WO2004031747A1 - Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs - Google Patents

Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs Download PDF

Info

Publication number
WO2004031747A1
WO2004031747A1 PCT/EP2003/010144 EP0310144W WO2004031747A1 WO 2004031747 A1 WO2004031747 A1 WO 2004031747A1 EP 0310144 W EP0310144 W EP 0310144W WO 2004031747 A1 WO2004031747 A1 WO 2004031747A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
measuring chamber
excitation
luminescent substance
luminescent
Prior art date
Application number
PCT/EP2003/010144
Other languages
English (en)
French (fr)
Inventor
Holger Klapproth
Mirko Lehmann
Original Assignee
Micronas Holding Gmbh
Micronas Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronas Holding Gmbh, Micronas Gmbh filed Critical Micronas Holding Gmbh
Priority to DE50307657T priority Critical patent/DE50307657D1/de
Priority to US10/529,048 priority patent/US7312867B2/en
Priority to AU2003275961A priority patent/AU2003275961A1/en
Priority to EP03798902A priority patent/EP1511992B1/de
Publication of WO2004031747A1 publication Critical patent/WO2004031747A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a device for detecting at least one luminescent substance, with a radiation source for emitting excitation radiation to the at least one luminescent substance, the excitation radiation having at least one excitation wavelength at which the luminescent substance is excited to emit luminescent radiation, and with at least one radiation receiver insensitive to the excitation radiation for detecting the luminescent radiation.
  • the invention also relates to a method for detecting at least one luminescent substance, wherein the luminescent substance is irradiated with an excitation radiation which has at least one excitation wavelength at which the luminescent substance is excited to emit luminescent radiation, and wherein that of Luminescence radiation emitted to the luminescent substance is detected by means of at least one radiation receiver which is insensitive to the excitation radiation.
  • Such a device is known from EP 0 723 14 ⁇ AI. It has a CCD sensor with a plurality of detector elements arranged in the form of a matrix as radiation receivers.
  • the individual radiation receivers of the CCD sensor are coated with different biological receptors.
  • the receptors are brought into contact with an analyte which contains a ligand labeled with a luminescent substance which couples to at least one of the receptors.
  • the luminescent substance is exposed to optical radiation irradiated, which stimulates him to emit luminescent radiation. This is measured using the radiation receiver.
  • the spectral sensitivity of the radiation receiver is selected such that it is sensitive to the luminescent radiation, but not to the radiation with which the luminescent substance is excited.
  • the device has the disadvantage that the measurement signal of the radiation receiver is relatively sensitive to stray or stray light.
  • the device has a certain size
  • the object is therefore to create a device of the type mentioned at the outset, which is largely insensitive to stray or interference radiation with a simple and compact structure.
  • this object is achieved in that the luminescent substance is arranged in the interior of a measuring chamber which is transparent to the excitation radiation and essentially impermeable to radiation for which the radiation receiver is sensitive, and in that the radiation source is outside the Measuring chamber is arranged such that the excitation radiation is coupled through the measuring chamber into the interior of the measuring chamber.
  • the solution to the problem is that the luminescent substance is arranged inside a measuring chamber that is transparent to the excitation radiation and essentially impermeable to radiation for which the radiation receiver is sensitive, and that the luminescence Material is irradiated with the excitation radiation through the measuring chamber.
  • the measuring chamber thus advantageously shields the at least one radiation receiver located in the measuring chamber or within its outer contour against stray or interference radiation occurring outside the measuring chamber.
  • the scattered radiation is either completely extinguished when it penetrates the wall of the measuring chamber or at least weakened to such an extent that it is practically no longer detected by the radiation receiver after it has penetrated the wall.
  • a high level of immunity to interference from external or scattered radiation is thus achieved in the wavelength range to be detected.
  • the measuring chamber is transparent to the excitation radiation emitted by the radiation source, for which the at least one radiation receiver is insensitive, at least in one wall area of its boundary wall.
  • the radiation source is arranged outside the measuring chamber and the excitation radiation is coupled through the wall area into the interior of the measuring chamber.
  • the radiation source can be connected to a modulation device for transmitting a signal and the radiation receiver can be connected to a demodulation device.
  • Luminescence is understood to mean all emissions of radiation quanta, especially light phenomena, such as fluorescence or phosphorescence, which show substances after quantum excitation.
  • a wall area of the measuring chamber that faces the radiation source and is transparent to the excitation radiation is formed by a semiconductor substrate, and the at least one radiation receiver is integrated as a semiconductor component in the semiconductor substrate.
  • the semiconductor substrate then fulfills a double function and, in addition to serving as a carrier for the at least one radiation receiver, also serves as a window for coupling the excitation radiation into the measuring chamber.
  • the measuring chamber can then be manufactured particularly cost-effectively using microsystem technology methods.
  • the device can have very compact dimensions.
  • the semiconductor substrate is a silicon substrate.
  • Silicon is transparent to infrared light with a wavelength of greater than approximately 1080 nm, so that an infrared radiation source can be provided as the radiation source for exciting the luminescent substance.
  • the radiation receiver can be a silicon photodiode integrated in the semiconductor substrate, which is insensitive in this wavelength range.
