。  Further, by performing a treatment for preventing the adhesion of soil and mud to the projection surface, the initial settlement after the solidification layer 30 is solidified can be prevented.
また、 耐カを大きくするためには、 先端金具 1 3の突起の表面積は大きくする ことが必要であるが、 荷重時のせん断力伝搬の有効性おょぴ施工実務面では、 そ の突起外径は逆に小さいことが必要である。 従って、 突起の基部に位置する鋼管 本体 6の外径は出来る限り小径とし、 突起の外径は、 既製杭を沈設する際に、 貫 入抵抗ができるだけ生じないように、 上部に連結する既製杭 1の外径と略同程度 の寸法で余り大きくない寸法とすることが望ましい。 即ち、 支持力に関与する突 起面から生じるせん断力の伝搬を考慮した時は、 少なくとも突起部の外側面 (下 面又は上面) に所要寸法形状で、 地盤強度よりの高固化強度のソィルセメント層 が形成されていることが必須であるからである。  In addition, in order to increase the heat resistance, it is necessary to increase the surface area of the projection of the end fitting 13. However, in terms of the effectiveness of shear force propagation under load, Conversely, the diameter needs to be small. Therefore, the outer diameter of the steel pipe main body 6 located at the base of the projection should be as small as possible, and the outer diameter of the projection should be set at the upper part so as to minimize penetration resistance when laying the existing pile. It is desirable that the dimensions be approximately the same as the outer diameter of 1 and not too large. In other words, considering the propagation of shear force generated from the projecting surface involved in bearing capacity, at least the outer surface (lower surface or upper surface) of the protrusion has the required size and shape, and the soil cement layer has a higher solidification strength than the ground strength. Is indispensable.
また、 先端金具 1 3の各部表面と根固め部の根固め層 (ソィルセメント層) 3 0との付着強度の確保のために、 先端金具 1 3の突起部の表面積を広くするよう 設計しているが、 更に、 施工時において、 突起部表面に土泥が付着して両者の付 着強度が低下することを防止することが必要である。 特に、 中掘工法では、 先掘 工法のようにソィルセメントが充填された杭穴內に既製杭 1を沈設する場合と異 なり、 杭穴 2 8を掘削してソィルセメントを形成している高さ位置 (掘削ヘッド 1 8の位置) の直上に既製杭 1の先端 3が位置しているので先端金具 1 3と根固 め層 3 0との付着には配慮が必要である。 従って、 突起部の上下面は水平ではな く傾斜面であることが望ましいので節形状にしたり、 あるいは沈設時に土泥が突 起の上側面に巻き込まないように上部の杭外径より若干大きめ (外径大) の突起 とするなど突起先端部の形状 ·寸法の工夫により支持力の確実かつ安定な発現が 可能となる。 In addition, the surface area of the protruding part of the tip fitting 13 is designed to be large in order to secure the bonding strength between the surface of each part of the tip fitting 13 and the stiffening layer (soil cement layer) 30 of the stiffening part. However, at the time of construction, mud adheres to the surface of It is necessary to prevent the wearing strength from decreasing. In particular, in the excavation method, unlike the case where the ready-made pile 1 is laid in the pile hole た filled with soil cement as in the excavation method, the height position where the pile hole 28 is excavated to form the soil cement Since the tip 3 of the ready-made pile 1 is located directly above (the position of the excavation head 18), consideration must be given to the attachment between the tip fitting 13 and the rooting layer 30. Therefore, it is desirable that the upper and lower surfaces of the protruding portion are not horizontal but inclined surfaces, so that they are knotted or slightly larger than the outer diameter of the upper pile to prevent soil and mud from being caught on the upper surface when protruding. By devising the shape and dimensions of the tip of the projection, such as a projection with a large outer diameter, reliable and stable expression of the supporting force can be achieved.
(6) また、 本発明の中掘工法で使用する掘削ロッド 1 5は、 開いた際に既製杭 1の外径の 1 . :〜 1 . 5倍の外径で杭穴掘削でき、 かつ縮径して既製杭 1の中 空部 2を通過できるように、 その内径以下の外径として閉じることができる掘削 へッド 1 8を使用する。 即ち、 掘削へッド 1 8は、 縮径時と拡径時の比の大きい 構造を必要とする。 例えば、 口ッド本体 1 6に接続できるへッド本体 1 9の両側 に、 先端に掘削刃 2 2を有する掘削腕 2 1を揺動自在に取り付けて構成する (第 1図 (a ) )。 従って、 この掘削ヘッド 1 8を使用すれば、 既製杭 1の先端金具の 突起 (あるいは、 既製杭の下端部外周に形成した突起) の外径が既製杭の軸部の 外径より大径となった場合であっても、 貫入時の抵抗を考慮した形状 (例えば、 らせん翼等) であれば、 既製杭 1を杭穴 2 8内に容易に貫入埋設できる。 (6) In addition, the drilling rod 15 used in the inner digging method of the present invention can excavate a pile hole with an outer diameter of 1.5 to 1.5 times the outer diameter of the ready-made pile 1 when opened. Use a drilling head 18 that can be closed with an outer diameter less than its inner diameter so that it can pass through the hollow part 2 of the ready-made pile 1 by diameter. That is, the excavating head 18 needs a structure having a large ratio between the diameter reduction and the diameter expansion. For example, a digging arm 21 having a digging blade 22 at its tip is swingably attached to both sides of a head body 19 that can be connected to the mouth body 16 (Fig. 1 (a)). . Therefore, if this drilling head 18 is used, the outer diameter of the protrusion of the tip metal fitting of the ready-made pile 1 (or the protrusion formed on the outer periphery of the lower end of the ready-made pile) is larger than the outer diameter of the shaft of the ready-made pile. Even if it does, the ready-made pile 1 can be easily penetrated and buried in the pile hole 28 if it has a shape (for example, a spiral wing, etc.) in consideration of the resistance at the time of penetration.
また、 大きい拡径寸法が比較的容易に実現できる揺動式の掘削腕を利用した掘 削ヘッドを使用した従来の中掘工法では、 杭穴 2 8の軸部での小径掘削 (既製杭 の外径 + 2 c m程度)、杭穴 2 8の拡底根固め部での大径掘削(既製杭の外径の約 1 . 2倍程度)、掘削へッド 1 8の引抜き時の縮径時 (既製杭の内径以下) の 3通 りの制御ステップが必要であるが、 本工法では、 大径掘削 ·撹拌時と掘削へッド 1 8の引抜きの 2通りの制御ステップに減じているので、 掘削ヘッド 1 8の構造 を簡素化でき、 剛性強度の増強が可能となる。 従って、 大径掘削の制御が確実で 安定化し信頼性が向上すると共に、 補修や維持管理面でも安定化し経済的となる 尚、 この工法で使用する掘削ヘッド 1 8は、 従来に比して、 少なくとも既製杭 1の外径の 1 . 4〜1 . 5倍の掘削径を必要とするので、 掘削手段の制御ステツ プを 2つとすることにより、 掘削腕 2 1を有する構造で、 剛性強度の高い構造の 掘削へッド 1 8を用いることにより実現できた。 In addition, in the conventional drilling method using a rocking head that uses a rocking drilling arm, which can realize a large diameter dimension relatively easily, small-diameter drilling at the shaft of a pile hole 28 (for existing piles) (External diameter + 2 cm), large-diameter excavation at the bottom of the pile with pile holes 28 (approximately 1.2 times the external diameter of ready-made piles), when the diameter of the excavation head 18 is reduced when pulled out (Less than the inner diameter of the ready-made pile), three control steps are required. However, this method reduces the number of control steps to two, that is, large-diameter excavation and agitation and extraction of the excavation head 18. The structure of the drilling head 18 can be simplified, and the rigidity can be increased. Therefore, the control of large-diameter excavation is reliable and stable, and the reliability is improved. In addition, the repair and maintenance are stable and economical. The excavation head 18 used in this method is Since a drilling diameter of at least 1.4 to 1.5 times the outer diameter of the ready-made pile 1 is required, The use of two excavating heads 18 with a structure having the excavating arms 21 and a structure having high rigidity and strength was achieved by using two excavating arms.
また、 掘削ロッド 1 5のロッド本体 1 6には、 従来の中掘用口ッドのように排 土を主目的としたスパイラルを省略することができる。 杭穴 2 8の芯及び既製杭 1の中空部 2の芯と掘削ロッド 1 5の芯を合わせる為のスタビライザーの機能及 ぴ掘削ロッド 1 5周辺の掘削土を撹拌する機能を有する部材を突設することが望 ましい (第 1図 (a ) )。  In addition, the rod body 16 of the excavation rod 15 can omit a spiral mainly used for earth removal as in a conventional drilling hole for a middle excavation. Stabilizer function for aligning the core of pile hole 2 8 and the core of hollow part 2 of ready-made pile 1 with the core of drilling rod 15 and a member with the function of stirring the excavated soil around drill rod 15 (Figure 1 (a)).
