WO2004033895A1 - Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung - Google Patents

Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2004033895A1
WO2004033895A1 PCT/DE2003/002919 DE0302919W WO2004033895A1 WO 2004033895 A1 WO2004033895 A1 WO 2004033895A1 DE 0302919 W DE0302919 W DE 0302919W WO 2004033895 A1 WO2004033895 A1 WO 2004033895A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
corrosion
inhibiting
injection valve
friction
Prior art date
Application number
PCT/DE2003/002919
Other languages
English (en)
French (fr)
Inventor
Frank Miller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2004542165A priority Critical patent/JP2006502352A/ja
Priority to US10/530,316 priority patent/US7506826B2/en
Priority to EP03750313A priority patent/EP1588046A1/de
Publication of WO2004033895A1 publication Critical patent/WO2004033895A1/de
Priority to US12/369,902 priority patent/US20090144982A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/30Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages
    • B05B1/3013Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the controlling element being a lift valve
    • B05B1/302Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to control volume of flow, e.g. with adjustable passages the controlling element being a lift valve with a ball-shaped valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/04O-ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making

Definitions

  • the invention relates to an injection valve according to the preamble of claim 1 and claim 9 and to a method for producing an injection valve according to the preamble of claim 11.
  • the membrane forming the electrolyte must be in the Operation must be kept moist at all times. If the moisture drops below a certain value, the ion conductivity of the membrane drops. In order to keep the moisture of the membrane of the fuel cell at a certain optimal level, deionized water is often metered into the gas stream supplied.
  • PEM-FC Proton Exchange Membrane Fuel Cell
  • a device for humidifying the gas stream which admixes water to the gas stream via a simple nozzle protruding into the gas stream.
  • water should be metered into the gas stream as precisely as possible over a wide metering range, largely independently of the water pump pressure, and should be adjustable, cost-effective and reliable using several parameters. It is therefore advantageous to use, for example, fuel injectors for metering in water, which are already known from reciprocating piston machines with internal combustion.
  • Such a valve is e.g. B. from the publication DE 196 265 76 AI known.
  • a related application is the exact metering of an aqueous urea / water solution to reduce the nitrogen oxides in the exhaust system of diesel vehicles for exhaust gas aftertreatment or in the case of generally non-lubricatable media.
  • Petrol own lubricating properties and do not inhibit chemical corrosion or promote chemical corrosion, especially on metallic surfaces, itself.
  • Water on the other hand, has no own lubricating properties and favors chemical corrosion on metallic surfaces, especially on ferrous metal surfaces. Such iron-containing metallic surfaces frequently come into contact with the liquid to be injected in the named fuel injection valve.
  • the known fuel injector is designed for use in higher temperature ranges, for example above 100 ° C.
  • metallic materials were used in the valve sealing seat, which have good thermal resistance.
  • thermally resistant material e.g. ferrous metal
  • thermally resistant metals increase the forces that occur in the valve opening and closing processes in the sealing seat or in the force-transmitting components.
  • the injection valve according to the invention with the characterizing features of claim 1 has various advantages.
  • the surfaces that come into contact with water and are provided with a corrosion-inhibiting or friction-reducing layer are effectively and long-lasting protected against chemical or mechanical corrosion, in particular through chemical corrosion and frictional wear.
  • the corrosion-inhibiting and / or friction-reducing layer consists of several layers or layers.
  • the properties of several coating materials can be combined.
  • a waterproof underlayer that adheres well to metal can be combined with a friction-reducing top layer.
  • the injection valve has a swirl-generating device, the water can be injected into the gas stream with swirl. This leads to a better distribution of the injected water in the gas stream.
  • the joint connections coming into contact with water, in particular the weld seams, with the corrosion-inhibiting or friction-reducing layer coated also leads to an increased service life and reliability of the injection valve.
  • the coating of the guide and sliding surfaces of the fuel injector, which come into contact with water, also leads to a particularly long service life and reliability.
  • the corrosion-inhibiting or friction-reducing layer By applying the corrosion-inhibiting or friction-reducing layer by means of a galvanic, physical or chemical process, different properties of the coating material and the surface to be coated can be addressed. Likewise, by selecting the material forming the corrosion-inhibiting or friction-reducing layer, different properties of the material to be coated or the intended properties of the coated surface can be dealt with.
  • the elastic sealing ring relieves the forces in the sealing seat or the components that are operatively connected to it. This leads to increased durability and reliability of the injection valve. It is particularly advantageous to use a sealing ring that is at least partially made of an elastomer.
  • the inventive method with the features of claim 11 has the advantage that it can be used to produce an injection valve with which the aforementioned advantages can be achieved in a simple and therefore inexpensive manner.
  • the aftertreatment in the form of a centrifugation of the joined components ensures a special complete coating, since in this way in particular the material forming the coating penetrates into the smallest spaces, for example the welded connection. Due to the thermal treatment, the corrosion-inhibiting or friction-reducing layer is bonded particularly well and permanently to the respective surface.
  • FIG. 1 shows a schematic section through an exemplary embodiment of an injection valve according to the invention
  • FIG. 2 shows a schematic partial section of another exemplary embodiment of an injection valve according to the invention in the region of the valve seat body, similar to the exemplary embodiment of FIG. 1, but with an elastic sealing ring in the valve closing body,
  • Fig. 3 is a schematic partial section through a valve closing body and a valve needle with the cannula and positioned 4 shows a schematic partial section of a further exemplary embodiment in the area of the valve needle, the valve closing body and the armature.