  • the device is designed as a thermal imaging camera, which has a plurality of radiation receivers, preferably arranged in the form of a two-dimensional matrix, in the measuring chamber, to which at least one imaging optics for mapping the radiation source onto the radiation receivers is assigned.
  • a luminescent substance layer extending continuously over the radiation receivers can be arranged inside the measuring chamber.
  • the luminescent material layer has interruptions between the radiation receivers.
  • the luminescent material layer can optionally completely fill the space between the walls of the measuring chamber arranged on both sides of the luminescent material layer, ie the walls form with the Luminescent material layer a layer stack.
  • the imaging optics are preferably arranged outside the measuring chamber between the latter and the radiation source.
  • the luminescent substance is designed such that the wavelength of the luminescent radiation is less than the excitation wavelength.
  • up-converting luminescent substances are known per se, for example from EP 0 723 14 ⁇ AI.
  • upconverting luminescent substances are the dye BND from Dyomics GmbH, ena and IR-140.
  • up-converting luminescent substances obtain the energy required for quantum emission not from a single quantum effect but from several. Up-converting luminescent substances therefore have a significantly larger Stokes shift compared to down-converting luminescent substances; in which the wavelength of the excitation radiation can be, for example, approximately twice as large as the wavelength of the luminescent radiation.
  • an infrared semiconductor radiation source in particular a semiconductor laser diode, as radiation source, which enables a high radiation intensity with compact dimensions.
  • the infrared light of such semiconductor radiation sources also has the advantage that fewer scattering effects occur compared to short-wave optical radiation.
  • the optical radiation emitted by the semiconductor radiation source can be converted into visible light or into near infrared light, so that an inexpensive optoelectronic semiconductor sensor can be provided as the radiation receiver, which has a high detection sensitivity in this wavelength range.
  • a boundary wall of the measuring chamber opposite the wall area is designed as a reflector for reflecting the excitation radiation.
  • the radiation coupled into the measuring chamber can then be used even better to excite the at least one luminescent substance.
  • the wall area is via an optical waveguide with the interior of the measuring chamber connected, the waveguide preferably running parallel to the plane of extent of the wall region, in particular on the inside thereof facing the luminescent substance.
  • the radiation provided to excite the luminescent substance is then conducted into the interior of the measuring chamber with particularly low losses, so that there is uniform excitation of the luminescent substance along the semiconductor substrate.
  • the excitation is preferably carried out on the totally reflecting boundary surface of the waveguide or in close proximity luminescent substances arranged for this purpose via the evanescent field of the radiation guided in the waveguide.
  • the radiation can be coupled into the waveguide with the aid of a prism and / or an optical grating, on which the radiation is deflected in such a way that it is subject to total reflection when it hits a boundary surface of the waveguide.
  • a measurement signal output of at least one radiation receiver is connected directly or indirectly via an evaluation device to a transponder for transmitting the measurement signal or a signal derived therefrom to a receiver part, the transponder preferably being integrated into the semiconductor substrate.
  • the measurement signal measured with the aid of the at least one radiation receiver can then be transmitted wirelessly to the receiver part and from there can be forwarded to an evaluation device, a display device and / or a data memory.
  • the device is then particularly well suited for mobile use. If necessary, it is even possible to connect the measuring chamber to an object or to integrate it in order to enable the authenticity of the object to be checked.
  • the object can be, for example, a credit card, a bank note or a piece of clothing (designer clothing).
  • the measuring chamber arranged thereon is irradiated with the excitation light and the measurement signal measured with the aid of the radiation receiver is compared with a reference signal.
  • At least two luminescent substances with a different excitation wavelength are arranged inside the measuring chamber, each of these luminescent substances being assigned a radiation source with a spectral distribution adapted to the excitation wavelength of the respective luminescent substance.
  • the radiation sources can then 0
  • the measuring chamber is designed as a flow measuring chamber with an inner cavity, at least one inlet opening and at least one outlet opening.
  • biomolecules or biocomponents can then be examined and supplied with a nutrient liquid via the inlet and outlet opening.
  • the biomolecule can, for example, nucleic acids or derivatives thereof (DNA, RNA, PNA, LNA, oligonucleotides, plasmids, chromosomes), peptides, Proteins (enzyme, protein, oligopeptides, cellular receptor proteins and their complexes, peptide hormones, antibodies and their fragments), carbohydrates and their derivatives, in particular glycosylated proteins and glycosides, fats, fatty acids and / or lipids.
  • nucleic acids or derivatives thereof DNA, RNA, PNA, LNA, oligonucleotides, plasmids, chromosomes
  • Proteins enzyme, protein, oligopeptides, cellular receptor proteins and their complexes, peptide hormones, antibodies and their fragments
  • carbohydrates and their derivatives in particular glycosylated proteins and glycosides, fats, fatty acids and / or lipids.
  • At least one receptor for a ligand in particular for a biomolecule, a biological cell and / or at least one fragment of such a cell is immobilized in the inner cavity on the surface of at least one radiation receiver, the ligand with the at least one luminescent Fabric is marked.
  • a receptor is understood to mean a molecule that can be bound to a surface and can bind to a second molecule, the ligand.