(7) 本工法では、 土質によっては、 掘削径の大小を調節して (既製杭 1の外径 に対して、掘削へッド 1 8の掘削径の比率を増減することで調節する)、既製杭 1 を速く沈設することができ、 既製杭 1の沈設速度を制御できるが、 地盤の掘削及 び粉碎性をより向上させるためには、 大径掘削に適した掘削へッドが必要である 例えば、 筒状のへッド本体 1 9に外筒 4 1を昇降可能に取り付け、 へッド本体 1 9の上端部に上部腕 4 2の上端、 外筒 4 1の下端部に下部腕 4 3の下端を夫々 ピンで連結し、 上部腕 4 2の下端と下部腕 4 3の上端とをピンで連結して、 掘削 ヘッド 1 8を構成することもできる (第 5図)。 この場合、 上部腕 4 2、下部腕 4 3から掘削腕 2 1を構成し、 外筒 4 1の下端に掘削刃 2 0、 2 0、 上部腕 4 3の 下面側に掘削刃 2 2、 2 2が形成してある。  (7) In this method, depending on the soil properties, the size of the excavation diameter is adjusted (by adjusting the ratio of the excavation diameter of the excavation head 18 to the outer diameter of the ready-made pile 1). Although the ready-made pile 1 can be sunk quickly and the setting speed of the ready-made pile 1 can be controlled, an excavation head suitable for large-diameter excavation is required in order to further improve the excavation and crushability of the ground. For example, the outer cylinder 41 is attached to the cylindrical head body 19 so as to be able to move up and down, the upper arm 42 at the upper end of the head body 19, and the lower arm at the lower end of the outer cylinder 41. The lower end of 43 can be connected with a pin, and the lower end of the upper arm 42 and the upper end of the lower arm 43 can be connected with a pin to form the excavating head 18 (Fig. 5). In this case, the excavating arm 21 is composed of the upper arm 4 2 and the lower arm 4 3, and the excavating blades 20 and 20 are provided at the lower end of the outer cylinder 4 1, and the excavating blades 2 and 2 are provided on the lower surface side of the upper arm 4 3. 2 is formed.
この掘削へッドでは、 外筒 4 1とへッド本体 1 9とを相対的に上下動させ、 掘 削腕 2 1の上部腕 4 2と下部腕 4 3とが重なるように (水平に近付くように) 掘 削径を拡大でき、 駆動範囲が長く取れるので、 通常の掘削ヘッドに比べて、 縮径 時 (掘削腕 2 1の上部腕 4 2と下部腕 4 3とが縦方向に配置された状態) 即ち既 製杭の外径に比べた比率が大きい掘削が可能であり、 掘削刃も多段に形成できる ので、 粉砕性能も制御できる。 従って、 この掘削ヘッド 1 8では、 既製杭との杭 径比で 2倍以上の大径掘削 ·撹拌も可能となり、 更に大きな支持力を発揮するこ とが可能となる。  In this excavation head, the outer cylinder 41 and the head body 19 are moved up and down relatively so that the upper arm 42 and the lower arm 43 of the excavation arm 21 overlap (horizontally). The drilling diameter can be enlarged and the driving range can be extended, so that the diameter of the drilling arm is reduced compared to a normal drilling head (the upper arm 4 2 and the lower arm 4 3 of the drilling arm 21 are arranged vertically). In other words, it is possible to excavate at a large ratio compared to the outer diameter of the already-made pile, and the drilling blades can be formed in multiple stages, so that the grinding performance can be controlled. Therefore, with this excavating head 18, large-diameter excavation and agitation with a pile diameter ratio of at least twice the diameter of an existing pile is possible, and it is possible to exert a greater supporting force.
また、 掘削へッド 1 8に、 上下方向に複数のストッパーを設けることもでき ( 図示していない)、 この場合には、異なる掘削径に容易に対応できる。 よって、 こ の掘削へッド 1 8を使用することにより、 掘削機 (掘削口ッド 1 5のロッド本体 1 6 ) に一つの掘削ヘッド 1 8を装着したまま、 掘削位置を代えて異なる径の杭 穴を形成する場合に、 ストッパーの調節だけで、 連続掘削が可能となる。 また、Further, the excavation head 18 may be provided with a plurality of stoppers in a vertical direction (not shown), and in this case, different excavation diameters can be easily accommodated. Therefore, by using the excavation head 18, the excavator (the rod body 16 of the excavation opening head 15) is mounted with one excavation head 18 while changing the excavation position and changing the diameter. Pile of When drilling holes, continuous excavation is possible only by adjusting the stopper. Also,
1つの杭穴で、 深さ方向で径が異なる軸部を有する杭穴を形成する場合にも、 ス トッパーの調節だけで、 容易に掘削径の変更ができ、 異なる径の固化混合層を有 する基礎杭の構築も容易となる。 Even when one pile hole is used to form a pile hole that has a shaft with a diameter that varies in the depth direction, the drilling diameter can be easily changed only by adjusting the stopper, and a solidified mixed layer with a different diameter is provided. Construction of the foundation pile to be performed becomes easy.
(8) 以上のように、 この発明では、 既製杭 1の外径の 1 . 4〜1 . 5倍程度に 掘削して、 所定の地盤では固化混合層を形成できるので、 この高濃度のソィルセ メントからなる固化混合層が、 既製杭 1の外周に形成される環状突起としても作 用する。 例えば、 外径 8 0 O mmの既製杭の場合、 外径 1 1 2 0〜 1 2 0 0 mm 程度の固化混合層が形成され、 即ち、 既製杭の外周に、 突起高さ (水平方向の突 出距離) 1 6 0 ~ 2 0 O mmの環状突起を形成できる。 (8) As described above, according to the present invention, a solidified mixed layer can be formed on a predetermined ground by excavating to about 1.4 to 1.5 times the outer diameter of the ready-made pile 1, so that the high-concentration The solidified mixed layer made of the cement also functions as an annular projection formed on the outer periphery of the ready-made pile 1. For example, in the case of a ready-made pile with an outer diameter of 80 O mm, a solidified mixed layer with an outer diameter of about 120 to 1200 mm is formed. That is, the protrusion height (horizontal direction) (Projection distance) An annular projection of 160 to 20 O mm can be formed.
この場合、 既製杭 1と固化混合層 2 9 A、 2 9 Bとは一体に作用するので、 既 製杭の外表面積を増加させて地盤との付着を増すと共に、 既製杭 1に鉛直荷重又 は引抜力が作用した場合、 固化混合層 2 9 A、 2 9 Bの上下面が応力伝搬面とし て作用し、 当該上下面から軟弱地盤の上下に位置する地盤へ、 せん断力が有効に 伝搬して支持力を増強できる (第 1図 (b ) )。  In this case, the ready-made pile 1 and the solidified mixed layer 29 A, 29 B act integrally, so that the outer surface area of the ready-made pile is increased to increase the adhesion to the ground, and the vertical load or When a pull-out force is applied, the upper and lower surfaces of the solidified mixed layers 29A and 29B act as stress propagation surfaces, and the shear force effectively propagates from the upper and lower surfaces to the ground located above and below the soft ground To increase the bearing capacity (Fig. 1 (b)).
このように、 地盤を緩めたことにより既製杭の杭周部の摩擦力は低下するが、 低下した既製杭の杭周部の摩擦力を、 固化混合層等を適宜形成することにより、 復元、 補強することができ、 更に、 固化混合層 2 9 A、 2 9 Bと既製杭 1の外面 との付着を充分に高めるように施工すれば、 従来の既製杭 1の軸部で発揮される 支持力の約 2倍程度の支持力を得られる。  In this way, the loosening of the ground reduces the frictional force around the piles of the ready-made piles.However, the frictional forces at the periphery of the piles of the ready-made piles can be restored by appropriately forming a solidified mixed layer, etc. It can be reinforced, and if it is constructed so that the adhesion between the solidified mixed layers 29 A and 29 B and the outer surface of the ready-made pile 1 is sufficiently enhanced, the support exerted on the shaft of the conventional ready-made pile 1 You can get about twice the supporting force.
また、 既製杭の表面積が実質的に広くなり、 既製杭の応力伝搬面積が広くなる ので、 周辺の弱い原地盤への伝搬荷重応力度 (面積当たりの応力) を減少,緩和 させ、 基礎杭の耐荷重を増加させる。  In addition, the surface area of the ready-made piles is substantially increased, and the stress propagation area of the ready-made piles is widened, so that the transmitted load stress (stress per area) to the surrounding weak ground is reduced and relaxed, Increase load capacity.
また、 指定した地層の高さ位置で、 その面積を広く掘削 '撹拌し、 固化混合層 2 9 A、 2 9 Bを形成した直後で固まる前に、 順次、 既製杭 1を押し込むことに より、 既製杭 1の押し込み抵抗 (貫入抵抗) が少なくなり、 既製杭を容易に沈設 できる。  At the height of the specified stratum, the area was excavated widely, stirred, and immediately after the solidified mixed layers 29 A and 29 B had been formed and before they were solidified, the ready-made piles 1 were sequentially pushed in, The pushing resistance (penetration resistance) of the ready-made pile 1 is reduced, and the ready-made pile can be easily laid.