  • An injection valve 1 shown in FIG. 1 is used in particular for injecting water into the gas stream of a fuel cell, not shown.
  • the injection valve 1 comprises a core 2, which is surrounded by a magnet coil 4 and serves as an inlet connection piece, which for example is tubular here and has a constant outer diameter over its entire length; it can also be designed in a stepped manner.
  • a tubular metallic intermediate part 12 is tightly connected, for example by welding, concentrically to a longitudinal valve axis 10 and thereby partially surrounds the core end 9 axially.
  • the stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially.
  • a tubular nozzle body 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12.
  • a longitudinal bore 17 runs in the nozzle body 16 and is formed concentrically with the longitudinal axis 10 of the valve.
  • a tubular valve needle 19 is arranged, which is spherical at its downstream end Valve closing body 21, on the circumference of which, for example, 5 flattenings 22 are provided, is connected by at least one third weld seam 31 shown in FIG. 3.
  • the injection valve 1 is actuated in a known manner, in this exemplary embodiment electromagnetically.
  • the electromagnetic circuit with the magnet coil 4 the core 2 and an armature 27 is used.
  • the hollow cylindrical armature 27 comprises the upstream end of the valve needle 19 and is non-positively connected to it by a first weld 28.
  • a cylindrical valve seat body 29 which has a valve seat surface 20, is tightly mounted in the longitudinal bore 17 by a second weld seam 30.
  • the valve closing body 21 interacts with the valve seat surface 20 formed on the valve seat body 29 to form a sealing seat.
  • a guide opening 11 of the valve seat body 29 is used to guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the valve longitudinal axis 10.
  • the nozzle body 16 On its end face facing away from the valve closing body 21, the nozzle body 16 is concentric and fixed with a, for example, cup-shaped injection orifice plate 8 fourth weld 34 connected.
  • the spray plate 8 has at least one, but here four spray openings 7 for spraying water or deionized water into a gas stream of a fuel cell, not shown.
  • the weld seams 28, 30, 31, 34 are coated with a corrosion-inhibiting and / or friction-reducing layer.
  • the insertion depth of the valve seat body 29 with the cup-shaped spray perforated disk 8 determines the presetting of the stroke of the valve needle 19.
  • the one end position of the valve needle 19 when the magnet coil 1 is not energized is determined by the contact of the valve closing body 21, while the other end position of the valve needle 19 when the magnet coil 4 is energized results from the contact of the armature 27 at the core end 9.
  • the injection valve 1 is largely enclosed by a plastic encapsulation 23, which extends from the core 2 in the axial direction via the magnet coil 4 to the nozzle body 16.
  • this plastic encapsulation 23 includes a molded connector plug 26.
  • a filter 18 protrudes into the upstream end of the flow bore 6 of the core 2 and provides for the filtering out of components which can lead to malfunctions or damage in the injection valve 1.
  • At least a part of the surfaces of the injection valve 1 coming into contact with water in particular the inner surfaces of the longitudinal bore 17, the guide bore 11 and the flow bore 6, as well as the surfaces of the adjusting sleeve 5, the valve needle 19, the valve seat surface 20 and the valve closing body 21 are with a corrosion-inhibiting and / or friction-reducing layer 33 (in Fig. 3) coated.
  • FIG. 2 shows a schematic partial section of a further exemplary embodiment according to the invention in the area of the Valve closing body 21.
  • the valve closing body 21 with the flats 22 lies sealingly on the valve seat surface 20 of the valve seat body 29 via an elastic sealing ring 14, which lies in a groove 13 partially recessed in a ring in the lower spray-side area of the valve closing body 21.
  • the valve seat surface 20 and / or the valve closing body 21 can be provided with a corrosion-inhibiting or, in particular, for damping forces that occur when the valve is actuated and thus for a long-lasting seal. wear-reducing layer (33 in Fig. 3) are coated.
  • FIG. 3 shows a cannula 24 belonging to a metering device (not shown further).
  • the cannula 24 is chamfered at its end facing the valve closing body 21.
  • the metering device is delivered to the components joined and positioned by the third weld seam 31.
  • the material of the corrosion-inhibiting and / or friction-reducing layer 33 would be added in the interior of the valve needle 19 and the valve closing body 21, the cannula 24 or the components being able to be rotated about its longitudinal axis in the process for better distribution of the material.
  • the layer 33 is applied from the outside.
  • valve needle 19 is made of a corrosion-resistant material such as stainless steel.
  • the valve needle 19 can also be coated with the layer 33.
  • the corrosion-inhibiting and / or friction-reducing layer 33 is applied, for example, by a galvanic process.
  • other physical or chemical methods in particular a physical vapor deposition method or a chemical vapor deposition method, are also suitable, for example, for applying the layer 33.
  • the corrosion-inhibiting and / or friction-reducing layer 33 consists of a lubricating lacquer Teflon-based, made from sulfur-based materials, in particular molybdenum sulfite MoS 2 made from carbon, from xylan, from titanium nitride TiN and / or from carbon mixtures, in particular PTEE.
  • the layer 33, with which the valve needle 19 and the valve closing body 21 are protected, are centrifuged in the manufacturing process, for example after the application of the substances forming the layer 33, the valve needle 19 and the valve closing body 21 having already been joined and the valve needle 19 lying inside during centrifugation and the valve closing body 21 is on the outside.
  • a very uniform layer 33 can be produced in this way.
  • the invention is not limited to the illustrated embodiment and e.g. Can be used for any type of injection valve 1, in particular also for outward opening injection valves or for injection valves with piezoelectric, magnetostrictive or electrostrictive actuator. It is particularly suitable only for the injection of water, especially aggressive deionized water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Ein Einspritzventil (1) zum Einspritzen von Wasser, insbesondere in den Gasstrom von Brennstoffzellen, weist eine Ventilnadel (19) mit einem an ihrem abspritzseitigen Ende gefügten Ventilschliesskörper (21) auf, der mit einer Ventilsitzfläche (20), die an einem Ventilsitzkörper (29) ausgebildet ist, zu einem Dichtsitz zusammenwirkt. Stromabwärts des Dichtsitzes ist eine Abspritzöffnung (7) vorgesehen, wobei zumindest ein Teil der Flächen des Einspritzventils (1), welche mit Wasser in Berührung kommen, mit einer korrosionshemmenden und/oder reibungsmindernden Schicht (33) beschichtet sind.

