WO2004034893A1 - 検眼装置および検眼方法 - Google Patents

検眼装置および検眼方法 Download PDF

Info

Publication number
WO2004034893A1
WO2004034893A1 PCT/JP2003/010733 JP0310733W WO2004034893A1 WO 2004034893 A1 WO2004034893 A1 WO 2004034893A1 JP 0310733 W JP0310733 W JP 0310733W WO 2004034893 A1 WO2004034893 A1 WO 2004034893A1
Authority
WO
WIPO (PCT)
Prior art keywords
chart
determination
myopia
hyperopia
target
Prior art date
Application number
PCT/JP2003/010733
Other languages
English (en)
French (fr)
Inventor
Akio Toshima
Takehiko Yoshida
Original Assignee
Vision Optic Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vision Optic Co., Ltd. filed Critical Vision Optic Co., Ltd.
Priority to US10/531,958 priority Critical patent/US7429109B2/en
Priority to JP2004544905A priority patent/JP4148947B2/ja
Priority to AU2003257702A priority patent/AU2003257702A1/en
Priority to TW092126202A priority patent/TWI253921B/zh
Publication of WO2004034893A1 publication Critical patent/WO2004034893A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/036Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters for testing astigmatism

Definitions

  • the present invention relates to an optometric apparatus and an optometric method for subjectively performing an optometry by allowing an examinee to visually recognize an optotype displayed on a display means by one of the left and right eyes.
  • the present invention relates to an optometry apparatus and an optometry method suitable for optometry performed to determine a lens power when selling. Background art
  • the refractive index of the eyeball is objectively determined using auto-refractometry, and the eyesight is actually worn by using the provided corrective lens.
  • the method of confirmation has been generally adopted.
  • a remote visual acuity determination system disclosed in Japanese Patent Application Laid-Open No. 2000-286442.
  • a visual target for visual acuity determination called a Landolt's ring as shown in FIG. 19 is displayed on a computer screen, and the size of the visual target is changed so that the examinee can see each of the left and right eyes.
  • Visual acuity is determined by selecting the smallest visible target.
  • the Landolt ring is rotated to determine the direction in which the subject can see the discontinuity, and a target for astigmatic axis determination as shown in Fig. 20 is displayed on the computer screen.
  • the astigmatic axis is determined by displaying and displaying the darkest direction for each of the left and right eyes on the left and right eyes, and the visual acuity is determined by a visual acuity determination target in the determined astigmatic axis and a direction orthogonal thereto. judge.
  • the examinee in optometry using a computer screen, the examinee must input the visual recognition result using a mouse or the like, so the distance between the examinee's eye and the optotype is restricted to a certain range. It is difficult to distinguish between hyperopia and myopia with only the visual acuity target.
  • a main object of the present invention is to provide an optometric apparatus and an optometric method which can accurately perform optometry on a wide range of powers having astigmatism 'myopia' and hyperopia, and particularly can respond to a person having mixed astigmatism. That is. Disclosure of the invention
  • the invention according to claim 1 is an optometry apparatus that allows an examinee to visually recognize an optotype displayed on a display means in one of left and right eyes and obtains a result visually recognized by the examinee to subjectively perform optometry.
  • a target for determining the astigmatic axis angle is displayed, and the astigmatic axis angle is determined by acquiring the result visually recognized by the subject; and the astigmatic axis angle determining means is selected based on the determined astigmatic axis angle.
  • optotypes for determining hyperopia and myopia in the two orthogonal directions and obtaining the visual recognition result of the subject, it is possible to determine hyperopia and myopia at the determined astigmatic axis angle and an angle orthogonal thereto.
  • An optometry apparatus comprising: a frequency determination unit configured to determine an axis angle and a frequency of an angle orthogonal thereto.
  • the optometry apparatus of the present invention includes hyperopia / myopia determination means and has a function of determining whether the eye of the subject is hyperopia or myopia, even if the examinee includes a person having hyperopia, Optometry can be performed accurately.
  • the astigmatic axis angle determining means determines the astigmatic axis of the subject
  • the hyperopic / myopic determining means individually determines hyperopia and myopia in the two orthogonal directions selected based on the astigmatic axis, and determines the frequency. Since it has a function to determine the power in two orthogonal directions selected based on the axis of astigmatism by a means, even a person with mixed astigmatism can perform optometry.
  • the invention according to claim 2 is characterized in that the astigmatic axis angle determination means arranges a large number of straight lines in parallel in four directions of approximately 45 degrees, approximately 90 degrees, approximately 135 degrees, and approximately 180 degrees.
  • Means for displaying an astigmatic axis determination chart including the four targets; means for causing the subject to select a target that appears dark for the displayed astigmatic axis determination chart; and the astigmatic axis determination.
  • the examinee In an optometry apparatus that allows the subject to visually inspect the optotype displayed on the display means, the examinee is required to visually recognize the optotype displayed on the display means alone to make a judgment.
  • the determination of the astigmatism axis differs slightly depending on the distance between the target and the eye of the subject, and the average person uses a target in which one straight line is radially arranged or two straight lines.
  • the astigmatism axis angle determination means arranges a large number of straight lines in parallel in four directions of approximately 45 degrees, approximately 90 degrees, approximately 135 degrees, and approximately 180 degrees.
  • Means for displaying a first astigmatism axis determination chart including the four indices; means for selecting a target that the subject to be examined looks darker with respect to the displayed first astigmatism axis determination chart;
  • Means for displaying a second astigmatic axis determination chart including four optotypes in which a number of straight lines are arranged in parallel in four directions substantially in the middle of the directions, and the displayed second astigmatic axis determination chart Means for selecting a target that looks dark for the subject, and a target selected for the first astigmatic axis determination chart and the second target for the second astigmatic axis determination chart.
  • the optometry apparatus according to claim 1, further comprising: means for determining an astigmatic axis angle based on the target.
  • the astigmatic axis angle determination means an optotype consisting of a linear group in which a large number of straight lines are arranged in parallel is used, and in four directions at 45-degree intervals Since the astigmatic axis determination chart in which the limited targets are combined is displayed to allow the examinee to select a target that looks dark, even an ordinary person can easily determine the astigmatic axis and suppress erroneous determination.
  • an astigmatic axis judgment chart combining targets in four directions between 45 degrees, 90 degrees, 135 degrees, and 180 degrees is displayed to select a target that appears dark to the examinee.
  • the astigmatism axis angle is determined from the optotypes selected for the two astigmatism axis determination charts, so that the intermediate angle is calculated from the angles of the optotypes selected for the two astigmatism axis determination charts.
  • the astigmatism axis can be determined, and the astigmatism axis angle can be determined with substantially twice the resolution for the displayed targets in a total of eight directions.
  • the invention according to claim 4 is characterized in that the astigmatism axis angle determination means arranges a large number of straight lines in parallel in four directions of approximately 45 degrees, approximately 90 degrees, approximately 135 degrees, and approximately 180 degrees.
  • Means for displaying a second astigmatic axis determination chart including four optotypes in which a number of straight lines are arranged in parallel in four directions substantially in the middle of the four directions, and the displayed second astigmatic axis Means for selecting an optotype that the examinee looks dark for the judgment chart, an optotype selected by the examinee for the first astigmatic axis judgment chart, and the second astigmatism axis judgment chart Means for displaying a third astigmatic axis determination chart including the target selected by the subject; and the displayed third astigmatic axis Means
  • the optometry method further comprising: means for determining an astigmatic axis angle based on the selected optotype and the optotype selected for the third astigmatic axis determination chart.
  • the astigmatic axis angle determination means an astigmatic axis obtained by combining an optotype limited to four directions at 45-degree intervals using an optotype consisting of a linear group in which many straight lines are arranged in parallel.
  • the judgment chart is displayed so that the examinee can select an optotype that looks dark, so that ordinary people can easily judge the astigmatism axis, and erroneous judgment can be suppressed.
  • a second astigmatic axis determination chart combining targets in four directions between 45 degrees, 90 degrees and 135 degrees * 180 degrees is displayed, and the examinee sees a darker visual axis.
  • a target is selected, and a third astigmatism axis determination chart combining the targets selected for the two astigmatism axis determination charts is displayed, and the examinee is allowed to select a target that appears dark, and the three astigmatism axes are selected. Since the astigmatic axis angle is determined from the optotype selected for the judgment chart, it is necessary to determine the astigmatic axis at an intermediate angle by calculation from the optotype angles selected for the three astigmatic axis judgment charts. As a result, the astigmatic axis angle can be determined with substantially twice the resolution of the displayed targets in a total of eight directions.
  • the astigmatic axis angle of the subject can be determined more accurately.
  • the hyperopia and myopia determination means is arranged so that the background has a reddish color region and a bluedish background region in one of the selected two orthogonal directions.
  • the determination chart according to any one of claims 1 to 4, further comprising: means for determining hyperopia / myopia at the determined astigmatic axis angle and an angle orthogonal thereto based on the result selected for the determination chart. It is an optometry apparatus.
  • the hyperopia / myopia determination means uses a black system color in either of two orthogonal directions selected based on the astigmatic axis angle determined by the astigmatic axis angle determination means in both regions.
  • An optotype having a straight line is used, and a first hyperopia / myopia judgment chart in which a straight line is arranged in one of two directions in both regions; Display a second hyperopia / myopia judgment chart in which straight lines are arranged in the other direction, and allow the subject to select which area of the straight line is clearly visible for each hyperopia / myopia judgment chart. Then, hyperopia and myopia at the astigmatic axis angle of the subject and at angles orthogonal thereto are determined.
  • the red-based color focuses on the back side and the blue-based color focuses on the near side due to chromatic aberration.
  • the system uses the fact that the red-colored area looks clearer and in the case of hyperopia, the blue-colored area looks clearer, and the examinee determines which area is clearer. You can easily judge because you only need to do it.
  • the hyperopia / myopia determination chart has a directional property in which straight lines are arranged in two orthogonal directions selected based on the astigmatic axis angle determined by the astigmatic axis angle determining means in the two color regions where chromatic aberration occurs. Since the target is displayed, the angle dependence of hyperopia and myopia can be detected. As a result, the astigmatic axis angle of the subject and the angle orthogonal thereto can be independently hyperopia and myopia. Judgment can be made, and it can respond to people with mixed astigmatism.
  • the invention according to claim 6 is characterized in that the hyperopia / myopia determination means is arranged so that the background is in one of the two orthogonal directions selected to be both a red-based area and a blue-based area.
  • Means for selecting whether or not the first hyperopia / myopia The result selected for the constant chart, the result selected for the second hyperopia / myopia judgment chart, the result selected for the third hyperopia / myopia judgment chart, and the fourth hyperopia The astigmatic axis angle determined based on the result selected for the myopia determination chart and the hyperopia at an angle orthogonal thereto.
  • the optometry apparatus according to any one of claims 1 to 4, further comprising a determination unit.
  • the astigmatism axis determined by the astigmatism axis angle determination means has an area having a reddish color background and an area having a bluedish color background.
  • An optotype with a black-colored straight line arranged in one of two orthogonal directions selected based on the angle is used, and a straight line is drawn in one of the two directions in both areas.
  • a third hyperopia / myopia judgment chart in which a straight line is arranged in the one direction and a straight line is arranged in the other direction of the two directions in the other area; and the other of the two directions in one area.
  • a fourth hyperopia / myopia judgment chart is displayed, and the examinee is allowed to select which area of a straight line is clearly visible for each hyperopia / myopia judgment chart. And hyperopia and myopia at an angle perpendicular to it.
  • the red-based color focuses on the back side and the blue-based color focuses on the near side due to chromatic aberration.
  • the system uses the fact that the red-colored area looks clearer and in the case of hyperopia, the blue-colored area looks clearer, and the examinee determines which area is clearer. You can easily judge because you only need to do it.
  • the hyperopia / myopia determination chart has a directional property in which straight lines are arranged in two orthogonal directions selected based on the astigmatic axis angle determined by the astigmatic axis angle determining means in the two color regions where chromatic aberration occurs. Since the target is displayed, the angle dependence of hyperopia and myopia can be detected. As a result, the axis of astigmatism of the subject It is possible to determine hyperopia and myopia independently for each of the angles and angles perpendicular to it, and it can be used for people with mixed astigmatism.
  • the first hyperopia / myopia judgment chart and the second hyperopia / myopia judgment chart in which a straight line is arranged in one of the two directions in both areas, two directions are provided in both areas.
  • the third hyperopia / myopia judgment chart and the fourth hyperopia / myopia judgment chart in which the straight line whose direction was changed were arranged were used to judge hyperopia / myopia. Even if an erroneous judgment is made, it is possible to make a correct judgment by mutually checking the results selected in the four charts, and the astigmatic axis angle of the examinee and the hyperopia and myopia at angles orthogonal to it can be obtained. More accurate determination can be made.
  • the examinee selects either "red system color area" or "looks the same". If "blue color region" is not selected, there is no hyperopic factor, so judgment using the third hyperopia / myopia judgment chart and the fourth hyperopia / myopia judgment chart May be omitted. As a result, hyperopia and myopia can be determined more efficiently.
  • the hyperopia / myopia judgment means sets the luminance of the blue system color area of the hyperopia / myopia judgment chart lower than the luminance of the red system color area.
  • an optometric apparatus according to claim 6.
  • the computer screen is often viewed at a distance where the hand is reached (about 60 to 70 cm). At this distance, the hyperopia / myopia judgment chart using two colors of red and blue colors. Is displayed and the subject is judged. If the subject has relatively good visual acuity or weak myopia, the distance to the screen is relatively short, so some people focus behind the retina. In some cases, a blue color region was selected.
  • the optometry apparatus provides a system for determining a hyperopia / myopia judgment chart in a blue-based color area. Since the brightness was set lower than the brightness of the reddish color area, the subject with normal vision or weak myopia could erroneously select the bluedish color area even when viewing the computer screen at a reach distance. Prevention of hyperopia and myopia can be determined more accurately.
  • the invention according to claim 8 is the optometry apparatus according to any one of claims 5 to 7, wherein the hyperopia / myopia determination means limits a display time of each of the hyperopia-myopia determination charts.
  • the display time of each hyperopia / myopia judgment chart is limited, so that the examinee can make a judgment in a state where the accommodation power of the eye does not significantly work. This is especially effective when the size of the optotype is fixed, and the examinee is allowed to approach the position where the optotype can be easily seen, and the examinee is required to focus on the eye in order to focus firmly. By making the adjustment power of the robot work harder, it is possible to prevent erroneous judgments.
  • the power determination means is a power determination wheel in which the size of a target in which a fixed number of straight lines are arranged in parallel in the selected two orthogonal directions is changed stepwise.
  • the optometry apparatus according to any one of claims 1 to 8, further comprising means for determining the determined astigmatic axis angle and a frequency of an angle orthogonal thereto.
  • the frequency determination means a target in which a certain number of straight lines are arranged in parallel in two orthogonal directions selected based on the astigmatic axis angle determined by the astigmatic axis angle determining means is provided.
  • the frequency judgment chart with the size changed step by step in accordance with the frequency, the examinee was asked to select the smallest target that can correctly recognize the number of straight lines.
  • the number of steps of the size of the target can be increased, thereby increasing the resolution of the frequency determination, and increasing the astigmatic axis angle and the astigmatic axis angle of the subject.
  • the frequency at an angle perpendicular to that can be determined with high accuracy.
  • the frequency judgment chart may include all the targets whose sizes are changed stepwise in one chart, and select the smallest target that can be visually recognized from among them. It is also possible to divide the chart into a plurality of sections according to the size, and to switch and display the chart including the charts to select the smallest viewable target. Further, one chart may include only one target, and the chart may be switched in a descending order to be displayed to determine the smallest target that can be viewed.
  • the frequency determination unit is configured to combine optotypes having a step difference of 2 or more in size in which a fixed number of straight lines are arranged in parallel in the selected two orthogonal directions.
  • the frequency determination means a target in which a certain number of straight lines are arranged in parallel in two orthogonal directions selected based on the astigmatic axis angle determined by the astigmatic axis angle determining means is provided.
  • a plurality of frequency judgment charts in which optotypes having a size step difference of 2 or more are sequentially displayed corresponding to the frequency, and the examinee can visually recognize the number of straight lines correctly for each frequency judgment chart. Because the smallest target is selected, the size of the target is smaller than when the conventional Landolt ring is rotated to determine a partial cut. Since the number of steps can be taken, the resolution of the power determination is increased, and the astigmatic axis angle of the subject and the power of the angle orthogonal to the astigmatic axis angle can be accurately determined.
  • the frequency can be correctly checked by mutual checking. This makes it possible to determine the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto with higher accuracy.
  • the width of the fixed number of straight lines arranged at both outer ends in the width direction is 0.5 to 2.0 times the width of the straight lines.
  • both sides of the fixed number of straight lines arranged in the width direction are provided with both side bands having a constant width and contrast with respect to the straight line, so that when pseudo resolution occurs,
  • the straight lines appearing on both side bands have a contrast with the background, making it easy to see, and the subject can easily judge that pseudo-resolution has occurred.
  • Item 21 is an optometry apparatus according to item 11.
  • the color between the both bands and the line is changed, and the luminance of the both bands is set to be higher than the luminance between the lines. It is easy to judge and the smallest target that can be more accurately recognized can be selected. This makes it possible to more accurately determine the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto.
  • the brightness here means the brightness that light perceives when entering the eye.
  • Y 0.299 R + 0.587G + 0.114B
  • the straight line is a black system color
  • a space between the straight lines is a green system color
  • the both side bands are a yellow system color.
  • the optometry apparatus is characterized in that in the frequency judgment chart, the straight lines to be arranged are black system color, the interval between the lines is blue system color, and both side bands are yellow system color. was particularly easy for the subject to see and could be judged accurately.
  • the frequency determination means causes the subject to visually recognize the optotype at a distance far from the display means, and selects the smallest optotype that can be visually recognized.
  • An optometry apparatus is characterized in that in the frequency determination means, a frequency determination means that determines the frequency by visually recognizing a target at a distance far from the display means; Means for determining the astigmatic axis angle of the examinee and the frequency of the angle orthogonal to the astigmatic axis angle based on the optotype selected by the distant power judging means and the optotype selected by the near frequency judging means. It has a function.
  • the distant power determination means it is possible to determine the power even in a hyperopic or presbyopic subject who is farther than the near point distance and within the range of accommodation power.
  • the subject's astigmatic axis is determined by using the optotype selected by distant power determination and the optotype selected by nearby power determination.
  • the degree can be calculated by determining hyperopia and myopia at an angle and an angle orthogonal thereto. For example, the difference between the size of the optotype selected in the distant frequency judgment and the size of the optotype selected in the near frequency judgment is obtained. Is judged to be nearsighted, or if this is negative and it is less than a certain value.
  • the optotype selected in the distant power judgment and the optotype selected in the nearby power judgment are mutually checked and the subject is checked.
  • the error may be corrected, and in the determination of the power, the power may be calculated by using both the target selected in the distant power determination and the target selected in the near power. .
  • hyperopia / myopia determination and power determination at the astigmatic axis angle of the subject and at angles orthogonal thereto can be performed with higher accuracy.
  • test is performed at a distance (approximately 60 to 70 cm) at which the examinee reaches his hand and touches the display means.
  • judgment of a nearby frequency is made by vertically placing A4 paper between the examinee's eye and the display means. It may be performed at a set distance (about 30 cm).
  • the near frequency determination means is a predetermined age or older and the subject is determined to be hyperopic by the hyperopia / myopia determination means, and the hyperopia / myopia determination means 15.
  • the frequency determination means determines the near frequency only for a person with hyperopia and a person who cannot be determined by the hyperopia / myopia determination means for a certain age or more. For people with good sight and people with myopia, good results can be obtained only by determining the frequency at a distance. As described above, the frequency determination of a nearby person is performed only when necessary, so that the frequency of the subject can be efficiently determined.
  • the frequency determination means is a line in which red-based straight lines and blue-based straight lines of uniform thickness are alternately arranged in the two selected orthogonal directions.
  • the optometry apparatus according to any one of claims 1 to 8, further comprising: means for determining the determined astigmatic axis angle and a frequency of an angle orthogonal to the determined astigmatic axis angle based on the target.
  • a target having a line group region in which red-based color straight lines and blue-based color straight lines are alternately arranged and a reference color region of one of the straight lines and the same color is associated with the frequency.
  • the frequency is determined using a frequency determination chart in which the size is changed stepwise.
  • the subject can intuitively determine the smallest visual target that can be viewed, and the problem of erroneously determining the number of straight lines by pseudo-resolution is reduced.
  • colors used are not necessarily limited to red-based colors and blue-based colors, as long as the subject can clearly recognize that the colors have been mixed. May be used.
  • the smallest visual target that can be visually recognized is selected using a target whose size is changed stepwise according to the frequency, but the two colors are arranged alternately in a radial pattern.
  • the frequency may be determined based on the distance from the center of the position closest to the visible center after being separated into two colors.
  • the determination since the frequency corresponding to the azimuth can be determined, the determination may be used to simultaneously perform the determination of the astigmatic axis angle and the frequency determination.
  • the combination of colors to be mixed in a long wavelength portion and the combination in a short wavelength portion are combined so that the astigmatic axis determination, the hyperopia / myopia determination, and the frequency determination are performed simultaneously. May be. This makes it possible to perform optometry very efficiently.
  • the frequency determination means is a line in which red-based straight lines and blue-based straight lines having a uniform thickness are alternately arranged in the two selected orthogonal directions.
  • the optometry apparatus according to any one of claims 1 to 8, further comprising: means for determining the determined astigmatic axis angle and a frequency of an angle orthogonal thereto based on the obtained target.
  • a target having a line group region in which red-based color straight lines and blue-based color straight lines are alternately arranged and a reference color region of one of the straight lines and the same color is associated with the frequency.
  • a plurality of frequency determination charts with a step size difference of 2 or more are sequentially displayed to determine the frequency.
  • the determination of visual approval is made based on a mixture of two colors. Can intuitively determine the smallest target that can be viewed, and the problem of erroneously determining the number of straight lines by pseudo-resolution is reduced.
  • the frequency can be correctly checked by mutual checking. This makes it possible to determine the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto with higher accuracy.
  • the invention according to claim 18 is characterized in that: a means for displaying a coarse judgment chart in which the size of an optotype consisting of a figure having no directivity is changed stepwise; and the displayed coarse judgment chart Means for selecting the smallest target visually recognizable by the subject; andcoarse determining means for determining a rough appearance of the subject, wherein the astigmatic axis determining means comprises: 5.
  • the coarse determination means determines the coarse appearance of the subject using the coarse determination chart
  • the astigmatic axis angle determination means determines the size of the target displayed based on the coarse visual appearance. Since the adjustment is performed, the examinee can determine the astigmatic axis with a target having an appropriate size according to his or her own visual acuity, which facilitates the determination. Since the rough judgment chart uses an optotype consisting of figures having no directivity, it is possible to judge a rough appearance without being affected by the astigmatic axis angle even when the subject has astigmatism. it can.
  • the invention according to claim 19 is characterized in that: a means for displaying a rough judgment chart in which the size of an optotype consisting of a figure having no directivity is changed stepwise; and the displayed coarse judgment chart Means for selecting the smallest visual target that can be visually recognized by the subject, and coarse determination means for determining a rough appearance of the test subject, wherein the hyperopia / myopia determination means comprises: The optometry apparatus according to any one of claims 5 to 8, further comprising means for adjusting a width and an interval of a straight line arranged on each of the hyperopia / myopia judgment charts to be displayed, based on the appearance. .
  • the coarse determination means determines the rough appearance of the subject using the coarse determination chart, and the hyperopia / myopia determination means arranges the straight lines arranged in each hyperopia / myopia determination chart based on the coarse appearance. Since the width and the interval are adjusted, the subject can determine hyperopia and myopia with a target having an appropriate size according to his or her visual acuity.
  • the width of the straight line arranged in the hyperopia / myopia judgment chart may be increased with respect to the interval as the frequency of the subject increases.
  • the reddish color expands and the straight line becomes difficult to see for a person with strong myopia, so that it is possible to alleviate the problem that it is difficult to make a determination.
  • the rough judgment chart uses an optotype consisting of figures having no directivity, it is possible to judge a rough appearance without being affected by the astigmatic axis angle even when the subject has astigmatism. it can.
  • the invention according to claim 20 is characterized in that: a means for displaying a rough determination chart in which the size of an optotype composed of a figure having no directivity is changed stepwise; and the displayed coarse determination chart Select the smallest target that can be seen by the subject Means for causing the subject to be examined to have a rough appearance.
  • the power determination means comprises: an optotype of the power determination chart displayed based on the determined coarse appearance.
  • the coarse determination means determines the coarse appearance of the subject using the coarse determination chart, and the frequency determination means limits the range of the size of the optotype used based on the coarse visual appearance.
  • the rough judgment chart uses an optotype consisting of figures having no directivity, it is possible to judge a rough appearance without being affected by the astigmatic axis angle even when the subject has astigmatism. it can.
  • the invention according to claim 21 is characterized in that at least one of the astigmatic axis angle determination means, the hyperopia / myopia determination means, and the power determination means shields external light from entering the eye of the subject.
  • the optometry apparatus according to any one of claims 1 to 20, wherein the optotype is visually recognized by an operator.
  • the illumination conditions when the subject visually recognizes the target are constant, and more accurate You can see your eyes well.
  • the pupil of the subject is enlarged and the depth of focus is reduced, so that the target can be easily determined.
  • an opaque cylinder wound with newspaper or A4 paper may be set between the eye of the subject and the display means.
  • a certain standard such as newspaper or A4 paper is used, the distance between the subject's eye and the optotype displayed on the display means can be kept constant. The eye can be examined more accurately.
  • the invention according to claim 22 is characterized in that a start eyeball model is selected based on the power determined by the power determination means, the validity of the model at an arbitrary adjustment point of the subject is verified, An eyeball optical model determining means for determining a model, and a lens power determining means for verifying light-collecting performance when the subject wears eyeglasses and a contrast lens using the eyeball optical model, and determining a lens power.
  • the optometric apparatus according to any one of claims 1 to 21, comprising:
  • the optometry apparatus of the present invention generates an eyeball optical model simulating the eye of the subject based on the power determined by the power determination means by the eyeball optical model determination means, and the eyeball optical model is generated by the lens power determination means. Since the lens power is determined by verifying the light-collecting performance after correction using the recommended lens, the examinee can select eyeglasses or contact lenses with high accuracy that suit their eyes.
  • the invention according to claim 23 is an optometry in which the subject displayed on the display means is visually recognized by one of the left and right eyes, and the subject is visually inspected by acquiring a result visually recognized.