  • Receptors are, for example, but not exclusively: nucleic acids and their derivatives (DNA, RNA, PNA, LNA, oligonucleotides, plasmids, chromosomes), peptides and proteins (enzymes, proteins, oligopeptides, cellular receptor proteins and their complexes, peptide hormones, antibodies and their fragments ), Carbohydrates and their derivatives, especially glycosylated proteins and glycosides.
  • the receptor can also include more complex structures, such as cells and their fragments.
  • a ligand is understood to mean molecules which can form a more or less specific bond with a receptor.
  • Ligands are, for example, but not exclusively: nucleic acids and their derivatives (DNA, RNA, PNA, LNA, oligonucleotides, plasmids, chromosomes), peptides and proteins (enzymes, proteins, oligopeptides, cellular receptor proteins and their complexes, peptide hormones, antibodies and their fragments ), Carbohydrates and their derivatives, in particular glycosylated proteins and glycosides, fats, fatty acids and lipids, cells and their fragments, but also all pharmacologically and toxicologically active substances.
  • the receptor can optionally be printed on the radiation receiver.
  • a polyimide layer can be arranged between the radiation receiver and the receptor in order to improve the adhesion of the receptor to the radiation receiver.
  • a plurality of radiation receivers preferably in the form of a two-dimensional array, are arranged next to one another on the semiconductor substrate, and if different receptors are optionally arranged on the radiation receivers.
  • the device then makes it possible to examine an analyte for the presence of a large number of different ligands.
  • At least two of the different receptors have a different affinity for at least one ligand labeled with the luminescent substance, and if more than two receptors are optionally provided which have a graduated affinity for the at least one ligand.
  • a radiation receiver on which a receptor with a high affinity for the ligand is arranged, then delivers a measurement signal even at a low concentration of the ligand in an analyte to be examined in the measuring chamber.
  • a radiation receiver, on which a receptor with a lower affinity for the ligand is arranged only delivers a measurement signal at a correspondingly higher concentration of the ligand, if the measurement signal of the first-mentioned radiation receiver is possibly already in saturation.
  • a device that has a corresponding number of receptors with graduated affinity thus enables a concentration determination of the ligand with a large dynamic range.
  • the device enables the concentration of the ligand to be measured with great accuracy, both with ligands with a high concentration and with ligands with a low concentration, without the need for complicated and laborious dilution of the ligand.
  • the receptors can be antibodies which are applied to the individual radiation receivers against different epitopes of the same ligand, but which have different binding constants exhibit. However, it is also possible for the affinity of at least one antibody to be reduced by chemical treatment.
  • FIG. 1 shows a cross section through a flow measuring chamber, in the inner cavity of which a luminescent substance is arranged, the flow measuring chamber having radiation receivers for measuring the luminescent radiation,
  • FIG. 2 shows a cross section through a device with a flow measuring chamber, which has a wall area which is permeable to excitation radiation and which is opposite a reflecting boundary wall, the excitation radiation being shown schematically in the form of rays,
  • Fig. 3 shows a cross section through a flow measuring chamber, the one as
  • Fig. 4 shows a cross section through a radiation receiver on which a
  • Immobilized receptor layer that binds ligands marked by a luminescent substance
  • Fig. 5 is an illustration similar to Fig. 4, wherein the luminescent substance with the help of
  • Excitation radiation is emitted to emit luminescence radiation, the excitation radiation and the luminescence radiation being shown schematically in the form of rays,
  • Fig., Opera a partial cross section through a wall area of the measuring chamber, which has a plurality of radiation receivers on which receptors are immobilized
  • Fig. 7 is a graphical representation of the spectral sensitivity of a
  • Photodiode with the wavelength in nanometers plotted on the abscissa and quantum efficiency in percent on the ordinate.
  • a device designated as a whole by 1 for detecting at least one luminescent substance 2 has a radiation source 3 shown only schematically in the drawing, which is arranged such that an excitation radiation 4 emitted by it strikes the luminescent substance 2.
  • the radiation source 3 can be, for example, a semiconductor radiation source, in particular a light-emitting diode or a laser diode.
  • the spectrum of the excitation radiation 4 has at least one excitation wavelength at which the luminescent substance 2 is excited to emit luminescent radiation 5.
  • the luminescent substance 2 is arranged in the inner cavity ⁇ of a measuring chamber 7, the walls of which are essentially impermeable to the luminescent radiation 5.
  • the measuring chamber 7 has a wall region which faces the radiation source 3 and is permeable to the excitation radiation 3 and which is formed by a disk-shaped or plate-shaped silicon semiconductor substrate 8.
  • the semiconductor substrate 8 can be produced inexpensively from a silicon wafer in the production of the measuring chamber 7.
  • a plurality of radiation receivers 9, each designed as photodiodes, are arranged on the semiconductor substrate 8, with their detection side facing the inner cavity ⁇ of the measuring chamber 7.
  • the spectral distribution of the excitation radiation 4 lies in a wavelength range which is arranged above approximately 1080 nm. As can be seen in FIG. 7, the radiation receivers 9 are insensitive in this wavelength range.
  • the luminescent substance 2 is an up-converting luminescent substance 2, in which the wavelength of the luminescent radiation 5 is smaller than the wavelength of the excitation radiation 3
  • the energy required for luminescence radiation quants is obtained from several radiation quanta of the radiation source 3.