Description

EINSPRITZVENTIL MIT KORROSIONSHEMMENDER, VERSCHLEISSFESTER BESCHICHTUNG UND VERFAHREN ZU DESSEN HERSTELLUNG
Stand der Technik
Die Erfindung geht aus von einem Einspritzventil nach der Gattung des Anspruchs 1, des Anspruchs 9 und von einem Verfahren zur Herstellung eines Einspritzventils nach der Gattung des Anspruchs 11.
Bei Brennstoffzellen, wie sie für den Einsatz in Fahrzeugen üblich sind, insbesondere bei Brennstoffzellen mit einer protonenleitenden Polymermembran, auch bekannt unter dem Englischen Begriff Proton Exchange Membran Fuel Cell (PEM- FC) oder Polymer Electrolyte Fuel Cell, muß die den Elektrolyten bildende Membran im Betrieb ständig feucht gehalten werden. Sinkt die Feuchtigkeit unter einen bestimmten Wert, so sinkt die Ionenleitfähigkeit der Membran. Um die Feuchtigkeit der Membran der Brennstoffzelle auf einem bestimmten optimalen Niveau zu halten, wird oft dem zugeführten Gasstrom deionisiertes Wasser zudosier .
In der Druckschrift DE 199 53 803 AI ist eine Vorrichtung zur Befeuchtung des Gasstroms offenbart, welche über eine in den Gasstrom ragende einfache Düse Wasser dem Gasstr-om beimengt . Die Zudosierung von Wasser in den Gasstro sollte, in Abhängigkeit des Gasstroms jedoch möglichst genau, über einen weiten Dosierbereich, weitgehend unabhängig vom Wasserpumpendruck, über mehrere Parameter regelbar, kostengünstig und zuverlässig erfolgen. Deshalb ist es vorteilhaft zur Zudosierung von Wasser beispielsweise Brennstoffeinspritzventile zu verwenden, die bereits aus Hubkolbenmaschinen mit innerer Verbrennung bekannt sind. Ein solches Ventil ist z. B. aus der Druckschrift DE 196 265 76 AI bekannt.
Eine artverwandte Anwendung ist die genaue Zudosierung einer wäßrigen Harnstoff-Wasserlösung zur Reduktion der Stickoxide im Abgastrakt von Dieselfahrzeugen zur Abgasnachbehandlung oder bei generell nicht schmierfähigen Medien.
Für die aus der Druckschrift DE 196 265 76 AI bekannte Anordnung ergeben sich Nachteile, die hauptsächlich darauf zurückzuführen sind, daß die dort offenbarte Anordnung für die Aufbereitung von Brennstoffen optimiert ist, welche deutlich andere chemische Eigenschaften aufweisen als
Wasser. So weisen die meisten Brennstoffe, beispielsweise
Benzin, eigene Schmiereigenschaften auf und wirken hemmend auf chemische Korrosion bzw. fördern chemische Korrosion, insbesondere an metallischen Flächen, nicht selbst. Wasser hingegen weist keine eigenen Schmiereigenschaften auf und begünstigt chemische Korrosion auf metallischen Flächen, insbesondere auf eisenhaltigen Metallflächen. Solche eisenhaltigen metallischen Flächen kommen in dem benannten Brennstoffeinspritzventil häufig mit der jeweils einzuspritzenden Flüssigkeit in Kontakt.
Nachteilig ist ebenso, daß das bekannte Brennstoffeinspritzventil auf den Einsatz in höheren Temperaturbereichen konzipiert ist, beispielsweise über 100°C. Bei der Konstruktion des Brennstoffeinspritzventils wurden deshalb im Ventildichtsitz metallische Materialien verwendet, welche gute thermische Beständigkeit haben. Die Verwendung von thermisch widerstandfähigem Material, z.B. eisenhaltigem Metall, im Bereich des Dichtsitzes läßt jedoch nur ein bestimmtes Maß an Dichtheit des Dichtsitzes zu, auch bei der Anwendung von kostenintensiven kleinen Herstellungstoleranzen. Außerdem vergrößern thermisch widerstandsfeste Metalle durch ihre mangelnde Elastizität die bei den Ventilöffnungs- und Schließvorgängen auftretenden Kräfte im Dichtsitz bzw. in den kraftübertragenden Bauteilen.
Vorteile der Erfindung
Das erfindungsgemäße Einspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber verschiedene Vorteile. So sind die mit einer korrosionshemmenden bzw. reibungsmindernden Schicht versehenen, mit Wasser in Kontakt tretenden Flächen wirksam und langlebig gegen chemische bzw. mechanische Korrosion, insbesondere durch chemische Korrosion und Reibungsverschleiß, geschützt.
Durch die in den Unteransprüchen 2 bis 8 aufgeführten Maßnahmen sind vorteilhafte Weiterentwicklungen des im Anspruch 1 angegebenen Einspritzventils möglich.
Besonders vorteilhaft ist es, wenn die korrosionshemmende und/oder reibungsmindernde Schicht aus mehreren Lagen oder Schichten besteht. So können die Eigenschaften mehrerer Beschichtungs aterialien kombiniert werden. Beispielsweise kann so eine wasserdichte, auf Metall gut haftende, Unterschicht mit einer reibungsmindernden Oberschicht kombiniert werden.
Weist das Einspritzventil eine drallerzeugende Vorrichtung auf, so kann das Wasser drallbehaftet in den Gasstrom eingespritzt werden. Dies führt zu einer besseren Verteilung des eingespritzten Wassers im Gasstrom.
Werden vorteilhafterweise die mit Wasser in Kontakt tretenden Fügeverbindungen, insbesondere die Schweißnähte, mit der korrosionshemmenden bzw. reibungsmindernden Schicht beschichtet, führt dies ebenfalls zu einer erhöhten Lebensdauer und Zuverlässigkeit des Einspritzventils. Ebenso führt die Beschichtung der Führungs- und Gleitflächen des Brennstoffeinspritzventils , die mit Wasser in Berührung kommen, zu besonderer Langlebigkeit und Zuverlässigkeit.
Durch die Aufbringung der korrosionshemmenden bzw. reibungsmindernden Schicht durch ein galvanisches, physikalisches oder chemisches Verfahren, kann auf unterschiedliche Eigenschaften von Beschichtungsmaterial und zu beschichtender Fläche eingegangen werden. Ebenso kann durch die Auswahl des die korrosionshemmende bzw. reibungsmindernde Schicht bildenden Materials auf unterschiedliche Eigenschaften des zu beschichtenden Materials bzw. der beabsichtigten Eigenschaften der beschichteten Fläche eingegangen werden.