また、 従来の中掘工法のように、 掘削ロッドにスパイラノレ形状のような掘削土 排出機構が不要となり、 総排土量を低減できる。 即ち、 掘削径を従来より大幅に 大径 (例えば、 既製杭の杭径に対して 1 . 4倍以上) で地盤をほぐし緩めながら 掘削し、 既製杭を沈設すると、 既製杭の外側面 (外周面) で、 ほぐした掘削土を 略放射状に周辺の地盤に押し圧をかけながら既製杭を沈設し、 基礎杭を構築する ので、 従来のように、 掘削ロッドに排土機構を設けなくても既製杭の沈設ができ る。 Also, unlike the conventional excavation method, the excavated rod does not need to have a spoiler-shaped excavated soil discharge mechanism, and the total amount of excavated soil can be reduced. In other words, the excavation diameter is significantly larger than before (for example, 1.4 times or more the diameter of ready-made piles) while loosening and loosening the ground. When excavating and laying a ready-made pile, the excavated soil loosened on the outer surface (peripheral surface) of the ready-made pile is pressed almost radially against the surrounding ground, and the ready-made pile is laid down to construct the foundation pile. As in the past, the ready-made piles can be laid without the need for an excavating mechanism on the drilling rod.
(9) 先掘工法により拡底根固め部 35を有する杭穴を掘削し、 地盤強度より高 い固化強度のソィルセメントを充填した拡底根固め部 35内に、 下部軸部 36を 細径にし、 下部軸部 36を含む下端部に環状突起 37、 37を形成した既製杭 1 を埋設して、 基礎杭構造 38を形成した場合、 その環状突起 37、 37の表面か らせん断力が充分に伝搬できるように築造すれば(第 6図)、従来の円筒状の既製 杭で発揮する支持力に比較して、 約 2倍の支持力が得られることが確認されてい る。 本発明の基礎杭構造 33では、 先端金具 13を固着させた既製杭 1又は環状 突起 37を形成した既製杭 1を上記のような手順で埋設するので (第 2図 ( a )(9) Excavation of a pile hole having a deepened root solidification part 35 by the first excavation method, and making the lower shaft part 36 smaller in the deepened root solidification part 35 filled with soil cement with a solidification strength higher than the ground strength, When the foundation pile structure 38 is formed by burying the prefabricated pile 1 having the annular projections 37, 37 at the lower end including the shaft 36, the shear force can be sufficiently transmitted from the surface of the annular projections 37, 37. With such construction (Fig. 6), it has been confirmed that the bearing capacity can be obtained about twice that of the conventional cylindrical piles. In the basic pile structure 33 of the present invention, the prefabricated pile 1 to which the tip metal fitting 13 is fixed or the prefabricated pile 1 having the annular projection 37 formed therein is buried in the above-described procedure (FIG. 2 (a)).
(b)、 第 3図)、 従来の先掘工法によるこの基礎杭構造 38と同等の高い支持力 を発現させることが可能である (第 6図)。 (b), Fig. 3), it is possible to achieve the same high bearing capacity as this foundation pile structure 38 by the conventional excavation method (Fig. 6).
従って、 本発明では、 中掘工法で、 掘削径を既製杭の外径より大径 (例えば、 既製杭の外径の 1. 4倍以上) にすることにより、 全体とし排土量を軽減できる と共に、 高い支持力が実現できる。  Therefore, in the present invention, the excavation diameter is made larger than the outer diameter of the ready-made pile (for example, 1.4 times or more of the outer diameter of the ready-made pile) by the inside excavation method, thereby making it possible to reduce the amount of earth removal as a whole At the same time, a high bearing capacity can be realized.
2. 具体的な実施形態 2. Specific Embodiment
[1] 既製杭 1  [1] ready-made piles 1
既製杭 1として、 下記形状 ·大きさの円筒形コンクリート杭を採用する。 尚、 必要耐力が大きい場合には、 鋼管被覆コンクリート杭 (SC杭) 等を選択するこ ともできる (第 1図 (a)、 第 2図 (b))。  As the ready-made pile 1, a cylindrical concrete pile with the following shape and size will be adopted. If the required proof stress is large, steel pipe-coated concrete piles (SC piles) can be selected (Fig. 1 (a), Fig. 2 (b)).
杭外径 D。 i = 800 mm  Pile outer diameter D. i = 800 mm
杭肉厚 t 01= 1 1 Omm Pile thickness t 01 = 1 1 Omm
杭内径 D。2= 580mm Pile inner diameter D. 2 = 580mm
杭長 9m  Pile length 9m
[2] 先端金具 13 [2] Tip fittings 13
外径 D„、 内径 D12、 全長 Lnの鋼管本体 (厚さ t l l) 6の上端部に、 外径 D13の大径部 7を形成し、 大径部 7を既製杭 1との連結部とする。 大径部 7は、 上面 8を水平平面状とし、 下面 9を徐々に小径とした部分円錐状の傾斜斜面を形 成してある。 連結部の外径、 即ち、 大径部 7の外径 D13は、 接続するべき既製杭 1の外径 (D01下端部の外径) と略同一としてある。 大径部 7の幅 (高さ) はし 13で形成されている。 Outer diameter D ", the inner diameter D 12, the upper end portion of the steel pipe pile body (thickness tll) 6 of the total length Ln, the outer diameter A large-diameter portion 7 of D 13 is formed, and the large-diameter portion 7 serves as a connection portion with the ready-made pile 1. The large-diameter portion 7 forms a partially conical inclined slope in which the upper surface 8 has a horizontal plane shape and the lower surface 9 has a gradually decreasing diameter. The outer diameter of the connecting portion, i.e., the outer diameter D 13 of the large diameter portion 7 is a substantially equal to the outer diameter of the prefabricated pile 1 to be connected (the outer diameter of D 01 lower end). The width (height) of the large-diameter portion 7 is formed by a leaf 13 .
鋼管本体 6の下端部外側面に、 外径 D13の円盤状 (ドーナツ状) の環状突起 1 0を突設する。 環状突起 10の上面 1 1は、 水平面状に形成し、 下面 1 2は部分 円錐状の傾斜斜面を形成し、 傾斜斜面の下端は鋼管本体 6の下端に至っている。 環状突起 10の幅 (高さ) は L13で形成されている (第 2図 (b))。 The lower end outer side of the steel pipe body 6, to protrude the annular projection 1 0 discoid (donut shape) of the outer diameter D 13. The upper surface 11 of the annular projection 10 is formed in a horizontal plane, the lower surface 12 forms a partially conical slope, and the lower end of the slope reaches the lower end of the steel pipe body 6. The width of the annular projection 10 (height) is formed by L 13 (FIG. 2 (b)).
以上のようにして、 先端金具 1 3を構成する (第 2図 (b)、 第 1図 (a))。 ま た大径部 7と環状突起 10との間隔は L12で形成され、突起部長さ L14 (= (D 13_Dn) ÷2) とすると、支持面よりのせん断力の伝搬が障害なく作用するた めに、 少なくとも The tip fitting 13 is configured as described above (FIG. 2 (b), FIG. 1 (a)). Spacing between the large diameter portion 7 and the annular projection 10 or is formed by L 12, when the protrusion length L 14 (= (D 13 _Dn ) ÷ 2), the propagation of action without failure shear force of the supporting surface To do at least
L12>L14X t a n 6=L14X t a n 30 = L14X 3 L 12 > L 14 X tan 6 = L 14 X tan 30 = L 14 X 3
を満たすように形成されている。 It is formed so as to satisfy.
尚、 寸法は、 下記のように形成する。  The dimensions are formed as follows.
鋼管本体 1 外径 D 1 X = 610 mm Steel pipe body 1 outer diameter D 1 X = 610 mm
鋼管本体
Figure imgf000021_0001
2 mm
Steel pipe body
Figure imgf000021_0001
2 mm
鋼管本体 長さ Lェ ^ 749 mm  Steel pipe length L L ^ 749 mm
大径部 7の幅 L 9 mm  Large diameter part 7 width L 9 mm
大径部 7と環状突起 10との間隔 L12: 430 mm Distance between large diameter part 7 and annular projection 10 L 12: 430 mm
また、 前記実施例では、鋼管本体 6の内径 は上部に連結する既製杭 1の内 径 D。2と同一とし、鋼管本体 6の厚さ t i を 1 5〜40 mm程度としているので 、環状突起 10の鋼材の節形状の外径 D! 3を上部の既製杭 1の外径 D。 以上に設 定でき、 突起面積 (ソィルセメントとの付着面積) が大きく取れる。 従って、 形 成する環状突起 10の数を 1個増加するだけで、 既製杭 1を外径で 1ランク上の 既製杭 1で発揮する支持力と同等の支持力を得られる。 In the above embodiment, the inner diameter of the steel pipe main body 6 is the inner diameter D of the ready-made pile 1 connected to the upper part. 2 and the thickness ti of the steel pipe body 6 is about 15 to 40 mm, so that the outer diameter D of the knot-shaped steel material of the annular projection 10! 3 is the outer diameter of the ready-made pile 1 at the top. It can be set as above, and the projection area (the area of adhesion to soil cement) can be large. Therefore, by simply increasing the number of the annular projections 10 to be formed, a bearing force equivalent to the bearing force exerted by the ready-made pile 1 one rank higher in outer diameter than the ready-made pile 1 can be obtained.
[3」 掘削口ッド 1 5 [3] Drill port 1 5
中空の口ッド本体 16の先端部に掘削へッド 18を装着して、 掘削口ッド 1 5 を構成する。 掘削へッド 18は、 口ッド本体 16に接続できるへッド本体 1 9の 両側に、 掘削腕 21、 21の上端部を揺動自在に取り付けて構成する (第 1図 ( a))。 ヘッド本体 19は、 中間部から下端部に向けて先細となるような扁平部を 形成し、 扁平部の先端に掘削刃 20、 20を突設してある。 Attach the drilling head 18 to the tip of the hollow mouth body 16 Is composed. The excavating head 18 is configured by swingably mounting the upper ends of the excavating arms 21 and 21 on both sides of a head body 19 that can be connected to the mouth head body 16 (FIG. 1 (a)). . The head body 19 has a flat portion that tapers from the middle portion to the lower end portion, and excavation blades 20 and 20 project from the tip of the flat portion.