  • the spectrum of the luminescence radiation lies in a wavelength range below 1080 nm, in which the radiation receivers 9 are sensitive.
  • the radiation receivers 9 thus only detect the luminescence radiation 5, but not the excitation radiation 4.
  • the measuring chamber 7 is essentially opaque to radiation which lies in the wavelength range in which the radiation receivers 9 are sensitive. The radiation receivers 9 are thus shielded by the measuring chamber 7 against interference radiation 10 occurring outside the measuring chamber 7.
  • the radiation receivers 9 are connected via conductor tracks to a control and evaluation device 11 integrated into the semiconductor substrate.
  • the evaluation device 11 has an interface device, shown schematically in the drawing, for connecting to a higher-level display and / or evaluation unit, for example a microcomputer,
  • the boundary wall 12 of the measuring chamber 7 opposite the semiconductor substrate 8 is designed as a reflector on which the excitation radiation 4 coupled through the semiconductor substrate into the inner cavity ⁇ of the measuring chamber 7 is reflected back into the inner cavity ⁇ .
  • the excitation radiation 4 coupled into the measuring chamber 7 is thereby guided several times through the measuring chamber 7 and is therefore better used for exciting the luminescent substance 2.
  • the boundary wall 12 has a base body made of silicon, which is provided on its inner side facing the inner cavity mit with a coating reflecting the excitation radiation 4.
  • the semiconductor substrate 8 is connected to the inner cavity of the measuring chamber 7 via an optical waveguide 13.
  • the excitation radiation 4 first penetrates the semiconductor substrate 8 and then strikes an optical window of the waveguide 13 at which the excitation radiation 4 is coupled into the waveguide 13.
  • the optical window is provided on a prism-shaped coupling element 14.
  • the waveguide 13 is designed as a waveguide layer which is approximately parallel to the plane of extent of the semiconductor substrate 8 extends and is arranged on the inside of the semiconductor substrate 8 facing the inner cavity ⁇ .
  • the waveguide layer 13 extends continuously over the radiation receivers 9.
  • the waveguide layer 13 can have interruptions in the region of the radiation receivers 9.
  • the luminescent substance is excited via the evanescent field of the excitation radiation 4 guided in the waveguide 13, which extends into the inner cavity ⁇ .
  • the measuring chamber 7 is designed as a flow cell or flow measuring chamber with an inlet opening 15 and an outlet opening 16. Detection reactions can be carried out in the measuring chamber 7.
  • a receptor 17 is immobilized in the inner cavity of the measuring chamber on the radiation receiver 9, which receptor binds to a specific ligand.
  • the receptor 17 can be immobilized, for example, by silanization or a polyimide layer arranged on the radiation receiver 9, to which the receptor 17 adheres.
  • the receptor 17 can be printed on the radiation receiver 9 or the polyimide layer thereon. 4 is the receptor
  • the luminescent substance 2 can be a fluorescent dye, for example,
  • the semiconductor substrate 8 has a plurality of radiation receivers 9, 9, 9 arranged next to one another; on which different receptors 17, 17, 17 are immobilized.
  • the receptors are selected so that they have a different, graduated affinity for a particular ligand.
  • the receptor 17 has a high, the receptor 17 a medium and the receptor 17 a low affinity for the epitope 18 of the ligand. Accordingly, a larger number of ligands bind to receptor 17 than to the receptor 17. Similarly, the number of ligands that bind to the receptor 17 is greater than the number of ligands that bind to the receptor 17.
  • the intensity of the luminescent radiation at the radiation receiver 9 is greater than at the radiation receiver 9.
  • the intensity of the luminescent radiation is correspondingly on the radiation receiver 9 ′ is larger than at the radiation receiver 9.
  • the concentration of the ligands can therefore be deduced from the measurement signals of the radiation receivers 9, 9, 9. Due to the graded affinity of the different receptors 17, 17, 17, the device 1 enables the concentration of the ligand to be determined with a large dynamic range.
  • the device 1 for detecting at least one luminescent substance 2 thus has a radiation source 3 for emitting excitation radiation 4 onto the at least one luminescent substance 2.
  • the excitation radiation 4 has at least one excitation wavelength; in which the luminescent substance 2 is excited to emit luminescent radiation 5.
  • at least one radiation receiver 9, 9, 9 is provided, which is designed with respect to its spectral sensitivity in such a way that it is insensitive to the excitation radiation 4 emitted by the radiation source 3.
  • the luminescent substance 2 is arranged in the interior of a measuring chamber 7 which is essentially impermeable to the luminescent radiation 5 and which has at least one wall region which is transparent to the excitation radiation 4 emitted by the radiation source 3.