Durch die kennzeichnenden Merkmale des nebengeordneten Anspruchs 9 ist es möglich, die Dichtheit des Dichtsitzes zu steigern, ohne auf kleinere und kostenintensivere Herstellungstoleranzen zurückgreifen zu müssen. Durch den elastischen Dichtring werden die im Dichtsitz oder die mit ihm in Wirkverbindung stehenden Bauteile kräftemäßig entlastet. Dies führt zu erhöhter Langlebigkeit und Zuverlässigkeit des Einspritzventils. Besonders vorteilhaft ist es, hier einen wenigstens teilweise aus einem Elastomer bestehenden Dichtring einzusetzen.
Das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 11 hat den Vorteil, daß mit ihm auf einfache und damit kostengünstige Art und Weise ein Einspritzventil herstellbar ist, mit denen die vorgenannten Vorteile erzielbar sind.
Durch die in den Unteransprüchen 12 bis 16 aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 11 angegebenen Verfahrens möglich. Durch die Fügung der Bauteile durch Schweißen oder Löten, entstehen besonders kostengünstige und zuverlässige Fügeverbindungen. Besonders vorteilhaft ist die Zuführung des die korrosionshemmende- bzw. reibungsmindernde Schicht bildenden Materials an die zu beschichtende Stelle über eine Kanüle. Dadurch kann die Zudosierung besonders zielgenau, materialsparend und damit kostengünstig erfolgen.
Die Nachbehandlung in Form einer Zentrifugierung der gefügten Bauteile sorgt für eine besondere vollständige Beschichtung, da hierdurch insbesondere das die Beschichtung bildende Material in kleinste Zwischenräume, beispielsweise der Schweißverbindung, dringt. Durch die thermische Behandlung wird die korrosionshemmende- bzw. reibungsmindernde Schicht besonders gut und dauerhaft mit der jeweiligen Fläche verbunden.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 einen schematischen Schnitt durch ein Ausführungs- beispiel eines erfindungsgemäßen Einspritzventils,
Fig. 2 einen schematischen Teil schnitt eines weiteren erfindungsgemäßen Ausführungsbeispiels eines Einspritzventils im Bereich des Ventilsitzkörpers, ähnlich dem Ausführungsbeispiel von Fig.l, jedoch mit einem elastischem Dichtring im Venti1schließkörper,
Fig. 3 einen schematischen Teilschnitt durch einen Ventilschließkörper und eine Ventilnadel mit positionierter Kanüle und Fig. 4 einen schematischen Teilschnitt eines weiteren Ausführungsbeispiels im Bereich der Ventilnadel, des Ventilschließkörpers und des Ankers.
Beschreibung der Ausführungsbeispiele
Nachfolgend werden Ausführungsbeispiele der Erfindung beispielhaft beschrieben. Übereinstimmende Bauteile sind dabei in allen Figuren mit übereinstimmenden Bezugszeichen versehen.
Ein in Fig. 1 dargestelltes Einspritzventil 1 dient insbesondere zum Einspritzen von Wasser in den Gasstrom einer nicht dargestellten Brennstoffzelle. Das Einspritzventil 1 umfaßt einen von einer Magnetspule 4 umgebenen, als Einlaßstutzen dienenden Kern 2, der beispielsweise hier rohrförmig ausgebildet ist und über seine gesamte Länge einen konstanten Außendurchmesser aufweist, er kann auch abgestuft ausgeführt sein. Ein in radialer Richtung gestufter Spulenkörper 3 nimmt eine Bewicklung der Magnetspule 4 auf und ermöglicht in Verbindung mit dem einen konstanten Außendurchmesser aufweisenden Kern 2 einen besonders kompakten Aufbau des Einspritzventils 1 im Bereich der Magnetspule 4.
Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht ein rohrförmiges metallenes Zwischenteil 12 beispielsweise durch Schweißen verbunden und umgibt dabei das Kernende 9 teilweise axial . Der gestufte Spulenkörper 3 übergreift teilweise den Kern 2 und mit einer Stufe 15 größeren Durchmessers das Zwischenteil 12 zumindest teilweise axial . Stromabwärts des Spulenkörpers 3 und des Zwischenteils 12 erstreckt sich ein rohrförmiger Düsenkörper 16, welcher beispielsweise fest mit dem Zwischenteil 12 verbunden ist. In dem Düsenkörper 16 verläuft eine Längsbohrung 17, die konzentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 17 ist eine zum Beispiel rohrförmige Ventilnadel 19 angeordnet, die an ihrem stromabwärtigen Ende mit einem kugelförmigen Ventilschließkörper 21, an dessen Umfang beispielsweise 5 Abflachungen 22 vorgesehen sind, durch zumindest eine in Fig. 3 dargestellte dritte Schweißnaht 31 verbunden ist.
Die Betätigung des Einspritzventils 1 erfolgt in bekannter Weise, in diesem Ausführungsbeispiel elektro-magnetisch. Zur axialen Bewegung der Ventilnadel 19 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils 1 dient der elektromagnetische Kreis mit der Magnetspule 4, dem Kern 2 und einem Anker 27. Der hohlzylindrische Anker 27 umfaßt das stromaufwärts gelegene Ende der Ventilnadel 19 und ist mit ihr durch eine erste Schweißnaht 28 kraftschlüssig verbunden. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Düsenkörpers 16 ist in der Längsbohrung 17 ein zylinderförmiger Ventilsitzkörper 29, der eine Ventilsitzfläche 20 aufweist, durch eine zweite Schweißnaht 30 dicht montiert. Der Ventilschließkorper 21 wirkt mit der am Ventilsitzkörper 29 ausgebildeten Ventilsitzfläche 20 zu einem Dichtsitz zusammen.
Zur Führung des Ventilschließkörpers 21 während der Axialbewegung der Ventilnadel 19 mit dem Anker 27 entlang der Ventillängsachse 10 dient eine Führungsöffnung 11 des Ventilsitzkörpers 29. An seiner dem Ventilschließkorper 21 abgewandten Stirnseite ist der Düsenkörper 16 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 8 konzentrisch und fest durch eine vierte Schweißnaht 34 verbunden. Die Spritzlochscheibe 8 hat mindestens eine, hier jedoch vier Abspritzöffnungen 7 zum Abspritzen von Wasser oder deionisiertem Wasser in einen Gasstrom einer nicht dargestellten Brennstoffzelle.