掘削腕 21は、 上端部が回転軸 24でへッド本体 1 9に取付られ、 中間部は下 方に向けて、 へッド本体 1 9の扁平部に沿うように、 へッド本体 1 9に近付くよ うに屈曲し、 掘削刃 22、 22を形成した下端部は下方に向けて、 掘削刃 22、 22と共に外側に向けて開くように屈曲してある。 このような形状とすることに より、 掘削腕 21、 21は、 回転抵抗が小さくなり、 揺動し易くかつ掘削へッド 18全体がコンパクトとなり、 既製杭の中空部を揷通することが容易となるので 、 大径掘削が容易となる。  The excavating arm 21 has an upper end attached to the head body 19 with a rotating shaft 24, and a middle part directed downward so that the head body 1 extends along the flat part of the head body 19. The lower end formed with the digging blades 22 and 22 is bent so as to approach downward and open outward together with the digging blades 22 and 22. With such a shape, the excavating arms 21 and 21 have low rotational resistance, are easy to swing, and the entire excavating head 18 is compact, so that it is easy to penetrate the hollow portion of the ready-made pile. Therefore, large-diameter excavation becomes easier.
へッド本体 19には、 杭穴 28の掘削径に対応して掘削腕 21、 21が揺動す る範囲を制限するストッパー 23、 23が取り付けてある。  The head body 19 is provided with stoppers 23, 23 for limiting the range in which the excavating arms 21, 21 swing in accordance with the excavating diameter of the pile hole 28.
また、 ロッド本体 16には、 排土用のスパイラルを省略して、 所定高さ (例え ば 5m) 毎に、 水平板 1 7、 17を直径対称に取り付けてある。 水平板 1 7、 1 7は、 掘削ロッド 15の軸と、 杭穴 28の軸又は既製杭 1の軸とを合わせる (セ ンタリング) する為のスタビライザーの機能、 掘削土の撹拌の機能等を合わせ持 つ。  Further, the rod body 16 is provided with horizontal plates 17 and 17 symmetrically in diameter at predetermined heights (for example, 5 m), omitting the spiral for discharging the earth. The horizontal plates 17 and 17 combine the function of a stabilizer for aligning (centering) the axis of the drilling rod 15 with the axis of the pile hole 28 or the axis of the ready-made pile 1, and the function of stirring the excavated soil. Have.
この掘削ヘッド 18では、 作動態様は、 杭穴 28の掘削時 (杭穴軸部掘削時、 固化混合層を形成する掘削■撹拌時、 根固め部掘削 ·撹拌時) 及び既製杭 1の中 空部 2を通過する時の 2通りのステップ方式に簡素化してある。 掘削腕 21を摇 動させて、 既製杭 1の外径の 1. 5倍 (1200mm) 程度の外径で、 掘削ロッ ド 15に排土機構が無くても、 確実かつ安定な掘削■撹拌を実現した。 [4] 中掘工法の説明  The operation mode of the excavating head 18 is as follows when excavating the pile hole 28 (during excavation of the shaft portion of the pile hole, excavating to form a solidified mixed layer, agitating, excavating the agglomeration section, and agitating) and the hollow space of the ready-made pile 1. It has been simplified to a two-step method when passing through part 2. By moving the excavating arm 21, the outer diameter is about 1.5 times (1200mm) of the outer diameter of the ready-made pile 1, and even if the excavating rod 15 does not have a discharging mechanism, reliable and stable excavation and agitation can be achieved. It was realized. [4] Excavation method
(1) 既製杭 1を埋設予定の地盤 (主要部分は砂質土) は、 地上 25から、 6. (1) The ground where the ready-made pile 1 is to be buried (mainly sandy soil) is from 25 above the ground, and 6.
5m〜7. 5111の厚さ 1111分、 1 3. 5 m〜 14. 5^1の厚さ 1111分、 に設計上 指定された 2箇所の (例えば比較的弱い N値 5程度) 地層 26A、 26 Bが存在 している (第 1図 (b)、 第 3図)。 5m to 7.51111 thickness 1111 minutes, 13.5m to 14.5 ^ 1 thickness 1111 minutes, Designated two locations (for example, relatively weak N value of about 5) 26 B exists (Fig. 1 (b), Fig. 3).
(2) 先端金具 1 3の大径部 7の上面 8を、 既製杭 1の先端 3 (下端板の下面) に当て、 大径部 7と下端板とをポルトや溶接等で一体に固定して、 先端金具 1 3 付きの既製杭 1を構成する (第 2図 (b )、 第 1図 (a ) )。 (2) Connect the upper surface 8 of the large-diameter portion 7 of the tip fitting 1 3 to the tip 3 of the ready-made pile 1 (the lower surface of the lower end plate). And the large diameter part 7 and the lower end plate are fixed together by porting, welding, etc. to form a ready-made pile 1 with the tip fitting 13 (Fig. 2 (b), Fig. 1 (a)) .
(3) 所定の掘削位置で、 掘削口ッド 1 5を、 先端金具 1 2付きの既製杭 1の中 空部 2、 先端金具 1 3の中空部 6 aを揷通して、 先端金具 1 3の先端 1 4から掘 削ヘッド 1 8を突出させる。  (3) At a predetermined excavation position, the excavation hole 15 passes through the hollow part 2 of the pre-made pile 1 with the tip fitting 12 and the hollow part 6 a of the tip fitting 13 and the tip fitting 13 The drilling head 18 protrudes from the tip 14 of the drill.
この状態で、 既製杭 1及び掘削ロッド 1 5を鉛直に支持して、 掘削ロッド 1 5 を回転させれば、 掘削腕 2 1がストッパー 2 3で規制されるまで揺動し、 その揺 動角度を保ったまま、 掘削腕の掘削刃 2 2、 2 2、 へッド本体 1 9の掘削刃 2 0 、 2 0で、 杭穴 2 8を掘削できる。 先端金具 1 3の先端 1 4から突出した掘削へ ッド 1 8で、 既製杭 1の外径より大径の杭穴 2 8の軸部を掘削する。 掘削しなが ら掘削ロッド 1 5を下降すると共に引き続き、 既製杭 1を下降させる (第 3図 ( a ) )。  In this state, when the ready-made pile 1 and the drilling rod 15 are vertically supported and the drilling rod 15 is rotated, the drilling arm 21 swings until it is regulated by the stopper 23, and the swing angle The pile hole 28 can be excavated with the excavating blades 2 2 and 2 2 of the excavating arm and the excavating blades 20 and 20 of the head body 19 while maintaining the same. With the excavation head 18 protruding from the tip 14 of the tip fitting 13, the shaft of the pile hole 28 having a diameter larger than the outer diameter of the ready-made pile 1 is excavated. While excavating, the excavating rod 15 is lowered and the ready-made pile 1 is lowered (Fig. 3 (a)).
(4) 地上から 6 . O m程度掘削した所で、 掘削土中に、 ヘッド本体 1 8からセ メントミルク (固化強度 2 O N/mm 2程度) を注入し、 掘削土と撹拌混合しな がら約 2 mの間、 掘削土とセメントミルクとを撹拌混合しながら掘削し、 押し固 めて、 既製杭 1の周囲にソィルセメント層 2 9 Aを形成する。 ソィルセメント層 (固化混合層) の形成は、 設計上で指定された位置で行い、 その地層 2 6 Aを含 む上下高さを形成の対象とする。 セメントミルクを注入するする際に、 掘削へッ ド 1 8を上下に昇降させれば、 良く撹拌され、 均質なソィルセメント層ができる 。 尚、 ソィルセメント層 (固化混合層) 2 9 Aは、 固化強度 0 . 5 N/mm 2程 度とする。 (4) from the ground 6. Where drilled about O m, drilling soil, injecting the head body 1 8 Karase instrument milk (approximately solidified intensity 2 ON / mm 2), want a stirred mixed with excavated soil Excavation soil and cement milk are excavated for about 2 m while stirring and mixing, and they are compacted to form a soil cement layer 29 A around the ready-made pile 1. The soil cement layer (solidified mixed layer) is formed at the position specified in the design, and the vertical height including the geological layer 26 A is to be formed. If the drilling head 18 is raised and lowered when pouring cement milk, a well-mixed and homogeneous soil cement layer can be formed. The solid cement strength of the soil cement layer (solidified mixed layer) 29 A is about 0.5 N / mm 2 .
また固化混合層を形成する高さ位置は、 事前の標準貫入試験による N値により 概略把握できるので、 その N値が該当する高さ位置で固化混合層を形成すること が望ましい。 即ち、 掘削中の掘削口ッド 1 5を回転 ·昇降させるオーガ一のモー タの電流値を測定して、 所定高さ範囲 (例えば 5 O c m) 毎に積算して積算電流 値を算出しておけば、 標準貫入試験の N値と同一の深度で地盤強度の比較ができ 、 当該積算電流値を示すその高さ位置が該当する改良すべき地盤になるので、 前 記 N値と併用することにより、 正確な深度区間で固化混合層を形成できる。  In addition, since the height position where the solidified mixed layer is formed can be roughly grasped by the N value obtained by a standard penetration test in advance, it is desirable to form the solidified mixed layer at the height position where the N value is applicable. That is, the current value of the motor of the auger that rotates and raises and lowers the excavation hole 15 during excavation is measured, and the integrated current value is calculated for each predetermined height range (for example, 5 Ocm). If this is done, the ground strength can be compared at the same depth as the N value of the standard penetration test, and the height position indicating the integrated current value will be the corresponding ground to be improved. As a result, a solidified mixed layer can be formed at an accurate depth section.
(5) 形成したソィルセメント層 2 9 Aにも同様に、 既製杭 1を下降して、 引き 続き、 掘削口ッド 1 5を下降して、 掘削へッド 1 8で杭穴 2 8を掘削しつつ既製 杭 1を下降する。 (5) Similarly, on the formed soil cement layer 29A, lower the ready-made pile 1 and then lower the drill hole 15 and drill the pile hole 28 with the drill head 18 Ready-made Lower stake 1.