  • the optotype for judging hyperopia and myopia in the two orthogonal directions is displayed, and the result of visual recognition by the subject is obtained, and the step of judging hyperopia and myopia at the determined astigmatic axis angle and the angle orthogonal thereto is performed.
  • the optometry method of the present invention includes a stip for determining hyperopia and myopia, and determines whether the eye of the subject is hyperopia or myopia. Therefore, the examinee includes a person who has hyperopia. Can be examined with high precision.
  • the step of determining the astigmatic axis angle determines the astigmatic axis of the subject, and the step of determining hyperopia and myopia separately determines hyperopia and myopia in the two orthogonal directions selected based on the astigmatic axis. Since the power is determined in the two orthogonal directions selected based on the astigmatism axis in the power determination step, even a person having mixed astigmatism can accurately perform an optometry.
  • the step of determining the astigmatic axis angle includes four optotypes in which a number of straight lines are arranged in parallel in four directions of approximately 45 degrees, approximately 90 degrees, approximately 135 degrees, and approximately 180 degrees.
  • the optometry method in the step of determining the astigmatic axis angle, Using an optotype consisting of linear groups of numbers arranged in parallel, and displaying an astigmatic axis determination chart combining optotypes limited to four directions at 45-degree intervals, to be denser to the examinee Since visible targets are selected, ordinary people can easily determine the axis of astigmatism and suppress erroneous determination.
  • the second astigmatic axis determination chart combining targets in four directions between 45 degrees, 90 degrees, 135 degrees, and 180 degrees is displayed, and the examinee looks dark.
  • a third astigmatism axis determination chart combining the targets selected for the two astigmatism axis determination charts is displayed, and the subject is allowed to select a target that appears dark. Since the astigmatic axis angle is determined from the optotypes selected for the three astigmatism axis determination charts, an intermediate angle between the three astigmatic axis determination charts is calculated from the angles of the optotypes selected for the three astigmatism axis determination charts.
  • the astigmatic axis can be determined, and the astigmatic axis angle can be determined with substantially twice the resolution for the displayed targets in a total of eight directions.
  • the astigmatic axis angle of the subject can be determined more accurately.
  • the step of determining hyperopia and myopia is performed by selecting one of the two orthogonal directions selected for both a red-based area and a blue-based area.
  • a step of selecting which area of the straight line is clearly visible, and arranging a black system color straight line in the one of the two orthogonal directions selected in the red system color area in the background Displaying a third hyperopia / myopia determination chart in which a black system color straight line is arranged in the other of the two selected orthogonal directions in a blue system color region; and A third hyperopia / myopia judgment chart that allows the subject to select which area of the straight line is clearly visible; and A fourth line in which a black system color straight line is arranged in the other direction, and a black system color straight line is arranged in the one of the two orthogonal directions selected in the background blue region; Displaying a hyperopia / myopia determination chart; Causing the subject to select which area of the straight line is clearly visible with respect to the fourth hyperopia / myopia judgment chart, and the result selected for the first hyperopia / myopia judgment chart and the second 2 based on the result selected for the hyperopia / myopia determination chart, the result selected for the third hyperopia / myopia
  • the step of determining the astigmatic axis angle in both the areas includes a red-based area and a blue-based area in the background.
  • An optotype with a black system color straight line arranged in one of two orthogonal directions selected based on the determined astigmatic axis angle is used.
  • a fourth hyperopia / myopia judgment chart in which straight lines are arranged in the one direction is displayed, and the subject is allowed to select whether the straight line in any region is clearly visible for each hyperopia / myopia judgment chart. Then, the astigmatic axis angle of the subject and hyperopia and myopia at angles orthogonal thereto are determined.
  • the red-based color focuses on the back side and the blue-based color focuses on the near side due to chromatic aberration.
  • the system uses the fact that the red-colored area looks clearer and in the case of hyperopia, the blue-colored area looks clearer, and the examinee determines which area is clearer. You can easily judge because you only need to do it.
  • the hyperopia / myopia judgment chart shows the directionality in which straight lines are arranged in two orthogonal directions selected based on the astigmatism axis angle determined in the step of judging the astigmatism axis angle in the two color regions where chromatic aberration occurs. Since the target is displayed, the angle dependence of hyperopia and myopia can be detected. As a result, hyperopia / myopia can be determined independently for each of the astigmatic axis angle of the subject and the angle orthogonal thereto, and it is possible to cope with mixed astigmatism.
  • the first hyperopia / myopia judgment chart and the second hyperopia / myopia judgment chart In the above, if the examinee selects either “red-based area” or “same-looking” and does not select “blue-based area”, there is no cause of hyperopia. Since it is conceivable, the judgment using the third hyperopia / myopia judgment chart and the fourth hyperopia / myopia judgment chart may be omitted. As a result, hyperopia and myopia can be determined more efficiently.
  • the optotype in the step of determining the power, the optotype having a step difference of 2 or more in size in which a fixed number of straight lines are arranged in parallel with respect to the selected two orthogonal directions.
  • the step of determining the power a visual observation in which a certain number of straight lines are arranged in parallel in two orthogonal directions selected based on the astigmatic axis angle determined in the step of determining the astigmatic axis angle.
  • a plurality of frequency judgment charts each consisting of a combination of targets with a step size difference of 2 or more, are displayed sequentially according to the frequency of the target, and the examinee can correctly see the number of straight lines for each frequency judgment chart.
  • the number of steps of the target size can be increased compared to the case where the conventional Landolt ring is rotated to determine a partial cut, As a result, the resolution of the frequency determination is increased, and the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto can be accurately determined.
  • the examinee selects the smallest target that can be visually recognized from optotypes with small step differences.
  • the frequency can be correctly checked by mutual checking. This makes it possible to determine the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto with higher accuracy.
  • the step of judging the power is performed by judging a power that is far away from the display means so as to allow the examinee to visually recognize the visual target at a distance far from the display means and to select the smallest visual target.
  • the visual target in the step of determining the power, is visually recognized at a distance far from the display means and the power is determined to determine the power. And a step of determining the frequency of the distant frequency.
  • the apparatus has a function of determining the astigmatic axis angle of the subject and the frequency of an angle orthogonal to the astigmatic axis angle based on the target and the optotype selected in the step of determining the nearby power.
  • the distant power determination means it is possible to determine the power even in a hyperopic or presbyopic subject who is farther than the near point distance and within the range of accommodation power.
  • hyperopia / myopia cannot be determined in the step of determining hyperopia / myopia, the subject is examined using the optotype selected in the distant frequency judgment and the optotype selected in the near number judgment. It is possible to calculate the power by judging hyperopia and myopia of the astigmatic axis angle and the angle orthogonal thereto.
  • the difference between the size of the optotype selected in the distant power judgment and the size of the optotype selected in the near power judgment is obtained, and when this is positive and equal to or greater than a certain value (that is, the near visual When the target is better visible, it is determined to be myopic; when it is negative and less than a certain value (ie, when a distant target is better visible), it is determined to be hyperopic;
  • a certain value that is, the near visual
  • a certain value that is, the near visual
  • the optotype selected in the distant power judgment and the optotype selected in the nearby power judgment are mutually checked to determine whether the target is hyperopic or myopic.
  • the error of the examiner may be corrected, and in the determination of the power, the power is calculated by using both the visual target selected in the distant power determination and the visual target selected in the nearby power. May be.
  • test is performed at a distance (approximately 60 to 70 cm) at which the examinee reaches his hand and touches the display means. May be performed at a distance (about 30 cm).
  • the step of judging the frequency comprises: in the selected two orthogonal directions, a red-based straight line and a blue-based straight line having a uniform thickness are alternately formed.
  • the optometry method according to any one of claims 23 to 25, further comprising: a step of determining the determined astigmatic axis angle and a frequency of an angle orthogonal thereto based on the target selected for the target. It is.
  • a target having a line group region in which red-based color straight lines and blue-based color straight lines are alternately arranged and a reference color region having the same color as one of the straight lines is associated with a frequency.
  • the frequency is determined using a frequency determination chart whose size is changed stepwise.
  • the subject can intuitively determine the smallest target that can be viewed, and the problem of erroneously determining the number of straight lines by pseudo-resolution is reduced. Be summed up.
  • colors used are not necessarily limited to red-based colors and blue-based colors, and any combination of colors may be used as long as the examinee can clearly recognize that the colors have been mixed.
  • the smallest visual target that can be visually recognized is selected using a target whose size is changed stepwise according to the frequency, but the two colors are arranged alternately in a radial pattern.
  • the frequency may be determined based on the distance from the center of the position closest to the visible center after being separated into two colors.
  • the determination since the frequency corresponding to the azimuth can be determined, the determination may be used to simultaneously perform the determination of the astigmatic axis angle and the frequency determination.
  • the combination of colors to be mixed in a long wavelength portion and the combination in a short wavelength portion are combined so that the astigmatic axis determination, the hyperopia / myopia determination, and the frequency determination are performed simultaneously. May be. This makes it possible to perform optometry very efficiently.
  • the step of judging the frequency is such that, in the two selected orthogonal directions, a red-based color straight line and a blue-based color straight line having a uniform thickness are alternately formed.
  • a plurality of frequency judgment charts in which a plurality of optotypes having a step difference of 2 or more in size having an arrayed line group area and a reference color area of the same color as any straight line of the line group area are sequentially displayed. Causing the subject to select the smallest target which is visually recognized as having a straight line of the same color as the reference color region in the line group region for each of the displayed frequency determination charts. Determining the power of the determined astigmatic axis angle and the power of the angle orthogonal thereto based on the optotype selected for each of the power determination charts. The optometry method described in 1.
  • a red-based straight line and a blue-based straight line are alternately formed.
  • a plurality of frequency judging charts are sequentially displayed in which a target having an arrayed line group area and any straight line and a reference color area of the same color is made to correspond to the frequency, and the step size difference is set to 2 or more. In this case, the frequency is determined.
  • the frequency can be correctly checked by mutual checking. This makes it possible to determine the astigmatic axis angle of the subject and the frequency of the angle orthogonal thereto with higher accuracy.
  • the invention according to claim 30 is characterized in that: a step of displaying a coarse judgment chart in which the size of an optotype consisting of a figure having no directivity is changed stepwise; and the displayed coarse judgment chart Causing the examinee to select the smallest visual target that is visible, comprising: determining the coarse appearance of the examinee; determining the astigmatic axis angle; and / or the hyperopia and myopia.
  • the step of judging and the step of judging the frequency or the step of judging the frequency include a step of changing a condition of the displayed target based on the determined coarse appearance. Or The optometry method according to the item 1.
  • the optometry of the present invention includes a step of determining a coarse appearance of a subject by using a coarse determination chart by a step of determining a coarse appearance and a step of determining an astigmatic axis angle, a step of determining hyperopia and a myopia,
  • the condition of the optotype to be displayed is appropriately changed based on the coarse appearance, so that the examination time is shortened, and at the same time, the judgment of the examinee is facilitated and the accuracy is improved. You can test your eyes well.
  • the rough determination chart uses an optotype consisting of figures having no directivity, even when the subject has astigmatism, the rough appearance is determined without being affected by the astigmatic axis angle. be able to.
  • FIG. 1 is a configuration diagram of an optometry system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a coarse determination chart.
  • FIG. 3 is a diagram showing an example of a first astigmatic axis determination chart.
  • FIG. 4 is a diagram showing an example of a second astigmatic axis determination chart.
  • FIG. 5 is a diagram showing an example of a third astigmatism axis determination chart (part 1).
  • FIG. 6 is a diagram showing an example of a third astigmatism axis determination chart (part 2). The figure shows an example of the third astigmatic axis determination chart (No. 3).
  • FIG. 8 is a diagram showing an example of a hyperopia / myopia judgment chart.
  • FIG. 9 is a diagram illustrating an example of a frequency determination target.
  • FIG. 10 is a diagram showing an example of a first frequency judgment chart.
  • FIG. 11 is a diagram showing an example of a second frequency judgment chart.
  • FIG. 12 is a diagram showing an example of a third frequency judgment chart.
  • FIG. 13 is a diagram showing another example of the frequency judgment chart.
  • FIG. 14 is a diagram showing another example of the frequency judgment target.
  • FIG. 15 is a conceptual diagram of an eyeball optical model used in an optometry system according to an embodiment of the present invention.
  • FIG. 16 is a flowchart (personal information collection processing and coarse determination processing) of the optometry system according to an embodiment of the present invention.
  • FIG. 17 is a flowchart (astigmatic axis determination process) of the optometry system according to the embodiment of the present invention.
  • FIG. 18 is a flowchart (a hyperopia / myopia determination process) of the optometry system according to the embodiment of the present invention.
  • FIG. 19 is a flowchart (frequency determination process) of the optometry system according to the embodiment of the present invention.
  • FIG. 20 is a flowchart (lens power determination processing) of the optometry system according to the embodiment of the present invention.
  • FIG. 21 is a diagram showing an example of a conventional visual acuity determination target (Landolt ring).
  • FIG. 22 is a diagram showing an example of a conventional target for astigmatic axis determination.
  • FIG. 1 is a configuration diagram of an optometry system according to an embodiment of the present invention.
  • the optometry system 10 is composed of an optometry server 12 and an examinee terminal. It is composed of 50 and network 100.
  • the optometry server 12 provides the subject terminal 50 with data such as the target data, and determines the astigmatic axis of the subject based on the result input at the subject terminal 50, and hyperopia. ⁇ It has the function to judge myopia, determine the frequency, and perform subjective optometry.
  • a computer such as a personal computer, a workstation, and a server is used.
  • the optometry server 12 can provide various services by installing various applications.
  • the optometry server 12 is equipped with a not-shown modem network interface card, and performs bidirectional data communication with the subject terminal 50 via the network 100. .
  • the optometry server 12 has a central processing unit 14.
  • the central processing unit 14 controls and manages the operation of each unit described later.
  • the central processing unit 14 is connected to a WWW server 16 that provides optotype data.
  • the WWW server 16 has a function of performing bidirectional data communication with the subject terminal 50 via the network 100.
  • the WWW server 16 inputs HTML data, image data, and various programs based on the contents input and operated by input means (not shown) such as a mouse and a keyboard of the terminal 50 of the subject. Send to terminal 50. Also, the WWW server 16 receives the data input and transmitted at the subject terminal 50.
  • the CWW 18 is connected to the WWW server 16.
  • the CGI 18 has a function of dynamically generating HTML data according to the content of the data transmitted from the examinee terminal 50 and delivering the generated HTML data to the WWW server 16.
  • the CGI 18 extracts data relating to a state where the subject is visually recognizing the target from the data delivered from the WWW server 16. CGI 18 passes the extracted and acquired data to the eyeball optical parameter determination means 28 described later.
  • the target area 22 is stored in a storage area 20 from which the WWW server 16 reads various data.
  • the optotype data 22 is data for displaying an image of the optotype used for optometry.
  • the optotype data 22 is stored as various image data such as JPEG, PNG, GIF, animation GIF, and F1ash (registered trademark of Macromedia) data.
  • the target data 22 is transmitted to the subject terminal 50 as a part of the HTML data as appropriate, and is displayed on the display device of the subject terminal 50.
  • the optotype data 22 stores various optotype data 22 according to the judgment content.
  • the target data 22 used for the determination will be described.
  • the optotype data 22 includes the optotype 22 a that determines the coarse appearance, the optotype 22 b that determines the astigmatic axis, the optotype 22 c that determines the hyperopia and myopia, and the frequency.
  • Target 2 2 d the optotype 22 a that determines the coarse appearance
  • the optotype 22 b that determines the astigmatic axis
  • the optotype 22 c that determines the hyperopia and myopia
  • the optotype 22 a for determining the coarse appearance is an optotype consisting of a sign having a certain thickness without directivity.Here, two endless annular bodies are substantially tangent-shaped on a black background. The figure is drawn with a white bold line with a constant line width, so that the number "8" is drawn in a white background on a black background.
  • the optotype 22a is used as a coarse judgment chart (Fig. 2) in which those whose sizes are changed stepwise according to the rank of coarse appearance are arranged.
  • Judgment of the coarse appearance is performed by displaying a coarse judgment chart on the terminal of the examinee and allowing the user to select the smallest target that can be viewed by viewing the screen from a certain distance.
  • the reason for using symbols without directivity in this way is that the use of an optotype that frequently uses straight lines having directivity causes an error in the determination of a person having astigmatic components in that direction. Therefore, if the subject is limited to those who do not have astigmatism, letters and symbols that frequently use straight lines may be used as optotypes. Good.
  • the optotype in which the number "8" is drawn with a thick white line is used, but a black line drawn with a light background may be used, and the directivity such as donut shape, double circle, and triple circle is used.
  • An optotype not provided may be used.
  • the target 22b for determining the astigmatic axis used herein was one in which a number of black straight lines having a constant thickness were arranged in parallel at equal intervals on a green background.
  • This optotype 2 2b is a first astigmatic axis determination chart combining four optotypes with straight lines oriented in directions of 45 degrees, 90 degrees, 135 degrees, and 180 degrees, respectively.
  • Fig. 3 and a second astigmatic axis determination chart (No. 4) that combines four optotypes with straight lines oriented in the directions of 23 degrees, 68 degrees, 113 degrees, and 158 degrees, respectively.
  • Figure 4) and a third astigmatic axis determination chart (No. 4) that combines the target selected based on the determination result by the first astigmatic axis determination chart and the determination result by the second astigmatic axis determination chart.
  • FIG. 5, Fig. 6, Fig. 7 the target 22b for determining the astigmatic axis used herein was one in which
  • the first astigmatic axis determination chart is displayed on the terminal of the examinee to select a target that looks dark, and then the second astigmatic axis determination chart is displayed to display dark. This is done by selecting a visible target, and if the astigmatic axis angle cannot be determined by these two charts, a third astigmatic axis determination chart combining the targets selected in the two charts is performed. The astigmatic axis angle is determined by selecting a target that is displayed and appears dark.
  • the judgment using the target with the straight line directed in the direction of 45 degrees, 90 degrees, 135 degrees, and 180 degrees, and the intermediate degrees of 23 degrees, 68 degrees, 113 degrees By combining the judgment with the target with a straight line oriented in the direction of 158 degrees, it is possible to determine the apparent intermediate angle between the two, so that the resolution is substantially twice the minimum angle difference of the target used.
  • the astigmatic axis angle can be determined.
  • the optotype 22b used an optotype in which the background was green and black straight lines were arranged in order to prevent the subject's pupil from being in a miotic state. It has a sufficiently distinguishable contrast, Any color combination may be used as long as the pupil does not enter the miotic state.
  • the optotypes 22c for determining hyperopia and myopia are equally distributed in the left and right sides of the rectangular frame, with a red background on the left and a blue background on the right. A black straight line with a certain thickness was placed in parallel at equal intervals near the boundary of the region.
  • This optotype 22c is composed of a first hyperopia / myopia judgment chart (Fig. 8 (a)) in which a straight line is arranged in a direction corresponding to the astigmatic axis angle in both areas, and an astigmatic axis angle in both areas.
  • a second hyperopia / myopia judgment chart (Fig.
  • the determination of hyperopia or myopia is made by displaying a chart on the examinee's terminal and allowing the user to select which of the red and blue areas the straight line looks clear. This is because when red and blue light rays enter the eyeball, chromatic aberration causes the blue light rays to form an image on the near side, and the red light rays form an image on the far side, resulting in hyperopia. This is to make use of the fact that there is a difference between the target person and the person with myopia who see the target clearly. Therefore, the background of the optotype 22c is not limited to red and blue, and any combination of colors may be used as long as the above-described phenomenon occurs due to chromatic aberration.
  • any color may be used for the straight line as long as it has a contrast with the background of each area and can select which area is clearly visible.
  • both the judgment using the first hyperopia / myopia judgment chart and the judgment using the second hyperopia / myopia judgment chart are considered to be emmetropia or myopia when "red area" or "looks the same" is selected. Therefore, the third hyperopia / myopia determination chart and the fourth hyperopia / myopia determination chart are not used, and the determination based on the first hyperopia / myopia determination chart and the second hyperopia / myopia determination chart are used. Only when the “blue area” is selected in any of the determinations, the determination is performed using the third hyperopia / myopia determination chart and the fourth hyperopia / myopia determination chart.
  • FIG. 8 shows a case where an optotype having straight lines arranged in the directions of 90 ° and 180 ° is used, but in practice, the orthogonality selected based on the astigmatic axis angle of the subject is used.
  • the one that uses an optotype and optotypes with straight lines arranged in the directions of 68 degrees and 158 degrees is used.
  • the astigmatic axis angle may be calculated in the direction of the center in increments of 23 degrees by calculation, but it is difficult to draw a straight line in the direction of the center in increments of 23 degrees with a general display device. Since the direction can be determined even if the direction does not exactly coincide with the astigmatic axis angle, the closest 23-degree direction is selected to determine hyperopia and myopia. Therefore, when a high-resolution display means is used for the terminal of the subject, hyperopia and myopia may be determined using a target in small angle increments corresponding to the determined astigmatic axis angle. It goes without saying.
  • the optotype 2 d for judging the frequency is, here, three black straight lines of a fixed thickness arranged at equal intervals on a green background, and in the width direction of the three straight lines. A yellow belt with the same width as that between the lines was provided on both outer sides (Fig. 9).
  • the optotypes 2 2 d are prepared with a number of optotypes whose sizes are changed stepwise in accordance with the frequency.
  • the frequency judgment chart used in the first frequency judgment chart (Fig. 10), the second frequency judgment chart (Fig. 11), and the third frequency judgment chart (Fig. 12) is The frequency judgment charts are sequentially displayed on the examiner's terminal, and the smallest target with three black straight lines selected for each is selected, and each chart is visually recognizable from the selected target for each chart The frequency is determined by judging the smallest target.
  • the frequency is determined using the three charts in which the targets having the size difference of 3 are combined so that the smallest target that can be visually recognized by the subject can be easily selected. This is because a highly reliable judgment result can be obtained by mutually checking the judgment results. Therefore, as long as the examinee can select the smallest visual target that can be visually recognized, the frequency may be determined using a chart in which visual targets having a step difference of 1 are combined. In this case, the frequency may be divided into several parts, and the frequency may be determined using a plurality of charts in which optotypes are combined for each division. On the other hand, in order to make it easier for the examinee to select an optotype, the size difference may be further increased, but the number of charts increases accordingly, so the determination time becomes longer.
  • the target is provided with both side bands, if there is no side band, when pseudo resolution occurs, a black line will be seen outside the three lines and it is difficult to judge whether or not these should be counted as the number of lines
  • bright side bands are provided here, straight lines and contrast by pseudo-resolution will be easily recognized.
  • the two side bands makes it easy to judge the visibility limit because the black line, the space between the lines and both side bands are disturbed and blurred when the target is made small. Therefore, it is preferable that the color of both side bands is different from the color between the lines and is higher than the luminance between the lines. The above effect can be obtained by setting the width of both side bands to 0.5 to 2 times the width of the black line.
  • the colors between the lines of the target and the colors on both sides are affected by chromatic aberration when red and blue are used, so other colors are preferable.
  • the color between the lines is preferably monochrome, green, or yellow, and the color of both side bands is preferably monochrome or yellow. For this reason, we used green, which is slightly brighter than the background, between the lines, and yellow, which is different in color from the lines, and has high brightness.
  • the charts in FIGS. 10 to 12 show the case where an optotype in which a straight line is arranged in the direction of 180 degrees is used, but actually, the chart is based on the astigmatic axis angle of the subject.
  • a target in which straight lines are arranged in two orthogonal directions selected by using the target is used. Therefore, in addition to the chart shown in FIG. 8, the hyperopia / myopia judgment chart using an optotype in which straight lines are arranged in directions of 90 degrees, 45 degrees, and 135 degrees is used.
  • the determined astigmatism It is needless to say that the power may be determined using a target in small angle increments corresponding to the axis angle.
  • the diopter is used to determine the diopter, and the obtained diopters are proportionally divided to obtain the astigmatic axis angle. May be determined.
  • the judgment of the frequency is performed by “distance judgment” based on the distance that the subject reaches the hand and touches the screen (hereinafter, “hand distance”), and A4 paper between the screen and the eyes.
  • distance judgment based on the distance that the subject reaches the hand and touches the screen (hereinafter, “hand distance”), and A4 paper between the screen and the eyes.
  • noise frequency judgment which is performed at a distance vertically set (hereinafter, “A4 paper distance”). Normally, only “distant frequency judgment” is performed. For subjects with hyperopia and subjects who have been placed on hold for hyperopia and myopia judgments, perform “near frequency judgment” and compare the two results to determine the frequency.
  • a line group area in which a red line and a blue line with a certain thickness are arranged in parallel at equal intervals in a rectangular frame, and a reference line of the same color as the red line A device provided with a color region may be used (FIG. 13). This is because when the examinee looks at the line group area, the optotype in which the red and blue straight lines are arranged at a pitch larger than the resolution of the eye corresponding to the visual acuity is decomposed into two colors.
  • the frequency is determined based on the fact that a target that is arranged at a pitch smaller than the resolution of the eye corresponding to visual acuity causes the color mixture to appear pink.
  • the determination of the frequency based on the optotype is performed by displaying the optotypes whose size is changed stepwise in accordance with the frequency, in ascending order, on the terminal of the examinee, This can be done by selecting the first optotype that looks the same red as the reference color area from the state where the red line in the group area looks pink.
  • a combination of optotypes whose size is changed stepwise according to the frequency
  • the target may be displayed on the terminal of the subject, and the smallest target in which a straight line having the same color as the color of the reference color region can be selected in the line group region may be selected.
  • three charts, each of which is a combination of a target having a step size difference of 3 as in the above-described target, are sequentially displayed on the terminal of the subject, and each of the charts has a reference color region in the line group region. It is also possible to select the minimum target that allows a straight line of the same color as the color to be seen, and determine the frequency by determining the minimum target that can be viewed from the selected target for each chart by mutual checking.
  • the optotype is prepared so that the entire frame is tilted so that the line group area faces 45 degrees, 90 degrees, 135 degrees, and 180 degrees.
  • the power is determined for two orthogonal directions selected based on the astigmatic axis angle of the user.
  • the optotype is displayed in a rectangular frame.
  • the outline does not necessarily need to be rectangular, and may be a rounded one.
  • the figure may be a figure that simulates a state in which a fish body has become a bone.
  • the line group area is referred to as “fish ribs” that are easy for the examinee to understand
  • the reference color area is referred to as “fish bones”.
  • the color of the reference color gamut is the same color as the red straight line, but may be the same color as the blue straight line.
  • the reference color area is arranged so as to be in contact with the line group area.
  • the present invention is not limited to this. When the inspected person visually recognizes, the color of the reference color area and the color of one straight line of the line group area are instantaneously changed. May be arranged in any position as long as they can be determined to have the same color.
  • the size and brightness of the target displayed on the examinee's terminal depend on the type of display device (CRT, liquid crystal), size (14 inch, 17 inch, etc.), screen resolution (800 X 6 0, 10 2 4 X 7 6 8 etc.), so that all display devices are displayed with a predetermined size and brightness.