Die Schweißnähte 28, 30, 31, 34 sind erfindungsgemäß mit einer korrosionshemmenden und/oder reibungsmindernden Schicht beschichtet .
Die Einschubtiefe des Ventilsitzkörpers 29 mit der topfförmigen Spritzlochscheibe 8 bestimmt die Voreinstellung des Hubs der Ventilnadel 19. Dabei ist die eine Endstellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 21 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnetspule 4 durch die Anlage des Ankers 27 am Kernende 9 ergibt .
Eine in eine konzentrisch zur Ventillängsachse 10 verlaufende Strömungsbohrung 6 des Kerns 2 eingeschobene Einstellhülse 5, die beispielsweise aus gerolltem Federstahlblech oder einer Kupferlegierung ausgeformt ist, dient zur Einstellung der Federvorspannung der an der Einstellhülse 5 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite an der Ventilnadel 19 abstützt.
Das Einspritzventil 1 ist weitgehend mit einer Kunststoffumspritzung 23 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 4 bis zum Düsenkörper 16 erstreckt. Zu dieser Kunststoffumspritzung 23 gehört beispielsweise ein mitangespritzter Anschlußstecker 26.
Ein Filter 18 ragt in das strömungsaufwärtige Ende der Strömungsbohrung 6 des Kerns 2 hinein und sorgt für die Herausfilterung von Bestandteilen, die im Einspritzventil 1 zu Störungen oder Beschädigungen führen können.
Wenigstens ein Teil der mit Wasser in Kontakt tretenden Flächen des Einspritzventils 1, insbesondere die Innenflächen der Längsbohrung 17, der Führungsbohrung 11 und der Strömungsbohrung 6, sowie die Flächen der Einstellhülse 5, der Ventilnadel 19, der Ventilsitzfläche 20 und des Ventilschließkörpers 21 sind mit einer korrosionshemmenden und/oder reibungsmindernden Schicht 33 (in Fig. 3) beschichtet .
Fig. 2 zeigt einen schematischen Teilschnitt eines weiteren erfindungsgemäßen AusführungsbeiSpiels im Bereich des Ventilschließkörpers 21. Der Ventilschließkorper 21 mit den Abflachungen 22 liegt dichtend über einen elastischen Dichtring 14, welcher in einer ringförmig im unteren abspritzseitigen Bereich des Ventilschließkorper 21 teilweise eingelassenen Nut 13 liegt, auf der Ventilsitzfläche 20 des Ventilsitzkörpers 29 auf. Alternativ oder zusätzlich zu dem in der Nut 13 teilweise eingelassenen elastischen Dichtring 14, kann, insbesondere zur Dämpfung von auftretenden Kräften bei der Ventilbetätigung und damit zur langlebigen Abdichtung bei geschlossenem Einspritzventil 1, die Ventilsitzfläche 20 und/oder der Ventilschließkorper 21 mit einer korrosionshemmenden bzw. verschleißmindernden Schicht (33 in Fig. 3) beschichtet werden.
Fig. 3 zeigt eine zu einer nicht weiter dargestellten Dosiereinrichtung gehörende Kanüle 24. Die Kanüle 24 ist an ihrem dem Ventilschließkorper 21 zugewandten Ende abgeschrägt. Gemäß eines bevorzugten erfindungsgemäßen Verfahrens ist die Dosiereinrichtung an die durch die dritte Schweißnaht 31 gefügten und positionierten Bauteile zugestellt. In der gezeigten Position würde die Zudosierung des Materials der korrosionshemmenden und/oder reibungsmindernden Schicht 33 im Innenbereich der Ventilnadel 19 und des Ventilschließkörpers 21 erfolgen, wobei, zur besseren Verteilung des Materials, die Kanüle 24 oder die Bauteile dabei um ihre Längsachse gedreht werden können. Im Außenbereich wird die Schicht 33 von außen aufgebracht .
Fig. 4 zeigt einen schematischen Teilschnitt eines weiteren Ausführungsbeispiels im Bereich der Ventilnadel 19, des Ventilschließkörpers 21 und des Ankers 27, wobei der Anker 27, die erste Schweißnaht 28, die dritte Schweißnaht 31 und der Ventilschließkorper 21 mit der Schicht 33 beschichtet sind. Die Ventilnadel 19 besteht aus einem korrosionsfesten Material wie z.B. Edelstahl. Die Ventilnadel 19 kann jedoch auch mit der Schicht 33 beschichtet sein. Die korrosionshemmende und/oder reibungsmindernde Schicht 33 ist beispielsweise durch ein galvanisches Verfahren aufgebracht. Jedoch eignen sich z.B. auch andere physikalische bzw. chemische Verfahren, insbesondere ein Physical-Vapour-Deposition-Verfahren oder ein Chemical - Vapour-Deposition-Verfahren, zur Aufbringung der Schicht 33. Die korrosionshemmende und/oder reibungsmindernde Schicht 33 besteht dabei aus Gleitlack auf Teflonbasis, aus Stoffen auf Schwefelbasis, insbesondere Molybdänsulfit MoS2 aus Kohlenstoff, aus Xylan, aus Titannitrit TiN und/oder aus Kohlenstoffgemischen, insbesondere PTEE .
Die Schicht 33, mit welcher die Ventilnadel 19 und der Ventilschließkorper 21 geschützt sind, werden im Herstellungsverfahren beispielsweise nach der Aufbringung der die Schicht 33 bildenden Stoffe zentrifugiert , wobei die Ventilnadel 19 und der Ventilschließkorper 21 bereits gefügt sind, die Ventilnadel 19 beim Zentrifugieren innen liegt und der Ventilschließkorper 21 außen liegt. In dieser Weise läßt sich eine sehr gleichmäßige Schicht 33 herstellen.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und z.B. für beliebige Bauformen von Einspritzventilen 1, insbesondere auch für nach außen öffnende Einspritzventile oder für Einspritzventile mit piezoelektrischem, magnetostriktivem oder elektrostriktivem Aktor anwendbar. Sie eignet sich besonders nur zur Einspritzung von Wasser, insbesondere aggressivem deionisiertem Wasser.