(6) 設計で指定した地層 26 Bに対応して、 地上から 1 3. Om~l 5. Om の高さでも、 同様に、 ヘッド本体 19からセメントミルクを吐出して、 掘削土と 撹拌混合して、 ソィルセメント層 (固化混合層) 29 Bを形成する (第 3図 (b ))。 以降同様に、 セメントミルクを使用せずに、 杭穴 28を掘削する (第 3図 ( c))。  (6) Cement milk is also discharged from the head body 19 at a height of 13.Om ~ l 5.Om from the ground corresponding to the geological formation 26B specified in the design, and mixed with the excavated soil. Then, a soil cement layer (solidified mixed layer) 29B is formed (Fig. 3 (b)). After that, similarly, the pile hole 28 is excavated without using cement milk (Fig. 3 (c)).
このように、 地盤改良等をしながら既製杭 1を順次沈設するので、 ソィルセメ ントの流出も阻止でき、 固化混合層 29A、 29 Bが確実に形成できる。  As described above, since the ready-made piles 1 are sequentially laid while the ground is being improved, the outflow of the soil cement can be prevented, and the solidified mixed layers 29A and 29B can be reliably formed.
(7) 支持地盤 (N値 30) である所定深さ (約 21m) まで、 杭穴掘削したな らば、 杭穴底 31から高さ 2m程度の間で、 セメントミルク (固化強度 20N/ mm2程度) を注入しながら掘削ヘッド 18を回転し昇降して、 掘削土とセメン トミルクとを撹拌混合しながら根固め層 30を形成する (第 3図 (d) (e))。必 要により、 根固め部の底よりセメントミルクを吐出して掘削土を押し上げ、 掘削 土をセメントミルクに置換することもできる。 (7) If a pile hole is excavated to a predetermined depth (approximately 21 m), which is the supporting ground (N value: 30), cement milk (solidification strength: 20 N / mm) can be obtained from the pile hole bottom 31 to a height of about 2 m. (About 2 ) while rotating the excavating head 18 and moving it up and down to form the consolidation layer 30 while stirring and mixing the excavated soil and cement milk (Fig. 3 (d) (e)). If necessary, the excavated soil can be replaced with cement milk by discharging cement milk from the bottom of the consolidation section to push up the excavated soil.
(8) 周辺の地盤強度より高い固化強度 2 ON/mm2程度の根固め層 30を形 成したならば、 掘削ロッド 15を逆転して掘削腕 21、 21を閉じて、 掘削口ッ ド 1 5の回転を一旦止めて掘削腕 21、 21をへッド本体 1 9に沿って垂れた状 態にする (この状態で、 掘削ヘッド 18の最大外径は既製杭 1の内径 D02以下に なっている)。 続いて、掘削腕 21、 21が振れないように、掘削ロッド 1 5をゆ つくり回転して、 根固め層 30を撹拌しながら、 掘削へッド 1 8を掘削ロッド 1 5と共に、 先端金具 1 3の中空部 6 a及び既製杭 1の中空部 2を挿通して (第 3 図 (f))、 地上に引き上げる。 (8) if the roots solidified layer 30 of high solidification strength of about 2 ON / mm 2 than ground strength near the form shape, close the drilling arms 21, 21 to reverse the drill rod 15, drilling inlet head 1 rotation of 5 once stopped by drilling arm 21, to drooping state along 21 the head body 1 9 f (in that state, the maximum outer diameter of the drilling head 18 is below the inner diameter D 02 of the prefabricated pile 1 Has become). Subsequently, the drilling rod 15 is slowly rotated while rotating the drilling rod 15 so that the drilling arms 21 and 21 do not swing, and the drilling head 18 is moved together with the drilling rod 15 together with the tip fitting 1 while stirring the consolidation layer 30. Insert the hollow part 6a of No. 3 and the hollow part 2 of the ready-made pile 1 (Fig. 3 (f)) and pull it up to the ground.
また、 掘削へッド 1 8のへッド本体 19で、 掘削口ッド 15が逆回転した際に 掘削腕 21、 21が揺動する側に、 ストッパーを取り付けておくこともでき (図 示していない)、この場合には、逆回転させながら掘削へッド 1 8を引き上げれば 、 既製杭 1の中空部 2の内壁を傷つけず、 確実に掘削ヘッドを回収できる。  In addition, a stopper can be attached to the side of the head body 19 of the excavating head 18 where the excavating arms 21 and 21 swing when the excavating head 15 rotates in the reverse direction. In this case, in this case, if the drilling head 18 is pulled up while rotating in the reverse direction, the inner wall of the hollow part 2 of the ready-made pile 1 is not damaged, and the drilling head can be reliably recovered.
(9) 続いて、 あるいは掘削ロッド 1 5の引き上げと並行して、 既製杭 1を下降 して (第 3図 (f ))、 先端金具 13を根固め層 30内に位置させ、 先端金具 13 の先端 (下端) 14と杭穴底 3 1とが既製杭 1の軸部外径 D01程度の距離 L20 (ここでは、 約 lmとした。 第 2図 (b)) を空けた位置で、 先端金具 13付きの 既製杭 1を杭穴 2 8内に保持する。 (9) Subsequently, or in parallel with the lifting of the excavating rod 15, the ready-made pile 1 is lowered (FIG. 3 (f)), and the tip fitting 13 is positioned in the consolidation layer 30. the tip (lower end) 14 and Kuianasoko 3 1 and the axial outer diameter D 01 of about the distance L 20 of prefabricated pile 1 (here was about lm. FIG. 2 (b)) at a location spaced , With tip bracket 13 Precast pile 1 is retained in pile hole 2 8.
ソィルセメント層 2 9 A、 2 9 B、 根固め層 3 0が固化発現後に、 ソィルセメ ント層 2 9 A、 2 9 B及ぴ根固め層 3 0と既製杭 1とが定着して一体に形成され た基礎杭構造 3 3を構築する (第 1図 (b )、 第 2図 (b ) )。  After the soil cement layers 29 A and 29 B and the root consolidation layer 30 have solidified, the soil cement layers 29 A and 29 B and the root consolidation layer 30 and the ready-made pile 1 are fixed and integrally formed. The constructed foundation pile structure 33 is constructed (Fig. 1 (b), Fig. 2 (b)).
[ 5 ] 試験結果 [5] Test results
本基礎杭構造 3 3の築造に際し、 セメントミルク注入量に相当する量の僅かな 排土量で、 掘削土をほとんど排出しないので、 周辺地盤強度も締め固められてお り、 載荷試験においても高い支持力の 9 3 0 0 k N (最大荷重) が得られている 。 また、 沈下特性のばらつきの改善が期待できる。  When constructing this foundation pile structure 33, the excavated soil is hardly discharged with a small amount of soil removal equivalent to the amount of cement milk injected, so the surrounding ground strength is compacted and high in the load test. A bearing capacity of 9300 kN (maximum load) is obtained. In addition, improvement in variation in settlement characteristics can be expected.
また、 従来の中掘工法であって、 本工法の先端金具 1 3を使用せず、 本工法の 根固め層内の先端金具 1 3の外径 6 0 O mmと同一径により、 上端から下端まで 形成したコンクリート製の既製杭を使用した従来の中掘工法と比較する。 外径 6 0 O mmの既製杭を使用し、 根固め層内に既製杭の先端部を同様に定着させた場 合、 同一地盤で、 最大荷重が約 3 1 0 0 k Nであった。  In addition, the conventional inner digging method does not use the tip metal fittings 13 of this method, but uses the same diameter as the outer diameter 60 Omm of the tip metal fittings 13 in the consolidation layer of this method. This is compared with the conventional excavation method using a pre-made concrete pile. When a ready-made pile with an outer diameter of 60 O mm was used and the tip of the ready-made pile was similarly anchored in the consolidation layer, the maximum load was about 310 kN on the same ground.
[ 6 ] 他の実施例 [6] Other embodiments
(1) 前記実施例において、 既製杭 1を下降させるタイミングは、 従来の中掘ェ 法と同様に任意である。 ただし、 形成したソィルセメント層 2 9 A、 2 9 Bでは 、 当該層形成後に速やかに既製杭 1を設置させることが望ましい。  (1) In the above embodiment, the timing for lowering the ready-made stake 1 is arbitrary as in the conventional digging method. However, in the formed soil cement layers 29 A and 29 B, it is desirable to install the ready-made pile 1 immediately after the formation of the layers.
(2) また、 前記実施例において、 地層 2 6 A、 2 6 Bの 2区間を改良し高濃度 のソィルセメント層 2 9 A、 2 9 Bに置き換えた固化混合層を形成したが、 N値 の大小に関わらず他の区間にも高濃度のソィルセメント層を適宜形成し、 軸部の 支持力を増強させることが可能である (図示していない)。 また、前記実施例では 、 特に N値の小さい区間のみ固化混合層を形成して、 少ない処理で支持力増強効 果の高い総合的な固化混合層を造成したが、 施工地盤によっては、 杭穴 2 8の全 深さに亘つて固化強度 0 . 5 NZmm2以下で固化混合層を形成し、 更に良くな い地盤において高固化強度の例えば 1 . O N/mm 2程度のソィルセメント層 ( 固化混合層) を形成することも可能である。 (2) In the above embodiment, a solidified mixed layer was formed in which two sections of the formations 26A and 26B were improved and replaced with high-concentration soil cement layers 29A and 29B. Regardless of the size, it is possible to appropriately form a high-concentration soil cement layer in other sections to increase the bearing capacity of the shaft (not shown). Further, in the above-described embodiment, the solidified mixed layer is formed only in the section where the N value is particularly small, and a comprehensive solidified mixed layer having a high bearing capacity enhancing effect is created with a small amount of processing. Wataru connexion solidified strength full depth of 2 8 0. 5 NZmm 2 to form a solidified mixture layer below 1 high solidification strength for example in the ground have a better. oN / mm 2 approximately Soirusemento layer (the solidified mixture layer ) Can also be formed.