  • a plurality of optotype data of different sizes and brightness are stored. It goes without saying that each target data may be configured to be generated by image processing calculation based on the conditions of the display device.
  • the optometry unit 26 is connected to the CGI 18.
  • the optometry unit 26 includes an eye optics parameter determination unit 28 and an eye optics model determination unit 30.
  • the optometry is performed to determine the approximate power of the subject, and an eye optics model is constructed. It has a function to select the spectacles / concentration lenses suitable for the subject.
  • the ophthalmic optical parameter overnight determination means 28 uses the above-described target to perform coarse determination processing for determining a rough appearance of the subject, astigmatic axis determination processing for determining the astigmatic axis angle, astigmatic axis angle, and It has a function of performing hyperopia / myopia determination processing for determining hyperopia / myopia at an orthogonal angle, and a power determination processing for determining the astigmatic axis angle and the power of an angle orthogonal thereto.
  • the eyeball optical model determining means 30 is configured to select the eyeball optical model starting from the age classification and the estimated power.
  • the starting eyeball optical model is a model in which an age category is provided on the vertical axis and a frequency category is provided on the horizontal axis, and an eyeball optical model at the median of each category is created in advance.
  • the eyeball optical model deciding means 30 has a start eyeball optical model database (not shown), the vertical axis is the age section, the horizontal axis is the frequency section, and the adjustment limit at the far point side of each section.
  • An eyeball optical model and an eyeball optical model at the near limit accommodation limit, which is assumed to have accommodation power according to age, are stored.
  • the eyeball optical model determined by the eyeball optical model determination means 30 simulates the human eye with a lens system as shown in FIG.
  • the examinee terminal 50 is a terminal used when the examinee undergoes optometry. It is installed in a home, a store, or the like, and transmits and receives various data to and from the optometry server 12 via the network 100.
  • a terminal 50 a combination of a personal computer and a workstation equipped with input devices such as a keyboard and a mouse is used.
  • the examinee's terminal 50 is equipped with a WWW browser (not shown) for accessing the optometry server 12, and inputs the IP address or URL assigned to the optometry server 12 in the URL input field. By doing so, it is connected to the WWW server 16 and can receive optometric services.
  • the WWW browser displays the image of the optotype received from the WWW server 16 on the screen, and transmits the judgment result input by the subject to the WWW server 16.
  • an Internet line was used here as the network 100, but any line capable of bidirectional data communication is used.
  • Public networks, ISDN networks, mobile phone networks, and dedicated lines may be used.
  • the optometric server 12 converts the input form for inputting environmental information such as the screen size and screen resolution of the examinee terminal and personal information such as the name, age, and height of the examinee terminal into the examinee terminal. (S100).
  • environmental information such as the screen size and screen resolution of the examinee terminal and personal information such as the name, age, and height of the examinee terminal into the examinee terminal.
  • S100 environmental information
  • personal information such as the name, age, and height of the examinee terminal into the examinee terminal.
  • S100 an input form is displayed on the screen of the examinee's terminal, and the examinee enters data into the input form and clicks the "Send" button, so that the optometric server 12 can obtain environmental information and personal information.
  • the information data is received (S102).
  • the optometry server 12 performs a rough determination process of S104 to S112. First, based on the received environment information and personal information, a target condition for rough judgment is determined (S104).
  • the target data 22a is selected and transmitted to the terminal of the subject (S106).
  • a rough determination chart as shown in FIG. 2 is displayed on the screen of the subject terminal.
  • the subject visually checks the displayed coarse judgment chart with one of the right and left eyes at a distance of the hand and clicks the smallest optotype that can be read as "8". If all optotypes cannot be read as "8", click the part where "Nothing can be read”.
  • the optometry server 12 receives the selection result of the examinee's coarse determination (S108), and determines the coarse appearance of the examinee from the size (appearance number) of the selected optotype. Determined (S110).
  • the above processing is performed for both the left and right eyes (S112), and the coarse determination processing ends.
  • the optometry server 12 performs astigmatic axis determination processing in S200 to S218.
  • a target condition for astigmatic axis determination is determined based on the received environment information, personal information, and a view number obtained by the coarse determination processing (S200).
  • the first astigmatic axis determination chart combining the 45 °, 90 °, 135 °, and 180 ° target based on the determined target condition is transmitted to the subject terminal. Transmit (S202) o
  • the subject approaches to a distance where any of the charts displayed on the chart is clearly visible, visually recognizes with one of the left and right eyes, and determines which of the charts appears dark. If one target appears dark, click on the part that says "One appears dark” and then click on the target that appears dark. If more than two appear dark, click on the part that says "Look more than two” and then click on the two targets in the order in which they appear darker. If everything looks the same darkness, click on the part that says "All looks the same”. This Then, the optometry server 12 receives the selection result of the first astigmatic axis determination of the subject (S204).
  • a second astigmatic axis determination chart combining the targets of 23 degrees, 68 degrees, 113 degrees, and 158 degrees is transmitted to the examinee terminal. Transmit (S206).
  • a chart as shown in FIG. 4 is displayed on the screen of the subject terminal.
  • the subject comes closer to a distance where one of the optotypes of the displayed chart can be touched, visually recognizes with one of the right and left eyes, and, similarly to the above, any of the optotypes is darker. Determine if it is visible and click.
  • the optometric server 12 receives the selection result of the second astigmatic axis determination of the subject (S208).
  • the third astigmatic axis determination is performed.
  • a third astigmatic axis determination chart combining the target selected in the first astigmatic axis determination and the target selected in the second astigmatic axis determination is applied. It is transmitted to the inspector terminal (S212). As a result, a chart as shown in FIGS. 5 to 7 is displayed on the screen of the terminal of the subject.
  • the third astigmatic axis determination chart displays the two selected optotypes, the three selected optotypes, and the four selected optotypes. One of them is generated as appropriate.
  • the subject comes closer to a distance where any of the optotypes of the displayed chart can be touched, visually recognizes with either one of the left and right eyes, and, similarly to the above, any of the optotypes is dark. Judge whether it can be seen and click. Thereby, the optometry server 12 receives the selection result of the third astigmatic axis determination of the subject (S2114).
  • the astigmatic axis angle of the subject is determined based on the selection result of each channel. (S2 16).
  • the determination algorithm is as follows.
  • the optometry server 12 performs Eraichi is deemed unreliable overnight.
  • the errors are targeted for case numbers 5, 6, 8, and 9 in Table 1, and the judgment of the error is based on whether the condition shown in Equation 1 is satisfied. If the condition is satisfied, it will be treated as an error and the judgment will be interrupted or re-judged.
  • Equation 1 5 0 ⁇
  • Alm is the average of the angles of the targets selected in the first astigmatic axis determination chart, and when one is selected, is the angle of the target.
  • a 2m is the average of the angles of the optotypes selected in the second astigmatic axis determination chart, and 1 If one is selected, it is the angle of the target.
  • the optometry server 12 performs the following processing for each case in Table 1 to determine the astigmatic axis angle.
  • Case number 2 The angle of the target selected in the second astigmatic axis determination chart is set as the astigmatic axis angle.
  • Case number 3 The average of the angles of the two targets selected in the second astigmatic axis determination chart is defined as the astigmatic axis angle.
  • Case number 4 The angle of the optotype selected in the first astigmatic axis determination chart is set as the astigmatic axis angle.
  • Case number 6a In the case where only one target is selected in the third astigmatic axis determination chart, the angle of the target is set as the astigmatic axis angle. In the two cases, the average of the angles of the two selected targets is used as the astigmatic axis angle. If "looks the same" is selected, it is regarded as an error if there is an error in the selection decision.
  • Case number 6b When the angle of the target selected in the first astigmatic axis determination chart 1 is equal to the average of the angles of the two targets selected in the second astigmatic axis determination chart Is the angle of the optotype selected in the first astigmatism axis determination chart as the astigmatism axis angle.
  • Case number 7 The average of the angles of the two targets selected in the first astigmatic axis determination chart is defined as the astigmatic axis angle.
  • Case number 8a If only one optotype is selected in the third astigmatism axis determination chart, the angle of that optotype is regarded as the astigmatic axis angle. In the case of two, the average of the angles of the two selected targets is set as the astigmatic axis angle. "Looks the same” is selected If the selection is made, it is determined that there is an error in the selection decision and an error is made.
  • Case number 9 If one target is selected in the third astigmatic axis determination chart, the target angle is set as the astigmatic axis angle. In the case of two, the average of the angles of the two selected targets is set as the astigmatic axis angle. If "Looks the same" is selected, there is no astigmatism.
  • the astigmatic axis angle can be obtained with a resolution twice as large as the angle of the target used.
  • the above processing is performed on both the left and right eyes (S218), and the astigmatic axis determination processing ends.
  • the optometry server 12 performs hyperopia / myopia determination processing of S300 to S324.
  • the optotype conditions for hyperopia / myopia determination are determined based on the received environmental information and personal information, the appearance number by the coarse determination processing, and the astigmatic axis angle determined by the astigmatic axis determination processing (S30). 0).
  • the size of the target to be presented, the width of the straight line, and the interval are changed as shown in Table 2 depending on the number of appearances by the rough judgment processing. In this way, as the appearance number increases, the size of the target and the line width and spacing of the black lines increase. The stronger the myopia, the larger the red color and the harder it is to see the black line. Therefore, the ratio between the line width and the line interval of the black line is increased as the view number increases.
  • the angle of the straight line of the target to be presented is, in principle, the astigmatic axis angle and the angle perpendicular to it.However, as described above, the hyperopic / myopic judgment target has no central direction at intervals of 23 degrees.
  • the optotype with the closest angle to the determined astigmatism axis in increments of 23 degrees and the angle perpendicular to it are used.
  • a first hyperopia / myopia judgment chart in which a straight line is arranged at an angle selected based on the astigmatic axis angle in both the red and blue regions is transmitted to the examinee terminal (S30). 2).
  • a chart as shown in FIG. 8 (a) is displayed on the screen of the subject terminal.
  • the examinee visually recognizes the displayed chart with one of the left and right eyes at hand distance, determines whether the straight line of the red or blue area is clearly visible, and determines the area where the clearly visible area is visible. Or click "Both look the same".
  • the optometry server 12 receives the selection result of the first hyperopia / myopia judgment of the subject (S304).
  • a second hyperopia / myopia judgment chart in which a straight line is arranged at an angle orthogonal to the angle selected based on the astigmatic axis angle in both the red and blue regions is transmitted to the examinee terminal ( S306).
  • a chart as shown in FIG. 8 (b) is displayed on the screen of the examinee terminal.
  • the subject visually checks the displayed chart with one of the left and right eyes at the distance of the hand, and determines whether the straight line in the red or blue region is clearly visible as described above. And click.
  • the optometric server 1 2 The selection result of the hyperopia / myopia judgment is received (S308).
  • a straight line is placed at the angle selected based on the astigmatic axis angle in the red area, and the straight line is placed in the blue area at an angle perpendicular to it.
  • a third hyperopia / myopia judgment chart in which a straight line is arranged is transmitted to the examinee terminal (S312).
  • a chart as shown in FIG. 8 (c) is displayed on the screen of the subject terminal.
  • the subject examines the displayed chart with one of the right and left eyes at hand distance, and determines whether the straight line in the red or blue region is clearly visible as described above. Click.
  • the optometry server 12 receives the third hyperopia / myopia judgment selection result of the subject (S314).
  • a fourth hyperopia / myopia determination chart in which a straight line is arranged in the blue region at an angle selected based on the astigmatic axis angle and a straight line is arranged in the red region at an angle orthogonal to the above is the subject.
  • the data is transmitted to the terminal (S316).
  • a chart as shown in FIG. 8 (d) is displayed on the screen of the subject terminal.
  • the examinee looks at the displayed chart with one of the left and right eyes, and, similarly to the above, determines whether the straight line in the red area or the blue area can be clearly seen. Judge and click.
  • the optometry server receives the fourth hyperopia / myopia determination result of the subject (S3118).
  • the eyes of the subject are classified (determined) as to whether they are hyperopia or myopia (S320). .
  • S320 hyperopia or myopia
  • case number (1) is the case where red is selected for all optotypes, and both the astigmatic axis angle and the angle perpendicular thereto are determined to be myopia.
  • Case numbers (6) and (7) are all cases where either blue or blue or "looks the same" is selected, and both axes are determined to be hyperopic. In other case numbers, if "looks the same" and a combination of red and blue are selected, the selection result is used to discriminate between those that can be judged on both axes on the spot and those that should be reserved. In the case of suspension, the results are retained, and the results of the next frequency determination, which is performed next, and the results of the nearby frequency determination are also comprehensively determined. In the actual case, both axes are distinguished as farsighted or nearsighted, and in the case of uncertainty, it cannot be judged.
  • the above processing is performed for both the left and right eyes (S322), and the hyperopia / myopia determination processing ends.
  • the optometry server 12 performs a frequency determination process of S400 to S440.
  • the frequency judgment is usually performed only for the distant frequency judgment process that determines the frequency based on the distance of the hand, and in specific cases, the nearby frequency judgment process that determines the frequency based on the distance of A4 paper as an additional process And make a comprehensive decision.
  • the distant power determination process firstly performs the target condition for distant power determination based on the received environmental information and personal information, the appearance number by the coarse determination process, and the astigmatic axis angle determined by the astigmatic axis determination process. Is determined (S400).
  • the angles of the optotypes to be presented are the astigmatic axis angle determined in principle and the angle perpendicular to it, but as described above, the power-judgment optotypes are set only at 45-degree intervals, so they were determined.
  • the optotype at the nearest 45 ° angle to the astigmatism axis and the angle perpendicular to it are used.
  • the astigmatic axis angle of the subject and the angle perpendicular to the astigmatic axis angle are more than 15 degrees apart from the target, the angles of 90 degrees, 180 degrees, 45 degrees, and 135 degrees It is also possible to make all determinations with the optotypes, and to calculate the astigmatic axis angle and the frequency of the angle orthogonal thereto from the result by proportional division. As a result, the frequency can be obtained with high accuracy by using the target in a limited direction.
  • the size of the target to be presented is prepared to be about 4 times the frequency of the measurement range (diopter), but the range of the size is limited to about 9 to 18 depending on the view number. These are divided into three groups with a step size difference of three.
  • the first far-side frequency determination chart, the second far-side frequency determination chart, and the third far-side frequency determination chart combining the three groups of targets are sequentially transmitted to the examinee terminal (S 402, S406, S410).
  • a chart as shown in FIGS. 10, 11, and 12 is displayed on the screen of the subject terminal.
  • the examinee looks at the displayed chart with one of the left and right eyes at hand distance, selects the smallest target with three straight lines, and clicks. And if none look like three, click "Nothing looks like three".
  • the optometry server 12 receives the selection result of the subject (S404, S408, S412).
  • the optotypes selected by the three charts are arranged in size order, and it is determined whether or not there is a combination in which the minimum value of the step difference between adjacent optotypes is 1. For example, when No. 4 is selected in the first chart, No. 5 in the second chart, and No. 6 in the third chart, the minimum value of the step difference between adjacent optotypes is 1. In this case, it is determined that the subject has clearly selected the visual targets that can be clearly recognized for the three charts. Then, the smallest number 4 among the targets that can be clearly recognized by the subject is determined as the frequency. If the minimum value of the step difference between the optotypes selected by the three charts is not 1, the judgment is made in the following steps.
  • the optotypes selected from the three charts are arranged in size order, and it is determined whether there is a combination in which the minimum value of the step difference between adjacent optotypes is 2. For example, if No. 4 is selected for the first chart, No. 8 for the second chart, and No. 6 for the third chart, three charts will be selected.
  • the minimum value of the step difference between adjacent optotypes is 2.
  • the average value (in this case, No. 5) of the two small hyperopia of the selected optotypes is determined as the smallest optotype that the examinee can clearly see, and the frequency is determined. I do.
  • the eye classification is re-examined based on the age of the examinee and the optotype calculated in the distant frequency judgment for the classification that has been suspended in the hyperopia / myopia judgment processing. If the judgment cannot be made here, those that can be judged by the nearby frequency judgment performed later will be put on hold, and the rest will be judged as undecidable and an error will be made, or remeasurement will be performed.
  • the optometry server 12 determines whether or not it is necessary to perform “close frequency determination”, which is an additional process (S 419).
  • the subjects for whom additional treatment is needed are all those with pending eye classification and all who are 40 years or older and hyperopic. This is because some people with hyperopia or presbyopia have a longer hand length than the near point distance, and some people are within the range of accommodation power. This is because it may not be possible.
  • the target condition for the near frequency determination is determined based on the astigmatic axis angle determined by the astigmatic axis determination process, the number of the target based on the far frequency determination, and the age (S 4 2 0).
  • the angle of the target to be presented is determined using the target at 90 degrees and / or 180 degrees.
  • the angle of the target to be presented is determined using the target at 90 degrees and / or 180 degrees.
  • oblique astigmatism one of (1) 45 degrees and 135 degrees, (2) both 45 degrees and 135 degrees, and (3) 4
  • One of 5 degrees, one of 35 degrees, one of 90 degrees and one of 180 degrees, (4) 45 degrees and one of 35 Judgment is made based on both degrees and either 90 degrees or 180 degrees.
  • the person whose classification of the eyes is pending makes the judgment in (2) or (4) above, and the person who has decided makes the judgment in (1) and (3) above.
  • the size of the target to be presented is limited to 9 to 18 according to the view number from the whole, as in the case of distant frequency judgment, and this is a step size difference. Is divided into three groups.
  • the first near frequency judgment chart, the second near frequency judgment chart, and the third near frequency judgment chart combining the three groups of optotypes are sequentially transmitted to the subject terminal (S 42, S426, S430).
  • the examinee visually recognizes each of the displayed charts with one of the left and right eyes from the distance of the A4 paper, selects and clicks on the smallest target with three straight lines. If none of them looks like three, click "Nothing looks like three". Thereby, the optometry server 12 receives the result of the selection of the subject (S424, S428, S432).
  • F 1 is a target for judging the distant frequency of the astigmatic axis angle
  • N 1 is the astigmatic axis angle
  • F2 is a distant power determination target at an angle orthogonal to the astigmatic axis angle
  • N2 is a power determination target near an angle perpendicular to the astigmatic axis angle.
  • the results of the previous determination are compared with each other to check the consistency (S440) .0
  • Checking methods include, for example, the consistency with the coarse determination processing, the results of the hyperopia / myopia determination processing and the frequency determination. Test the consistency of the processing results. If the data is inconsistent as a result of the check, Stop processing.
  • the astigmatic axis angle of the subject By the above processing, the astigmatic axis angle of the subject, the astigmatic axis angle, and the frequency of the angle orthogonal thereto are obtained.
  • the present embodiment has a function of generating an eyeball optical model simulating the eye of the subject based on the optometry result and determining a lens power suitable for the eye of the subject.
  • a starting eyeball model is selected based on the age and estimated frequency of the subject (S500), and the light-collecting performance at the adjustment midpoint is evaluated.
  • An automatic design process is performed to construct an eyeball optical model at the adjustment midpoint (S501).
  • This validity check is to increase the refractive power of the eyeball by the amount of accommodation power of the human eyeball (UP), and to confirm that the light-collecting state is good by the automatic design calculation of the optical system.
  • the degree of refraction of the eyeball by the amount of accommodation (UP) means the following.
  • the adjustment midpoint position is 40 cm (12.5 D), and the near point side
  • the eyeball refraction UP equivalent to the correction amount of 11.5D is required.
  • the optical parameters of the eyeball optical model are multiplied by (l + oi X bZa) so as to increase the eyeball refraction equivalent to this 1.5D, and the near point is controlled while controlling the boundary conditions of the optical system automatic design.
  • This validity check is to reduce the refraction of the eyeball by the amount of accommodation power of the human eyeball (DOW N), and to confirm that the light-collecting state is good by the automatic design calculation of the optical system.
  • DOW N the reduction of the refraction of the eyeball by the amount of accommodation
  • the middle adjustment point position is 4 O cm (-2.5 D), and the far point side
  • an eyeball refractive index down (DOWN) equivalent to the correction amount of +1.5 D is required, as compared to the adjustment midpoint position.
  • the optical specifications of the eyeball optical model are multiplied by (11 a Xb / a) so that the refraction of the eyeball is reduced by + 1.5D, and the distance is controlled while controlling the boundary conditions of the optical system automatic design.
  • the validity of the model is checked out of the accommodation range on the near point side and the far point side, that is, outside the accommodation range of the eyeball (S504), and if there is a mismatch, the process returns to S501.
  • the adjustment range of the optical parameters of the eyeball is determined to determine the eyeball optical model (S508). Determination of the adjustment range of the eyeball optical model and the optical specifications at the adjustment midpoint position is as follows. Check the validity of the eyeball optical model at the accommodation limit (near-point side) Check the validity of the eyeball optical model at the accommodation limit (far-point side) The optical model of the eyeball at the midpoint of the adjustment of the optical model construction processing result is considered to be valid, and the range of change of the optical parameters at the adjustment limit (especially when the lens becomes thinner or thicker, The process of checking the validity of the eyeball optical model at the accommodation limit (near point side) and the validity of the eyeball optical model at the accommodation limit (far end point) are checked for the radius of curvature and the range of change of the rear curvature radius. Determined.
  • the light collection performance with adjustment at three distances in the naked eye state of the subject is calculated and verified (S510). Similar to the process of checking the validity of the eyeball optical model at the accommodation limit (near point side) and the process of checking the validity of the eyeball optical model at the accommodation limit (far end side), Calculate the amount to increase (UP) or down (DOWN) the refraction of the eyeball from the position of the adjustment midpoint, and execute the automatic optical system design while controlling the boundary conditions of the automatic optical system design.
  • the optical parameters obtained in this way virtually represent the state of the eye when the eyeball performs focus adjustment.
  • the calculation is repeatedly performed until the light-collecting state does not improve any more, and the final optical data is set to the best light-collecting state at the object distance.
  • ⁇ T the spatial frequency characteristics
  • the three distances are selected from the practical distance range for wearing glasses, and three distances that can significantly change the appearance. For example, 0.3 m (short distance), 0.5-0.6 m (intermediate distance), 5 m (long distance).
  • the focusing performance is checked with the accommodation power at the far point distance. If the object distance is shorter than the near point, it is determined that the lens cannot be thickened any more. When the object distance is between the near point and the far point, the focusing performance is checked by changing the refraction of the eyeball by the accommodation power from the middle point.
  • the light-collecting performance with adjustment at three distances after the correction in the eyeglasses' contact lens is calculated and verified (S512).
  • an actual spectacle lens a lens with a known radius of curvature on the front surface, the radius of curvature on the rear surface, and a glass material with a known refractive index
  • a suitable virtual lens is determined from the approximate lens power and the wearing conditions, and an optical simulation is performed on the light-collecting performance in a state where the spectacles and the contact lenses are worn.
  • the optical parameters of the eye are changed within the range of accommodation power to create a state where the light-collecting performance is optimal, and the sharpness score at that time is calculated.
  • the sharpness score is calculated by evaluating the state of light collection. From an infinitely small point object at a certain distance, several hundreds of light rays are distributed uniformly over the pupil diameter of the eyeball optical model (for example, ⁇ 3 mm) and incident, and ray tracing is performed on the retina. Calculate where in the image. Second order of intensity distribution of the point image The value obtained by the Fourier transform is called spatial frequency characteristics (OTF. By examining the intensity distribution on the retina, the degree of blur can be evaluated. Spatial frequency is a value that expresses the fineness of the stripe pattern.
  • the recommended lens is determined (S5 16), and visual images at three distances before and after correction by the recommended lens are generated and displayed (S5 18).
  • the degree of blur can be adjusted by N value (minimum 3), fill weight, and number of processing.
  • the degree of blur is determined by spatial frequency analysis, and the image is associated with the sharpness score.
  • the lens may be changed to generate and display a visual image at three distances.
  • an optical simulation is performed while changing the lens power and wearing the eyeglasses and the contact lens, and the optical parameters are changed within the adjustment range of the eyeball to create a state where the light-collecting performance is optimal.
  • a visual recognition image is also generated using the sharpness score of.
  • the examinee is configured to perform the optometry by connecting to the optometry server using a WWW browser.
  • the present invention is not limited to this, and the application including the optotype described above is downloaded to the user terminal. It may be configured to execute it.
  • the application including the optotype described above may be provided not only by downloading it from the optometry server but also by a distributable recording medium such as CD-ROM.
  • the first astigmatic axis determination including a target whose straight line is directed in the directions of 45 degrees, 90 degrees, 135 degrees, and 180 degrees, respectively.
  • a second axis of astigmatism that includes a chart and a target oriented straight at 23 degrees, 68 degrees, 113 degrees, and 158 degrees, which are directions that equally divide the previous four directions.
  • the examinee was asked to determine the shading by using an optotype at intervals of about 23 degrees, but the present invention is not limited to this, and it is desired to determine the astigmatic axis in finer increments.
  • a second astigmatic axis determination chart combining four optotypes directed in one of three directions that divides the four directions determined by the first astigmatic axis determination chart into three equal parts, Of the four directions determined by the astigmatism axis determination chart of the third direction were not included in the second astigmatism axis determination chart.
  • the subject may be made to determine the shading using the targets at intervals of 15 degrees.
  • Each astigmatism axis determination chart is composed of four asymptotic axes in which the straight lines of the indices are orthogonal to each other so that the subject can easily judge the contrast of the indices. It is configured to be included in the chart.
  • first, second, and third astigmatic axis determination charts do not determine the astigmatic axis angle, the examinee is required for each of the first, second, and third astigmatic axis determination charts.
  • a fourth astigmatic axis determination chart may be displayed and selected. If two of the first, second, and third astigmatic axis determination charts can be selected, a maximum of six targets may be selected. When displaying, select four targets with close angles from among them to create an astigmatic axis determination chart. As a result, the astigmatic axis angle is determined with twice the resolution of the target in 15-degree increments, and the astigmatic axis angle can be determined with higher accuracy.
  • a coarse determination process for determining a coarse appearance is first performed.
  • the order in which the coarse determination is performed is not limited to this. What is necessary is just to perform before the process which needs to determine the size of a target.
  • the astigmatic axis determination processing and the hyperopia / myopia determination processing the subject is approached to the screen to a distance where a straight line can be confirmed, and the optotypes of the entire range are displayed in the power determination processing.
  • the coarse determination process does not necessarily have to be performed.
  • the astigmatic axis determination processing, hyperopia / myopia determination processing, and the frequency determination processing are performed as a series of procedures.
  • the astigmatic axis determination processing, hyperopia / myopia determination processing, and the determination processing may be used independently, and each has a specific effect as described above.
  • the present invention it is possible to determine the astigmatic axis angle, determine the myopia and hyperopia, and determine the myopia, hyperopia, and astigmatism without being affected by the subject's subjectivity and the judgment environment. It is possible to provide an optometry method that can respond to the above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