Claims

Ansprüche
1. Einspritzventil (1) zum Einspritzen von Wasser, insbesondere in den Gasstrom von Brennstoffzellen, mit einer Ventilnadel (19) , die an ihrem abspritzseitigen Ende einen Ventilschließkorper (21) aufweist, der mit einer Ventilsitzfläche (20), die an einem Ventilsitzkörper (29) ausgebildet ist, zu einem Dichtsitz zusammenwirkt, und wenigstens einer stromabwärts des Dichtsitzes vorgesehenen Abspritzöffnung (7) , dadurch gekennzeichnet, daß zumindest ein Teil der Flächen des Einspritzventils (1) , welche mit Wasser in Berührung kommen, mit einer korrosionshemmenden und/oder reibungsmindernden Schicht (33) beschichtet sind.
2. Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die korrosionshemmende und/oder reibungsmindernde Schicht (33) aus einer oder mehreren Lagen besteht.
3. Einspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Fügeverbindungen, insbesondere Schweißnähte (31), welche mit Wasser in Kontakt kommen, mit der korrosionshemmenden und/oder reibungsmindernden Schicht (33) beschichtet sind.
4. Einspritzventil nach einem der vorangegangenen Ansprüche, , dadurch gekennzeichnet, daß Führungs- und Gleitflächen (11, 22) , welche mit Wasser in Kontakt kommen, wenigstens teilweise mit der korrosionshemmenden und/oder reibungsmindernden Schicht (33) beschichtet sind.
5. Einspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die korrosionshemmende und/oder reibungsmindernde Schicht (33) durch ein galvanisches Verfahren aufgebracht ist .
6. Einspritzventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die korrosionshemmende und/oder reibungsmindernde Schicht (33) durch ein physikalisches Verfahren, insbesondere durch ein Physical -Vapour-Deposition-Verfahren, aufgebracht ist.
7. Einspritzventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die korrosionshemmende und/oder reibungsmindernde Schicht (33) durch ein chemisches Verfahren, insbesondere durch ein Chemical -Vapour-Deposition-Verfahren, aufgebracht ist .
8. Einspritzventil nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die korrosionshemmende und/oder reibungsmindernde Schicht (33) aus Gleitlack auf Teflonbasis, aus Stoffen auf Schwefelbasis, insbesondere Molybdänsulfit MoS2 # aus Kohlenstoff, aus Xylan, aus Titannitrit TiN und/oder aus Kohlenstoffgemischten, insbesondere PTEE, besteht.
9. Einspritzventil (1), insbesondere zum Einspritzen von Wasser in den Gasstrom von Brennstoffzellen, mit einer Ventilnadel (19), die an ihrem abspritzseitigen Ende einen kugelförmigen Ventilschließkorper (21) aufweist, der mit einer Ventilsitzfläche (20) , die an einem Ventilsitzkörper (29) ausgebildet ist, zu einem Dichtsitz zusammenwirkt, und wenigstens einer stromabwärts des Dichtsitzes vorgesehenen Abspritzöffnung (7) , dadurch gekennzeichnet, daß der Ventilschließköper (21) in dem Bereich des Dichtsitzes eine ringförmige Nut (13) aufweist, wobei in die Nut (13) ein ringförmiger elastischer Dichtring (14) eingebracht ist.
10. Einspritzventil nach Anspruch 9, dadurch gekennzeichnet, daß der ringförmige Dichtring (14) mindestens teilweise aus einem Elastomer besteht .
11. Verfahren zur Herstellung eines. Einspritzventils (1), insbesondere zum Einspritzen von Wasser in den Gasstrom von Brennstoffzellen, mit einer Ventilnadel (19) , die an ihrem abspritzseitigen Ende einen Ventilschließkorper (21) aufweist, der mit einer Ventilsitzfläche (20), die an einem Ventilsitzkörper (29) ausgebildet ist, zu einem Dichtsitz zusammenwirkt, und einer stromabwärts des Dichtsitzes vorgesehenen Abspritzöffnung (7) , in folgenden Verfahrensschritten: - Herstellen einer Fügeverbindung (31) zwischen
Ventilnadel (19) und Ventilschließkorper (21) ,
Positionieren der gefügten Bauteile (19, 21),
Zustellen einer Dosiereinrichtung (24),
Aufbringen von Material, welches eine korrosionshemmende- bzw. reibungsmindernde Schicht (33) bildet, auf die Fügeverbindung (31) mittels der
Dosiereinrichtung (24) .
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Fügeverbindung (31) durch Schweißen oder Löten hergestellt ist.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß mittels der Dosiereinrichtung das Material, welches die korrosionshemmende- bzw. reibungsmindernde Schicht (33) bildet, über eine Kanüle (24) auf die Fügeverbindung (31) aufgebracht wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die Kanüle (24) in die als Hülse ausgebildete Ventilnadel (19) durch eine Öffnung (32) an die Fügeverbindung (31) zugestellt wird, welche dem Ventilschließkorper (21) gegenüber liegt.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß zur Nachbehandlung die Ventilnadel (19) und der
Ventilschließkorper (21) zentrifugiert werden, wobei der
Ventilschließkorper (21) außen liegt und die Ventilnadel (19) innen liegt.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Nachbehandlung eine thermische Behandlung ist, insbesondere eine thermische Auslagerung.
PCT/DE2003/002919 2002-10-04 2003-09-03 Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung WO2004033895A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004542165A JP2006502352A (ja) 2002-10-04 2003-09-03 噴射弁及び噴射弁を形成する方法
US10/530,316 US7506826B2 (en) 2002-10-04 2003-09-03 Injection valve with a corrosion-inhibiting, wear-resistant coating and method for the production thereof
EP03750313A EP1588046A1 (de) 2002-10-04 2003-09-03 Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung
US12/369,902 US20090144982A1 (en) 2002-10-04 2009-02-12 Fuel injector and method for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10246230.5 2002-10-04
DE10246230A DE10246230A1 (de) 2002-10-04 2002-10-04 Einspritzventil und Verfahren zu dessen Herstellung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/369,902 Continuation US20090144982A1 (en) 2002-10-04 2009-02-12 Fuel injector and method for its manufacture

Publications (1)

Publication Number Publication Date
WO2004033895A1 true WO2004033895A1 (de) 2004-04-22

Family

ID=32049194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002919 WO2004033895A1 (de) 2002-10-04 2003-09-03 Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung

Country Status (5)