ただし、 新たに杭穴内に注入したセメントミルク等の分だけ、 掘削土が杭穴よ り排出されるので、 掘削土等の排出物を少なくするためには、 セメントミルク等 の注入を極力減らすことが望ましい。 However, the amount of excavated soil is not equal to the amount of newly added cement milk, etc. In order to reduce the amount of excavated soil, etc., it is desirable to minimize the injection of cement milk, etc.
(3) また、 前記実施例において、 下端に先端金具 13を固定した既製杭 1を埋 設したが、 先端金具 13を用いない他の既製杭 1を使用することもできる。  (3) In the above-described embodiment, the ready-made pile 1 having the tip metal fitting 13 fixed at the lower end is buried. However, another ready-made pile 1 without using the tip metal fitting 13 can be used.
既製杭 1として、 下端部に上部軸部 34より細くした下部軸部 36を形成し、 上部軸部 34と下部軸部 36の段差部分(境界部分)、段差部分の上方、段差部分 の下方 (下部軸部の下部) に環状突起 37、 37を夫々形成する。 必要耐力が大 きい場合には、 連結杭として、 下杭を上記既製杭として、 上杭を鋼管被覆コンク リート杭 (SC杭) 等を選択することもできる (第 2図 (a))。 尚、 上記におけ る上部軸部 34とは、 軸部の下端部に形成した下部軸部 36を除いた部分であつ て、 中間部を含む軸部である。  As the ready-made pile 1, a lower shaft portion 36 which is thinner than the upper shaft portion 34 is formed at a lower end portion, and a step portion (boundary portion) between the upper shaft portion 34 and the lower shaft portion 36, above the step portion, below the step portion ( Annular protrusions 37, 37 are formed on the lower shaft portion). If the required strength is large, it is also possible to select a connecting pile, a lower pile as the above-mentioned ready-made pile, a steel pipe-coated concrete pile (SC pile) as the upper pile, etc. (Fig. 2 (a)). The upper shaft portion 34 in the above is a portion excluding the lower shaft portion 36 formed at the lower end portion of the shaft portion, and is a shaft portion including an intermediate portion.
■杭外径 (軸部) D。 = 700 mm  ■ Pile outer diameter (shaft) D. = 700 mm
■杭肉厚 t 01= 100 mm ■ Pile thickness t 01 = 100 mm
■杭内径 D。2= 500mm ■ Pile inner diameter D. 2 = 500mm
·下部軸部の外径 0^= 600 mm  Outer diameter of lower shaft 0 ^ = 600 mm
■環状突起 37の外径 D 13 = 75 Omm ■ Outer diameter of annular projection 37 D 13 = 75 Omm
-杭穴の掘削径 D 21= 1 1 00 mm -Drilling diameter of pile hole D 21 = 1 100 mm
•杭の先端部が位置する地盤の N値= 30  • N value of the ground where the tip of the pile is located = 30
この場合、 環状突起 37、' 37の間隔 2及び下部軸部 36からの環状突起 3 7の長さ L i 4は、前記実施例の大径部 7と環状突起 10との間隔 L t 2と同様に設 定する。 また、 環状突起 37は、 傾斜上面 37 a、 傾斜下面 37 bを有し、 傾斜 下面 37 bは鋼管本体 6の大径部の下面 9や環状突起 10の下面 12と同様の機 能を有するように設定する。 傾斜上面 37 aも同様に形成されている。 In this case, the interval 2 between the annular projections 37 and 37 and the length L i 4 of the annular projection 37 from the lower shaft portion 36 are equal to the interval L t 2 between the large-diameter portion 7 and the annular projection 10 in the embodiment. Make the same settings. The annular projection 37 has an inclined upper surface 37a and an inclined lower surface 37b, and the inclined lower surface 37b has the same function as the lower surface 9 of the large diameter portion of the steel pipe body 6 and the lower surface 12 of the annular projection 10. Set to. The inclined upper surface 37a is similarly formed.
また、 前記において、 環状突起 37の長さ L14は、 上部軸部 34の外面より突 設しない範囲で、 環状突起 37の傾斜上下面 37 a、 37 bをできるだけ広く確 保できる構成とすることもでき、 上記のような L12との関係で設定する。 Further, in the above, the length L 14 of the annular projection 37 is configured so that the inclined upper and lower surfaces 37 a and 37 b of the annular projection 37 can be as large as possible without protruding from the outer surface of the upper shaft portion 34. also, set in relation to the L 12 as described above.
この先端金具 1 3を使用せずに、 環状突起 37を形成した既製杭 1を使用して 、 前記実施例と同様の施工により形成した基礎杭構造 33の場合 (第 2図 (a)) 、 同様の載荷試験を行った結果、 最大荷重で 7492 kNの高い支持力が得られ ている。 これを、 根固め部内の環状突起 37、 環状突起 10の径の相違を考慮し た単位断面積あたりの支持力で比較すると、 前記先端金具 1 3を使用した基礎杭 構造 3 3の場合 (第 2図 (b ) ) は 6 1 8 k N/m \ 環状突起 3 7付きの既製杭 1の場合 (第 2図 (a ) ) は 5 6 5 k NZm 2で、 同程度の支持力が期待できる。 また、 この既製杭 1は、 前記実施例の先端金具 1 3を固定した既製杭 1と同様 の工程で杭穴 2 8内に埋設して、 基礎杭構造 3 3を構成する (第 2図 (a ) )。 尚 、 この場合、 環状突起 3 7の先端外周が最も外径が大きくなるので、 土泥が付着 し易いので、 適当な方法で環状突起 3 7、 3 7を被覆すれば (図示していない) 、 根固め層 3 0内で安定したより大きな支持力が発揮できる。 In the case of the foundation pile structure 33 formed by the same construction as that of the above-described embodiment using the ready-made pile 1 having the annular projection 37 without using the tip fitting 13 (FIG. 2 (a)), As a result of the same loading test, a high bearing capacity of 7492 kN was obtained at the maximum load. Considering the difference in the diameter of the annular projection 37 and the annular projection 10 in the Comparing the bearing capacity per unit cross-sectional area, in the case of the foundation pile structure 33 using the tip fitting 13 (Fig. 2 (b)), 6 18 kN / m \ for ready-made pile 1 (FIG. 2 (a)) in 5 6 5 k NZm 2, comparable supporting force can be expected. Further, this prefabricated pile 1 is buried in the pile hole 28 in the same process as the prefabricated pile 1 to which the tip fitting 13 of the above-mentioned embodiment is fixed to form a foundation pile structure 33 (FIG. 2 ( a)). In this case, since the outer circumference of the tip of the annular projection 37 has the largest outer diameter, soil and mud are likely to adhere thereto. Therefore, if the annular projections 37, 37 are covered by an appropriate method (not shown). However, a stable and larger supporting force can be exhibited in the root consolidation layer 30.
この既製杭 1で、 環状突起 3 7に代えて、 環状突起を切断した環状でない突起 、 あるいは分散的に配置した突起から凸部を形成することもできる (図示してい ない)。 また、 この既製杭 1で、傾斜上面 3 7 a、傾斜下面 3 7 bと同様な機能を 有すれば、 環状突起 (凸部) 3 7に代えて、 環状凹部を形成することもできる ( 図示していない)。  In this prefabricated pile 1, instead of the annular projection 37, a projection can be formed from a non-annular projection obtained by cutting the annular projection or a projection that is dispersedly arranged (not shown). In addition, if the ready-made pile 1 has the same function as the inclined upper surface 37a and the inclined lower surface 37b, an annular concave portion can be formed instead of the annular protrusion (convex portion) 37 (see FIG. Not shown).
(4) また、 前記実施例において、 ロッド本体 1 6に排土用のスパイラルを形成 していない掘削ロッド 1 5を使用することが排土を減らす点からは望ましいが、 部分的に排土用のスパイラルをロッド本体 1 6に形成し、 あるいは、 通常より外 径が小さなスパイラルを口ッド本体 1 6の一部又は全部に形成した掘削ロッドを 使用することもできる (図示していない)。 これは、地盤強度が高い部分で掘削速 度を速めることを優先する場合や、 根固め部内からできるだけ掘削土を排除する ことを優先する場合等に有効である。  (4) In the above-described embodiment, it is preferable to use a drilling rod 15 having no spiral for discharging in the rod body 16 from the viewpoint of reducing the discharging. It is also possible to use a drilling rod in which a spiral having a smaller outer diameter is formed in a part or the whole of the mouth body 16 (not shown). This is effective when priority is given to increasing the excavation speed in areas where the ground strength is high, or when priority is given to removing excavated soil as much as possible from the inside of the consolidation.
従って、 前記発明の杭径より大径の杭穴掘削時に、 掘削ロッドに多少の排土機 構を設けて、 排土量を制御することにより、 施工速度と排土量 (排土処理量) と を適宜組み合わせることができ、 従来より経済的な基礎杭が施工できることが分 かる。  Therefore, when excavating a pile hole having a diameter larger than the diameter of the pile according to the invention, the drilling rod is provided with a certain amount of earth discharging mechanism to control the earth discharging amount, so that the construction speed and the earth discharging amount (the earth discharging processing amount). It can be seen that the foundation pile can be constructed more economically than in the past, because and can be appropriately combined.