  • the radiation source 3 is arranged outside the measuring chamber 7 such that the Excitation radiation 4 emitted by the radiation source 3 is coupled through the wall area into the interior of the measuring chamber 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Eine Vorrichtung (1) zum Detektieren mindestens eines Lumineszenz-Stoffs (2) hat eine Strahlungsquelle (3) zur Aussendung von Anregungsstrahlung (4) auf den mindestens einen Lumineszenz-Stoff (2). Die Anregungsstrahlung (4) weist wenigstens eine Anregungswellenlänge auf, bei welcher der Lumineszenz-Stoff (2) zur Abgabe von Lumineszenzstrahlung (5) angeregt wird. Zum Detektieren der Lumineszenzstrahlung (5) ist wenigstens ein Strahlungsempfänger (9, 9, 9 ) vorgesehen, der bezüglich seiner spektralen Empfindlichkeit derart ausgebildet ist, dass er für die von der Strahlungsquelle (3) ausgesandte Strahlung (4) unempfindlich ist. Der Lumineszenz-Stoff (2) ist im Inneren einer für die Lumineszenzstrahlung (5) im Wesentlichen undurchlässigen Messkammer (7) angeordnet, die wenigstens einen für die von der Strahlungsquelle (3) ausgesandte Anregungsstrahlung (4) transparenten Wandungsbereich hat, Die Strahlungsquelle (3) ist ausserhalb der Messkammer (7) angeordnet, derart, dass die von der Strahlungsquelle (3) ausgesandte Anregungsstrahlung (4) durch den Wandungsbereich hindurch in das Innere der Messkammer eingekoppelt wird.

Description

Verfahren und Vorrichtung zum Detektieren mindestens eines Lumineszenz-Stoffe
Die Erfindung betrifft eine Vorrichtung zum Detektieren mindestens eines Lumineszenz-Stoffe, mit einer Strahlungsquelle zur Aussendung von Anregungsstrahlung auf den mindestens einen Lumineszenz-Stoff, wobei die Anregungsstrahlung wenigstens eine Anregungswellenlänge aufweist, bei welcher der Lumineszenz-Stoff zur Abgabe von Lumineszenzstrahlung angeregt wird, und mit wenigstens einem für die Anregungsstrahlung unempfindlichen Strahlungsempfänger zum Detektieren der Lumineszenzstrahlung. Die Erfindung bezieht sich außerdem auf ein Verfahren zum Detektieren mindestens eines Lumineszenz-Stoffs, wobei der Lumineszenz-Stoff mit einer Anregungsstrahlung bestrahlt wird, die wenigstens eine Anregungswellenlänge aufweist, bei welcher der Lumineszenz-Stoff zur Abgabe von Lumineszenzstrahlung angeregt wird, und wobei die von dem Lumineszenz-Stoff abgegebene Lumineszenzstrahlung mittels wenigstens eines, für die Anregungsstrahlung unempfindlichen Strahlungsempfängers delektiert wird.
Eine derartige Vorrichtung ist aus EP 0 723 14ό AI bekannt. Sie weist einen CCD- Sensor mit einer Vielzahl von matrixförmig angeordneten Detektorelementen als Strahlungsempfängern auf Die einzelnen Strahlungsempfänger des CCD-Sensors sind mit unterschiedlichen biologischen Rezeptoren beschichtet. Die Rezeptoren werden mit einem Analyten in Kontakt gebracht, der einen mit einem Lumineszenz- Stoff markierten Liganden enthält, welcher an mindestens einen der Rezeptoren ankoppelt, Zum Nachweis des Lumineszenz-Stoffs und somit indirekt auch des Liganden wird der Lumineszenz-Stoff mit einer optischen Strahlung bestrahlt, welche ihn zur Abgabe von Lumineszenzstrahlung angeregt. Diese wird mittels des Strahlungsempfängers gemessen. Die spektrale Empfindlichkeit des Strahlungsempfängers ist so gewählt, dass dieser zwar für die Lumineszenzstrahlung, nicht jedoch für die Strahlung, mit welcher der Lumineszenz-Stoff angeregt wird, empfindlich ist. Die Vorrichtung hat den Nachteil, dass das Messsignal des Strahlungsempfängers relativ störempfindlich gegenüber Streu- oder Störlicht ist. Außerdem weist die Vorrichtung noch eine gewisse Baugröße auf Es besteht deshalb die Aufgabe, eine Vorrichtung der eingangs genannten Art zu schaffen, die bei einem einfachen und kompakten Aufbau weitestgehend unempfindlich gegenüber Streu- oder Störstrahlung ist. Außerdem besteht die Aufgabe, ein Verfahren anzugeben, das auf einfache Weise durchführbar und gegenüber Streu- oder Störstrahlung weitestgehend unempfindlich ist.
Diese Aufgabe wird bezüglich der Vorrichtung dadurch gelöst, dass der Lumineszenz-Stoff im Inneren einer Messkammer angeordnet ist, die für die Anregungsstrahlung transparent und für Strahlung, für die der Strahlungsempfänger empfind- lieh ist, im Wesentlichen undurchlässig ist, und dass die Strahlungsquelle außerhalb der Messkammer derart angeordnet ist, dass die Anregungsstrahlung durch die Messkammer hindurch in das Innere der Messkammer eingekoppelt wird.
Bezüglich des Verfahrens besteht die Lösung der Aufgabe darin, dass der Lumines- zenz-Stoff im Inneren einer Messkammer angeordnet wird, die für die Anregungsstrahlung transparent und für Strahlung, für die der Strahlungsempfänger empfindlich ist, im Wesentlichen undurchlässig ist, und dass der Lumineszenz-Stoff durch die Messkammer hindurch mit der Anregungsstrahlung bestrahlt wird.