Country Link
US (2) US7506826B2 (de)
EP (1) EP1588046A1 (de)
JP (1) JP2006502352A (de)
DE (1) DE10246230A1 (de)
WO (1) WO2004033895A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017626A2 (en) * 2004-08-05 2006-02-16 Siemens Vdo Automotive Corporation Fuel injector with a deep-drawn thin shell connector member and method of connecting components
EP1845255A1 (de) * 2006-04-13 2007-10-17 Robert Bosch Gmbh Kraftstoffinjektor mit hoher Lebensdauer und Verschleißfestigkeit
WO2009038637A1 (en) * 2007-09-20 2009-03-26 Caterpillar Inc. Valve with thin-film coating
US7942348B2 (en) 2004-08-03 2011-05-17 Robert Bosch Gmbh Fuel injector
AT508050B1 (de) * 2009-03-24 2011-09-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2012019879A1 (de) * 2010-08-09 2012-02-16 Robert Bosch Gmbh Einspritzvorrichtung zum einbringen einer harnstofflösung in den abgasstrang einer brennkraftmaschine
EP2644879A1 (de) * 2012-03-26 2013-10-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Magnetventils
CN103415693A (zh) * 2010-11-05 2013-11-27 国立大学法人熊本大学 喷射喷嘴

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059974A1 (de) * 2004-11-23 2006-06-01 Siemens Ag Düsenbaugruppe und Einspritzventil
DE102004058677A1 (de) * 2004-12-06 2006-06-14 Robert Bosch Gmbh Einspritzventil
JP2007087729A (ja) * 2005-09-21 2007-04-05 Aisan Ind Co Ltd 流体用制御弁
US20080152491A1 (en) * 2006-12-26 2008-06-26 Davies Lucy V Coatings for use in fuel system components
JP4948295B2 (ja) * 2007-07-06 2012-06-06 愛三工業株式会社 燃料噴射弁
EP2149699B1 (de) * 2008-07-29 2014-09-24 Continental Automotive GmbH Kraftstoffeinspritzdüse
US7968167B2 (en) * 2009-10-22 2011-06-28 GM Global Technology Operations LLC Coated seal for sealing parts in a vehicle engine
DE102013204152A1 (de) 2013-03-11 2014-09-11 Robert Bosch Gmbh Ventil zum Steuern eines Fluids mit erhöhter Dichtheit
WO2015036244A1 (en) * 2013-09-13 2015-03-19 Continental Automotive Gmbh Fluid injector
US9399975B2 (en) * 2014-09-25 2016-07-26 Continental Automotive Systems, Inc. Solenoid fluid injector with corrosion prevention structure
JP6406118B2 (ja) * 2015-05-07 2018-10-17 株式会社デンソー 燃料噴射装置
US11585253B2 (en) 2015-08-07 2023-02-21 Cummins Emission Solutions Inc. Converging liquid reductant injector nozzle in selective catalytic reduction systems
DE102015217673A1 (de) 2015-09-15 2017-03-16 Continental Automotive Gmbh Einspritzvorrichtung zur Zumessung eines Fluids und Kraftfahrzeug mit einer derartigen Einspritzvorrichtung
US10646955B2 (en) * 2015-09-21 2020-05-12 Continental Automotive Gmbh Valve needle for a fluid injection valve
WO2017109886A1 (ja) * 2015-12-24 2017-06-29 日立オートモティブシステムズ株式会社 電磁弁及びその製造方法
EP3339626A1 (de) * 2016-12-23 2018-06-27 Continental Automotive GmbH Ventilanordnung mit einem anker mit führenden oberflächen und niedrigen durchgängen und einspritzventil
US10502112B2 (en) * 2017-09-14 2019-12-10 Vitesco Technologies USA, LLC Injector for reductant delivery unit having fluid volume reduction assembly
US10539057B2 (en) * 2017-09-14 2020-01-21 Vitesco Technologies USA, LLC Injector for reductant delivery unit having reduced fluid volume
US10947880B2 (en) 2018-02-01 2021-03-16 Continental Powertrain USA, LLC Injector for reductant delivery unit having fluid volume reduction assembly
CN108421822B (zh) * 2018-02-24 2019-11-08 鸿灌环境技术有限公司 药剂雾化喷淋治理污染土壤的修复治理装置及其治理方法
GB2577072B (en) * 2018-09-12 2021-04-21 Delphi Automotive Systems Lux Pole piece retention and insertion method
DE102018217872A1 (de) * 2018-10-18 2020-04-23 Robert Bosch Gmbh Dosiermodul

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220672A (ja) * 1985-07-18 1987-01-29 Hitachi Zosen Corp 内燃機関の燃料弁アトマイザ
DE3716072A1 (de) * 1987-05-14 1987-12-17 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3716073A1 (de) * 1987-05-14 1988-04-07 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE19930312C1 (de) * 1999-07-01 2001-02-08 Siemens Ag Verfahren zum Behandeln von Bauteiloberflächen in einem Kraftstoffinjektor und Steuermodul für einen Kraftstoffinjektor
EP1150004A2 (de) * 2000-04-28 2001-10-31 Delphi Technologies, Inc. Beschichtetes Kraftstoffeinspritzventil
DE10038954A1 (de) * 2000-08-09 2002-02-28 Siemens Ag Ventil, insbesondere Einspritzventil