Claims

請求の範囲 The scope of the claims
1 . 既製杭の中空部の先端から掘削口ッドの掘削へッドを突出させ、 地盤を掘 削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記既製杭を埋 設する杭の中掘工法において、 1. Protrude the excavation head of the excavation hole from the tip of the hollow part of the prefabricated pile, lower the prefabricated pile while drilling the ground to form a pile hole, and place the prefabricated pile in the specified pile hole. In the digging method of buried piles,
当該地盤中で、 設計で定めた所定の深度範囲に固化混合層を形成し、 当該 深度範囲以外の深度範囲では、 通常の杭穴掘削をすることを特徴とした杭 の中掘工法。  A method for excavating a pile in a pile, characterized by forming a solidified mixed layer in a predetermined depth range defined by the design in the ground and excavating a normal pile hole in a depth range other than the depth range.
2 . 既製杭の中空部の先端から掘削口ッドの掘削へッドを突出させ、 地盤を掘 削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記既製杭を埋 設する杭の中掘工法において、  2. Protrude the excavation head of the excavation hole from the tip of the hollow part of the prefabricated pile, lower the prefabricated pile while drilling the ground to form a pile hole, and place the prefabricated pile in the specified pile hole. In the digging method of buried piles,
当該地盤中で、 設計で定めた所定の深度範囲に固化混合層を形成して地盤 強度を復元及び強化し、 当該深度範囲以外の深度範囲では、 通常の杭穴掘 削をすることを特徴とした杭の中掘工法。  In the ground, a solidified mixed layer is formed at a predetermined depth range determined by design to restore and strengthen the ground strength, and ordinary pile drilling is performed at depths other than the depth range. Digging method for piles.
3 . 既製杭の外径より大径の径で杭穴を形成して、 設計で定めた所定の深度範 囲を掘削する際に、 掘削土にセメントミルク類を注入して、 該掘削土を撹 拌混合して、 所定固化強度の固化混合層を形成することを特徴とした請求 の範囲第 1項又は第 2項記載の杭の中掘工法。 3. When a pile hole is formed with a diameter larger than the outer diameter of the ready-made pile, and when excavating within the specified depth range specified by the design, cement milk is injected into the excavated soil and the excavated soil is removed. 3. The method according to claim 1 or 2, wherein a solidified mixed layer having a predetermined solidification strength is formed by stirring and mixing.
4 . 既製杭の外径の 1 . 4倍以上の径で杭穴を形成して、 設計で定めた所定の 深度範囲を掘削する際に、 掘削土にセメントミルク類を注入して、 該掘削 土を撹拌混合して、 所定固化強度の固化混合層を形成することを特徴とし た請求の範囲第 1項又は第 2項記載の杭の中掘工法。 4. When a pile hole is formed with a diameter of 1.4 times or more the outer diameter of the ready-made pile, and when excavating a specified depth range specified by design, cement milk is injected into the excavated soil and the excavation is performed. 3. The method according to claim 1, wherein the soil is stirred and mixed to form a solidified mixed layer having a predetermined solidification strength.
5 · 既製杭の中空部の先端から掘削口ッドの掘削へッドを突出させ、 地盤を掘 削して杭穴を形成しつつ前記既製杭を下降して、 所定杭穴内に前記既製杭 を埋設する杭の中掘工法において、 5 · Protrude the excavation head of the excavation hole from the tip of the hollow part of the ready-made pile, lower the ready-made pile while drilling the ground to form a pile hole, and place the ready-made pile in the specified pile hole. In the method of digging piles to bury
前記既製杭の外径の 1 . 4倍以上の径で杭穴を形成して、 前記地盤で比較 的軟弱な地層を含む深度区間において、 掘削土にセメントミルク類を注入 して、 該掘削土を撹拌混合して、 所定固化強度の固化混合層を形成するこ とを特徴とした杭の中掘工法。  Pile holes are formed with a diameter of at least 1.4 times the outer diameter of the ready-made pile, and cement milk is injected into the excavated soil in the depth section including the relatively soft stratum on the ground, A method of excavating piles, characterized in that a solidified mixed layer with a predetermined solidification strength is formed by stirring and mixing.
6 . 既製杭の中空部の先端から掘削ロッドの掘削ヘッドを突出させ、 地盤を掘 削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記既製杭を埋 設する杭の中掘工法において、 6. Excavate the ground by protruding the drilling head of the drilling rod from the tip of the hollow part of the ready-made pile. In the pile excavation method of lowering the ready-made pile while shaving to form a pile hole and burying the ready-made pile in a predetermined pile hole,
中間部に排土機構を有しない掘削ロッドを使用して、 前記既製杭の外径のUsing a drilling rod without an earth removal mechanism in the middle,
1 . 4倍以上の径で地盤をほぐしながら掘削し、 ほぐした掘削土を、 前記 既製杭の外面で外側に押し固めながら、 前記既製杭を沈設することを特徴 とした杭の中掘工法。 A method of digging a pile, wherein the excavated soil is excavated with a diameter of 1.4 times or more, and the unraveled excavated soil is compacted outward on the outer surface of the prefabricated pile, and the prefabricated pile is laid down.
既製杭の中空部の先端から掘削口ッドの掘削へッドを突出させ、 地盤を掘 削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記既製杭を埋 設する杭の中掘工法において、 The excavation head of the excavation port is protruded from the tip of the hollow part of the ready-made pile, and the ready-made pile is lowered while digging the ground to form a pile hole, and the ready-made pile is buried in the specified pile hole. Digging method for piles
前記既製杭の外径の 1 . 4倍以上の径で地盤をほぐしながら掘削し、 ほぐ した掘削土を、 前記既製杭の外面で外側に押し固めながら、 前記既製杭を 沈設することを特徴とした杭の中掘工法。 Excavating the ground with a diameter of at least 1.4 times the outer diameter of the ready-made pile, excavating the ground, and placing the ready-made pile while squeezing the loosened soil outward on the outer surface of the ready-made pile. Pile digging method.
既製杭の中空部の先端から掘削口ッドの掘削へッドを突出させ、 ±也盤を掘 削して杭穴を形成しつつ既製杭を下降して、 所定杭穴内に前記既製杭を埋 設する杭の中掘工法において、 ' The excavation head of the excavation hole is protruded from the tip of the hollow part of the prefabricated pile, and the prefabricated pile is lowered while drilling a hole to form a pile hole, and the prefabricated pile is inserted into the specified pile hole. In the digging method for buried piles,
中間部に排土機構を有しない掘削ロッドを使用し、 当該地盤中で、 設計で 定めた所定の深度範囲を、 前記既製杭の外径の 1 . 4倍以上の径で地盤を ほぐしながら掘削し、 ほぐした掘削土を、 前記既製杭の外面で外側に押し 固めて、 あるいは設計で定めた所定深度範囲には所定固化強度の固化混合 層を形成し、 当該深度範囲以外の深度範囲では、 通常の杭穴掘削をするこ とを特徴とした杭の中掘工法。 Using a drilling rod without an earth removal mechanism in the middle, excavating in the ground at a specified depth range determined by design with a diameter of 1.4 times or more the outer diameter of the ready-made piles Then, the loosened excavated soil is compacted outward on the outer surface of the ready-made pile, or a solidified mixed layer with a predetermined solidification strength is formed in a predetermined depth range determined by design, and in a depth range other than the depth range, This is a method of excavating piles, which involves drilling a normal pile hole.
既製杭の先端に先端金具を連結して、 該先端金具の先端から掘削ヘッドを 突出して、 地盤を掘削して杭穴を形成し、 前記先端金具は、 筒状基部の外 側面に、 上方又は下方に向けて、 せん断力を伝搬させ先端支持力として利 用することができる支持面を、 1つ又は複数箇所に形成することを特徴と した請求の範囲第 1項〜第 8項のいずれか 1項記載の杭の中掘工法。 杭軸部の下端部外側面に凹凸部を形成した既製杭を使用して、 該既製杭の 先端から掘削ヘッドを突出して、 地盤を掘削して杭穴を形成し、 前記既製 杭の凹凸部は、 前記既製杭の下端部外側面に、 上方又は下方に向けて、 せ ん断カを伝搬させ先端支持力として利用することができる支持面を、 1つ 又は複数箇所に形成することを特徴とした請求の範囲第 1項〜第 8項のい ずれか 1項記載の杭の中掘工法。 A tip fitting is connected to the tip of the ready-made pile, a drilling head is protruded from the tip of the tip fitting, and the ground is excavated to form a pile hole, and the tip fitting is formed on the outer surface of the cylindrical base, upward or downward. 9. A method according to claim 1, wherein a support surface capable of transmitting a shear force downward and being used as a tip support force is formed at one or a plurality of locations downward. Underground construction method of pile described in paragraph 1. Using a prefabricated pile having an uneven portion formed on the outer surface at the lower end of the pile shaft, projecting a drilling head from the tip of the prefabricated pile, excavating the ground to form a pile hole, and forming the uneven portion of the prefabricated pile. One of the support surfaces that can transmit the shear force upward and downward and use it as the tip support force on the outer surface of the lower end of the ready-made pile 9. The method according to claim 1, wherein the pile is formed at a plurality of locations.
1 1 . 既製杭の先端に、 筒状基部の外側面に横方向の突起を形成した先端金具を 連結して、 該先端金具の先端から掘削ヘッドを突出して、 地盤を掘削して 杭穴を形成することを特徴とする請求の範囲第 1項〜第 8項のいずれか 1 項記載の杭の中掘工法。  1 1. At the tip of the ready-made pile, connect a tip fitting with a lateral projection formed on the outer surface of the tubular base, project the drilling head from the tip of the tip fitting, excavate the ground and drill a pile hole. 9. The method according to any one of claims 1 to 8, wherein the pile is formed.
1 2 . 固化混合層の外径と、 杭穴の根固め部の外径とを略同一外径に形成するこ とを特徴とした請求の範囲第 1項〜第 8項のいずれか 1項記載の杭の中掘 工法。  12. The outer diameter of the solidified mixed layer and the outer diameter of the pile consolidation portion are formed to have substantially the same outer diameter. Underground pile construction method described in the pile.
1 3 . 杭穴内に既製杭を埋設して構成した基礎杭構造であって、 1 3. A foundation pile structure constructed by burying ready-made piles in pile holes,
前記杭穴は、 少なくとも設計で予め定めた深度範囲の地盤強度を復元及び 改良して構成し、 前記既製杭は下端部に、 先端金具を取り付けてなり、 該 先端金具は筒状基部の外側面に、 斜め上方又は斜め下方に向けて、 せん断 力を伝搬させ先端支持力として利用することができる支持面を、 1つ又は 複数箇所に形成して構成したことを特徴とする基礎杭構造。  The pile hole is constructed by restoring and improving the ground strength at least in a depth range predetermined by design, and the ready-made pile is provided with a tip metal fitting at a lower end thereof, and the tip metal fitting is an outer surface of a cylindrical base. A foundation pile structure characterized in that a support surface capable of transmitting a shear force and being used as a tip support force is formed at one or a plurality of positions obliquely upward or diagonally downward.
PCT/JP2003/012522 2002-09-30 2003-09-30 Internal excavation method through pile, and foundation pile structure WO2004035942A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004544915A JP4625896B2 (en) 2002-09-30 2003-09-30 Pile digging method
AU2003266716A AU2003266716A1 (en) 2002-09-30 2003-09-30 Internal excavation method through pile, and foundation pile structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287127 2002-09-30
JP2002-287127 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004035942A1 true WO2004035942A1 (en) 2004-04-29