 乱視・近視・遠視を有する幅広い度数範囲の人に対して精度良く検眼でき、特に混合乱視を有する人にも対応可能な検眼装置および検眼方法を提供する。コンピュータ画面に表示された視標を被検査者に左右片眼づつ視認させることによって自覚的に検眼を行うものであって、乱視軸角度を判定する視標を表示し、乱視軸角度を判定する乱視軸角度判定手段と、判定された乱視軸角度に基づいて選択された直交する2方向について遠視・近視を判定する視標を表示し、乱視軸角度およびそれと直交する角度の遠視・近視を判定する遠視・近視判定手段と、判定された乱視軸角度に基づいて選択された直交する2方向について度数を判定する視標を表示し、乱視軸角度およびそれと直交する角度の度数を判定する度数判定手段とを有する。

Description

明 細 書 検眼装置および検眼方法 技術分野
この発明は、 表示手段に表示した視標を被検査者に左右片眼づっ視認 させることにより自覚的に検眼を行う検眼装置および検眼方法に関し、 特にたとえばインタ一ネッ ト上でメガネゃコンタク トレンズを販売する 際にレンズ度数を決定するために行う検眼において好適な検眼装置およ び検眼方法に関する。 背景技術
従来、 メガネゃコンタク トレンズの度数を決定するためには、 オート レフラク トメ一夕を用いて、 他覚的に眼球の屈折率を判定し、 実際に備 え付けの矯正レンズを装着して視力を確認するという方法が一般にとら れてきた。
しかしながら、 かかるォートレフラク トメ一夕は極めて高価な装置で あり、 取扱いに専門的知識を必要とする。 また、 実際に矯正レンズを装 着して視力を確認することは、 各種の矯正レンズを備えた眼科医や眼鏡 店に出向いて検眼を受ける必要があり、 設備を有しない店舗や自宅等で メガネゃコンタク トレンズを注文することは困難であった。
近年、 コンピュータ技術やネッ トワーク技術の進歩を背景として、 ォ 一トレフラクトメ一夕や矯正レンズ等の設備を有しない店舗や自宅にお いて、 利用者が自覚的に検眼できるシステムの開発が進められている ( 例えば、 特開 2 0 0 1— 2 8 6 4 4 2号公報に開示されている遠隔視力 判定システム) 。 かかる従来のシステムでは、 コンピュータ画面に第 1 9図のようなラ ンドルト環と呼ばれる視力判定用の視標を表示し、 視標の大きさを変化 させて被検査者に左右の眼のそれぞれについて視認可能な最小の視標を 選択させることで視力を判定する。 また、 乱視を有する人には、 ランド ルト環を回転させ、 被検査者に切れ目がつながって見える方向を判断さ せたり、 コンピュータ画面に第 2 0図のような乱視軸判定用の視標を表 示し、 被検査者に左右の眼のそれぞれについて最も濃く見える方向を選 択させることによって乱視軸を判定し、 判定された乱視軸およびそれと 直交する方向について視力判定用の視標に り視力を判定する。
しかしながら、 インターネッ トのように不特定多数の人を対象とする 場合には被検査者のなかに遠視の人が含まれる可能性があるが、 従来の 検眼装置では、 単に視標の大きさを変化させて視認可能な最小の視標を 選択させるものであるため、 近視か遠視かは区別できず、 誤った検眼結 果となる恐れがあった。
特に、 コンピュータ画面を用いた検眼では、 被検査者はマウス等によ り視認結果を入力する必要があることから、 被検査者の眼と視標の距離 が一定の範囲に拘束されるため、 視力判定用の視標だけで遠視と近視を 区別するのは困難である。
また、 乱視を有する人の中には、 主軸と副軸の一方が近視で他方が遠 視である混合乱視の人も存在するが、 従来の検眼装置ではこのような人 に対応することは不可能であった。
それゆえに、 この発明の主たる目的は、 乱視 '近視 '遠視を有する幅 広い度数範囲の人に対して精度良く検眼でき、 特に混合乱視を有する人 にも対応可能な検眼装置および検眼方法を提供することである。 発明の開示 請求項 1に記載の発明は、 表示手段に表示した視標を被検査者に左右 片眼づっ視認させ、 被検査者が視認した結果を取得することにより自覚 的に検眼を行う検眼装置であって、 乱視軸角度を判定する視標を表示し 、 被検査者が視認した結果を取得することにより乱視軸角度を判定する 乱視軸角度判定手段と、 前記判定された乱視軸角度に基づいて選択され た直交する 2方向について遠視 ·近視を判定する視標を表示し、 被検査 者の視認結果を取得することにより前記判定された乱視軸角度およびそ れと直交する角度の遠視 ·近視を判定する遠視 · 近視判定手段と、 前記 判定された乱視軸角度に基づいて選択された直交する 2方向について度 数を判定する視標を表示し、 被検査者の視認結果を取得することにより 前記判定された乱視軸角度およびそれと直交する角度の度数を判定する 度数判定手段とを有する、 検眼装置である。
この発明の検眼装置は、 遠視 ·近視判定手段を備え、 被検査者の眼が 遠視か近視かを判定する機能を有するので、 被検査者のなかに遠視を有 する人が含まれていても精度良く検眼できる。
また、 乱視軸角度判定手段により被検査者の乱視軸を判定し、 遠視 · 近視判定手段によりその乱視軸に基づいて選択された直交する 2方向に ついて個別に遠視 ·近視を判定し、 度数判定手段によりその乱視軸に基 づいて選択された直交する 2方向について度数を判定する機能を有する ので、 混合乱視を有する人でも検眼できる。
請求項 2に記載の発明は、 前記乱視軸角度判定手段は、 略 4 5度 · 略 9 0度 '略 1 3 5度 ' 略 1 8 0度の 4方向に多数の直線を平行に配列し た 4つの視標を含む乱視軸判定チヤ一トを表示する手段と、 前記表示さ れた乱視軸判定チヤ一トについて被検査者に濃く見える視標を選択させ る手段と、 前記乱視軸判定チャートについて選択された視標に基づいて 乱視軸角度を決定する手段とを有する、 請求項 1に記載の検眼装置であ る。
表示手段に表示された視標を被検査者に視認させることにより自覚的 に検眼する検眼装置では、 被検査者は表示手段に表示された視標を単独 で視認して判断することが求められるが、 乱視軸の判定は視標と被検査 者の眼との距離によっても見え方が微妙に異なり、 一般の人が 1本の直 線を放射状に配列した視標や、 2本の直線からなる視標を回転させたも の等を使用して乱視軸を正しく判断することは難しいという問題があつ た。
この発明の検眼装置は、 乱視軸角度判定手段において、 多数の直線を 平行に配列した線状群からなる視標を用い、 かつ 4 5度間隔の 4方向に 限定した視標を組合せた乱視軸判定チヤ一トを表示して被検査者に濃く 見える視標を選択させるようにしたので、 一般の人でも容易に乱視軸を 判断でき、 誤った判定を抑制できる。
請求項 3に記載の発明は、 前記乱視軸角度判定手段は、 略 4 5度 ·略 9 0度 '略 1 3 5度 ' 略 1 8 0度の 4方向に多数の直線を平行に配列し た 4つの視標を含む第 1の乱視軸判定チヤ一トを表示する手段と、 前記 表示された第 1の乱視軸判定チャートについて被検査者に濃く見える視 標を選択させる手段と、 前記 4方向の略中間の 4方向に多数の直線を平 行に配列した 4つの視標を含む第 2の乱視軸判定チヤ一トを表示する手 段と、 前記表示された第 2の乱視軸判定チャートについて被検査者に濃 く見える視標を選択させる手段と、 前記第 1の乱視軸判定チヤ一トにつ いて選択された視標と前記第 2の乱視軸判定チヤ一トについて選択され た視標とに基づいて乱視軸角度を決定する手段とを有する、 請求項 1に 記載の検眼装置である。
この発明の検眼装置は、 乱視軸角度判定手段において、 多数の直線を 平行に配列した線状群からなる視標を用い、 かつ 4 5度間隔の 4方向に 限定した視標を組合せた乱視軸判定チャートを表示して被検査者に濃く 見える視標を選択させるようにしたので、 一般の人でも容易に乱視軸を 判断でき、 誤った判定を抑制できる。
また、 更に 4 5度 · 9 0度 · 1 3 5度 · 1 8 0度の中間の 4方向の視 標を組合せた乱視軸判定チャートを'表示して被検査者に濃く見える視標 を選択させ、 2つの乱視軸判定チヤ一トについて選択された視標から乱 視軸角度を決定するようにしたので、 2つの乱視軸判定チャートについ て選択された視標の角度から演算によって中間の角度の乱視軸を決定す ることができ、 表示した合計 8方向の視標に対して実質的に 2倍の分解 能で乱視軸角度を決定できる。
請求項 4に記載の発明は、 前記乱視軸角度判定手段は、 略 4 5度, 略 9 0度 · 略 1 3 5度 · 略 1 8 0度の 4方向に多数の直線を平行に配列し た 4つの視標を含む第 1の乱視軸判定チヤ一トを表示する手段と、 前記 表示された第 1の乱視軸判定チヤ一卜について被検査者に濃く見える視 標を選択させる手段と、 前記 4方向の略中間の 4方向に多数の直線を平 行に配列した 4つの視標を含む第 2の乱視軸判定チヤ一トを表示する手 段と、 前記表示された第 2の乱視軸判定チヤ一トについて被検査者に濃 く見える視標を選択させる手段と、 前記第 1の乱視軸判定チヤ一トにつ いて被検査者が選択した視標と前記第 2の乱視軸判定チャートについて 被検査者が選択した視標を含む第 3の乱視軸判定チャートを表示する手 段と、 前記表示された第 3の乱視軸判定チヤ一トについて被検査者に濃 く見える視標を選択させる手段と、 前記第 1の乱視軸判定チヤ一トにつ いて選択された視標と前記第 2の乱視軸判定チヤ一トについて選択され た視標と前記第 3の乱視軸判定チヤ一トについて選択された視標とに基 づいて乱視軸角度を決定する手段とを有する、 請求項 1に記載の検眼方 法である。 この発明の検眼装置は、 乱視軸角度判定手段において、 多数の直線を 平行に配列した線状群からなる視標を用い、 かつ 4 5度間隔の 4方向に 限定した視標を組合せた乱視軸判定チャートを表示して被検査者に濃く 見える視標を選択させるようにしたので、 一般の人でも容易に乱視軸を 判断でき、 誤った判定を抑制できる。
また、 更に 4 5度, 9 0度 · 1 3 5度 * 1 8 0度の中間の 4方向の視 標を組合せた第 2の乱視軸判定チャートを表示して被検査者に濃く見え る視標を選択させるとともに、 2つの乱視軸判定チヤ一卜について選択 された視標を組合せた第 3の乱視軸判定チャートを表示して被検査者に 濃く見える視標を選択させ、 3つの乱視軸判定チヤ一トについて選択さ れた視標から乱視軸角度を決定するようにしたので、 3つの乱視軸判定 チャートについて選択された視標の角度から演算によって中間の角度の 乱視軸を決定することができ、 表示した合計 8方向の視標に対して実質 的に 2倍の分解能で乱視軸角度を決定できる。
更に、 被検査者が部分的に誤った視標を選択した場合でも、 3つの乱 視軸判定チヤ一トについて選択された視標を相互にチェックすることに より正しく判定することが可能となり、 被検査者の乱視軸角度をより精 度良く決定できる。
請求項 5に記載の発明は、 前記遠視 '近視判定手段は、 背景が赤系統 色の領域と背景が青系統色の領域の双方に前記選択された直交する 2方 向のうちの一方向に黒系統色の直線を配置した第 1の遠視 ·近視判定チ ヤートを表示する手段と、 前記表示された第 1の遠視 .近視判定チヤ一 トについて被検査者にいずれの領域の直線が明瞭に見えるかを選択させ る手段と、 背景が赤系統色の領域と背景が青系統色の領域の双方に前記 選択された直交する 2方向のうちの他方向に黒系統色の直線を配置した 第 2の遠視 ·近視判定チャートを表示する手段と、 前記表示された第 2 の遠視 ·近視判定チャートについて被検査者にいずれの領域の直線が明 瞭に見えるかを選択させる手段と、 前記第 1の遠視 ·近視判定チャート について選択された結果と前記第 2の遠視 ·近視判定チャートについて 選択された結果とに基づいて前記判定された乱視軸角度およびそれと直 交する角度の遠視 ·近視を判定する手段とを有する、 請求項 1ないし請 求項 4のいずれかに記載の検眼装置である。
この発明の検眼装置は、 遠視 '近視判定手段において、 双方の領域に 乱視軸角度判定手段により判定された乱視軸角度に基づいて選択された 直交する 2方向のいずれかの方向に黒系統色の直線を配置した視標を使 用するものであって、 双方の領域に 2方向のうちの一方向に直線を配置 した第 1の遠視 ·近視判定チヤ一トと、 双方の領域に 2方向のうちの他 方向に直線を配置した第 2の遠視 ·近視判定チャートとを表示し、 各遠 視 ·近視判定チヤ一トについて被検査者にいずれの領域の直線が明瞭に 見えるかを選択させることで、 被検査者の乱視軸角度およびそれと直交 する角度の遠視,近視を判定する。
これは、 人間の眼が赤系統色の領域と青系統色の領域を同時に視認し たときに、 色収差により赤系統色は奥側に青系統色は手前側に焦点を結 ぶため、 近視の場合は赤系統色の領域の方が明瞭に見え、 遠視の場合は 青系統色の領域の方が明瞭に見えることを利用したもので、 被検査者は いずれの領域が明瞭に見えるかを判断するだけでよいので容易に判断で きる。
また、 この遠視 '近視判定チャートは、 色収差を生ずる 2色の領域に 乱視軸角度判定手段により判定された乱視軸角度に基づいて選択された 直交する 2方向に直線を配置した方向性を有する視標を表示するので、 遠視 '近視の角度依存性を検出できる。 これにより、 被検査者の乱視軸 角度およびそれと直交する角度のそれぞれについて独立に遠視 .近視を 判定でき、 混合乱視の人にも対応できる。
請求項 6に記載の発明は、 前記遠視 · 近視判定手段は、 背景が赤系統 色の領域と背景が青系統色の領域の双方に前記選択された直交する 2方 向のうちの一方向に黒系統色の直線を配置した第 1の遠視 ·近視判定チ ヤートを表示する手段と、 前記表示された第 1の遠視 ·近視判定チヤ一 トについて被検査者にいずれの領域の直線が明瞭に見えるかを選択させ る手段と、 背景が赤系統色の領域と背景が青系統色の領域の双方に前記 選択された直交する 2方向のうちの他方向に黒系統色の直線を配置した 第 2の遠視 ·近視判定チャートを表示する手段と、 前記表示された第 2 の遠視 ·近視判定チャートについて被検査者にいずれの領域の直線が明 瞭に見えるかを選択させる手段と、 背景が赤系統色の領域に前記選択さ れた直交する 2方向のうちの前記一方向に黒系統色の直線を配置し、 背 景が青系統色の領域に前記選択された直交する 2方向のうちの前記他方 向に黒系統色の直線を配置した第 3の遠視 ·近視判定チャートを表示す る手段と、 前記表示された第 3の遠視 ·近視判定チャートについて被検 査者にいずれの領域の直線が明瞭に見えるかを選択させる手段と、 背景 が赤系統色の領域に前記選択された直交する 2方向のうちの前記他方向 に黒系統色の直線を配置し、 背景が青系統色の領域に前記選択された直 交する 2方向のうちの前記一方向に黒系統色の直線を配置した第 4の遠 視 ·近視判定チャートを表示する手段と、 前記表示された第 4の遠視 . 近視判定チヤ一卜について被検査者にいずれの領域の直線が明瞭に見え るかを選択させる手段と、 前記第 1の遠視 ·近視判定チヤ一卜について 選択された結果と前記第 2の遠視 ·近視判定チヤ一卜について選択され た結果と前記第 3の遠視 ·近視判定チヤ一トについて選択された結果と 前記第 4の遠視 ·近視判定チヤ一トについて選択された結果とに基づい て前記判定された乱視軸角度およびそれと直交する角度の遠視 .近視を 判定する手段とを有する、 請求項 1ないし請求項 4のいずれかに記載の 検眼装置である。
この発明の検眼装置は、 遠視 ·近視判定手段において、 背景が赤系統 色の領域と背景が青系統色の領域とを有し、 双方の領域に乱視軸角度判 定手段により判定された乱視軸角度に基づいて選択された直交する 2方 向のいずれかの方向に黒系統色の直線を配置した視標を使用するもので あって、 双方の領域に 2方向のうちの一方向に直線を配置した第 1の遠 視 ·近視判定チヤ一卜と、 双方の領域に 2方向のうちの他方向に直線を 配置した第 2の遠視 ·近視判定チャートと、 一方の領域に 2方向のうち の前記一方向に直線を配置し、 他方の領域に 2方向のうちの前記他方向 に直線を配置した第 3の遠視 ·近視判定チヤ一トと、 一方の領域に 2方 向のうちの前記他方向に直線を配置し、 他方の領域に 2方向のうちの前 記一方向に直線を配置した第 4の遠視 ·近視判定チャートとを表示し、 各遠視 ·近視判定チヤ一トについて被検査者にいずれの領域の直線が明 瞭に見えるかを選択させることで、 被検査者の乱視軸角度およびそれと 直交する角度の遠視 ·近視を判定する。
これは、 人間の眼が赤系統色の領域と青系統色の領域を同時に視認し たときに、 色収差により赤系統色は奥側に青系統色は手前側に焦点を結 ぶため、 近視の場合は赤系統色の領域の方が明瞭に見え、 遠視の場合は 青系統色の領域の方が明瞭に見えることを利用したもので、 被検査者は いずれの領域が明瞭に見えるかを判断するだけでよいので容易に判断で きる。
また、 この遠視 '近視判定チャートは、 色収差を生ずる 2色の領域に 乱視軸角度判定手段により判定された乱視軸角度に基づいて選択された 直交する 2方向に直線を配置した方向性を有する視標を表示するので、 遠視 '近視の角度依存性を検出できる。 これにより、 被検査者の乱視軸 角度およびそれと直交する角度のそれぞれについて独立に遠視 ·近視を 判定でき、 混合乱視の人にも対応できる。
更に、 双方の領域に 2方向のうちのいずれか一方に直線を配置した第 1の遠視 ·近視判定チヤ一トと第 2の遠視 ·近視判定チヤ一トの他に、 双方の領域に 2方向の向きを変えた直線を配置した第 3の遠視 ·近視判 定チャートと第 4の遠視 ·近視判定チャートを用いて、 遠視 ·近視を判 定するようにしたので、 被検査者が部分的に誤って判定した場合でも、 4つのチャートにおいて選択された結果を相互にチェックすることによ り正しく判定することが可能となり、 被検査者の乱視軸角度およびそれ と直交する角度の遠視 ·近視をより精度良く判定できる。
尚、 第 1の遠視 ·近視判定チヤ一卜と第 2の遠視 ·近視判定チャート において、 被検査者がいずれも 「赤系統色の領域」 または 「同じに見え る」 のどちらかを選択し、 「青系統色の領域」 を選択しなかった場合は、 遠視の要因はないと考えられるので、 第 3の遠視 ·近視判定チヤ一トと 第 4の遠視 ·近視判定チヤ一トを用いた判定は省略するようにしてもよ い。 これにより、 より効率的に遠視 ·近視を判定できる。
請求項 7に記載の発明は、 前記遠視 ·近視判定手段は、 前記遠視 ·近 視判定チヤ一トの青系統色の領域の輝度を赤系統色の領域の輝度よりも 低くした、 請求項 5または請求項 6に記載の検眼装置である。
通常、 コンピュータ画面は手を伸ばした距離 ( 6 0〜 7 0 c m程度) で見ることが多いが、 この距離で赤系統色と青系統色の 2色を用いた遠 視 · 近視判定チヤ一トを表示して被検査者に判定させると、 比較的視力 のよい正視や弱い近視の被検査者では、 画面までの距離が比較的短いた め、 網膜の後方で焦点を結ぶ人があり、 誤って青系統色の領域を選ぶ場 合があった。
この発明の検眼装置は、 遠視 ·近視判定チヤ一トの青系統色の領域の 輝度を赤系統色の領域の輝度よりも低くしたので、 例えばコンピュータ 画面を手を伸ばした距離で見る場合でも、 正視または弱い近視の被検査 者が誤って青系統色の領域を選択することが防止され、 より精度良く遠 視 ·近視を判定できる。
請求項 8に記載の発明は、 前記遠視 ·近視判定手段は、 前記各遠視 - 近視判定チャートの表示時間を制限した、 請求項 5ないし請求項 7のい ずれかに記載の検眼装置である。
この発明の検眼装置は、 各遠視 ·近視判定チヤ一卜の表示時間を制限 したので、 被検査者に眼の調節力が有意に働かない状態で判断させるこ とができる。 これは、 特に視標の大きさを一定,として、 被検査者に視標 がはつきり見える位置まで近づいて判断させる場合に有効であり、 被検 査者がしっかりとピントを合わせようと眼の調節力を強く働かせること で誤つた判断となることを防止できる。
請求項 9に記載の発明は、 前記度数判定手段は、 前記選択された直交 する 2方向について、 一定数の直線を平行に配列した視標を段階的に大 きさを変化させた度数判定チヤ一トを表示する手段と、 前記表示された 度数判定チャートについて被検査者に視認可能な最小の視標を選択させ る手段と、 前記度数判定チヤ一トについて選択された視標に基づいて前 記判定された乱視軸角度およびそれと直交する角度の度数を判定する手 段とを有する、 請求項 1ないし請求項 8のいずれかに記載の検眼装置で ある。
この発明の検眼装置は、 度数判定手段として、 乱視軸角度判定手段に より判定された乱視軸角度に基づいて選択された直交する 2方向につい て、 一定数の直線を平行に配列した視標を度数に対応させて段階的に大 きさを変えた度数判定チャートを用い、 被検査者に正しく直線の本数を 視認できる最小の視標を選択させるようにしたので、 ランドルト環のよ うなものを回転させて部分的な切れ目を判断するものと比較して、 視標 の大きさの段階を数多くとることができ、 それにより度数決定の分解能 が上がり、 被検査者の乱視軸角度およびそれと直交する角度の度数を精 度良く判定できる。
尚、 度数判定チャートは、 段階的に大きさを変えたすべての視標を 1 つのチャートに含め、 その中から視認可能な最小の視標を選択させるよ うにしてもよいが、 視標を大きさによって複数の区分に分け、 それぞれ を含めたチャートを切替えて表示することで視認可能な最小の視標を選 択させるようにしてもよい。 また、 1 つのチャートには 1つの視標のみ を含めることとし、 大きい方から順に切替えて表示して視認可能な最小 の視標を判断させるようにしてもよい。
請求項 1 0に記載の発明は、 前記度数判定手段は、 前記選択された直 交する 2方向について、 一定数の直線を平行に配列した大きさの段階差 が 2以上の視標を組合せた複数の度数判定チャートを順次表示する手段 と、 前記表示された各度数判定チャートについて被検査者に視認可能な 最小の視標を選択させる手段と、 前記各度数判定チャートについて選択 された視標に基づいて前記判定された乱視軸角度およびそれと直交する 角度の度数を判定する手段とを有する、 請求項 1ないし請求項 8のいず れかに記載の検眼方法である。
この発明の検眼装置は、 度数判定手段として、 乱視軸角度判定手段に より判定された乱視軸角度に基づいて選択された直交する 2方向につい て、 一定数の直線を平行に配列した視標を度数に対応させて大きさの段 階差が 2以上の視標を組合せた複数の度数判定チヤ一卜を順次表示し、 各度数判定チヤ一トについて被検査者に正しく直線の本数を視認できる 最小の視標を選択させるようにしたので、 従来のランドルト環を回転さ せて部分的な切れ目を判断するような場合と比較して、 視標の大きさの 段階を数多くとることができ、 それにより度数決定の分解能が上がり、 被検査者の乱視軸角度およびそれと直交する角度の度数を精度良く判定 できる。
また、 大きさの段階差が 2以上の視標を組合せた度数判定チヤ一トを 使用するので、 被検査者は小さな段階差の視標から視認可能な最小の視 標を選択するという微妙な判断から開放され、 視認可能な最小の視標を 容易に選択できる。
更に、 複数の度数判定チャートにおける判断を組合せて視認可能な最 小の視標を決定するので、 被検査者が擬似解像等によって部分的に判断 を誤った場合でも、 相互チェックによって正しく度数を判定することが 可能となり、 被検査者の乱視軸角度およびそれと直交する角度の度数を より精度良く判定できる。
特に、 大きさの段階差を 3とした 3つの度数判定チャートを使用する ことが好ましく、 被検査者は視認可能な最小の視標を容易に選択でき、 かつ 3回の判断で度数を精度良く判定できる。
請求項 1 1に記載の発明は、 前記度数判定チャートは、 前記配列され る一定数の直線の幅方向の両外端に、 前記直線の幅に対して 0 . 5〜2 . 0倍の幅を有し、 前記直線に対してコントラストを有する両側帯を設 けた、 請求項 9または請求項 1 0に記載の検眼装置である。
この発明の検眼装置は、 度数判定チャートにおいて、 配置される一定 数の直線の幅方向の両端に一定幅で直線に対してコントラストを有する 両側帯を設けたので、 擬似解像が発生した場合に、 両側帯部分に出現す る直線が背景とコントラストがついて見やすくなり、 被検査者は擬似解 像が生じていることを容易に判断できる。
また、 両側帯がない場合は、 視認可能な視標サイズを超えて、 より小 さな視標サイズを見たときに、 ゆるやかにボケてゆくため、 視認可能な 限界を特定しづらかったが、 両側帯がある場合は、 直線と線間と両側帯 が入り乱れてボケていくため、 視認可能な限界が特定しやすくなり、 よ り的確に視認可能な最小の視標を選択できる。
これにより、 被検査者の乱視軸角度およびそれと直交する角度の度数 をより精度よく判定できる。
請求項 1 2に記載の発明は、 前記度数判定チャートは、 前記両側帯の 色と前記直線の間の色を異なるものとし、 前記両側帯の輝度を前記直線 の間の輝度以上とした、 請求項 1 1に記載の検眼装置である。
この発明の検眼装置は、 度数判定チャートにおいて、 両側帯と線間の 色を変え、 両側帯の輝度を線間の輝度以上としたので、 被検査者は擬似 解像が生じていることをより容易に判断でき、 より的確に視認可能な最 小の視標を選択できる。 これにより、 被検査者の乱視軸角度およびそれ と直交する角度の度数をより精度よく判定できる。
尚、 ここでいう輝度とは、 光が眼に入ったときに感じる明るさを意味 し、 明るさを比較する尺度としては、 例えば Y C C表現の Y (Y=0.299 R+0.587G+0.114B) や H S V表現の V (V=R+G+B) 等を用いることが できる。
請求項 1 3に記載の発明は、 前記度数判定チャートは、 前記直線を黒 系統色とし、 前記直線の間を緑系統色とし、 前記両側帯を黄系統色とし た、 請求項 1 1に記載の検眼装置である。
この発明の検眼装置は、 度数判定チャートにおいて、 配列する直線を 黒系統色、 線間を綠系統色、 両側帯を黄系統色としたもので、 各種の色 の組合せについて実験した結果、 この組合せが被検査者にとって特に見 やすく、 適確に判定できると判断された。
請求項 1 4に記載の発明は、 前記度数判定手段は、 被検査者に表示手 段から遠い距離で視標を視認させて視認可能な最小の視標を選択させる 遠くの度数判定手段と、 被検査者に表示手段に近い距離で視標を視認さ せて視認可能な最小の視標を選択させる近くの度数判定手段と、 前記遠 くの度数判定手段において選択された視標と前記近くの度数判定手段に おいて選択された視標とに基づいて前記判定された乱視軸角度およびそ れと直交する角度の度数を判定する手段とを有する、 請求項 8ないし請 求項 1 3のいずれかに記載の検眼装置である。
通常、 コンピュータ画面は手を伸ばした距離 ( 6 0〜 7 0 c m程度) で見ることが多いが、 遠視や老視の人のなかには、 この距離では近点距 離よりも遠くて調節力の範囲内にある人もいるために、 度数を判定でき ない場合がある。
この発明の検眼装置は、 度数判定手段において、 表示手段から遠い距 離で視標を視認させて度数を判定する遠くの度数判定手段と、 表示手段 に近い距離で度数を判定する近くの度数判定手段とを設け、 遠くの度数 判定手段において選択された視標と近くの度数判定手段において選択さ れた視標とに基づいて被検査者の乱視軸角度およびそれと直交する角度 の度数を判定する機能を備えたものである。
これにより、 遠くの度数判定手段による判定では近点距離より遠くて 調節力の範囲にある遠視や老視の被検査者でも度数を判定することが可 能となる。
また、 遠視 ·近視判定手段で遠視 ·近視を判定できなかった場合に、 遠くの度数判定で選択された視標と近くの度数判定で選択された視標と を用いて被検査者の乱視軸角度およびそれと直交する角度の遠視 .近視 を判定して度数を演算することができる。 例えば、 遠くの度数判定で選 択された視標のサイズと近くの度数判定で選択された視標のサイズの差 を求め、 これが正であって一定値以上のとき (すなわち、 近くの視標の 方がよく見えるとき) に近視と判定したり、 これが負であって一定値以 下のとき (すなわち、 遠くの視標の方がよく見えるとき) に遠視と判定 したり、 直交する 2方向について遠くの度数判定で選択された視標のサ ィズの差と、 直交する 2方向について近くの度数判定で選択された視標 のサイズの差とを求め、 これが同符合でかつ前者より後者が大きいとき 、 その平均値をもって乱視度数とするようにしてもよい。
また、 遠視 ·近視判定手段で遠視 ·近視が判定されている場合でも、 遠くの度数判定で選択された視標と近くの度数判定で選択された視標と を相互チェックして被検査者の誤りを正すようにしてもよく、 また度数 の判定において、 遠くの度数判定で選択された視標と近くの度数で選択 された視標の両方を使って演算により度数を求めるようにしてもよい。 これにより、 被検査者の乱視軸角度およびそれと直交する角度における 遠視 ·近視判定や度数判定をより精度良く行うことができる。
尚、 一般にコンピュータ画面は手を伸ばして画面に触れる程度の距離 で見ることが多く、 遠視や老視の人の多くは近点距離が 3 0 c m以上で あることから、 遠くの度数判定は例えば被検査者が手を伸ばして表示手 段に触れる距離 (6 0〜 7 0 c m程度) で行い、 近くの度数判定は例え ば被検査者の眼と表示手段の間に A 4用紙を縦に置いた距離 (3 0 c m 程度) で行うようにしてもよい。
請求項 1 5に記載の発明は、 前記近くの度数判定手段は、 所定年令以 上であって前記遠視 · 近視判定手段において遠視と判定された被検査者 と、 前記遠視 ·近視判定手段において判定が保留であった被検査者につ いて行うようにした、 請求項 1 4に記載の検眼装置である。
この発明の検眼装置は、 度数判定手段において、 近くの度数判定は、 一定の年令以上で遠視の人と遠視 ·近視判定手段で判定できなかった人 に限って行うようにしたもので、 眼のいい人や近視の人は遠くの度数判 定だけでよい結果が得られるので、 近くの度数判定を省略した。 このように、 近くの度数判定を必要な場合に限定して行うようにした ので、 効率的に被検査者の度数を判定できる。