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659059A (en) 1986-01-27 1987-04-21 Acorn Engineering Company Sealed dashpot mechanism for delayed closing plumbing valves
GB2198589B (en) * 1986-11-15 1990-09-12 Hitachi Ltd Electromagnetic fuel injector
JP3017816B2 (ja) 1991-02-20 2000-03-13 清原 まさ子 流体制御器
JP2668026B2 (ja) * 1991-12-10 1997-10-27 三菱自動車工業株式会社 ディーゼルエンジンの燃料噴射装置
US5336320A (en) * 1992-06-30 1994-08-09 Nordson Corporation Fast response film coater
JPH07263010A (ja) * 1994-03-24 1995-10-13 Mazda Motor Corp 燃料電池システムの供給ガス加湿装置
CH690857A5 (de) 1995-07-04 2001-02-15 Erich Bergmann Anlage zur plasmaunterstützten physikalischen Hochvakuumbedampfung von Werkstücken mit verschleissfesten Schichten und Verfahren zur Durchführung in dieser Anlage
DE19626576A1 (de) 1996-07-02 1998-01-08 Bosch Gmbh Robert Brennstoffeinspritzventil
US5783261A (en) * 1996-07-11 1998-07-21 Ford Global Technologies, Inc. Using a coated fuel injector and method of making
GB9614967D0 (en) 1996-07-17 1996-09-04 Univ Birmingham Surface treatment process
JP3913841B2 (ja) * 1997-07-02 2007-05-09 本田技研工業株式会社 噴射弁
DE19752834A1 (de) * 1997-11-28 1999-06-02 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
JP3567732B2 (ja) * 1998-04-28 2004-09-22 株式会社日立製作所 燃料噴射弁
US6802457B1 (en) * 1998-09-21 2004-10-12 Caterpillar Inc Coatings for use in fuel system components
DE19854506C1 (de) * 1998-11-25 2000-04-20 Siemens Ag Dosiervorrichtung
US6145763A (en) * 1998-12-30 2000-11-14 Ford Global Technologies, Inc. Carbonaceous deposit-resistant coating for fuel injectors
DE19953803A1 (de) 1999-11-09 2001-05-17 Daimler Chrysler Ag System zur Befeuchtung eines Gasstroms
DE10002004A1 (de) 2000-01-19 2001-08-09 Bosch Gmbh Robert Zerstäubungsvorrichtung
CZ297846B6 (cs) 2000-03-20 2007-04-11 Vúts Liberec A. S. Zpusob vytvárení prerusovaného rotacního pohybu azarízení k provádení zpusobu

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220672A (ja) * 1985-07-18 1987-01-29 Hitachi Zosen Corp 内燃機関の燃料弁アトマイザ
DE3716072A1 (de) * 1987-05-14 1987-12-17 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3716073A1 (de) * 1987-05-14 1988-04-07 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE19930312C1 (de) * 1999-07-01 2001-02-08 Siemens Ag Verfahren zum Behandeln von Bauteiloberflächen in einem Kraftstoffinjektor und Steuermodul für einen Kraftstoffinjektor
EP1150004A2 (de) * 2000-04-28 2001-10-31 Delphi Technologies, Inc. Beschichtetes Kraftstoffeinspritzventil
DE10038954A1 (de) * 2000-08-09 2002-02-28 Siemens Ag Ventil, insbesondere Einspritzventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 196 (M - 601) 24 June 1987 (1987-06-24) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942348B2 (en) 2004-08-03 2011-05-17 Robert Bosch Gmbh Fuel injector
WO2006017626A3 (en) * 2004-08-05 2006-04-27 Siemens Vdo Automotive Corp Fuel injector with a deep-drawn thin shell connector member and method of connecting components
WO2006017626A2 (en) * 2004-08-05 2006-02-16 Siemens Vdo Automotive Corporation Fuel injector with a deep-drawn thin shell connector member and method of connecting components
US7552880B2 (en) 2004-08-05 2009-06-30 Continental Automotive Systems Us, Inc. Fuel injector with a deep-drawn thin shell connector member and method of connecting components
EP1845255A1 (de) * 2006-04-13 2007-10-17 Robert Bosch Gmbh Kraftstoffinjektor mit hoher Lebensdauer und Verschleißfestigkeit
US8006715B2 (en) 2007-09-20 2011-08-30 Caterpillar Inc. Valve with thin-film coating
WO2009038637A1 (en) * 2007-09-20 2009-03-26 Caterpillar Inc. Valve with thin-film coating
AT508050B1 (de) * 2009-03-24 2011-09-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2012019879A1 (de) * 2010-08-09 2012-02-16 Robert Bosch Gmbh Einspritzvorrichtung zum einbringen einer harnstofflösung in den abgasstrang einer brennkraftmaschine
US9279400B2 (en) 2010-08-09 2016-03-08 Robert Bosch Gmbh Injection device for introducing a urea solution into the exhaust tract of an internal combustion engine
CN103415693A (zh) * 2010-11-05 2013-11-27 国立大学法人熊本大学 喷射喷嘴
EP2644879A1 (de) * 2012-03-26 2013-10-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Magnetventils
US9429245B2 (en) 2012-03-26 2016-08-30 Robert Bosch Gmbh Method for manufacturing a solenoid valve
US9885101B2 (en) 2012-03-26 2018-02-06 Robert Bosch Gmbh Method for manufacturing a solenoid valve

Also Published As

Publication number Publication date
US20060202049A1 (en) 2006-09-14
EP1588046A1 (de) 2005-10-26
JP2006502352A (ja) 2006-01-19
US20090144982A1 (en) 2009-06-11
DE10246230A1 (de) 2004-04-29
US7506826B2 (en) 2009-03-24

Similar Documents

Publication Publication Date Title
WO2004033895A1 (de) Einspritzventil mit korrosionshemmender verschleissfester beschichtung und verfahren zu dessen herstellung
EP1030967A1 (de) Brennstoffeinspritzventil
EP1062421B1 (de) Brennstoffeinspritzventil
EP1697632B1 (de) Brennstoffeinspritzventil
DE102007049963A1 (de) Brennstoffeinspritzventil
DE102009000895B4 (de) Kraftstoffeinspritzventil
EP2884091B1 (de) Brennstoffeinspritzventil
DE19951014A1 (de) Brennstoffeinspritzventil
EP1399669A1 (de) Brennstoffeinspritzventil
EP1364118A1 (de) Brennstoffeinspritzventil
WO2001002719A1 (de) Brennstoffeinspritzventil
EP2212543A1 (de) Brennstoffeinspritzventil
WO2005064148A1 (de) Verfahren zur herstellung eines brennstoffeinspritzventils und brennstoffeinspritzventil
EP1658429B1 (de) Brennstoffeinspritzventil
WO2019129412A1 (de) Ventil zum zumessen eines fluids, insbesondere brennstoffeinspritzventil
DE102018221086A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
EP2925998A1 (de) Einspritzventil
EP1402173B1 (de) Brennstoffeinspritzventil
DE102018218705A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
EP1576279A1 (de) Brennstoffeinspritzventil
DE102005019328A1 (de) Brennstoffspritzventil
DE102021212989A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
DE102021212779A1 (de) Brennstoffeinspritzventil
EP1392963A1 (de) Brennstoffeinspritzventil
WO2019110167A1 (de) Ventil zum zumessen eines fluids, insbesondere brennstoffeinspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004542165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003750313

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003750313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10530316

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10530316

Country of ref document: US