Family

ID=32104947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012522 WO2004035942A1 (en) 2002-09-30 2003-09-30 Internal excavation method through pile, and foundation pile structure

Country Status (5)

Country Link
JP (4) JP4625896B2 (en)
KR (1) KR101071122B1 (en)
CN (1) CN100510276C (en)
AU (1) AU2003266716A1 (en)
WO (1) WO2004035942A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031647A (en) * 2002-09-30 2010-02-12 Mitani Sekisan Co Ltd Internal excavation method through pile, and foundation pile structure
CN105064351A (en) * 2015-08-14 2015-11-18 云南大学 Pile planting method
CN110835906A (en) * 2019-11-27 2020-02-25 中国电建集团成都勘测设计研究院有限公司 Method for determining bottom elevation of anti-impact rotary excavating pile of flood discharge outlet river bank

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674189B2 (en) * 2010-04-30 2015-02-25 三谷セキサン株式会社 Pile hole drilling head
CN101974905B (en) * 2010-10-22 2013-04-24 上海中技桩业股份有限公司 Pile-embedding method for hollow pile and auger drill for implementing same
CN102383429B (en) * 2011-01-18 2016-08-10 上海城地建设股份有限公司 Digging pile-sinking device in the middle of a kind of heavy caliber pile tube
CN102373708B (en) * 2011-02-23 2016-03-02 上海城地建设股份有限公司 Anchor method prestressed centrifugally pile tube and square sunk pile device and pile-sinking method thereof are drawn in middle pick
CN102383428B (en) * 2011-02-23 2015-12-09 上海城地建设股份有限公司 Middle pick reverse drawing method prestressed centrifugally pile tube pile-sinking device and pile-sinking method thereof
KR101224440B1 (en) 2011-05-12 2013-01-21 시지엔지니어링(주) Construction method of screw file
KR101416865B1 (en) * 2011-05-12 2014-07-09 시지엔지니어링(주) Construction method of screw file
CN102776885A (en) * 2011-05-13 2012-11-14 上海城地建设发展有限公司 Middle-stirring inverse-pulling method based pre-stressed centrifugal tubular pile sinking device, and pile sinking method
CN102776884B (en) * 2011-05-13 2016-01-20 上海城地建设股份有限公司 In stir and rotate prestressed centrifugally pile tube pile-sinking device and pile-sinking method thereof
CN102953382A (en) * 2011-08-18 2013-03-06 上海城地建设发展有限公司 Pile sinking device and pile sinking method for steel pipe pile by central stirring and reverse drawing
JP5959980B2 (en) * 2012-08-01 2016-08-02 三谷セキサン株式会社 Method of burying ready-made piles
CN103628480A (en) * 2012-08-27 2014-03-12 上海中技桩业股份有限公司 Construction method and device for guide displacement pressure precast pile
KR101834948B1 (en) * 2017-05-15 2018-04-19 (주)나다건설 Steel pipe micro-pile foundation system and construction method of micropile foundation using the same
KR101834950B1 (en) * 2017-05-15 2018-03-07 (주)나다건설 Micropile foundation structure and construction method of micropile foundation
JP6740276B2 (en) * 2018-04-11 2020-08-12 株式会社トーヨーアサノ Foundation pile and method of constructing foundation using the foundation pile
CN110886292B (en) * 2019-11-29 2021-10-26 祝波 Full-casing composite expanded-disk pile construction method and equipment
KR102347012B1 (en) 2020-09-11 2022-01-04 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same
KR20220035632A (en) 2020-09-14 2022-03-22 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same
CN113882376A (en) * 2021-09-17 2022-01-04 湖南铁甲智能技术有限公司 Pile sinking construction method and construction structure of prestressed pipe pile
KR102613542B1 (en) 2021-10-22 2023-12-13 주식회사 이지지오텍 Under reaming auger apparatus and under reamed pile construction method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108724A (en) * 1988-10-14 1990-04-20 Takechi Koumushiyo:Kk Enlarged-dia. hole drilling method and enlarged-dia. knot piling method
JPH0325121A (en) * 1989-06-22 1991-02-01 Nippon Concrete Ind Co Ltd Sinking of pile in inner drilling pile method
JP2000144727A (en) * 1998-11-09 2000-05-26 Geotop Corp Construction method of footing pile

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185826A (en) * 1982-04-23 1983-10-29 Tenotsukusu:Kk Construction of foundation pile
GB2132668B (en) * 1982-12-22 1987-01-14 Shekisan Kogyo Co Ltd Concrete pile installing method
JPS6397711A (en) * 1986-10-14 1988-04-28 Nkk Corp Soil cement composite pile
JPH026107Y2 (en) * 1988-04-14 1990-02-14
JP2832481B2 (en) * 1990-03-14 1998-12-09 三谷セキサン 株式会社 Drilling rig for hole for concrete pile installation
JP2846925B2 (en) * 1990-05-22 1999-01-13 旭化成工業株式会社 Nakabori construction method with tip enlarged diameter pile
JPH0626036A (en) * 1992-07-03 1994-02-01 Mitani Sekisan Co Ltd Concrete pile installation method by inner excavation
JP3025121B2 (en) * 1992-12-24 2000-03-27 キヤノン株式会社 Information processing method and apparatus
JP4671143B2 (en) * 1999-04-13 2011-04-13 三谷セキサン株式会社 Pile hole drilling head and pile hole drilling method
JP5024692B2 (en) * 1999-12-27 2012-09-12 三谷セキサン株式会社 Construction method of foundation pile, ready-made pile, pile hole drilling rod
JP4360745B2 (en) * 2000-07-27 2009-11-11 Jfeスチール株式会社 Construction method of ready-made piles
JP4599508B2 (en) * 2000-08-23 2010-12-15 三谷セキサン株式会社 Method of burying ready-made piles with protrusions and foundation pile structure in Nakabori method
JP2002129557A (en) * 2000-10-23 2002-05-09 Tokyo Tokushu Kiso Kogyo:Kk Pile burying method
JP4471510B2 (en) * 2001-02-01 2010-06-02 住友金属工業株式会社 Steel pipe soil cement pile, its construction method and construction equipment
CN100510276C (en) * 2002-09-30 2009-07-08 三谷石产株式会社 Internal excavation method through pile, and foundation pile structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108724A (en) * 1988-10-14 1990-04-20 Takechi Koumushiyo:Kk Enlarged-dia. hole drilling method and enlarged-dia. knot piling method
JPH0325121A (en) * 1989-06-22 1991-02-01 Nippon Concrete Ind Co Ltd Sinking of pile in inner drilling pile method
JP2000144727A (en) * 1998-11-09 2000-05-26 Geotop Corp Construction method of footing pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031647A (en) * 2002-09-30 2010-02-12 Mitani Sekisan Co Ltd Internal excavation method through pile, and foundation pile structure
CN105064351A (en) * 2015-08-14 2015-11-18 云南大学 Pile planting method
CN110835906A (en) * 2019-11-27 2020-02-25 中国电建集团成都勘测设计研究院有限公司 Method for determining bottom elevation of anti-impact rotary excavating pile of flood discharge outlet river bank

Also Published As

Publication number Publication date
JP2010209678A (en) 2010-09-24
CN100510276C (en) 2009-07-08
CN1685113A (en) 2005-10-19
JP2010031647A (en) 2010-02-12
KR101071122B1 (en) 2011-10-07
JPWO2004035942A1 (en) 2006-02-16
JP2012207532A (en) 2012-10-25
JP5520347B2 (en) 2014-06-11
JP4625896B2 (en) 2011-02-02
JP5265500B2 (en) 2013-08-14
KR20050059183A (en) 2005-06-17
JP5114529B2 (en) 2013-01-09
AU2003266716A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
JP5265500B2 (en) Pile digging method, foundation pile structure
KR102151009B1 (en) Soil cohesion stake suitable for slopes
JP2002155530A (en) Embedding method and tip metal fitting of existing pile
JP4496553B2 (en) Construction method of foundation pile and ready-made pile
JPS5985028A (en) Steel pipe pile and laying work thereof
JP2003119775A (en) Construction of foundation pile
JP5546000B2 (en) Ground excavation method
JP4189550B2 (en) Construction method of ready-made pile with spiral blade, casing for propulsion
JP4378752B2 (en) Ready-made piles for large-diameter ready-made concrete pile foundations
JP3619841B2 (en) Pile fixing construction method
JP3514183B2 (en) Embedded pile and its construction method
JP4129836B2 (en) Construction method of foundation pile, ready-made pile with spiral wing
KR101794112B1 (en) Rrotating-press type pile construction device by using tip-enlarged pile
KR20210095394A (en) Helix pile and construction method thereof
JP4517236B2 (en) Pile hole drilling method
JP4197074B2 (en) Embedded pile construction equipment
JP4360745B2 (en) Construction method of ready-made piles
JP2001271347A (en) Drop method for ready-made pile
JP2002054135A (en) Composite structure
JP4156313B2 (en) Rotating method for ready-made piles
JP2004027610A (en) Burying method for prefabricated pile
JP2001248157A (en) No-earth removal
JP4481662B2 (en) Pile setting method and blade plate
JP3952772B2 (en) Construction method and apparatus for foundation pile
JP2003147768A (en) Ready-made pile burying method for reducing removal earth

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004544915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057004993

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038231085

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004993

Country of ref document: KR

122 Ep: pct application non-entry in european phase