In vorteilhafter Weise schirmt die Messkammer also in dem mit dem Strahlungsempfänger detektierbaren Wellenlängenbereich den mindestens einen in der Messkammer oder innerhalb deren Außenkontur befindlichen Strahlungsempfänger gegen außerhalb der Messkammer auftretende Streu- oder Störstrahlung ab. Dabei wird die Streustrahlung beim Eindringen in die Wandung der Messkammer entweder vollständig ausgelöscht oder zumindest so stark abgeschwächt, dass sie nach dem Durchdringen der Wandung praktisch nicht mehr von dem Strahlungsempfänger delektiert wird. Somit wird in dem zu delektierenden Wellenlängenbereich eine hohe Störsicherheit der Messung gegenüber Fremd- oder Streustrahlung erreicht. Für die von der Strahlungsquelle ausgesandte Anregungsstrahlung, für die der wenigstens eine Strahlungsempfänger unempfindlich ist, ist die Messkammer zumindest in einem Wandungsbereich seiner Begrenzungswand durchlässig. Die Strahlungsquelle ist außerhalb der Messkammer angeordnet und die Anregungsstrahlung wird durch den Wandungsbereich hindurch in das Innere der Messkammer eingekoppelt. Dadurch kann ein sehr kompakter Aufbau der Messkam- mer erreicht werden, Gegebenenfalls kann die Vorrichtung auch als Optokoppler Verwendung finden. Dabei kann die Strahlungsquelle zur Übertragung eines Signals mit einer Modulationseinrichtungseinrichtung und der Strahlungsempfänger mit einer Demodulalionseinrichlung verbunden sein. Unter Lumineszenz werden alle Emissionen von Strahlungsquanten verstanden, vor allem Leuchter- scheinungen, wie Fluoreszenz oder Phosphoreszenz, die Stoffe nach quantenhafter Anregung zeigen.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung ist ein der Strahlungsquelle zugewandter, für die Anregungsstrahlung transparenter Wandungsbe- reich der Messkammer durch ein Halbleitersubstrat gebildet und der wenigstens eine Strahlungsempfänger ist als Halbleiterbaueiement in das Halbleitersubstrat integriert. Das Halbleitersubstrat erfüllt dann eine Doppelfunktion und dient außer als Träger für den wenigstens einen Strahlungsempfänger auch als Fenster zum Einkoppeln der Anregungs-Strahlung in die Messkammer. Die Messkammer kann dann mit Methoden der Mikrosystemtechnik besonders kostengünstig hergestellt werden. Dabei kann die Vorrichtung sehr kompakte Abmessungen aufweisen.
Bei einer zweckmäßigen Ausgestaltung der Erfindung ist das Halbleitersubstrat ein Siliziumsubstrat. Silizium ist für Infrarotlicht mit einer Wellenlänge von größer als etwa 1080 nm durchlässig, so dass als Strahlungsquelle zum Anregen des Lumineszenz- Stoffe eine Infrarot-Strahlungsquelle vorgesehen sein kann. Der Strahlungsempfänger kann eine in das Halbleitersubstrat integrierte Silizium-Photodiode sein, die in diesem Wellenlängenbereich unempfindlich ist, sein.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung ist die Vorrichtung als Wärmebildkamera ausgebildet, die in der Messkammer eine Vielzahl von vorzugsweise in Form einer zweidimensionalen Matrix angeordneten Strahlungsempfängern aulweist, denen wenigstens eine Abbildungsoptik zum Abbilden der Strahlungsquelle auf die Strahlungsempfänger zugeordnet ist. Im Inneren der Messkammer kann in diesem Fall eine sich durchgängig über die Strahlungsempfänger erstreckende Lumineszenz-Stoftschicht angeordnet sein. Es ist aber auch denkbar, dass die Lumineszenz-Stoflschicht zwischen den Strahlungsempfängern Unterbrechungen aufweist. Die Lumineszenz-Stoffschicht kann gegebenenfalls den Raum zwischen den beidseits der Lumineszenz-Stoffechicht angeordneten Wan- düngen der Messkammer vollständig ausfüllen, d.h. die Wandungen bilden mit der Lumineszenz-Stoffechicht einen Schichtstαpel. Die Abbildungsoptik ist vorzugsweise außerhalb der Messkammer zwischen dieser und der Strahlungsquelle angeordnet.