請求項 1 6に記載の発明は、 前記度数判定手段は、 前記選択された直 交する 2方向について、 均一な太さの赤系統色の直線と青系統色の直線 とを交互に配列した線群領域と前記線群領域のいずれかの直線と同一色 の基準色領域とを有する視標を段階的に大きさを変化させた度数判定チ ヤー卜を表示する手段と、 前記表示された度数判定チャートについて被 検査者に前記線群領域のなかに前記基準色領域と同一色の直線があると 視認された最小の視標を選択させる手段と、 前記度数判定チヤ一トにつ いて選択された視標に基づいて前記判定された乱視軸角度およびそれと 直交する角度の度数を判定する手段とを有する、 請求項 1ないし請求項 8のいずれかに記載の検眼装置である。
この発明の検眼装置は、 赤系統色の直線と青系統色の直線とを交互に 配列した線群領域といずれかの直線と同一色の基準色領域とを有する視 標を度数に対応させて段階的に大きさを変化させた度数判定チャートを 用いて度数を判定するようにしたものである。
これは、 被検査者が 2色の直線の配列された視標を見たときに、 視力 に対応した眼の分解能よりも大きな間隔で配列された視標は正しく 2色 に分解して見えるが、 視力に対応した眼の分解能よりも小さい間隔で配 列された視標では 2色が混色して見えることを利用して度数を判定する ようにしたものである。
これにより、 被検査者は視認可能な最小の視標を直感的に判断するこ とができ、 擬似解像により直線の数を間違えて判断するという問題も緩 和される。
尚、 使用する色は必ずしも赤系統色と青系統色に限定されるものでは なく、 被検査者が混色したことをはっきり認識できるものである限りど のような色の組合せを用いてもよい。
また、 ここでは度数に対応させて段階的に大きさを変化させた視標を 用いて視認可能な最小の視標を選択させるようにしたが、 2つの色を放 射状に交互に配置した視標を用い、 2色に分解して視認できる中心に最 も近い位置の中心からの距離で度数を判定するようにしてもよい。 この 場合、 方位に対応した度数が判定できるので、 これを利用して乱視軸角 度の判定と度数判定を同時に行うようにしてもよい。 また、 例えば混色 させる色の組合せを波長の長い部分で行ったものと短い部分で行ったも のを組合せて、 乱視軸の判定と遠視 ·近視の判定と度数の判定とを同時 に行うようにしてもよい。 これにより、 極めて効率的に検眼を行うこと が可能となる。
請求項 1 7に記載の発明は、 前記度数判定手段は、 前記選択された直 交する 2方向について、 均一な太さの赤系統色の直線と青系統色の直線 とを交互に配列した線群領域と前記線群領域のいずれかの直線と同一色 の基準色領域とを有する大きさの段階差が 2以上の視標を組合せた複数 の度数判定チャートを順次表示する手段と、 前記表示された各度数判定 チャートについて被検査者に前記線群領域のなかに前記基準色領域と同 一色の直線があると視認された最小の視標を選択させる手段と、 前記各 度数判定チャートについて選択された視標に基づいて前記判定された乱 視軸角度およびそれと直交する角度の度数を判定する手段とを有する、 請求項 1ないし請求項 8のいずれかに記載の検眼装置である。
この発明の検眼装置は、 赤系統色の直線と青系統色の直線とを交互に 配列した線群領域といずれかの直線と同一色の基準色領域とを有する視 標を度数に対応させて大きさの段階差を 2以上とした複数の度数判定チ ヤー卜を順次表示して度数を判定するようにしたものである。
このように、 2色の混合によって視認可否を判断するので、 被検査者 は視認可能な最小の視標を直感的に判断することができ、 擬似解像によ り直線の数を間違えて判断するという問題も緩和される。
また、 大きさの段階差が 2以上の視標を組合せた度数判定チヤ一トを 使用するので、 被検査者は小さな段階差の視標から視認可能な最小の視 標を選択するという微妙な判断から開放され、 視認可能な最小の視標を 容易に選択できる。
更に、 複数の度数判定チャートにおける判断を組合せて視認可能な最 小の視標を決定するので、 被検査者が擬似解像等によって部分的に判断 を誤った場合でも、 相互チェックによって正しく度数を判定することが 可能となり、 被検査者の乱視軸角度およびそれと直交する角度の度数を より精度良く判定できる。
特に、 大きさの段階差を 3とした 3つの度数判定チヤ一トを使用する ことが好ましく、 被検査者は視認可能な最小の視標を容易に選択でき、 かつ 3回の判断で度数を精度良く判定できる。
請求項 1 8に記載の発明は、 指向性を有しない図形からなる視標を段 階的に大きさを変化させた粗判定チャートを表示する手段と、 前記表示 された粗判定チヤ一トについて被検査者に視認可能な最小の視標を選択 させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備 え、 前記乱視軸判定手段は、 前記判定された粗い見え方に基づいて前記 表示される各乱視軸判定チヤ一トの各視標の大きさを調節する手段を有 する、 請求項 2ないし請求項 4のいずれかに記載の検眼装置である。
この発明の検眼装置は、 粗判定手段により粗判定チヤ一トを用いて被 検査者の粗い見え方を判定し、 乱視軸角度判定手段において粗い見え方 に基づいて表示する視標の大きさを調節するようにしたので、 被検査者 は各自の視力に応じた適切な大きさの視標で乱視軸を判定でき、 判断が 容易となる。 尚、 粗判定チャートは、 指向性を有しない図形からなる視標を用いて いるので、 被検査者が乱視を有する場合でも、 乱視軸角度に左右される ことなく粗い見え方を判定することができる。
請求項 1 9に記載の発明は、 指向性を有しない図形からなる視標を段 階的に大きさを変化させた粗判定チャートを表示する手段と、 前記表示 された粗判定チヤ一トについて被検査者に視認可能な最小の視標を選択 させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備 え、 前記遠視 ·近視判定手段は、 前記判定された粗い見え方に基づいて 前記表示される各遠視 ·近視判定チヤ一卜に配列する直線の幅と間隔を 調節する手段を有する、 請求項 5ないし請求項 8のいずれかに記載の検 眼装置である。
この発明の検眼装置は、 粗判定手段により粗判定チャートを用いて被 検査者の粗い見え方を判定し、 遠視 ·近視判定手段において粗い見え方 に基づいて各遠視 ·近視判定チャートに配列する直線の幅と間隔を調節 するようにしたので、 被検査者は各自の視力に応じた適切な大きさの視 標で遠視 · 近視を判定できる。
また、 粗い見え方に基づいて、 被検査者の度数が高いほど遠視 .近視 判定チヤ一卜に配列する直線の幅を間隔に対して大きくするようにして もよい。 これにより、 近視の強い人ほど赤系統色が膨張して直線が見え にくくなるため、 判定しづらいという問題を緩和することができる。 尚、 粗判定チャートは、 指向性を有しない図形からなる視標を用いて いるので、 被検査者が乱視を有する場合でも、 乱視軸角度に左右される ことなく粗い見え方を判定することができる。
請求項 2 0に記載の発明は、 指向性を有しない図形からなる視標を段 階的に大きさを変化させた粗判定チャートを表示する手段と、 前記表示 された粗判定チヤ一トについて被検査者に視認可能な最小の視標を選択 させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備 え、 前記度数判定手段は、 前記判定された粗い見え方に基づいて前記表 示される度数判定チャートの視標の大きさの範囲を限定する手段を有す ることを特徴とする、 請求項 8ないし請求項 1 6のいずれかに記載の検 眼装置である。
この発明の検眼装置は、 粗判定手段により粗判定チャートを用いて被 検査者の粗い見え方を判定し、 度数判定手段において粗い見え方に基づ いて使用する視標の大きさの範囲を限定するようにしたので、 検査時間 が短縮されると同時に、 被検査者の判断が容易となり、 より精度良く検 眼できる。
尚、 粗判定チャートは、 指向性を有しない図形からなる視標を用いて いるので、 被検査者が乱視を有する場合でも、 乱視軸角度に左右される ことなく粗い見え方を判定することができる。
請求項 2 1に記載の発明は、 前記乱視軸角度判定手段と前記遠視,近 視判定手段と前記度数判定手段の少なくともいずれかにおいて、 被検査 者の眼に外光が入らないように遮蔽して視標を視認させるようにした、 請求項 1ないし請求項 2 0のいずれかに記載の検眼装置である。
この発明の検眼装置は、 被検査者の眼に外光が入らないように遮断し て視標を視認させるので、 被検査者が視標を視認する際の照明条件が一 定となり、 より精度よく検眼できる。
また、 外部からの光を遮断することで、 被検査者の瞳孔が拡大して焦 点深度が浅くなるので、 視標の判断が容易となる。
尚、 外光を遮断する方法としては、 例えば新聞紙や A 4用紙等を巻い た不透明の筒を被検査者の眼と表示手段の間にセッ 卜させるようにすれ ばよい。 このように、 新聞紙や A 4用紙等の一定規格のものを用いれば 、 被検査者の眼と表示手段に表示される視標との距離を一定にできるの で、 より精度良く検眼できる。
請求項 2 2に記載の発明は、 前記度数判定手段により判定された度数 に基づいてスタート眼球モデルを選定し、 被検査者の任意の調節点にお けるモデルの妥当性を検証して眼球光学モデルを決定する眼球光学モデ ル決定手段と、 前記眼球光学モデルを用いて被検査者がメガネ · コン夕 ク トレンズを装用したときの集光性能を検証し、 レンズ度数を決定する レンズ度数決定手段とを備えた、 請求項 1ないし請求項 2 1のいずれか に記載の検眼装置である。
この発明の検眼装置は、 眼球光学モデル決定手段により度数判定手段 で判定された度数をもとに被検査者の眼を模擬した眼球光学モデルを生 成し、 レンズ度数決定手段によりその眼球光学モデルを用いて推奨レン ズによる矯正後の集光性能を検証してレンズ度数を決定するので、 被検 査者は自分の眼にあった精度のよいメガネまたはコンタクトレンズを選 定することができる。
請求項 2 3に記載の発明は、 表示手段に表示した視標を被検査者に左 右片眼づっ視認させ、 被検査者が視認した結果を取得することにより自 覚的に検眼を行う検眼方法であって、 乱視軸を判定する視標を表示し、 被検査者が視認した結果を取得することにより乱視軸角度を判定するス テツプと、 前記判定された乱視軸角度に基づいて選択された直交する 2 方向について遠視 '近視を判定する視標を表示し、 被検査者が視認した 結果を取得することにより前記判定された乱視軸角度およびそれと直交 する角度の遠視 ·近視を判定するステツプと、 前記判定された乱視軸角 度に基づいて選択された直交する 2方向について度数を判定する視標を 表示し、 被検査者が視認した結果を取得することにより前記判定された 乱視軸角度およびそれと直交する角度の度数を判定するステツプとを有 する、 検眼方法である。 この発明の検眼方法は、 遠視 ·近視を判定するスチップを備え、 被検 查者の眼が遠視か近視かを判定するので、 被検査者のなかに遠視を有す る人が含まれていても精度良く検眼できる。
また、 乱視軸角度を判定するステップにより被検査者の乱視軸を判定 し、 遠視, 近視を判定するステップによりその乱視軸に基づいて選択さ れた直交する 2方向について個別に遠視 · 近視を判定し、 度数を判定す るステップによりその乱視軸に基づいて選択された直交する 2方向につ いて度数を判定するので、 混合乱視を有する人でも精度良く検眼できる 請求項 2 4に記載の発明は、 前記乱視軸角度を判定するステップは、 略 4 5度 · 略 9 0度 · 略 1 3 5度 ·略 1 8 0度の 4方向に多数の直線を 平行に配列した 4つの視標を含む第 1の乱視軸判定チャートを表示する ステップと、 前記表示された第 1の乱視軸判定チヤ一トについて被検査 者に濃く見える視標を選択させるステツプと、 前記 4方向の略中間の 4 方向に多数の直線を平行に配列した 4つの視標を含む第 2の乱視軸判定 チャートを表示するステップと、 前記表示された第 2の乱視軸判定チヤ 一トについて被検査者に濃く見える視標を選択させるステップと、 前記 第 1の乱視軸判定チャートについて被検査者が選択した視標と前記第 2 の乱視軸判定チヤ一トについて被検査者が選択した視標を含む第 3の乱 視軸判定チャートを表示するステップと、 前記表示された第 3の乱視軸 判定チヤ一トについて被検査者に濃く見える視標を選択させるステツプ と、 前記第 1の乱視軸判定チヤ一トについて選択された視標と前記第 2 の乱視軸判定チヤ一トについて選択された視檩と前記第 3の乱視軸判定 チャートについて選択された視標とに基づいて乱視軸角度を決定するス テツプとを有する、 請求項 2 3に記載の検眼方法である。
この発明の検眼方法は、 乱視軸角度を判定するステップにおいて、 名 数の直線を平行に配列した線状群からなる視標を用い、 かつ 4 5度間隔 の 4方向に限定した視標を組合せた乱視軸判定チヤ一トを表示して被検 査者に濃く見える視標を選択させるようにしたので、 一般の人でも容易 に乱視軸を判断でき、 誤った判定を抑制できる。
また、 更に 4 5度 · 9 0度 · 1 3 5度 · 1 8 0度の中間の 4方向の視 標を組合せた第 2の乱視軸判定チヤ一トを表示して被検査者に濃く見え る視標を選択させるとともに、 2つの乱視軸判定チヤ一トについて選択 された視標を組合せた第 3の乱視軸判定チヤ一卜を表示して被検査者に 濃く見える視標を選択させ、 3つの乱視軸判定チヤ一卜について選択さ れた視標から乱視軸角度を決定するようにしたので、 3つの乱視軸判定 チャートについて選択された視標の角度から演算によってその中間の角 度の乱視軸を決定することができ、 表示した合計 8方向の視標に対して 実質的に 2倍の分解能で乱視軸角度を決定できる。
更に、 被検査者が部分的に誤った視標を選択した場合でも、 3つの乱 視軸判定チヤ一トについて選択された視標を相互にチェックすることに より正しく判定することが可能となり、 被検査者の乱視軸角度をより精 度良く決定できる。
請求項 2 5に記載の発明は、 前記遠視 ·近視を判定するステップは、 背景が赤系統色の領域と背景が青系統色の領域の双方に前記選択された 直交する 2方向のうちの一方向に黒系統色の直線を配置した第 1の遠視 •近視判定チヤ一トを表示するステップと、 前記表示された第 1の遠視 •近視判定チヤ一トについて被検査者にいずれの領域の直線が明瞭に見 えるかを選択させるステツプと、 背景が赤系統色の領域と背景が青系統 色の領域の双方に前記選択された直交する 2方向のうちの他方向に黒系 統色の直線を配置した第 2の遠視 ·近視判定チヤ一トを表示するステツ プと、 前記表示された第 2の遠視 ·近視判定チヤ一トについて被検査者 にいずれの領域の直線が明瞭に見えるかを選択させるステツプと、 背景 が赤系統色の領域に前記選択された直交する 2方向のうちの前記一方向 に黒系統色の直線を配置し、 背景が青系統色の領域に前記選択された直 交する 2方向のうちの前記他方向に黒系統色の直線を配置した第 3の遠 視 ·近視判定チャートを表示するステップと、 前記表示された第 3の遠 視 ·近視判定チヤ一トについて被検査者にいずれの領域の直線が明瞭に 見えるかを選択させるステツプと、 背景が赤系統色の領域に前記選択さ れた直交する 2方向のうちの前記他方向に黒系統色の直線を配置し、 背 景が青系統色の領域に前記選択された直交する 2方向のうちの前記一方 向に黒系統色の直線を配置した第 4の遠視 ·近視判定チャートを表示す るステップと、 前記表示された第 4の遠視 ·近視判定チヤ一卜について 被検査者にいずれの領域の直線が明瞭に見えるかを選択させるステップ と、 前記第 1の遠視 ·近視判定チャートについて選択された結果と前記 第 2の遠視 ·近視判定チヤ一トについて選択された結果と前記第 3の遠 視 ·近視判定チヤ一トについて選択された結果と前記第 4の遠視 ·近視 判定チャートについて選択された結果とに基づいて前記判定された乱視 軸角度およびそれと直交する角度の遠視 ·近視を判定するステップとを 有する、 請求項 2 3または請求項 2 4に記載の検眼方法である。
この発明の検眼方法は、 遠視 ·近視を判定するステップにおいて、 背 景が赤系統色の領域と背景が青系統色の領域とを有し、 双方の領域に乱 視軸角度を判定するステツプにより判定された乱視軸角度に基づいて選 択された直交する 2方向のいずれかの方向に黒系統色の直線を配置した 視標を使用するものであって、 双方の領域に 2方向のうちの一方向に直 線を配置した第 1の遠視 ·近視判定チヤ一卜と、 双方の領域 2方向の うちの他方向に直線を配置した第 2の遠視 ' 近視判定チヤ一卜と、 一方 の領域に 2方向のうちの前記一方向に直線を配置し、 他方の領域に 2方 向のうちの前記他方向に直線を配置した第 3の遠視 ·近視判定チャート と、 一方の領域に 2方向のうちの前記他方向に直線を配置し、 他方の領 域に 2方向のうちの前記一方向に直線を配置した第 4の遠視 ·近視判定 チャートとを表示し、 各遠視 · 近視判定チヤ一トについて被検査者にい ずれの領域の直線が明瞭に見えるかを選択させることで、 被検査者の乱 視軸角度およびそれと直交する角度の遠視 ·近視を判定する。
これは、 人間の眼が赤系統色の領域と青系統色の領域を同時に視認し たときに、 色収差により赤系統色は奥側に青系統色は手前側に焦点を結 ぶため、 近視の場合は赤系統色の領域の方が明瞭に見え、 遠視の場合は 青系統色の領域の方が明瞭に見えることを利用したもので、 被検査者は いずれの領域が明瞭に見えるかを判断するだけでよいので容易に判断で きる。
また、 この遠視 ·近視判定チャートは、 色収差を生ずる 2色の領域に 乱視軸角度を判定するステツプにより判定された乱視軸角度に基づいて 選択された直交する 2方向に直線を配置した方向性を有する視標を表示 するので、 遠視 ·近視の角度依存性を検出できる。 これにより、 被検査 者の乱視軸角度およびそれと直交する角度のそれぞれについて独立に遠 視 ·近視を判定でき、 混合乱視の人にも対応できる。
更に、 双方の領域に 2方向のうちのいずれか一方に直線を配置した 2 つの遠視 · 近視判定チャートの他に、 双方の領域に 2方向の向きを変え た直線を配置した 2つの遠視 ·近視判定チヤ一トを用いて、 遠視 .近視 を判定するようにしたので、 被検査者が部分的に誤って判定した場合で も、 4つのチャートにおいて選択された結果を相互にチェックすること により正しく判定することが可能となり、 被検査者の乱視軸角度および それと直交する角度の遠視 · 近視をより精度良く判定できる。
尚、 第 1の遠視 ·近視判定チヤ一卜と第 2の遠視 ·近視判定チヤ一ト において、 被検査者がいずれも 「赤系統色の領域」 または 「同じに見え る」 のどちらかを選択し、 「青系統色の領域」 を選択しなかった場合は、 遠視の要因はないと考えられるので、 第 3の遠視 ·近視判定チヤ一トと 第 4の遠視 ·近視判定チヤ一トを用いた判定は省略するようにしてもよ い。 これにより、 より効率的に遠視 ·近視を判定できる。
請求項 2 6に記載の発明は、 前記度数を判定するステップは、 前記選 択された直交する 2方向について、 一定数の直線を平行に配列した大き さの段階差が 2以上の視標を組合せた複数の度数判定チヤ一トを順次表 示するステップと、 前記表示された各度数判定チヤ一卜について被検査 者に視認可能な最小の視標を選択させるステップと、 前記各度数判定チ ヤートについて選択された視標に基づいて前記判定された乱視軸角度お よびそれと直交する角度の度数を判定するステツプとを有する、 請求項 2 3ないし請求項 2 5のいずれかに記載の検眼方法である。
この発明の検眼方法は、 度数を判定するステップとして、 乱視軸角度 を判定するステツプにより判定された乱視軸角度に基づいて選択された 直交する 2方向について、 一定数の直線を平行に配列した視標を度数に 対応させて大きさの段階差が 2以上の視標を組合せた複数の度数判定チ ヤートを順次表示し、 各度数判定チヤ一トについて被検査者に正しく直 線の本数を視認できる最小の視標を選択させるようにしたので、 従来の ランドルト環を回転させて部分的な切れ目を判断するような場合と比較 して、 視標の大きさの段階を数多くとることができ、 それにより度数決 定の分解能が上がり、 被検査者の乱視軸角度およびそれと直交する角度 の度数を精度良く判定できる。
また、 大きさの段階差が 2以上の視標を組合せた度数判定チヤ一トを 使用するので、 被検査者は小さな段階差の視標から視認可能な最小の視 標を選択するという微妙な判断から開放され、 視認可能な最小の視標を 容易に選択できる。
更に、 複数の度数判定チャートにおける判断を組合せて視認可能な最 小の視標を決定するので、 被検査者が擬似解像等によって部分的に判断 を誤った場合でも、 相互チェックによって正しく度数を判定することが 可能となり、 被検査者の乱視軸角度およびそれと直交する角度の度数を より精度良く判定できる。
特に、 大きさの段階差を 3とした 3つの度数判定チャートを使用する ことが好ましく、 被検査者は視認可能な最小の視標を容易に選択でき、 かつ 3回の判断で度数を精度良く判定できる。
請求項 2 7に記載の発明は、 前記度数を判定するステップは、 被検査 者に表示手段から遠い距離で視標を視認させて視認可能な最小の視標を 選択させる遠くの度数を判定するステップと、 被検査者に表示手段に近 い距離で視標を視認させて視認可能な最小の視標を選択させる近くの度 数を判定するステップと、 前記遠くの度数を判定するステップにおいて 選択された視標と前記近くの度数を判定するステツプにおいて選択され た視標とに基づいて前記判定された乱視軸角度およびそれと直交する角 度の度数を判定するステップとを有する、 請求項 2 3ないし請求項 2 6 のいずれかに記載の検眼方法である。
通常、 コンピュータ画面は手を伸ばした距離 ( 6 0〜 7 0 c m程度) で見ることが多いが、 遠視や老視の人のなかには、 この距離では近点距 離よりも遠くて調節力の範囲内にある人もいるために、 度数を判定でき ない場合がある。
この発明の検眼方法は、 度数を判定するステップにおいて、 表示手段 から遠い距離で視標を視認させて度数を判定する遠くの度数を判定する ステップと、 表示手段に近い距離で度数を判定する近くの度数を判定す るステップとを設け、 遠くの度数を判定するステップにおいて選択され た視標と近くの度数を判定するステップにおいて選択された視標とに基 づいて被検査者の乱視軸角度およびそれと直交する角度の度数を判定す る機能を備えたものである。
これにより、 遠くの度数判定手段による判定では近点距離より遠くて 調節力の範囲にある遠視や老視の被検査者でも度数を判定することが可 能となる。
また、 遠視 ·近視を判定するステップで遠視 · 近視が判定できなかつ た場合に、 遠くの度数判定で選択された視標と近くの 数判定で選択さ れた視標とを用いて被検査者の乱視軸角度およびそれと直交する角度の 遠視 ·近視を判定して度数を演算することができる。 例えば、 遠くの度 数判定で選択された視標のサイズと近くの度数判定で選択された視標の サイズの差を求め、 これが正であって一定値以上のとき (すなわち、 近 くの視標の方がよく見えるとき) に近視と判定したり、 これが負であつ て一定値以下のとき (すなわち、 遠くの視標の方がよく見えるとき) に 遠視と判定したり、 直交する 2方向について遠くの度数判定で選択され た視標のサイズの差と、 直交する 2方向について近くの度数判定で選択 された視標のサイズの差とを求め、 これが同符合でかつ前者より後者が 大きいとき、 その平均値をもって乱視度数とするようにしてもよい。 また、 遠視 ·近視を判定するステツプで遠視 ·近視が判定されている 場合でも、 遠くの度数判定で選択された視標と近くの度数判定で選択さ れた視標とを相互チェックして被検査者の誤りを正すようにしてもよく 、 また度数の判定において、 遠くの度数判定で選択された視標と近くの 度数で選択された視標の両方を使って演算により度数を求めるようにし てもよい。 これにより、 被検査者の乱視軸角度およびそれと直交する角 度における遠視 ·近視判定や度数判定をより精度良く行うことができる 尚、 一般にコンピュー夕画面は手を伸ばして画面に触れる程度の距離 で見ることが多く、 遠視や老視の人の多くは近点距離が 3 0 c m以上で あることから、 遠くの度数判定は例えば被検査者が手を伸ばして表示手 段に触れる距離 ( 6 0〜7 0 c m程度) で行い、 近くの度数判定は例え ば被検査者の眼と表示手段の間に A 4用紙を縦に置いた距離 (3 0 c m 程度) で行うようにしてもよい。
請求項 2 8に記載の発明は、 前記度数を判定するステップは、 前記選 択された直交する 2方向について、 均一な太さの赤系統色の直線と青系 統色の直線とを交互に配列した線群領域と前記線群領域のいずれかの直 線と同一色の基準色領域とを有する視標を段階的に大きさを変化させた 度数判定チヤ一卜を表示するステップと、 前記表示された度数判定チヤ 一トについて被検査者に前記線群領域のなかに前記基準色領域と同一色 の直線があると視認された最小の視標を選択させるステツプと、 前記度 数判定チヤ一トについて選択された視標に基づいて前記判定された乱視 軸角度およびそれと直交する角度の度数を判定するステツプとを有する 、 請求項 2 3ないし請求項 2 5のいずれかに記載の検眼方法である。
この発明の検眼方法は、 赤系統色の直線と青系統色の直線とを交互に 配列した線群領域といずれかの直線と同一色の基準色領域とを有する視 標を度数に対応させて段階的に大きさを変化させた度数判定チヤ一トを 用いて度数を判定するようにしたものである。
これは、 被検査者が 2色の直線の配列された視標を見た^:きに、 眼の 調節力の範囲内にあるときは正しく 2色に分解して見えるが、 眼の調節 力の範囲を超えると 2色が混色して見えることを利用して度数を判定す るようにしたものである。
これにより、 被検査者は視認可能な最小の視標を直感的に判断するこ とができ、 擬似解像により直線の数を間違えて判断するという問題も緩 和される。
尚、 使用する色は必ずしも赤系統色と青系統色に限定されるものでは なく、 被検査者が混色したことをはっきり認識できるものである限りど のような色の組合せを用いてもよい。
また、 ここでは度数に対応させて段階的に大きさを変化させた視標を 用いて視認可能な最小の視標を選択させるようにしたが、 2つの色を放 射状に交互に配置した視標を用い、 2色に分解して視認できる中心に最 も近い位置の中心からの距離で度数を判定するようにしてもよい。 この 場合、 方位に対応した度数が判定できるので、 これを利用して乱視軸角 度の判定と度数判定を同時に行うようにしてもよい。 また、 例えば混色 させる色の組合せを波長の長い部分で行ったものと短い部分で行ったも のを組合せて、 乱視軸の判定と遠視 ·近視の判定と度数の判定とを同時 に行うようにしてもよい。 これにより、 極めて効率的に検眼を行うこと が可能となる。
請求項 2 9に記載の発明は、 前記度数を判定するステップは、 前記選 択された直交する 2方向について、 均一な太さの赤系統色の直線と青系 統色の直線とを交互に配列した線群領域と前記線群領域のいずれかの直 線と同一色の基準色領域とを有する大きさの段階差が 2以上の視標を組 合せた複数の度数判定チャートを順次表示するステップと、 前記表示さ れた各度数判定チヤ一トについて被検査者に前記線群領域のなかに前記 基準色領域と同一色の直線があると視認された最小の視標を選択させる ステップと、 前記各度数判定チャートについて選択された視標に基づい て前記判定された乱視軸角度およびそれと直交する角度の度数を判定す るステップとを有する、 請求項 2 3ないし請求項 2 5のいずれかに記載 の検眼方法である。
この発明の検眼方法は、 赤系統色の直線と青系統色の直線とを交互に 配列した線群領域といずれかの直線と同一色の基準色領域とを有する視 標を度数に対応させて大きさの段階差を 2以上とした複数の度数判定チ ャ一トを順次表示して度数を判定するようにしたものである。
このように、 2色の混合によって視認可否を判断するので、 被検査者 は視認可能な最小の視標を直感的に判断することができ、 擬似解像によ り直線の数を間違えて判断するという問題も緩和される。
また、 大きさの段階差が 2以上の視標を組合せた度数判定チヤ一トを 使用するので、 被検査者は小さな段階差の視標から視認可能な最小の視 標を選択するという微妙な判断から開放され、 視認可能な最小の視標を 容易に選択できる。
更に、 複数の度数判定チャートにおける判断を組合せて視認可能な最 小の視標を決定するので、 被検査者が擬似解像等によって部分的に判断 を誤った場合でも、 相互チェックによって正しく度数を判定することが 可能となり、 被検査者の乱視軸角度およびそれと直交する角度の度数を より精度良く判定できる。
特に、 大きさの段階差を 3とした 3つの度数判定チャートを使用する ことが好ましく、 被検査者は視認可能な最小の視標を容易に選択でき、 かつ 3回の判断で度数を精度良く判定できる。
請求項 3 0に記載の発明は、 指向性を有しない図形からなる視標を段 階的に大きさを変化させた粗判定チャートを表示するステップと、 前記 表示された粗判定チヤ一トについて被検査者に視認可能な最小の視標を 選択させるステップとを有し、 被検査者の粗い見え方を判定するステツ プを備え、 前記乱視軸角度を判定するステツプおよび または前記遠視 •近視を判定するステツプおよび Zまたは前記度数を判定するステツプ は、 前記判定された粗い見え方に基づいて前記表示される視標の条件を 変化させるステツプを有する、 請求項 2 3ないし請求項 2 9のいずれか に記載の検眼方法である。
この発明の検眼は、 粗い見え方を判定するステツプにより粗判定チヤ 一トを用いて被検査者の粗い見え方を判定し、 乱視軸角度を判定するス テツプゃ遠視 ·近視を判定するステップや度数を判定するステップにお いて、 粗い見え方に基づいて表示する視標の条件を適切に変化させるの で、 検査時間が短縮されると同時に、 被検査者の判断が容易となり、 よ り精度良く検眼できる。
尚、 粗判定チヤ一トは、 指向性を有しない図形からなる視標を用いて いるので、 被検査者が乱視を有する場合でも、 乱視軸角度に左右される ことなく粗い見え方を判定することができる。
この発明の上述の目的, その他の目的, 特徴および利点は、 図面を参 照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろ う。 図面の簡単な説明
第 1図は、 本願発明の一実施形態にかかる検眼システムの構成図であ る。
第 2図は、 粗判定チャートの例を示す図である。
第 3図は、 第 1の乱視軸判定チヤ一トの例を示す図である。
第 4図は、 第 2の乱視軸判定チャートの例を示す図である。
第 5図は、 第 3の乱視軸判定チャート (その 1 ) の例を示す図である 第 6図は、 第 3の乱視軸判定チヤ一ド (その 2 ) の例を示す図である 第 7図は、 第 3の乱視軸判定チャート (その 3 ) の例を示す図である 第 8図は、 遠視 '近視判定チャートの例を示す図である。
第 9図は、 度数判定用視標の例を示す図である。
第 1 0図は、 第 1の度数判定チャートの例を示す図である。
第 1 1図は、 第 2の度数判定チャートの例を示す図である。
第 1 2図は、 第 3の度数判定チャートの例を示す図である。
第 1 3図は、 度数判定チャートの他の例を示す図である。
第 1 4図は、 度数判定視標の他の例を示す図である。
第 1 5図は、 本願発明の一実施形態にかかる検眼システムに使用され る眼球光学モデルの概念図である。
第 1 6図は、 本願発明の一実施形態にかかる検眼システムの処理フロ 一図 (個人情報収集処理と粗判定処理) である。
第 1 7図は、 本願発明の一実施形態にかかる検眼システムの処理フロ 一図 (乱視軸判定処理) である。
第 1 8図は、 本願発明の一実施形態にかかる検眼システムの処理フロ —図 (遠視,近視判定処理) である。
第 1 9図は、 本願発明の一実施形態にかかる検眼システムの処理フロ 一図 (度数判定処理) である。
第 2 0図は、 本願発明の一実施形態にかかる検眼システムの処理フロ 一図 (レンズ度数決定処理) である。
第 2 1図は、 従来の視力判定用視標の例 (ランドルト環) を示す図で ある。
第 2 2図は、 従来の乱視軸判定用視標の例を示す図である。 発明を実施するための最良の形態
第 1図は、 本願発明の一実施形態にかかる検眼システムの構成図であ る。 図のように、 検眼システム 1 0は、 検眼サーバ 1 2と被検査者端末 5 0とネッ 卜ワーク 1 0 0から構成される。
検眼サーバ 1 2は、 被検査者端末 5 0に視標デ一夕などのデータを提 供し、 被検査者端末 5 0で入力された結果に基づいて、 被検査者の乱視 軸の判定、 遠視 ·近視の判定、 度数の決定を行い、 自覚的な検眼を行う 機能を有する。 検眼サーバ 1 2のハードウェアとしては、 パソコン、 ヮ ークステーション、 サーバ等のコンピュータが使用される。 検眼サーバ 1 2は、 各種アプリケーションをィンストールすることで様々なサ一ビ スを提供することができる。 また、 検眼サーバ 1 2には、 図示しないモ デムゃネッ トワークインターフェースカードが装着されおり、 ネッ トヮ —ク 1 0 0を介して、 被検查者端末 5 0と双方向のデータ通信を行う。 検眼サーバ 1 2は、 中央処理部 1 4を有する。 中央処理部 1 4は、 後 述する各手段の動作を制御 ·管理する。
中央処理部 1 4には、 視標データを提供する WWWサーバ 1 6が接続 されている。 WWWサーバ 1 6は、 ネッ トワーク 1 0 0を介して、 被検 查者端末 5 0と双方向のデータ通信が行える機能を有する。 WWWサー バ 1 6は、 被検査者端末 5 0のマウスやキーポード等の入力手段 (図示 せず) により入力 ·操作された内容に基づき、 H T M Lデータ、 画像デ 一夕および各種プログラムを被検査者端末 5 0に送信する。 また、 WW Wサーバ 1 6は、 被検査者端末 5 0において入力され、 送信されたデー 夕を受信する。
WWWサーバ 1 6には、 C G I 1 8が接続されている。 C G I 1 8は 、 被検査者端末 5 0から送信されたデータの内容に対応して、 動的に H T M Lデータを生成し、 WWWサーバ 1 6に生成した H T M Lデータを 引き渡す機能を有する。
また、 C G I 1 8は、 WWWサーバ 1 6から引き渡されたデータから 被検査者が視標を視認している状態に関するデータを抽出する。 C G I 1 8は、 抽出 '取得したデータを後述する眼球光学パラメータ決定手段 2 8に引き渡す。
WWWサーバ 1 6が各種データを読み出す記憶領域 2 0には、 視標デ 一夕 2 2が記憶されている。 視標データ 2 2は、 検眼に用いる視標の画 像を表示するデータである。 視標データ 2 2は、 J P E G、 P N G、 G I F、 アニメーション G I Fや F 1 a s h (マクロメディア社の登録商 標) データなどの各種画像データとして記憶されている。 視標デ一夕 2 2は、 適宜 H T M Lデータの一部として被検査者端末 5 0に送信され、 被検査者端末 5 0の表示装置において表示される。 視標デ一夕 2 2は、 判定内容に応じた種々の視標データ 2 2が記憶されている。 以下、 判定 に用いる視標データ 2 2について説明を行う。
視標データ 2 2には、 粗い見え方を判定する視標 2 2 aと、 乱視軸を 判定する視標 2 2 bと、 遠視 ·近視を判定する視標 2 2 cと、 度数を判 定する視標 2 2 dとが含まれる。
粗い見え方を判定する視標 2 2 aは、 指向性を有しない一定の太さを 有する記号からなる視標であり、 ここでは黒地の背景に、 2つの無端環 状体を略接円状に配置し、 線幅が一定の白色の太線で描画することで数 字の " 8 " が黒地の背景に白抜きで描画されているものを用いた。 この 視標 2 2 aは、 粗い見え方のランクに対応させて大きさを段階的に変え たものを配列した粗判定チャート (第 2図) として使用する。
粗い見え方の判定は、 粗判定チャートを被検査者端末に表示し、 一定 の距離から画面を見て視認可能な最小の視標を選択させることで行う。
このように指向性を有しない記号を用いたのは、 指向性を有する直線 などが多用された視標を使用すると、 その方向に乱視成分を有する人の 判定に誤りを生ずるからである。 従って、 乱視を有しない被検査者に限 定される場合には、 直線が多用された文字や記号を視標として用いても よい。 また、 ここでは白色の太線で数字の " 8 " を描画した視標を用い たが、 明るい背景に黒線を描画したものでもよく、 ドーナツ形や 2重円 や 3重円などの指向性を有しない視標を用いてもよい。
乱視軸を判定する視標 2 2 bは、 ここでは緑地の背景に一定の太さの 多数の黒色の直線を等しい間隔をおいて平行に配置させたものを用いた 。 この視標 2 2 bは、 直線をそれぞれ 4 5度、 9 0度、 1 3 5度、 1 8 0度の方向に向けた 4つの視標を組合せた第 1の乱視軸判定チヤ一ト ( 第 3図) と、 直線をそれぞれ 2 3度、 6 8度、 1 1 3度、 1 5 8度の方 向に向けた 4つの視標を組合せた第 2の乱視軸判定チヤ一ト (第 4図) と、 第 1の乱視軸判定チャートによる判定結果と第 2の乱視軸判定チヤ ートによる判定結果をもとに選択された視標を組合せた第 3の乱視軸判 定チャート (第 5図、 第 6図、 第 7図) として使用する。
乱視軸角度の判定は、 最初に第 1の乱視軸判定チャートを被検査者端 末に表示して濃く見える視標を選択させ、 次に第 2の乱視軸判定チヤ一 トを表示して濃く見える視標を選択させることにより行い、 これらの 2 つのチヤ一トで乱視軸角度を決定できない場合は、 2つのチャートで選 択された視標を組合せた第 3の乱視軸判定チヤ一トを表示して濃く見え る視標を選択させることで乱視軸角度を決定する。 このように、 4 5度 、 9 0度、 1 3 5度、 1 8 0度の方向に直線を向けた視標による判定と 、 その中間の 2 3度、 6 8度、 1 1 3度、 1 5 8度の方向に直線を向け た視標による判定を組合せることで見かけ上両者の中間の角度を決定で きるので、 用いた視標の最小角度差の実質的に 2倍の分解能で乱視軸角 度を決定できる。
尚、 ここでは、 視標 2 2 bは被検査者の瞳孔が縮瞳状態にならないよ うにするため背景を緑色とし、 黒色の直線を配列した視標を用いたが、 背景に対して直線が十分に識別できるコントラストを有し、 被検査者の 瞳孔が縮瞳状態にならないものであれば、 どのような色の組合せを用い てもよい。
遠視 ·近視を判定する視標 2 2 cは、 ここでは矩形の枠内を左右均等 に配分して、 左を背景が赤色の領域、 右を背景が青色の領域として、 各 領域のそれぞれについて両領域の境界寄りに、 一定の太'さの黒色の直線 を平行に等間隔に配置したものを用いた。 この視標 2 2 cは、 双方の領 域に乱視軸角度に対応する方向に直線を配置した第 1の遠視 ·近視判定 チャート (第 8図 ( a ) ) と、 双方の領域に乱視軸角度と直交する角度に 対応する方向に直線を配置した第 2の遠視 ·近視判定チャート (第 8図 ( b ) ) と、 赤色の領域に乱視軸角度に対応する方向に直線を配置し、 青 色の領域に乱視軸角度と直交する角度に対応する方向に直線を配置した 第 3の遠視 ·近視判定チャート (第 8図 (c ) ) と、 赤色の領域に乱視軸 角度と直交する角度に対応する方向に直線を配置し、 青色の領域に乱視 軸角度に対応する方向に直線を配置した第 4の遠視 · 近視判定チヤ一ト (第 8図 (d ) ) として使用する。
遠視 '近視の判定は、 チャートを被検査者端末に表示して、 赤色と青 色のいずれの領域の直線が明瞭に見えるかを選択させることによって行 う。 これは、 赤色の光線と青色の光線が眼球に入光したとき、 色収差に より青色の光線の方が手前側に結像され、 赤色に光線の方が奥側に結像 されるため、 遠視の人と近視の人ではいずれの視標が明瞭に見えるかに 差異を生ずることを利用したものである。 従って、 視標 2 2 cの背景は 赤色と青色に限定されるものではなく、 色収差により上述したような現 象が生ずる限りどのような色の組合せを用いてもよい。 また、 直線につ いても、 各領域の背景に対してコントラストを有し、 いずれの領域が明 瞭に見えるかを選択できるものである限り、 どのような色を用いてもよ い。 尚、 第 1の遠視 ·近視判定チャートによる判定と第 2の遠視 ·近視判 定チャートによる判定のいずれも 「赤の領域」 または 「同じに見える」 が選択された場合は正視または近視と考えられるので、 第 3の遠視 ·近 視判定チヤ一トと第 4の遠視 ·近視判定チャートによる判定は行わず、 第 1の遠視 ·近視判定チャートによる判定と第 2の遠視 ·近視判定チヤ ートによる判定のいずれかで 「青の領域」 が選択された場合にのみ、 第 3の遠視 ·近視判定チャートと第 4の遠視 · 近視判定チャートによる判 定を行う。
ここでは、 各領域は便宜上矩形の枠を用いたが、 必ずしも矩形の枠と する必要はなく、 円形等でもよい。 また、 第 8図では 9 0度と 1 8 0度 の方向に直線を配置した視標を用いた場合を示しているが、 実際には被 検査者の乱視軸角度に基づいて選択された直交する 2方向について直線 を配置した視標を用いる。 従って、 遠視 ·近視判定チャートは、 第 8図 に示すもののほか、 4 5度と 1 3 5度の方向に直線を配置した視標と 2 3度と 1 1 3度の方向に直線を配置した視標と 6 8度と 1 5 8度の方向 に直線を配置した視標とを用いたものが使用される。
尚、 乱視軸角度は、 演算によって 2 3度刻みの中央の方向となる場合 があるが、 一般の表示装置では 2 3度刻みの中央の方向の直線は描画が 困難であることと、 視標の方向が厳密に乱視軸角度と一致していなくて も判定可能であることから、 最も近い 2 3度刻みの方向を選択して遠視 '近視を判定するようにしている。 従って、 被検査者端末に高解像度の 表示手段が使用されている場合には、 決定された乱視軸角度に対応した 小さな角度刻みの視標を用いて遠視 ·近視を判定するようにしてもよい ことはい'うまでもない。
度数を判定する視標 2 2 dは、 ここでは緑色の背景に一定の太さの 3 本の黒色の直線を等間隔に配置したものであって、 3本の直線の幅方向 の両外側に線間と同一幅の黄色の両側帯を設けたものを用いた (第 9図 )。 この視標 2 2 dは、 度数に対応させて大きさを段階的に変化させた多 数の視標が準備されており、 ここでは大きさの段階差が 3の視標を組合 せた第 1の度数判定チャート (第 1 0図) と、 第 2の度数判定チャート (第 1 1図) と、 第 3の度数判定チヤ一ト (第 1 2図) として使用する 度数の判定は、 被検査者端末に各度数判定チャートを順次表示し、 そ れぞれについて黒色の直線が 3本に見える最小の視標を選択させ、 各チ ヤートについて選択された視標から相互チェックによって視認可能な最 小の視標を判定して度数を決定する。
ここで、 大きさの段階差が 3の視標を組合せた 3つのチャートを用い て度数を判定するようにしたのは、 被検査者が視認可能な最小の視標を 容易に選択できるようにするためと判定結果を相互チェックすることで 信頼性の高い判定結果が得られるからである。 従って、 被検査者が視認 可能な最小の視標を選択できる限り段階差が 1の視標を組合せたチヤ一 トを用いて度数を判定するようにしてもよい。 その場合、 度数をいくつ かに区分し、 各区分ごとに視標を組合せた複数のチヤ一トを用いて度数 を判定するようにしてもよい。 一方、 被検査者の視標の選択をさらに容 易にするため、 大きさの段階差をさらに大きくしてもよいが、 それだけ チャートの数が増えるので、 判定時間は長くなる。
視標に両側帯を設けたのは、 両側帯がないと擬似解像が生じたときに 3本線の外側にうつすらと黒線が見え、 これを本数としてカウントすべ きか否かの判断が難しいが、 ここに明るい両側帯を設けると擬似解像に よる直線とコントラス卜がついて判断しやすくなるからである。 また、 両側帯がないと、 視認可能な視標のサイズを超えて、 より小さな視標サ ィズを見たときにゆるやかにボケてゆくため、 視認限界の判断が難しい が、 両側帯を設けることで視標を小さくしたときに黒線と線間と両側帯 とが入り乱れてボケるため視認限界の判断が容易になるからである。 従 つて、 両側帯の色は線間の色と異なり、 線間の輝度より高いことが好ま しい。 また、 両側帯の幅は、 黒線の幅に対して 0 . 5倍から 2倍とする ことで上記効果が得られる。
視標の線間や両側帯の色は、 赤や青を使用すると色収差の影響を受け るので、 その他の色が好ましい。 線間の色は、 モノクロ ·緑色 ·黄色の いずれかが好ましく、 両側帯の色は、 モノクロまたは黄色が好ましい。 このようなことから、 ここでは線間は背景より少し明るい緑色とし、 両 側帯は線間と色が異なり、 輝度の高い黄色を用いた。
また、 第 1 0図から第 1 2図のチャートでは、 1 8 0度の方向に直線 を配置した視標を用いた場合を示しているが、 実際には被検査者の乱視 軸角度に基づいて選択された直交する 2方向について直線を配置した視 標を用いる。 従って、 遠視 ·近視判定チャートは、 第 8図に示すものの ほか、 9 0度と 4 5度や 1 3 5度の方向に直線を配置した視標を用いた ものが使用される。
この度数判定チャートにおいては、 2 3度、 6 8度、 1 1 3度、 1 6 8度の方向に直線を配置した視標は用いていない。 これは、 乱視軸角度 およびそれと直交する角度の度数は、 視標の方向が厳密に乱視軸角度と 一致していなくても誤差は小さく、 また 2 3度刻みの方向の直線は、 解 像度の高くないコンピュータ画面ではギザギザが生ずるため、 直線が視 認できているかどうかの判断が難しくなり、 かえって誤った判断をして しまう可能性があるからである。 このため、 乱視軸判定チャートで判定 された乱視軸角度に対して 4 5度刻みの最も近い角度およびそれと直交 する角度を選択して度数を判定するようにしている。 従って、 被検査者 端末に高解像度の表示手段が使用されている場合には、 決定された乱視 軸角度に対応した小さな角度刻みの視標を用いて度数を判定するように してもよいことはいうまでもない。 また、 被検査者の乱視 角度が 4 5 度刻みの視標 2 2 dの中間にある場合に、 その両側の角度の視標で度数 を判定し、 得られた度数を按分して乱視軸角度の度数を決定するように してもよい。
尚、 度数の判定には、 被検査者が手を伸ばして画面に触れる距離 (以 下、 「手の距離」 いう) で行う 「遠くの度数判定」 と、 画面と眼の間に A 4用紙を縦に置いた距離 (以下、 「A 4用紙の距離」 いう) でおこなう 「 近くの度数判定」 とがあり、 通常は 「遠くの度数判定」 のみを行い、 年 令が 4 0歳以上で遠視の被検査者と遠視 ·近視判定で保留になっている 被検査者については 「近くの度数判定」 を行って、 2つの結果を照合し て度数を決定する。
また、 度数を判定する視標 2 2 dとして、 矩形の枠内に一定の太さの 赤色の直線と青色の直線を平行に等間隔に配置した線群領域と、 赤色の 直線と同色の基準色領域とを設けたものを用いてもよい (第 1 3図)。 こ れは、 被検査者が線群領域を見たときに、 赤色の直線と青色の直線が視 力に対応する眼の分解能よりも大きなピッチで配列されている視標では 2色に分解して見ることができるが、 視力に対応する眼の分解能よりも 小さいピッチで配列されている視標では混色を起こしてピンクに見える ことを利用して度数を判定するものである。
この視標による度数の判定は、 第 1 3図に示すように、 度数に対応さ せて段階的に大きさを変えた視標を、 被検査者端末に小さいものから順 に表示し、 線群領域の赤色の線がピンクに見えている状態から、 基準色 領域と同じ赤色に見えた最初の視標を選択させることにより行うことが できる。
また、 度数に対応させて大きさを段階的に変えた視標を組合せたチヤ 一トを被検査者端末に表示し、 線群領域のなかに基準色領域の色と同じ 色の直線が見える最小の視標を選択させるようにしてもよい。 更に、 前 述の視標のように大きさの段階差が 3の視標を組合せた 3つのチヤ一ト を順次被検査者端末に表示し、 それぞれについて線群領域のなかに基準 色領域の色と同じ色の直線が見える最小の視標を選択させ、 各チャート について選択された視標から相互チェックによって視認可能な最小の視 標を判定して度数を決定するようにしてもよい。
この視標についても、 線群領域が 4 5度、 9 0度、 1 3 5度、 1 8 0 度の方向に向くように、 枠全体が傾けられた視標が用意されており、 被 検査者の乱視軸角度に基づいて選択された直交する 2方向について度数 の判定を行う。
上記実施形態では、 視標は矩形の枠内に表示するものとしたが、 必ず しも輪郭は矩形である必要はなく、 丸味を持たせたもの'でもよい。 例え ば、 第 1 4図に示すような、 魚の胴体が骨になった状態を摸した図形と してもよい。 これにより、 線群領域のことを被検査者が理解しやすい " 魚のあばら骨" と呼んだり、 基準色領域のことを "魚の中骨" と呼んだ りすることによって、 より親しみを つて検眼できる。 また、 基準色領 域の色は、 赤色の直線と同色としたが、 反対に青色の直線と同色として もよい。 また、 基準色領域を線群領域に接するように配置したが、 これ に限らず、 被検査者が視認したときに、 瞬時に基準色領域の色と線群領 域の一方の直線の色とが同じ色であると判断できるものである限りどの ような位置に配置されていてもよい。
尚、 被検査者端末に表示される視標の大きさや輝度は、 表示装置の種 類 (C RT, 液晶)、 サイズ ( 1 4インチ、 1 7インチなど)、 画面解像 度 (8 0 0 X 6 0 0 , 1 0 2 4 X 7 6 8など) によって変化することか ら、 すべての表示装置において所定の大きさや明るさで表示されるよう に、 大きさや輝度を変えた複数の視標データを記憶させている。 各視標 データは、 表示装置の条件に基づいて画像処理演算により生成するよう に構成してもよいことはいうまでもない。
C G I 1 8には、 検眼機能部 2 6が接続されている。
検眼機能部 2 6は、 眼球光学パラメ一夕決定手段 2 8、 眼球光学モデ ル決定手段 3 0を有し、 被検査者の検眼を行って概算度数を決定し、 眼 球光学モデルを構築して被検査者に適したメガネゃコン夕ク トレンズを 選定する機能を有する。
眼球光学パラメ一夕決定手段 2 8は、 上述した視標を用いて、 被検査 者の粗い見え方を判定する粗判定処理、 乱視軸角度を判定する乱視軸判 定処理、 乱視軸角度およびそれと直交する角度の遠視 ·近視を判定する 遠視 ·近視判定処理、 乱視軸角度およびそれと直交する角度の度数を判 定する度数判定処理を行う機能を有する。
眼球光学モデル決定手段 3 0は、 年齢区分と概算度数とからスタート 眼球光学モデルを選択するように構成されている。 スタート眼球光学モ デルとは、 縦軸に年齢区分、 横軸に度数区分を設け、 それぞれの区分の 中央値における眼球光学モデルをあらかじめ作成したものである。 この ため、 眼球光学モデル決定手段 3 0にはスタート眼球光学モデルデータ ベース (図示しない) を有し、 縦軸を年齢区分、 横軸を度数区分とし、 各区分の遠点側の調節限界での眼球光学モデルと、 年齢に応じた調節力 があると仮定した近点側の調節限界での眼球光学モデルとが記憶されて いる。 従って、 縦軸を M区分、 横軸を N区分とすると、 2 X M X N個の スタ一卜眼球光学モデルが登録されている。 尚、 眼球光学モデル決定手 段 3 0により決定される眼球光学モデルは、 第 1 5図に示すようなレン ズ系で人間の眼を模擬したものである。
被検査者端末 5 0は、 被検査者が検眼を受ける際に使用する端末であ り、 自宅や店舗等に設置され、 ネッ トヮ一ク 1 0 0を介して検眼サーバ 1 2と種々のデータを送受信する。 被検査者端末 5 0は、 キーポ一ド · マウス等の入力機器を備えたパソコン、 ワークステーション等のコンビ ユー夕が使用される。
被検査者端末 5 0には、 検眼サーバ 1 2にアクセスするための WWW ブラウザ (図示せず) が搭載されており、 U R L入力欄に検眼サーバ 1 2に割当てられている I Pァドレスや U R Lを入力することで WWWサ ーバ 1 6と接続され、 検眼サ一ビスを受けることができる。 WWWブラ ゥザは、 WWWサーバ 1 6から受信した視標の画像を画面に表示し、 被 検査者が入力した判定結果を WWWサーバ 1 6に送信する。
尚、 どこでも誰でも検眼を行えるようにするため、 ここではネッ トヮ ーク 1 0 0としてィンターネッ ト回線を使用したが、 双方向のデータ通 信が可能な回線であればどのようなものでもよく、 公衆回線網、 I S D N回線網、 携帯電話回線網、 専用回線などを使用してもよい。
以下、 被検査者が被検査者端末 5 0の WWWブラウザを用いて検眼サ —バ 1 2にアクセスしたときの検眼サーバ 1 2の動作について、 第 1 6 図から第 2 0図に示した処理フロー図を用いて説明する。
最初に、 検眼サーバ 1 2は、 被検査者端末の画面サイズおよび画面解 像度などの環境情報と、 被検査者の氏名、 年齢、 身長などの個人情報を 入力する入力フォームを被検査者端末に送信する (S 1 0 0 )。 これによ り、 被検査者端末の画面に入力フォームが表示され、 被検査者が入カフ オームにデータを入力して "送信" ポタンをクリックすることにより、 検眼サーバ 1 2は環境情報、 個人情報データを受信する (S 1 0 2 )。 次に、 検眼サーバ 1 2は、 S 1 0 4 〜 S 1 1 2の粗判定処理を行う。 最初に、 受信された環境情報、 個人情報に基づいて粗判定の視標条件 を決定する (S 1 0 4 )。 次に、 決定された視標条件に基づいて視標データ 2 2 aを選択して組 合せた粗判定チヤ一トを被検査者端末に送信する (S 1 0 6 )。 これによ り、 被検査者端末の画面には、 第 2図に示すような粗判定チャートが表 示される。 これに対し、 被検査者は表示された粗判定チャートを手の距 離で左右のいずれか片眼で視認して " 8 " と読める最小の視標をクリツ クする。 全ての視標が " 8 " と読めない場合は、 "どれも読めない" と表 示されている部分をクリックする。 これにより、 検眼サーバ 1 2は被検 查者の粗判定の選択結果を受信し (S 1 0 8 )、選択された視標の大きさ (見え方番号) から被検査者の粗い見え方を確定する (S 1 1 0 )。 以上の処理を左右両眼について行い (S 1 1 2 )、粗判定処理を終了す る。
次に、 検眼サーバ 1 2は、 S 2 0 0〜S 2 1 8の乱視軸判定処理を行 Ό。
最初に、 受信された環境情報、 個人情報および粗判定処理による見え 方番号に基づいて乱視軸判定の視標条件を決定する (S 2 0 0 )。
次に、 決定された視標条件に基づいて 4 5度、 9 0度、 1 3 5度、 1 8 0度の視標を組合せた第 1の乱視軸判定チヤ一トを被検査者端末に送 信する ( S 2 0 2 ) o これにより、 被検査者端末の画面には第 3図に示す ようなチャートが表示される。 これに対し、 被検查者は表示されたチヤ —トのいずれかの視標がはっきり見える距離まで近づき、 左右のいずれ か片眼で視認し、 いずれの視標が濃く見えるかを判定する。 1つの視標 が濃く見える場合は " 1つ濃く見える"と表示されている部分をクリッ クした後、 濃く見える視標をクリックする。 2つ以上濃く見える場合は 、 " 2つ以上濃く見える" と表示されている部分をクリックした後、 濃く 見える順に 2つの視標をクリックする。 全部が同じ濃さに見える場合は 、"全部同じに見える" と表示されている部分をクリックする。 これによ り、 検眼サーバ 1 2は被検査者の第 1の乱視軸判定の選択結果を受信す る (S 2 0 4 )。
次に、 決定された視標条件に基づいて 2 3度、 6 8度、 1 1 3度、 1 5 8度の視標を組合せた第 2の乱視軸判定チヤ一トを被検査者端末に送 信する (S 2 0 6 )。 これにより、 被検査者端末の画面には第 4図に示す ようなチャートが表示される。 これに対し、 被検査者は表示されたチヤ ―卜のいずれかの視標がはつきり見える距離まで近づき、 左右のいずれ か片眼で視認し、 前記と同様に、 いずれの視標が濃く見えるかを判定し てクリックする。 これにより、 検眼サーバ 1 2は被検査者の第 2の乱視 軸判定の選択結果を受信する (S 2 0 8 )。
次に、 第 1の乱視軸判定と第 2の乱視軸判定における選択結果から第 3の乱視軸判定を行うか否かを判定する (S 2 1 0 )。 ここでは、 第 1の 乱視軸判定と第 2の乱視軸判定のいずれにおいても "全部同じに見える " が選択されていない場合に、 第 3の乱視軸判定を行うこととした。 第 3の乱視軸判定を行う場合は、 第 1の乱視軸判定で選択された視標と第 2の乱視軸判定で選択された視標を組合せた第 3の乱視軸判定チヤ一ト を被検査者端末に送信する (S 2 1 2 )。 これにより、 被検査者端末の画 面には第 5図〜第 7図に示すようなチヤ一トが表示される。 このように 、 第 3の乱視軸判定チャートは、 選択された 2つの視標が表示されるも の、 選択された 3つの視標が表示されるもの、 選択された 4つの視標が 表示されるもののいずれかが適宜生成される。 これに対し、 被検査者は 表示されたチヤ一トのいずれかの視標がはつきり見える距離まで近づき 、 左右のいずれか片眼で視認し、 前記と同様に、 いずれの視標が濃く見 えるかを判定してクリックする。 これにより、 検眼サーバ 1 2は被検査 者の第 3の乱視軸判定の選択結果を受信する (S 2 1 4 )。
最後に、 各チヤ一卜での選択結果をもとに被検查者の乱視軸角度を決 定する (S 2 1 6 )。 その決定アルゴリズムは以下の通りである。
各乱視軸判定チヤ一トにおける視標選択の組合せは、 表 1に示すよう に 1 1のケースに分類される。 表 1
Figure imgf000050_0001
検眼サーバ 1 2は、 第 1の乱視軸判定チヤ一トで選択された視標の角 度と第 2の乱視軸判定チヤ一トで選択された視標の角度が大きく違う場 合は、 デ一夕の信頼性がないとしてエラ一とする。 エラーの対象となる のは表 1のケース番号 5, 6, 8 , 9の場合であり、 エラーの判定は式 1に示す条件を満たすか否かにより行う。 条件を満たす場合は、 エラー として処理され、 判定を中断するか、 再判定が行われる。
式 1 : 5 0 < | Al m - A2m | < 1 3 0
尚、 式 1において、 Almは第 1の乱視軸判定チヤ一卜で選択された視 標の角度の平均であり、 1つ選択の場合はその視標の角度である。 A2m は第 2の乱視軸判定チヤ一トで選択された視標の角度の平均であり、 1 つ選択の場合はその視標の角度である。
検眼サーバ 1 2は、 表 1の各ケースに対して以下のように処理し、 乱 視軸角度を決定する。
( 1 ) ケース番号 1 : 乱視なしとする。
( 2 ) ケース番号 2 :第 2の乱視軸判定チャートで選択された視標の角 度を乱視軸角度とする。
( 3 ) ケース番号 3 :第 2の乱視軸判定チャートで選択された 2つの視 標の角度の平均を乱視軸角度とする。
( 4 ) ケース番号 4 :第 1の乱視軸判定チャートで選択された視標の角 度を乱視軸角度とする