Bei einer bevorzugten Ausfυhrungsform der Erfindung ist der Lumineszenz-Stoff derart ausgebildet, dass die Wellenlänge der Lumineszenzstrahlung kleiner ist als die Anregungswellenlänge. Derartige aufwärtskonvertierende Lumineszenz-Stoffe sind an sich bekannt, beispielsweise aus EP 0 723 14ό AI . Als Beispiele für aufwärtskonvertierende Lumineszenz-Stoffe seien die Farbstoff BND der Dyomics GmbH, ena und IR-140 erwähnt. Anders als abwärtskonvertierende Lumineszenz-Stoffe beziehen aufwärtskonvertierende Lumineszenz-Stoffe die für die Quantenemission benötigte Energie nicht aus einem einzigen sondern aus mehreren Quanteneffekten. Aufwärtskonvertierende Lumineszenz-Stoffe weisen daher im Vergleich zu abwärtskonvertierenden Lumineszenz-Stoffen eine wesentlich größere Stokes- Verschiebung auf; bei welcher die Wellenlänge der Anregungsstrahlung beispielsweise etwa doppelt so groß sein kann wie die Wellenlänge der Lumineszenz- Strahlung. Dadurch ist es möglich, als Strahlungsquelie eine Infrarot- Halbleiterstrahlungsquelle, insbesondere eine Halbleiterlaserdiode vorzusehen, die bei kompakten Abmessungen eine hohe Strahlungsintensität ermöglicht. Das Infrarotlicht derartiger Halbleiterstrahlungsquellen hat außerdem den Vorteil, dass gegenüber kurzwelligerer optischer Strahlung weniger Streueffekte auftreten. Mit Hilfe des aufwärtskonvertierenden Lumineszenz-Stoffe kann die von der Halbleiterstrahlungsquelle abgegebene optische Strahlung in sichtbares Licht oder in nahes Infrarot-Licht konvertiert werden, so dass als Strahlungsempfänger ein kostengünsti- ger optoelektronischer Halbleitersensor vorgesehen sein kann, der in diesem Wellenlängenbereich eine hohe Detektionsempfindlichkeit aulweist.
Vorteilhaft ist, wenn eine dem Wandungsbereich gegenüberliegende Begrenzungswand der Messkammer als Reflektor zum Reflektieren der Anregungsstrah- lung ausgebildet ist. Die in die Messkammer eingekoppelte Strahlung kann dann noch besser zum Anregen des mindestens eines Lumineszenz-Stoffe genutzt werden.
Bei einer anderen vorteilhaften Ausführungsform der Erfindung ist der Wandungs- bereich über einen optischen Wellenleiter mit dem Inneren der Messkammer verbunden, wobei der Wellenleiter vorzugsweise parallel zur Erstreckungsebene des Wandungsbereichs, insbesondere an dessen dem Lumineszenz-Stoff zugewandter Innenseite verläuft. Die zur Anregung des Lumineszenz-Stoffs vorgesehene Strahlung wird dann besonders verlustarm in das Innere der Messkammer geleitet, so dass sich entlang des Halbleitersubstrats eine gleichmäßige Anregung des Lumineszenz-Stofls ergibt, Dabei erfolgt die Anregung des vorzugsweise auf der totalrefelektierenden Begrenzungsfläche des Wellenleiters oder dicht benachbart dazu angeordneten Lumineszenz-Stoffe über das Evaneszenzfeld der in dem Wellenleiter geführten Strahlung. Die Einkopplung der Strahlung in den Wellenleiter kann mit Hilfe eines Prismas und/oder eines optischen Gitters erfolgen, an welchem die Strahlung derart abgelenkt wird, dass sie beim Auftreffen auf eine Begrenzungsfläche des Wellenleiters der Totalreflexion unterliegt.
Bei einer vorteilhaften Ausfuhrungsform der Erfindung ist ein Messsignalausgang mindestens eines Strahlungsempfängers direkt oder indirekt über eines Auswerteeinrichtung mit einem Transponder zur Übertragung des Messsignals oder eines daraus abgeleiteten Signals zu einem Empfängerteil verbunden, wobei der Transponder vorzugsweise in das Halbleitersubstrat integriert ist. Das mit Hilfe des wenigstens einen Strahlungsempfängers gemessene Messsignal kann dann drahtlos zu dem Empfängerteil übertragen und von dort zu einer Auswerteeinrichtung, einer Anzeigeanrichtung und/oder einem Datenspeicher weitergeleitef werden. Die Vorrichtung ist dann besonders gut für einen mobilen Einsatz geeignet. Gegebenenfalls ist es sogar möglich, die Messkammer mit einem Gegenstand zu verbinden oder in diesen zu integrieren, um eine Überprüfung der Echtheit des Gegenstands zu ermöglichen. Dabei kann der Gegenstand beispielsweise eine Kreditkarte, ein Geldschein oder ein Kleidungsstück (Designerkleidung) sein. Zum Überprüfen der Echtheit des Gegenstands wird die daran angeordnete Messkammer mit dem Anregungslicht bestrahlt und das dabei mit Hilfe des Strahlungsempfängers gemessene Messsignal wird mit einem Referenzsignal verglichen.
Bei einer Ausfuhrungsform der Erfindung sind im Inneren der Messkammer wenigstens zwei Lumineszenz-Stoffe mit voneinander abweichender Anregungswellenlänge angeordnet, wobei jedem dieser Lumineszenz-Stoffe jeweils eine Strahlungsquelle mit an die Anregungswellenlänge des jeweiligen Lumineszenz-Stoffe angepasster Spektralverteilung zugeordnet ist Die Strahlungsquellen können dann 0
ggf moduliert und insbesondere alternierend ein- und ausgeschaltet werden. Durch einen Vergleich des Messsignals des Strahlungsempfängers mit dem Modulationssignal kann auf das Vorhandensein oder Nichtvorhandensein des entsprechenden Lumineszenz-Stoffe in der Messkammer rückgeschlossen werden.