( 5 ) ケース番号 5 : 第 3の乱視軸判定チャートで選択された視標が 1 つの場合はその視標の角度を乱視軸角度とし、 "同じに見える"が選択さ れた場合は 2つの視標の角度の平均を乱視軸角度とする。
( 6 ) ケース番号 6 a :第 3の乱視軸判定チャートで選択された視標が 1つの場合はその視標の角度を乱視軸角度とする。 2つの場合は選択さ れた 2つの視標の角度の平均を乱視軸角度とする。 "同じに見える"が選 択された場合は選択判断に誤りがあつたとしてエラーとする。
( 7 ) ケース番号 6 b :第 1の乱視軸判定チャート 1で選択された視標 の角度が、 第 2の乱視軸判定チヤ一トで選択された 2つの視標の角度の 平均と等しい場合は、 第 1の乱視軸判定チャートで選択された視標の角 度を乱視軸角度.とする。
( 8 ) ケース番号 7 :第 1の乱視軸判定チャートで選択された 2つの視 標の角度の平均を乱視軸角度とする。
( 9 ) ケース番号 8 a :第 3の乱視軸判定チヤ一トで選択された視標が 1つの場合はその視標角度を乱視軸角度とする。 2つの場合は選択され た 2つの視標の角度の平均を乱視軸角度とする。 "同じに見える"が選択 された場合は選択判断に誤りがあつたとしてエラーとする。
( 10) ケース番号 8 b :第 2の乱視軸判定チャートで選択された視標の 角度が、 第 1の乱視軸判定チャートで選択された 2つの視標 φ角度の平 均と等しい場合は、 第 2の乱視軸判定チヤ一トで選択された視標の角度 を乱視軸角度とする
( 11) ケース番号 9 :第 3の乱視軸判定チャートで選択された視標が 1 つの場合はその視標角度を乱視軸角度とする。 2つの場合は選択された 2つの視標の角度の平均を乱視軸角度とする。 "同じに見える"が選択さ れた場合は乱視なしとする。
このような処理により、 用いた視標の角度の刻みの 2倍の分解能で乱 視軸角度を求めることができる。
以上の処理を左右両眼について行い(S 2 1 8 )、乱視軸判定処理を終 了する。
次に、 検眼サーバ 1 2は、 S 3 0 0〜S 3 2 4の遠視 ·近視判定処理 を行う。
最初に、 受信された環境情報と個人情報、 粗判定処理による見え方番 号および乱視軸判定処理により決定された乱視軸角度に基づいて遠視 · 近視判定の視標条件を決定する (S 3 0 0 )。
提示する視標のサイズと直線の幅と間隔は、 粗判定処理による見えか た番号によって、 表 2のように変更する。 このように、 見え方番号が大 きくなるに従って、 視標サイズを大きくするとともに、 黒線の線幅と線 間隔を大きくする。 尚、 近視が強いほど赤色が拡大して黒線が見にくく なるため、 見え方番号が大きくなるに従って黒線の線幅と線間隔の比を 大きくするようにしている。
(以下余白) 表 2
Figure imgf000053_0001
提示する視標の直線の角度は、 原則として乱視軸角度およびそれと直 交する角度であるが、 前述のように遠視 ·近視判定視標は 2 3度刻みの 中央の方向は設けていないので、 決定された乱視軸に対して最も近い 2 3度刻みの角度とそれと直交する角度の視標を用いる。
次に、 赤色と青色の双方の領域に乱視軸角度に基づいて選択された角 度に直線を配置した第 1の遠視 ·近視判定チヤ一トを被検査者端末に送 信する (S 3 0 2 )。 これにより、 被検査者端末の画面には第 8 図 ( a ) に示すようなチャートが表示される。 これに対し、 被検査者は表示さ れたチャートを手の距離で左右のいずれか片眼で視認し、 赤色と青色の いずれの領域の直線が明瞭に見えるかを判定し、 明瞭に見える領域をク リックするか、 "両方同じに見える" をクリックする。 これにより、 検眼 サーバ 1 2は被検査者の第 1の遠視 ·近視判定の選択結果を受信する ( S 3 0 4 )。
次に、 赤色と青色の双方の領域に乱視軸角度に基づいて選択された角 度と直交する角度に直線を配置した第 2の遠視 ·近視判定チヤ一トを被 検査者端末に送信する (S 3 0 6 )。 これにより、 被検査者端末の画面に は第 8図 (b ) に示すようなチャートが表示される。 これに対し、 被検 查者は表示されたチャートを手の距離で左右のいずれか片眼で視認し、 前記と同様に、 赤色と青色のいずれの領域の直線が明瞭に見えるかを判 定してクリックする。 これにより、 検眼サーバ 1 2は被検査者の第 2の 遠視 ·近視判定の選択結果を受信する (S 3 0 8 )。
以上の第 1の遠視 ·近視判定と第 2の遠視 ·近視判定の選択結果から 、 第 3の遠視 ·近視判定と第 4の遠視 ·近視判定を行うか否かを判定す る (S 3 1 0 )。 ここでは、 第 1 の遠視 ·近視判定と第 2 の遠視 ·近視 判定のいずれかで、 遠視と判定された場合に第 3の遠視 ·近視判定 ^第 4の遠視 ·近視判定を行うものとしている。
第 3の遠視 ·近視判定と第 4の遠視 ·近視判定を行う場合は、 赤色の 領域に乱視軸角度に基づいて選択された角度に直線を配置し、 青色の領 域にそれと直交する角度に直線を配置した第 3の遠視 ·近視判定チヤ一 トを被検査者端末に送信する (S 3 1 2 )。 これにより、 被検査者端末の 画面には第 8図 (c ) に示すようなチャートが表示される。 これに対し 、 被検査者は表示されたチャートを手の距離で左右のいずれか片眼で視 認し、 前記と同様に、 赤色と青色のいずれの領域の直線が明瞭に見える かを判定してクリックする。 これにより、 検眼サーバ 1 2は被検査者の 第 3 の遠視 ·近視判定の選択結果を受信する (S 3 1 4 )。 また、 青色 の領域に乱視軸角度に基づいて選択された角度に直線を配置し、 赤色の 領域に前記と直交する角度に直線を配置した第 4の遠視 ·近視判定チヤ 一トを被検査者端末に送信する (S 3 1 6 )。 これにより、 被検査者端末 の画面には第 8図 (d ) に示すようなチャートが表示される。 これに対 し、 被検査者は表示されたチャートを左右のいずれか片眼で視認し、 前 記と同様に、 赤色の領域と青色の領域のいずれの領域の直線が明瞭に見 えるかを判定してクリックする。 これにより、 検眼サーバは被検査者の 第 4の遠視 ·近視判定の選択結果を受信する (S 3 1 8 )。
次に、 4つの遠視 '近視判定チャートの選択結果をもとに、 被検查者 の眼が遠視か近視のいずれに該当するかの眼の分類分け (判定) を行う ( S 3 2 0 )。 以下に、 眼の分類分けの詳細について説明する。 4つの遠 W
53 視 · 近視判定チャートにおける選択を分類分けすると、 表 3に示すよう に 1 1のケースに分類される。 表 3
Figure imgf000055_0001
表 3において、 ケース番号 ( 1 ) は全ての視標について赤を選択した 場合であり、 乱視軸角度およびそれと直交する角度の双方が近視と決定 する。 また、 ケース番号 ( 6 )、 ( 7 ) は全て青または青と"同じに見える "のいずれかを選択した場合であり、 両軸とも遠視と決定する。 その他の ケース番号で "同じに見える" と赤と青が混合して選択された場合は、 選択結果により、 その場で両軸判定できるものと保留すべきものとに弁 別する。 保留の場合はその結果を保持しておき、 次に行う遠くの度数判 定の結果、 更には近くの度数判定の結果と合わせて総合的に判断し、 確 実なものは両軸を遠視または近視に判別し、 不確実なものは判定不能と する。
以上の処理を左右両眼について行い (S 3 2 2 )、 遠視 ·近視判定処理 を終了する。
次に、 検眼サーバ 1 2は、 S 4 0 0〜 S 4 4 0の度数判定処理を行う 。 度数判定は、 前述のように通常は手の距離で度数を判定する遠くの度 数判定処理のみを行い、 特定の場合に追加処理として A 4用紙の距離で 度数を判定する近くの度数判定処理を行って総合的に判定する。
'遠くの度数判定処理は、 最初に、 受信された環境情報と個人情報、 粗 判定処理による見え方番号および乱視軸判定処理により決定された乱視 軸角度に基づいて遠くの度数判定の視標条件を決定する (S 4 0 0 )。提 示する視標の角度は、 原則として決定された乱視軸角度およびそれと直 交する角度であるが、 前述のように度数判定視標は 45 度刻みでしか設 けていないので、 決定された乱視軸に対して最も近い 45 度刻みの角度 とそれと直交する角度の視標を用いる。 従って、 乱視なし、 直乱視、 倒 乱視の場合には 9 0度、 1 8 0度の視標にて判定を行い、 斜乱視の場合 は 4 5度、 1 3 5度の角度の視標にてチェックを行う。
尚、 被検査者の乱視軸角度およびそれと直交する角度と視標の角度が 1 5度以上離れているときは、 9 0度、 1 8 0度、 4 5度、 1 3 5度の 角度の視標にてすべて判定を行い、 その結果から按分により乱視軸角度 とそれと直交する角度の度数を求めるようにしてもよい。 これにより、 限定された方位の視標に用いて精度良く度数を求めることができる。 提示する視標の大きさは、 測定範囲の度数 (ディオプタ) X 4倍程度 が準備されているが、 その中から見え方番号により大きさの範囲を 9個 から 1 8個程度に限定し、 これを大きさの段階差を 3とした 3群に分け て使用する。 ' 次に、 3群の各視標を組合せた第 1の遠くの度数判定チャート、 第 2 の遠くの度数判定チャート、 第 3の遠くの度数判定チャートを順次被検 査者端末に送信する (S 4 0 2、 S 4 0 6、 S 4 1 0 )。 これにより、 被 検査者端末の画面にはそれぞれ第 10図、 第 11図、 第 12図のようなチ ヤー卜が表示される。 各チャートに対して、 被検査者は表示されたチヤ 一トを手の距離で左右のいずれか片眼で視認し、 直線が 3本に見える最 小の視標を選択してクリックする。 また、 どれも 3本に見えないときは "どれも 3本に見えない" をクリックする。 これにより、 検眼サーバ 1 2は被検査者の選択結果を受信する (S 4 0 4、 S 4 0 8、 S 4 1 2 ) 。 これを選択された角度およびそれと直交する角度について行い (S 4 1 4 )、 3つのチャートの選択結果を照合して、遠くの度数を決定する ( S 4 1 6 )。 以下に、 3つのチャートの選択結果から遠くの度数を決定す る処理について説明する。
まず、 3つのチャートにより選択された視標をサイズ順に並べ、 隣り 合う視標の段階差の最小値が 1となる組合せがあるか否かを判断する。 例えば、 第 1のチャートで 4番、 第 2のチャートで 5番、 第 3のチヤ一 トで 6番が選択された場合は、 隣り合う視標の段階差の最小値は 1とな る。 この場合には 3つのチャートに対して被検査者は明瞭に視認できて いる視標を誤りなく選択したものとして判断される。 そして、 被検査者 により明瞭に視認できた視標のうち最も小さい 4番を度数として決定す る。 尚、 3 つのチャートにより選択された視標同士の段階差の最小値が 1となる組合せでない場合は、 次のステップにより判定を行う。
次に、 3つのチャートにより選択された視標をサイズ順に並べ、 隣り 合う視標の段階差の最小値が 2となる組合せがあるかを判断する。 例え ば、 第 1のチャートに対して 4番、 第 2のチャートに対して 8番、 第 3 のチヤ一トに対して 6番が選択された場合は、 3つのチャートにより選 択された視標をサイズ順に並べたとき、 隣り合う視標の段階差の最小値 は 2となる。 このような選択結果であるときは、 3つのチャートにより 選択された視標のいずれかが誤って入力された可能性があると判断され る。 この場合には選択された視標のうちサイズの小さい 2つの遠視標の 平均値 (この場合には 5番) を被検査者が明瞭に視認できた最小の視標 と判定し、 度数を決定する。
次に、 遠視 ·近視判定処理において分類分けが保留になっていたもの について、 被検査者の年齢と遠くの度数判定で算出された視標とに基づ いて、 眼の分類の見直しを行う。 尚、 ここで判断できない場合は、 後に 行われる 近くの度数判定により判断できそうなものは保留し、残りは判 定不能としてエラーとするか、 再計測を行う。
以上の処理を左右両眼について行い (S 4 1 8 )、遠くの度数判定処理 を終了する。
次に、 検眼サーバ 1 2は、 追加処理である "近くの度数判定" を行う 必要性があるか否かを判断する (S 4 1 9 )。追加処理が必要性である対 象者は、 眼の分類分けが保留の人全員と、 年齢が 4 0歳以上で遠視の人 全員である。 これは、 遠視や老視の人の中には手の長さの距離が近点距 離よりも長く、 調節力の範囲内にある人もいるために遠くの度数判定だ けでは度数を判定できない場合があるからである。
近くの度数判定処理を行う場合は、 乱視軸判定処理により決定された 乱視軸角度、 遠くの度数判定による視標の番号および年齢に基づいて近 くの度数判定の視標条件を決定する (S 4 2 0 )。
提示する視標の角度は、 直乱視、 倒乱視の場合は 9 0度と 1 8 0度の 両方またはどちらかの視標にて判定を行う。 また、 斜乱視の場合は、 ( 1 ) 4 5度と 1 3 5度の片方、 ( 2 ) 4 5度と 1 3 5度の両方、 ( 3 ) 4
5度と 1 3 5度の片方と 9 0度と 1 8 0度の片方、 (4 ) 4 5度と 1 3 5 度の両方と 9 0度と 1 8 0度の両方のいずれかにより判定を行う。 この 場合、 眼の分類分けが保留の人は、 上記 ( 2) または (4) で判定を行 い、 決定している人は上記 ( 1) ( 3) で判定を行う。
提示する視標の大きさは、 遠くの度数判定と同様に、 全体の中から見 え方番号により大きさの範囲を 9個から 1 8個程度に限定し、 これを大 きさの段階差を 3とした 3群に分けて使用する。
次に、 3群の各視標を組合せた第 1の近くの度数判定チャート、 第 2 の近くの度数判定チャート、 第 3の近くの度数判定チャートを順次被検 查者端末に送信する (S 4 2 2、 S 42 6、 S 4 3 0 )。 被検査者は、 表 示されたそれぞれのチヤ一トを A4用紙の距離から左右のいずれか片眼 で視認し、 直線が 3本に見える最小の視標を選択してクリックする。 ま た、 どれも 3本に見えないときは "どれも 3本に見えない" をクリック する。 これにより、 検眼サーバ 1 2は被検査者の選択結果を受信する ( S 424 , S 4 2 8、 S 4 3 2)。 これを選択された角度およびそれと直 交する角度について行い (S 434)、 3つのチャートの選択結果を遠く の度数判定と同様の手順で照合して、 近くの度数を決定する (S 4 3 6 )。近くの度数を決定する処理は、前述の遠くの度数を決定する処理と同 様にして行う。 このとき、 遠視 '近視判定処理で分類分けが保留になつ ていたものについて、 被検査者の年齢と遠くの度数判定で算出された度 数と近くの度数判定で算出された度数とに基づいて眼の分類の見直しを 次のような手順により行う。
( 1 ) 乱視軸角度およびそれと直交する角度における遠くの度数判定結 果と近くの度数判定結果の差を求める。
SA 1 =F 1 -N 1
SA 2 =F 2 -N 2
ここで、 F 1は乱視軸角度の遠くの度数判定視標、 N 1は乱視軸角度 の近くの度数判定視標、 F 2は乱視軸角度と直交する角度の遠くの度数 判定視標、 N 2は乱視軸角度と直交する角度の近くの度数判定視標であ る。
( 2) 近視の確定
遠くの度数判定視標と近くの視標判定視標との視標番号差があって、 遠くの度数判定より近くの度数判定の方がよく見えるのが近視であるの で、 S A 1≥ 0、 S A 2≥ 0で、 かつ S A+ S A 2≥ 6のとき、 両軸と も近視と判定する。
( 3) 遠視の確定
遠くの度数判定視標と近くの視標判定視標との視標番号差があって、 近くの度数判定より遠くの度数判定の方がよく見えるのが遠視であるの で、 S A 1≤ 0、 S A 2≤ 0で、 かつ S A 1 + S A 2≤— 4のとき、 両 軸とも遠視と判定する。
(4) 乱視成分 Cの補正処理
乱視軸相互間の遠くの度数判定と近くの度数判定の差を求める。
C F=F 2 -N 1
C N = N 2 - F 1
ここで、 C F XCN> 0で、 かつ C F<CNのとき、 両者の平均とも つて乱視度数とする。
C = (C F + CN) / 2
尚、 以上の処理で判断できない場合は、 判定不能としてエラーとする 力 再計測を行う。
最後に、 これまでの判定結果を相互比較して、 整合性をチェックする (S 44 0 )0 チェック方法としては、 例えば、 粗判定処理との整合性、 遠視 · 近視判定処理の結果と度数判定処理の結果の整合性について検定 する。 チェックの結果、 データが不整合である場合には、 エラーとして 処理を中止す'る。
以上の処理により、 被検査者の乱視軸角度並びに乱視軸角度およびそ れと直交する角度の度数が得られる。
本実施形態では、 上記検眼結果をもとに更に被検査者の眼を模擬した 眼球光学モデルを生成し、 被検査者の眼にあったレンズ度数を決定する 機能を有する。
このため、 被検査者の年令と概算度数に基づいてスタート眼球モデル を選定し (S 5 0 0 )、 調節中点における集光性能を評価し、 最良の集光 状態となるように光学系自動設計処理を行って、 調節中点における眼球 光学モデルを構築する (S 5 0 1 )。
次に、 調節限界 (近点側) におけるモデルの妥当性をチェックし (S 5 0 2 )、集光状態が不良の場合は S 5 0 1に戻る。 この妥当性チェック は、 人の眼球が有している調節力の分だけ眼球屈折度をアップ (UP) させ、 光学系自動設計計算により、 集光状態が良いことを確認するもの である。 ここにおいて、 調節力分だけ眼球屈折度をアップ (UP) とは 、 次のようなことをいう。
遠点距離が 1 m (_ 1. 0 D)、 近点距離が 2 5 c m (— 4. 0 D) と すると、 調節中点位置は 40 c m (一 2. 5 D) となり、 近点側では、 調節中点位置にくらべ、 一 1. 5 Dの補正量に相当する眼球屈折度 UP が必要となる。 この一 1. 5 D相当の眼球屈折度の増強となるように眼 球光学モデルの光学諸元を ( l + oi X bZa) 倍し、 光学系自動設計の 境界条件を制御しながら、 近点距離 2 5 c mの位置にある無限に小さい 点物体から、 眼球光学モデルの瞳径 (たとえば φ 3mm) に対し、 複数 の光線を入射高さを変えて入光させ、 光線追跡を行い、 網膜上の一点に 結像する状態にするよう、 光学諸元を変化させて光学系自動設計を実行 する。 その結果、 一点に集光したと見なせる状態になれば調節限界にお ける光学モデルのシミュレーションが成功したとし、 調節中点における その人の眼球光学モデルが妥当であつたと判断する。
次に、 調節限界 (遠点側) におけるモデルの妥当性をチェックし (S 5 04)、集光状態が不良の場合は S 5 0 1に戻る。 この妥当性チェック は、 人の眼球が有している調節力の分だけ眼球屈折度をダウン (DOW N) させ、 光学系自動設計計算により、 集光状態が良いことを確認する ものである。 ここにおいて、 調節力分だけ眼球屈折度をダウン (DOW N) とは、 次のようなことをいう。
遠点距離が l m (— 1. 0 D)、 近点距離が 2 5 c m (- 4. 0 D) と すると、 調節中点位置は 4 O cm (- 2. 5 D) となり、 遠点側では、 調節中点位置にく らべ、 + 1. 5 Dの補正量に相当する眼球屈折度ダウ ン (DOWN) が必要となる。 この + 1. 5 D相当の眼球屈折度の減少 となるように眼球光学モデルの光学諸元を ( 1一 a Xb/a) 倍し、 光 学系自動設計の境界条件を制御しながら、 遠点距離 1 mの位置にある無 限に小さい点物体から、 眼球光学モデルの瞳径 (たとえば φ 3mm) に 対し、 複数の光線を入射高さを変えて入光させ、 光線追跡を行い、 網膜 上の一点に結像する状態にするよう、 光学諸元を変化させて光学系自動 設計を実行する。 その結果、 一点に集光したと見なせる状態になれば調 節限界における光学モデルのシミュレーションが成功したとし、 調節中 点におけるその人の眼球光学モデルが妥当であつたと判断する。
更に、 近点側および遠点側の調節範囲外、 すなわち眼球の調節範囲外 におけるモデルの妥当性をチエツクし (S 5 04)、不整合の場合は S 5 0 1に戻る。
そして、 眼球の光学諸元の調節範囲の確定を行って眼球光学モデルを 決定する (S 5 0 8 )。 調節中点位置における眼球光学モデル、 光学諸元 の調節範囲の確定は、 次の通りである。 調節限界 (近点側) における眼球光学モデルの妥当性をチェックする 処理および調節限界 (遠点側) における眼球光学モデルの妥当性をチェ ックする処理のチエツクにより調節中点におけるその人の眼球光学モデ ル構築処理結果の調節中点位置における眼球光学モデルは妥当と判断さ れ、 調節限界における光学諸元の変化範囲 (特に水晶体が薄くなつたり 、 厚くなつたりする時の水晶体厚さ、 前面曲率半径、 後面曲率半径の変 化範囲) は、 調節限界 (近点側) における眼球光学モデルの妥当性をチ エックする処理および調節限界 (遠点側) における眼球光学モデルの妥 当性をチェックする処理により決定される。
これらが確定すると、 物体距離に応じた眼の調節機能をシミュレーシ ヨンすることができる。
次に、 被検査者の裸眼状態における 3つの距離における調節を伴う集 光性能を算出し検証する (S 5 1 0 )。 調節限界 (近点側) における眼球 光学モデルの妥当性をチェックする処理および調節限界 (遠点側) にお ける眼球光学モデルの妥当性をチェックする処理と同様に、 物体の距離 に応じた、 調節中点位置からの眼球屈折度アップ (U P ) あるいはダウ ン (D O W N ) させる量を求め、 光学系自動設計の境界条件を制御しな がら、 光学系自動設計を実行する。 このようにして求められた光学諸元 は、 仮想的に眼球がピント調節を行ったときの眼の状態を表している。 これ以上に集光状態が良くならないという状態まで繰り返し計算を行い 、 最終的な光学諸元を物体距離におけるべストの集光状態とする。
集光性能を評価するには、 ある距離にある無限に小さい点物体から、 眼球光学モデルの瞳径 (たとえば Ψ 3 mm) に対して数百本程度の光線 を均一に分散させて入光させ、 光線追跡を行って網膜上のどの場所に結 像するかを計算する。 ぼけの度合いを評価するには、 網膜上の点像の強 度分布の 2次元フーリエ変換を行うことにより、 空間周波数特性 (〇T F ) を算出し像評価を行う。
3つの距離とは、 メガネ装用の実用的な距離範囲から、 見え方が大き く変わる可能性のある 3距離を選ぶ。 たとえば、 0 . 3 m (近距離)、 0 . 5〜 0 . 6 m (中間距離)、 5 m (遠距離) である。
物体距離が遠点より遠い場合は、 これ以上水晶体を薄くすることがで きないとして、 遠点距離における調節力で集光性能チェックする。 物体 距離が近点より近い塲合は、 これ以上水晶体を厚くすることができない として、 近点距離における調節力で集光性能チェックする。 物体距離が 近点と遠点の間にある場合は、 中点からの調節力だけ眼球屈折度を変化 させて集光性能チヱックする。
次に、 眼鏡 ' コンタク トレンズにおいて矯正した後の 3つの距離にお ける調節を伴う集光性能を算出し検証する (S 5 1 2 )。 すなわち、 眼球 光学モデルの前に実際の眼鏡レンズ (レンズ前面の曲率半径、 後面の曲 率半径、 硝子材屈折率が既知のレンズ) を置き、 裸眼状態における集光 性能算出処理と同様の計算を行う。 概算レンズ度数と装用条件から、 適 合する仮想レンズを決定し、 その眼鏡 · コンタク トレンズを装用した状 態における集光性能に関する光学シミュレーションを行う。
3つの距離における鮮鋭度スコアのバランスが悪い場合は、 レンズの 度数を少し変化させて、 再度光学シミュレーションを行う (S 5 1 4 ) 。
次に、 調節力の範囲内で眼の光学諸元を変化させて、 集光性能が最適 となる状態を作り出し、 そのときの鮮鋭度スコアを算出する。
鮮鋭度スコアは集光状態の評価により算出する。 ある距離にある無限 に小さい点物体から、 眼球光学モデルの瞳径 (たとえば φ 3 mm) に対 して数百本程度の光線を均一に分散させて入光させ、 光線追跡を行って 網膜上のどの場所に結像するかを計算する。 その点像の強度分布の 2次 元フーリエ変換して得た値を空間周波数特性 (O T F と言う。 網膜上 で強度分布がどうなるかを調べれば、 ぼけの度合いを評価できる。 空間 周波数とは縞模様の細かさを表す値であり、 単位長あたりの縞の本数で 定義される。 視覚系の場合は、 視角 1度あたりの縞の本数で表す。 たと えば縞の間隔を w ( degree) とすれば u = l Z w ( cycles/deg) となる ぼけ判定に用いる w値を網膜の分解能から決定し、 その時の u値から 鮮鋭度スコアを算出する。
次に、 おすすめレンズを確定し (S 5 1 6 )、 おすすめレシズによる矯 正前および矯正後の 3つの距離における視認映像を生成して表示する ( S 5 1 8 ) o これには、 高精細に撮影された 3つの距離の画像を用意し、 この画像に対し画素単位で N X Nサイズの平滑化フィルタ処理を行い、 画像をぼかす。 ぼけの具合は N値 (最低 3 )、 フィル夕重み付け、 処理回 数により調整できる。 フィル夕処理後の画像について、 空間周波数解析 によりボケ具合を判定し、 前記鮮鋭度スコアとの対応付けを行う。
いくつかの鮮鋭度スコアに対応する画像を準備するか、 または準備さ れた画像に特定平滑化フィルタ処理を一回かけた画像に対応するスコア 値を算出しておく。 鮮鋭度スコアの算出でスコア値が求まれば、 そのス コア値により、 対応する画像を直接呼び出して表示するか、 フィル夕処 理を行い、 結果画像をその鮮鋭度スコアに一致させて表示する。
さらに、 レンズを変更して 3距離における視認映像を生成して表示す るようにしてもよい。 すなわち、 レンズ度数を変更して眼鏡 . コンタク トレンズを装用した状態の光学シミュレーシヨンを行い、 眼球の調節範 囲内で光学諸元を変化させて、 集光性能が最適となる状態を作り出し、 そのときの鮮鋭度スコアも用いて視認映像を生成する。
以上のようなシステムにより、 利用者は自己の端末をネッ トワークを 介して検眼システムに接続することで、 自覚的に検眼を行うことができ 、 自分の眼にあったメガネゃレンズを簡便に選定できる。
上述の実施形態においては、 被検査者は WWWブラウザを用いて検眼 サーバと接続して検眼を行うように構成したが、 これに限らず、 上述し た視標を含むアプリケーションを利用者端末にダウンロードして実行す るように構成されてもよい。 尚、 前述した視標を含むアプリケーション は、 検眼サーバからダウンロードさせるだけでなく、 C D— R O M等の 頒布可能な記録媒体により提供されてもよい。
また、 この実施形態においては、 乱視軸を判定するためにそれぞれ 4 5度、 9 0度、 1 3 5度、 1 8 0度の方向に直線を向けた視標を含む第 1 の乱視軸判定チヤ一卜と、 前の 4つ方向を等分する方向である 2 3度 、 6 8度、 1 1 3度、 1 5 8度の方向に直線向けた視標を含む第 2の乱 視軸判定チヤ一トを用いて、 約 2 3度毎刻みの視標で被検査者に濃淡を 判断させたが、 本発明はこれに限定されるものではなく、 さらに細かい 刻みで乱視軸を判定したい場合には、 第 1の乱視軸判定チャートで判定 した 4つの方向を 3等分する方向のいずれかに向けられた 4つの視標を 組合せた第 2の乱視軸判定チヤ一トと、 第 1の乱視軸判定チャートで判 定した 4つの方向を 3等分する方向のいずれかに向けられた視標で第 2 の乱視軸判定チヤ一トに含まれていなかった 4つの視標を含む第 3の乱 視軸判定チャートとを用いて、 1 5度刻みの視標で被検査者に濃淡を判 断させるようにしてもよい。 尚、 各乱視軸判定チャートには、 被検査者 が視標の濃淡を容易に判断できるように、 視標の直線がお互い直交する 関係にある 4つの視標が組み合わされ、 1つの乱視軸判定チヤ一トに含 まれるように構成する。 また、 第 1、 第 2および第 3の乱視軸判定チヤ —トにより、 乱視軸角度が求められない場合には、 第 1、 第 2および第 3の乱視軸判定チヤ一トそれぞれについて被検査者が選択した視標を組 合せて第 4の乱視軸判定チャートを表示し、 選択させてもよい。 尚、 第 1、 第 2および第 3の乱視軸判定チヤ一トにおいて 2つずつ選択できる ようにした場合、 最高 6つの視標が選択される場合があるが、 第 4の乱 視軸判定チャートを表示する場合には、 その中から角度の近い視標を 4 つ選択して乱視軸判定チャートを作成する。 これにより、 1 5度刻みの 視標の 2倍の分解能で乱視軸角度が決まり、 乱視軸角度の判定が更に精 度良く行える。
この実施形態においては、 被検査者に適した大きさの視標を決定する ために、 最初に粗い見え方を判定する粗判定処理を行ったが、 粗判定を 行う順番はこれに限らず、 視標の大きさを決定する必要のある処理の前 に適宜行えばよい。 さらに、 乱視軸判定処理や遠視 ·近視判定処理にお いて被検査者に直線が確認できる距離まで画面に近づいてもらい、 度数 判定処理において全範囲の大きさの視標を表示するようにした場合には 、 必ずしも粗判定処理は行われなくてもよい。
上述の実施形態においては、 乱視軸判定処理、 遠視,近視判定処理、 度数判定処理を一連の手順として実施するようにしたが、 ここで使用さ れる乱視軸判定処理、 遠視 · 近視判定処理、 度数判定判定処理はそれぞ れ単独に使用するようにしてもよく、 上述したようにそれぞれ特有の効 果を有している。
産業上の利用可能性
この発明によれば、 被検査者の主観や判定環境の影響を受けることな く、 乱視軸角度の決定、 近視 '遠視の判定および近視度数 .遠視度数 . 乱視度数の決定が行え、 幅広い度数範囲に対応できる検眼方法を提供す ることができる。

Claims

請 求 の 範 囲
1 . 表示手段に表示した視標を被検査者に左右片眼づっ視認させ、 被 検査者が視認した結果を取得することにより自覚的に検眼を行う検眼装 置であって、
乱視軸角度を判定する視標を表示し、 被検査者が視認した結果を取得 することにより乱視軸角度を判定する乱視軸角度判定手段と、
前記判定された乱視軸角度に基づいて選択された直交する 2方向につ いて遠視 ·近視を判定する視標を表示し、 被検査者の視認結果を取得す ることにより前記判定された乱視軸角度およびそれと直交する角度の遠 視 ·近視を判定する遠視 ·近視判定手段と、
前記判定された乱視軸角度に基づいて選択された直交する 2方向につ いて度数を判定する視標を表示し、 被検査者の視認結果を取得すること により前記判定された乱視軸角度およびそれと直交する角度の度数を判 定する度数判定手段とを有することを特徴とする、 検眼装置。
2 . 前記乱視軸角度判定手段は、 略 4 5度 ·略 9 0度 ·略 1 3 5度 · 略 1 8 0度の 4方向に多数の直線を平行に配列した 4つの視標を含む乱 視軸判定チャートを表示する手段と、 前記表示された乱視軸判定チヤ一 トについて被検査者に濃く見える視標を選択させる手段と、 前記乱視軸 判定チヤ一トについて選択された視標に基づいて乱視軸角度を決定する 手段とを有することを特徴とする、 請求項 1に記載の検眼装置。
3 . 前記乱視軸角度判定手段は、 略 4 5度,略 9 0度 ·略 1 3 5度 · 略 1 8 0度の 4方向に多数の直線を平行に配列した 4つの視標を含む第 1の乱視軸判定チヤ一トを表示する手段と、 前記表示された第 1の乱視 軸判定チャートについて被検査者に濃く見える視標を選択させる手段と 、 前記 4方向の略中間の 4方向に多数の直線を平行に配列した 4つの視 標を含む第 2の乱視軸判定チヤ一トを表示する手段と、 前記表示された 第 2の乱視軸判定チャートについて被検査者に濃く見える視標を選択さ せる手段と、 前記第 1の乱視軸判定チヤ一卜について選択された視標と 前記第 2の乱視軸判定チヤ一トについて選択された視標とに基づいて乱 視軸角度を決定する手段とを有することを特徴とする、 請求項 1に記載 の検眼装置。
4 . 前記乱視軸角度判定手段は、 略 4 5度 ·略 9 0度 · 略 1 3 5度 ' 略 1 8 0度の 4方向に多数の直線を平行に配冽した 4つの視標を含む第 1の乱視軸判定チャートを表示する手段と、 前記表示された第 1の乱視 軸判定チャートについて被検査者に濃く見える視標を選択させる手段と 、 前記 4方向の略中間の 4方向に多数の直線を平行に配列した 4つの視 標を含む第 2の乱視軸判定チャートを表示する手段と、 前記表示された 第 2の乱視軸判定チャートについて被検査者に濃く見える視標を選択さ せる手段と、 前記第 1の乱視軸判定チャートについて被検査者が選択し た視標と前記第 2の乱視軸判定チヤ一トについて被検査者が選択した視 標を含む第 3の乱視軸判定チヤ一トを表示する手段と、 前記表示された 第 3の乱視軸判定チャートについて被検査者に濃く見える視標を選択さ せる手段と、 前記第 1の乱視軸判定チャートについて選択された視標と 前記第 2の乱視軸判定チャートについて選択された視標と前記第 3の乱 視軸判定チヤ一トについて選択された視標とに基づいて乱視軸角度を決 定する手段とを有することを特徴とする、 請求項 1に記載の検眼装置。
5 . 前記遠視 · 近視判定手段は、 背景が赤系統色の領域と背景が青系 統色の領域の'双方に前記選択された直交する 2方向のうちの一方向に黒 系統色の直線を配置した第 1の遠視 ·近視判定チャートを表示する手段 と、 前記表示された第 1の遠視 '近視判定チャートについて被検査者に いずれの領域の直線が明瞭に見えるかを選択させる手段と、 背景が赤系 統色の領域と背景が青系統色の領域の双方に前記選択された直交する 2 方向のうちの他方向に黒系統色の直線を配置した第 2の遠視 ·近視判定 チヤ一トを表示する手段と、 前記表示された第 2の遠視 ·近視判定チヤ 一トについて被検査者にいずれの領域の直線が明瞭に見えるかを選択さ せる手段と、 前記第 1の遠視 ·近視判定チヤ一卜について選択された結 果と前記第 2の遠視 · 近視判定チヤ一トについて選択された結果,とに基 づいて前記判定された乱視軸角度およびそれと直交する角度の遠視 ·近 視を判定する手段とを有することを特徴とする、 請求項 1ないし請求項 4のいずれかに記載の検眼装置。
6 . 前記遠視 ·近視判定手段は、 背景が赤系統色の領域と背景が青系 統色の領域の双方に前記選択された直交する 2方向のうちの一方向に黒 系統色の直線を配置した第 1の遠視 ·近視判定チヤ一トを表示する手段 と、 前記表示された第 1の遠視 ·近視判定チヤ一トについて被検査者に いずれの領域の直線が明瞭に見えるかを選択させる手段と、 背景が赤系 統色の領域と背景が青系統色の領域の双方に前記選択された直交する 2 方向のうちの他方向に黒系統色の直線を配置した第 2の遠視 ·近視判定 チヤ一トを表示する手段と、 前記表示された第 2の遠視 ·近視判定チヤ 一トについて被検査者にいずれの領域の直線が明瞭に見えるかを選択さ せる手段と、 背景が赤系統色の領域に前記選択された直交する 2方向の うちの前記一方向に黒系統色の直線を配置し、 背景が青系統色の領域に 前記選択された直交する 2方向のうちの前記他方向に黒系統色の直線を 配置した第 3の遠視 ·近視判定チャートを表示する手段と、 前記表示さ れた第 3の遠視 ·近視判定チヤ一トについて被検查者にいずれの領域の 直線が明瞭に見えるかを選択させる手段と、 背景が赤系統色の領域に前 記選択された直交する 2方向のうちの前記他方向に黒系統色の直線を配 置し、 背景が青系統色の領域に前記選択された直交する 2方向のうちの 前記一方向に黒系統色の直線を配置した第 4の遠視 ·近視判定チヤ一ト を表示する手段と、 前記表示された第 4の遠視,近視判定チャートにつ いて被検査者にいずれの領域の直線が明瞭に見えるかを選択させる手段 と、 前記第 1の遠視 ·近視判定チヤ一トについて選択された結果と前記 第 2の遠視 ·近視判定チャートについて選択された結果と前記第 3の遠 視 ·近視判定チヤ一トについて選択された結果と前記第 4の遠視 ·近視 判定チヤ一トについて選択された結果とに基づいて前記判定された乱視 軸角度およびそれと直交する角度の遠視 ·近視を判定する手段とを有す ることを特徴とする、 請求項 1ないし請求項 4のいずれかに記載の検眼 装置。
7 . 前記遠視,近視判定手段は、 前記遠視,近視判定チャートの青系 統色の領域の輝度を赤系統色の領域の輝度よりも低くしたことを特徴と する、 請求項 5または請求項 6に記載の検眼装置。
8 . 前記遠視 ·近視判定手段は、 前記各遠視 ·近視判定チャートの表 示時間を制限したことを特徴とする、 請求項 5ないし請求項 7のいずれ かに記載の検眼装置。
9 . 前記度数判定手段は、 前記選択された直交する 2方向について、 一定数の直線を平行に配列した視標を段階的に大きさを変化させた度数 判定チヤ一トを表示する手段と、 前記表示された度数判定チャートにつ いて被検査者に視認可能な最小の視標を選択させる手段と、 前記度数判 定チャートについて選択された視標に基づいて前記判定された乱視軸角 度およびそれと直交する角度の度数を判定する手段とを有することを特 徴とする、 請求項 1ないし請求項 8のいずれかに記載の検眼装置。
1 0 . 前記度数判定手段は、 前記選択された直交する 2方向について 、 一定数の直線を平行に配列した大きさの段階差が 2以上の視標を組合 せた複数の度数判定チヤ一トを順次表示する手段と、 前記表示された各 度数判定チヤ一トについて被検査者に視認可能な最小の視標を選択させ る手段と、 前記各度数判定チヤ一トについて選択された視標に基づいて 前記判定された乱視軸角度およびそれと直交する角度の度数を判定する 手段とを有することを特徴とする、 請求項 1ないし請求項 8のいずれか に記載の検眼装置。
1 1 . 前記度数判定チャートは、 前記配列される一定数の直線の幅方 向の両外端に、 前記直線の幅に対して 0 . 5〜2 . 0倍の幅を有し、 前 記直線に対してコントラストを有する両側帯を設けたことを特徴とする 、 請求項 9または請求項 1 0に記載の検眼装置。
1 2 . 前記度数判定チャートは、 前記両側帯の色と前記直線の間の色 を異なるものとし、 前記両側帯の輝度を前記直線の間の輝度以上とした ことを特徴とする、 請求項 1 1に記載の検眼装置。
1 3 . 前記度数判定チャートは、 前記直線を黒系統色とし、 前記直線 の間を緑系統色とし、 前記両側帯を黄系統色としたことを特徴とする、 請求項 1 1に記載の検眼装置。
1 4 . 前記度数判定手段は、 被検査者に表示手段から遠い距離で視標 を視認させて視認可能な最小の視標を選択させる遠くの度数判定手段と 、 被検査者に表示手段に近い距離で視標を視認させて視認可能な最小の 視標を選択させる近くの度数判定手段と、 前記遠くの度数判定手段にお いて選択された視標と前記近くの度数判定手段において選択された視標 とに基づいて前記判定された乱視軸角度およびそれと直交する角度の度 数を判定する手段とを有することを特徴とする、 請求項 8ないし請求項 1 3のいずれかに記載の検眼装置。
1 5 . 前記近くの度数判定手段は、 前記遠視 ·近視判定手段において 判定が保留であった被検査者と、 所定年令以上であって前記遠視 .近視 判定手段において遠視と判定された被検査者について行うようにしたこ とを特徴とする、 請求項 1 4に記載の検眼装置。
1 6 . 前記度数判定手段は、 前記選択された直交する 2方向について 、 均一な太さの赤系統色の直線と青系統色の直線とを交互に配列した線 群領域と前記線群領域のいずれかの直線と同一色の基準色領域とを有す る視標を段階的に大きさを変化させた度数判定チャートを表示する手段 と、 前記表示された度数判定チャートについて被検査者に前記線群領域 のなかに前記基準色領域と同一色の直線があると視認された最小の視標 を選択させる手段と、 前記度数判定チャートについて選択された視標に 基づいて前記判定された乱視軸角度およびそれと直交する角度の度数を 判定する手段とを有することを特徴とする、 請求項 1ないし請求項 8の いずれかに記載の検眼装置。
1 7 . 前記度数判定手段は、 前記選択された直交する 2方向について 、 均一な太さの赤系統色の直線と青系統色の直線とを交互に配列した線 群領域と前記線群領域のいずれかの直線と同一色の基準色領域とを有す る大きさの段階差が 2以上の視標を組合せた複数の度数判定チャートを 順次表示する手段と、 前記表示された各度数判定チャートについて被検 査者に前記線群領域のなかに前記基準色領域と同一色の直線があると視 認された最小の視標を選択させる手段と、 前記各度数判定チヤ一トにつ いて選択された視標に基づいて前記判定された乱視軸角度およびそれと 直交する角度の度数を判定する手段とを有することを特徴とする、 請求 項 1ないし請求項 8のいずれかに記載の検眼装置。
1 8 . 指向性を有しない図形からなる視標を段階的に大きさを変化さ せた粗判定チャートを表示する手段と、 前記表示された粗判定チヤ一ト について被検査者に視認可能な最小の視標を選択させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備え、
前記乱視軸判定手段は、 前記判定された粗い見え方に基づいて前記表 示される乱視軸判定チヤ一卜の各視標の大きさを調節する手段を有する 'ことを特徴とする、 請求項 2ないし請求項 4のいずれかに記載の検眼装 置。
1 9 . 指向性を有しない図形からなる視標を段階的に大きさを変化さ せた粗判定チャートを表示する手段と、 前記表示された粗判定チャート について被検査者に視認可能な最小の視標を選択させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備え、
前記遠視 ·近視判定手段は、 前記判定された粗い見え方に基づいて前 記表示される遠視 ·近視判定チヤ一卜に配列する直線の幅と間隔を調節 する手段を有することを特徴とする、 請求項 5ないし請求項 8のいずれ かに記載の検眼装置。
2 0 . 指向性を有しない図形からなる視標を段階的に大きさを変化さ せた粗判定チャートを表示する手段と、 前記表示された粗判定チャート について被検査者に視認可能な最小の視標を選択させる手段とを有し、 被検査者の粗い見え方を判定する粗判定手段を備え、
前記度数判定手段は、 前記判定された粗い見え方に基づいて前記表示 される度数判定チャートの視標の大きさの範囲を限定する手段を有する ことを特徴とする、 請求項 8ないし請求項 1 6のいずれかに記載の検眼 装置。
2 1 . 前記乱視軸角度判定手段と前記遠視 ·近視判定手段と前記度数 判定手段の少なくともいずれかにおいて、 被検査者の眼に外光が入らな いように遮蔽して視標を視認させるようにしたことを特徴とする、 請求 項 1ないし請求項 2 0のいずれかに記載の検眼装置。
2 2 . 前記度数判定手段により判定された度数に基づいてスタート眼 球モデルを選定し、 被検査者の任意の調節点におけるモデルの妥当性を 検証して眼球光学モデルを決定する眼球光学モデル決定手段と、 前記眼 球光学モデルを用いて被検査者がメガネ · コンタクトレンズを装用した ときの集光性能を検証し、 レンズ度数を決定するレンズ度数決定手段と を備えたことを特徴とする、 請求項 1から請求項 2 1のいずれかに記載 の検眼装置。
2 3 . 表示手段に表示した視標を被検査者に左右片眼づっ視認させ、 被検査者が視認した結果を取得することにより自覚的に検眼を行う検眼 方法であって、
乱視軸を判定する視標を表示し、 被検査者が視認した結果を取得する ことにより乱視軸角度を判定するステツプと、
前記判定された乱視軸角度に基づいて選択された直交する 2方向につ いて遠視 · 近視を判定する視標を表示し、 被検査者が視認した結果を取 得することにより前記判定された乱視軸角度およびそれと直交する角度 の遠視 ·近視を判定するステップと、
前記判定された乱視軸角度に基づいて選択された直交する 2方向につ いて度数を判定する視標を表示し、 被検査者が視認した結果を取得する ことにより前記判定された乱視軸角度およびそれと直交する角度の度数 を判定するステップとを有することを特徴とする、 検眼方法。
2 4 . 前記乱視軸角度を判定するステップは、 略 4 5度 · 略 9 0度 · 略 1 3 5度 ' 略 1 8 0度の 4方向に多数の直線を平行に配列した 4つの 視標を含む第 1の乱視軸判定チャートを表示するステップと、 前記表示 された第 1の乱視軸判定チャートについて被検査者に濃く見える視標を 選択させるステツプと、 前記 4方向の略中間の 4方向に多数の直線を平 行に配列した 4つの視標を含む第 2の乱視軸判定チヤ一卜を表示するス テツプと、 前記表示された第 2の乱視軸判定チヤ一トについて被検査者 に濃く見える視標を選択させるステップと、 前記第 1の乱視軸判定チヤ 一トについて被検査者が選択した視標と前記第 2の乱視軸判定チヤ一ト について被検査者が選択した視標を含む第 3の乱視軸判定チヤ一トを表 示するステップと、 前記表示された第 3の乱視軸判定チヤ一トについて 被検査者に濃く見える視標を選択させるステップと、 前記第 1の乱視軸 判定チヤ一トについて選択された視標と前記第 2の乱視軸判定チャート について選択された視標と前記第 3の乱視軸判定チャートについて選択 された視標とに基づいて乱視軸角度を決定するステツプとを有すること を特徴とする、 請求項 2 3に記載の検眼方法。
2 5 . 前記遠視 ·近視を判定するステップは、 背景が赤系統色の領域 と背景が青系統色の領域の双方に前記選択された直交する 2方向のうち の一方向に黒系統色の直線を配置した第 1の遠視 ·近視判定チヤ一トを 表示するステップと、 前記表示された第 1の遠視 ·近視判定チヤ一トに ついて被検査者にいずれの領域の直線が明瞭に見えるかを選択させるス テツプと、 背景が赤系統色の領域と背景が青系統色の領域の双方に前記 選択された直交する 2方向のうちの他方向に黒系統色の直線を配置した 第 2の遠視 ·近視判定チャートを表示するステップと、 前記表示された 第 2の遠視 ·近視判定チヤ一トについて被検査者にいずれの領域の直線 が明瞭に見えるかを選択させるステツプと、 背景が赤系統色の領域に前 記選択された直交する 2方向のうちの前記一方向に黒系統色の直線を配 置し、 背景が青系統色の領域に前記選択された直交する 2方向のうちの 前記他方向に黒系統色の直線を配置した第 3の遠視 ·近視判定チヤ一ト を表示するステツプと、 前記表示された第 3の遠視 ·近視判定チヤ一ト について被検査者にいずれの領域の直線が明瞭に見えるかを選択させる ステップと、 背景が赤系統色の領域に前記選択された直交する 2方向の うちの前記他方向に黒系統色の直線を配置し、 背景が青系統色の領域に 前記選択された直交する 2方向のうちの前記一方向に黒系統色の直線を 配置した第 4の遠視 ·近視判定チャートを表示するステップと、 前記表 示された第 4の遠視 ·近視判定チャートについて被検査者にいずれの領 域の直線が明瞭に見えるかを選択させるステップと、 前記第 1の遠視 · 近視判定チヤ一卜について選択された結果と前記第 2の遠視 ·近視判定 チャートについて選択された結果と前記第 3の遠視 ·近視判定チヤ一ト について選択された結果と前記第 4の遠視 ·近視判定チヤ一卜について 選択された結果とに基づいて前記判定された乱視軸角度およびそれと直 交する角度の遠視 ·近視を判定するステップとを有することを特徴とす る、 請求項 2 3または請求項 2 4に記載の検眼方法。
2 6 . 前記度数を判定するステップは、 前記選択された直交する 2方 向について、 一定数の直線を平行に配列した大きさの段階差が 2以上の 視標を組合せた複数の度数判定チヤ一トを順次表示するステップと、 前 記表示された各度数判定チャートについて被検査者に視認可能な最小の 視標を選択させるステップと、 前記各度数判定チヤ一卜について選択さ れた視標に基づいて前記判定された乱視軸角度およびそれと直交する角 度の度数を判定するステップとを有することを特徴とする、 請求項 2 3 ないし請求項 2 5のいずれかに記載の検眼方法。
2 7 . 前記度数を判定するステップは、 被検査者に表示手段から遠い 距離で視標を視認させて視認可能な最小の視標を選択させる遠くの度数 を判定するステツプと、 被検査者に表示手段に近い距離で視標を視認さ せて視認可能な最小の視標を選択させる近くの度数を判定するステツプ と、 前記遠くの度数を判定するステップにおいて選択された視標と前記 近くの度数を判定するステツプにおいて選択された視標とに基づいて前 記判定された乱視軸角度およびそれと直交する角度の度数を判定するス テツプとを有することを特徴とする、 請求項 2 3ないし請求項 2 6のい ずれかに記載の検眼方法。
2 8 . 前記度数を判定するステップは、 前記選択された直交する 2方 向について、 均一な太さの赤系統色の直線と青系統色の直線とを交互に 配列した線群領域と前記線群領域のいずれかの直線と同一色の基準色領 域とを有する視標を段階的に大きさを変化させた度数判定チヤ一トを表 示するステップと、 前記表示された度数判定チヤ一トについて被検査者 に前記線群領域のなかに前記基準色領域と同一色の直線があると視認さ れた最小の視標を選択させるステップと、 前記度数判定チャートについ て選択された視標に基づいて前記判定された乱視軸角度およびそれと直 交する角度の度数を判定するステツプとを有することを特徴とする、 請 求項 2 3ないし請求項 2 5のいずれかに記載の検眼方法。
2 9 . 前記度数を判定するステップは、 前記選択された直交する 2方 向について、 均一な太さの赤系統色の直線と青系統色の直線とを交互に 配列した線群領域と前記線群領域のいずれかの直線と同一色の基準色領 域とを有する大きさの段階差が 2以上の視標を組合せた複数の度数判定 チヤ一トを順次表示するステップと、 前記表示された各度数判定チヤ一 トについて被検査者に前記線群領域のなかに前記基準色領域と同一色の 直線があると視認された最小の視標を選択させるステップと、 前記各度 数判定チャートについて選択された視標に基づいて前記判定された乱視 軸角度およびそれと直交する角度の度数を判定するステツプとを有する ことを特徴とする、 請求項 2 3ないし請求項 2 5のいずれかに記載の検 眼装置。
3 0 . 指向性を有しない図形からなる視標を段階的に大きさを変化さ せた粗判定チャートを表示するステップと、 前記表示された粗判定チヤ 一トについて被検査者に視認可能な最小の視標を選択させるステツプと を有し、 被検査者の粗い見え方を判定するステツプを備え、
前記乱視軸角度を判定するステツプおよび Zまたは前記遠視 ·近視を 判定するステツプおよび Zまたは前記度数を判定するステツプは、 前記 判定された粗い見え方に基づいて前記表示される視標の条件を変化させ るステップを有することを特徴とする、 請求項 2 3ないし請求項 2 9の いずれかに記載の検眼方法。
PCT/JP2003/010733 2002-10-21 2003-08-26 検眼装置および検眼方法 WO2004034893A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/531,958 US7429109B2 (en) 2002-10-21 2003-08-26 Optometric apparatus and lens power determination method
JP2004544905A JP4148947B2 (ja) 2002-10-21 2003-08-26 検眼装置およびレンズ度数決定方法
AU2003257702A AU2003257702A1 (en) 2002-10-21 2003-08-26 Optometric device and optometric method
TW092126202A TWI253921B (en) 2002-10-21 2003-09-23 Optometry apparatus and optometry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002306419 2002-10-21
JP2002/306419 2002-10-21

Publications (1)

Publication Number Publication Date
WO2004034893A1 true WO2004034893A1 (ja) 2004-04-29

Family

ID=32105210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010733 WO2004034893A1 (ja) 2002-10-21 2003-08-26 検眼装置および検眼方法

Country Status (5)

Country Link
US (1) US7429109B2 (ja)
JP (1) JP4148947B2 (ja)
AU (1) AU2003257702A1 (ja)
TW (1) TWI253921B (ja)
WO (1) WO2004034893A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508006A (ja) * 2004-07-28 2008-03-21 ノバルティス アクチエンゲゼルシャフト 自動化視覚スクリーニング装置及び方法
JP2011204383A (ja) * 2010-03-24 2011-10-13 Toyo Univ 照明装置
JP2014150847A (ja) * 2013-02-05 2014-08-25 Kinki Univ 視力判定用装置、車両用表示制御装置及びプログラム
JP2015043967A (ja) * 2013-08-27 2015-03-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 低円柱乱視矯正の効果を実証するための手段及び方法
JP2019058619A (ja) * 2017-09-28 2019-04-18 株式会社トプコン 眼科装置
JP2019062936A (ja) * 2017-09-28 2019-04-25 株式会社トプコン 眼科装置
WO2020090811A1 (ja) * 2018-10-31 2020-05-07 株式会社ニデック 自覚式検眼装置
JP2022017222A (ja) * 2013-03-12 2022-01-25 オプターネイティヴ インコーポレイテッド 人の矯正レンズ処方を決定するためのシステム及び装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802883B2 (en) 2007-12-20 2010-09-28 Johnson & Johnson Vision Care, Inc. Cosmetic contact lenses having a sparkle effect
EP2243419B1 (de) * 2009-04-24 2012-08-15 Ignaz Alois Stuetz Integrale und differentiale visuelle Objekte zur Erhebung und Optimierung des Sehvermögens
US8083353B2 (en) * 2009-08-17 2011-12-27 Allan N Hytowitz Animated image vision test
WO2013094030A1 (ja) * 2011-12-20 2013-06-27 株式会社メニコン セルフ検眼装置、管理サーバ及びコンタクトレンズ選定システム
US10244936B2 (en) 2012-07-25 2019-04-02 Johnson & Johnson Vision Care, Inc. Method and apparatus for engaging and providing vision correction options to patients from a remote location
SK288614B6 (sk) * 2014-10-28 2018-11-05 Prvá Optická, S.R.O. Obrazec na duochromatický monokulárny test astigmatika so známym uhlom cylindra astigmatika
US9595126B2 (en) 2014-12-15 2017-03-14 Konan Medical Usa, Inc. Visual function targeting using randomized, dynamic, contrasting features
US9532709B2 (en) 2015-06-05 2017-01-03 Jand, Inc. System and method for determining distances from an object
US9770165B2 (en) 2015-08-13 2017-09-26 Jand, Inc. Systems and methods for displaying objects on a screen at a desired visual angle
EP3295863B1 (en) 2016-09-15 2023-04-19 Essilor International Measurement method for determining a value of a visual correction need for near vision of an individual in a natural posture for near vision
FR3059436B1 (fr) * 2016-11-28 2019-01-25 Laure PICHEREAU-BASLE Procede et dispositif de bilan intermediaire d’une optique
US10413172B2 (en) 2017-12-11 2019-09-17 1-800 Contacts, Inc. Digital visual acuity eye examination for remote physician assessment
TWI658811B (zh) * 2018-06-15 2019-05-11 長庚大學 Visual state detection method
NL2021310B1 (en) * 2018-07-16 2020-01-24 Easee Health B V A method for performing an astigmatism power test using a computing device having a screen for displaying images relating to said astigmatism power test, as well as a corresponding computing device.
WO2020039426A1 (en) * 2018-08-20 2020-02-27 Bar-Ilan University Computerized behavioral method for eye-glasses prescription
US20220304572A1 (en) * 2019-06-07 2022-09-29 SPEQS Limited Eye test
WO2021164864A1 (en) * 2020-02-19 2021-08-26 Ieye Ab Vision screening
DE102022209490A1 (de) * 2022-09-12 2024-03-14 Rodenstock Gmbh Verfahren, Verwenden von angepassten Sehzeichen und Vorrichtung zum Bestimmen von Sehschärfecharakteristika eines Probanden

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618212B2 (ja) * 1973-04-28 1981-04-27
JPH07299034A (ja) * 1994-04-30 1995-11-14 Canon Inc 自覚屈折測定装置
JPH11290273A (ja) * 1998-04-07 1999-10-26 Canon Inc 検眼装置
JP2000041943A (ja) * 1998-07-31 2000-02-15 Canon Inc 検眼装置
JP2000107129A (ja) * 1998-10-09 2000-04-18 Hoya Corp 眼光学系のシミュレーション方法及び装置
JP2001286442A (ja) * 2000-04-07 2001-10-16 Vision Megane:Kk 遠隔視力測定システムおよびその方法
JP2002083156A (ja) * 2000-06-23 2002-03-22 Vision Megane:Kk 無人メガネ情報処理装置およびその方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618212A (en) * 1979-07-24 1981-02-20 Iwatani & Co Heat treatment of work by utilization of incineration waste gas in incinerator and high-temperature gas generator therefor
US5675399A (en) * 1994-04-30 1997-10-07 Canon Kabushiki Kaisha Ophthalmic apparatus
US5929972A (en) * 1998-01-14 1999-07-27 Quo Vadis, Inc. Communication apparatus and method for performing vision testing on deaf and severely hearing-impaired individuals
US6742895B2 (en) * 2000-07-06 2004-06-01 Alan L. Robin Internet-based glaucoma diagnostic system
TWI289437B (en) * 2002-01-04 2007-11-11 Vision Optic Co Ltd Optometry apparatus, optometry method, optometry server and computer readable recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618212B2 (ja) * 1973-04-28 1981-04-27
JPH07299034A (ja) * 1994-04-30 1995-11-14 Canon Inc 自覚屈折測定装置
JPH11290273A (ja) * 1998-04-07 1999-10-26 Canon Inc 検眼装置
JP2000041943A (ja) * 1998-07-31 2000-02-15 Canon Inc 検眼装置
JP2000107129A (ja) * 1998-10-09 2000-04-18 Hoya Corp 眼光学系のシミュレーション方法及び装置
JP2001286442A (ja) * 2000-04-07 2001-10-16 Vision Megane:Kk 遠隔視力測定システムおよびその方法
JP2002083156A (ja) * 2000-06-23 2002-03-22 Vision Megane:Kk 無人メガネ情報処理装置およびその方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508006A (ja) * 2004-07-28 2008-03-21 ノバルティス アクチエンゲゼルシャフト 自動化視覚スクリーニング装置及び方法
JP2011204383A (ja) * 2010-03-24 2011-10-13 Toyo Univ 照明装置
JP2014150847A (ja) * 2013-02-05 2014-08-25 Kinki Univ 視力判定用装置、車両用表示制御装置及びプログラム
JP2022017222A (ja) * 2013-03-12 2022-01-25 オプターネイティヴ インコーポレイテッド 人の矯正レンズ処方を決定するためのシステム及び装置
JP7420438B2 (ja) 2013-03-12 2024-01-23 オプターネイティヴ インコーポレイテッド 人の矯正レンズ処方を決定するための方法及びシステム
US11666211B2 (en) 2013-03-12 2023-06-06 Visibly, Inc. Computerized testing and determination of a visual field of a patient
JP2015043967A (ja) * 2013-08-27 2015-03-12 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 低円柱乱視矯正の効果を実証するための手段及び方法
JP2022002768A (ja) * 2017-09-28 2022-01-11 株式会社トプコン 眼科装置
JP2019062936A (ja) * 2017-09-28 2019-04-25 株式会社トプコン 眼科装置
JP2019058619A (ja) * 2017-09-28 2019-04-18 株式会社トプコン 眼科装置
JPWO2020090811A1 (ja) * 2018-10-31 2021-09-16 株式会社ニデック 自覚式検眼装置
WO2020090811A1 (ja) * 2018-10-31 2020-05-07 株式会社ニデック 自覚式検眼装置
JP7468351B2 (ja) 2018-10-31 2024-04-16 株式会社ニデック 自覚式検眼装置

Also Published As

Publication number Publication date
AU2003257702A1 (en) 2004-05-04
JP4148947B2 (ja) 2008-09-10
TWI253921B (en) 2006-05-01
US20060152675A1 (en) 2006-07-13
JPWO2004034893A1 (ja) 2006-02-09
TW200422023A (en) 2004-11-01
US7429109B2 (en) 2008-09-30

Similar Documents

Publication Publication Date Title
WO2004034893A1 (ja) 検眼装置および検眼方法
US10898071B2 (en) System and method for measurement of refractive error of an eye based on subjective distance metering
US7267439B2 (en) Optometric apparatus, optometric method, and optometric server
JP4057531B2 (ja) 眼鏡・コンタクトレンズ選定システムおよびその方法
CN101547631B (zh) 开眼镜处方的方法
US7374285B2 (en) Eyeglass/contact lens power determining system, and its method
CN111712179B (zh) 用于改变受试者的视觉性能的方法、用于测量受试者的球镜屈光矫正需要的方法以及用于实现这些方法的光学系统
CN115040069A (zh) 一种订购眼镜的系统
US20040105073A1 (en) Vision testing system
US11428953B2 (en) Method for designing spectacle lens, method for manufacturing spectacle lens, spectacle lens order sending device, spectacle lens order receiving device, spectacle lens order sending/receiving system, progressive power lens, and single focus lens
JP2013511060A (ja) 設計を計算するまたは選択することによって眼科用メガネレンズを提供するための方法
CN113993442A (zh) 眼睛屈光不正的确定
CN116634920A (zh) 主观屈光检查系统
Anderson et al. Impact of pupil diameter on objective refraction determination and predicted visual acuity
JP3728279B2 (ja) 検眼システムおよび検眼プログラム
Goyal et al. Estimation of spherical refractive errors using virtual reality headset
CN115666366B (zh) 用于评估受试者的视力的系统
Perches et al. Development of a subjective refraction simulator
EP4364642A1 (en) Computer-implemented methods and devices for determining refractive errors
JP2023149724A (ja) 屈折度数決定方法
García Clinical Validation of a Fast Binocular Subjective Refraction Algorithm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004544905

Country of ref document: JP

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: 2006152675

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531958

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10531958

Country of ref document: US