Bei einer zweckmäßigen Ausgestaltung der Erfindung ist die Messkammer als Durchflυssmesskammer mit einer Innenhöhlung, wenigstens einer .Einlassöfihung und mindestens einer Auslassöffhung ausgebildet. In der Messkammer können dann beispielsweise Biomoleküle oder Biokomponenten untersucht und über die Ein- und Auslassöffhung mit einer Nährflüssigkeit versorgt werden, Dabei kann das Biomolekül beispielsweise Nukleinsäuren oder Derivate davon (DNA, RNA, PNA, LNA, Oligonukleotide, Plasmide, Chromosomen), Peptide, Proteine (Enzym, Protein, Oligopeptide, zelluläre Rezeptorproteine und deren Komplexe, Peptidhormone, Antikörper und deren Fragmente), Kohlenhydrate und deren Derivate, insbesonde- re glykosylierte Proteine und Glycoside, Fette, Fettsäuren und/oder Lipide umfassen.
Bei einer bevorzugten Ausführungsform der Erfindung ist in der Innenhöhlung an der Oberfläche wenigstens eines Strahlungsempfängers mindestens ein Rezeptor für einen Liganden, insbesondere für ein Biomolekül, eine biologische Zelle und/oder wenigstens ein Fragment einer solchen immobilisiert, wobei der Ligand mit dem mindestens einen Lumineszenz-Stoff markiert ist. Dabei wird unter einem Rezeptor ein Molekül verstanden, das an einer Oberfläche gebunden werden kann und mit einem zweitem Molekül, dem Liganden, eine Bindung eingehen kann. Rezeptoren sind beispielsweise, aber nicht ausschließlich: Nukleinsäuren und deren Derivate (DNA, RNA, PNA, LNA, Oligonukleotide, Plasmide, Chromosomen), Peptide und Proteine (Enzyme, Proteine, Oligopeptide, zelluläre Rezeptorproteine und deren Komplexe, Peptidhormone, Antikörper und deren Fragmente), Kohlenhydrate und deren Derivate, insbesondere glykosylierte Proteine und Glycoside, Der Rezeptor kann aber auch komplexere Strukturen, wie z.B. Zellen und deren Frag- mente, umfassen. Unter einem Liganden werden Moleküle verstanden, die mit einem Rezeptor eine mehr oder weniger spezifische Bindung eingehen können. Liganden sind beispielsweise, aber nicht ausschließlich: Nukleinsäuren und deren Derivate (DNA, RNA, PNA, LNA, Oligonukleotide,Plasmide, Chromosomen), Peptide und Proteine (Enzyme, Proteine, Oligopeptide, zelluläre Rezeptorproteine und deren Komplexe, Peptidhormone, Antikörper und deren Fragmente), Kohlenhydrate und deren Derivate, insbesondere glykosylierte Proteine und Glycoside, Fette, Fettsäuren und Lipide, Zellen und deren Fragmente, aber auch alle pharmakologisch und toxikologisch wirksamen Substanzen. Der Rezeptor kann gegebenenfalls auf den Strahlungsempfänger aufgedruckt sein. Zwischen dem Strahlungsempfänger und dem Rezeptor kann eine Polyimidschicht angeordnet sein, um das Anhaften des Rezeptors an dem Strahlungsempfänger zu verbessern.
Vorteilhaft ist, wenn auf dem Halbleitersubstrat mehrere Strahlungsempfänger vorzugsweise in Form eines zweidimensionalen Arrays, nebeneinander angeord- net sind, und wenn auf den Strahlungsempfängern gegebenenfalls unterschiedliche Rezeptoren angeordnet sind. Die Vorrichtung ermöglicht es dann, einen Analyten auf das Vorkommen einer Vielzahl von unterschiedlichen Liganden zu untersuchen.
Besonders vorteilhaft ist, wenn wenigstens zwei der unterschiedlichen Rezeptoren eine unterschiedliche Affinität für wenigstens einen mit dem Lumineszenz-Stoff markierten Liganden aufweisen, und wenn gegebenenfalls mehr als zwei Rezeptoren vorgesehen sind, die eine abgestufte Affinität für den wenigstens einen Liganden aufweisen. Ein Strahlungsempfänger, auf dem ein Rezeptor mit einer großen Affinität zum Liganden angeordnet ist, liefert dann bereits bei einer geringen Konzentration des Liganden in einem in der Messkammer befindlichen, zu untersuchenden Analyten ein Messsignal. Ein Strahlungsempfänger, auf dem ein Rezeptor mit einer geringeren Affinität zum Liganden angeordnet ist, liefert erst bei einer entsprechend höheren Konzentration des Liganden ein Messsignal, wenn sich das Messsignal des zuerst genannten Strahlungsempfängers eventuell bereits in der Sättigung befindet Ein Vorrichtung, die eine entsprechende Anzahl Rezeptoren mit abgestufter Affinität aufweist, ermöglicht somit eine Konzentrationsbestimmung des Liganden mit großer dynamischer Breite. Die Vorrichtung ermöglicht es dadurch, sowohl bei Liganden mit hoher Konzentration als auch bei Liganden mit niedriger Konzentration jeweils mit grosser Genauigkeit eine Messung der Konzentration des Liganden durchzuführen, ohne dass dazu eine aufwendige und umständliche Verdünnung des Liganden erforderlich ist. Die Rezeptoren können Antikörper sein, die gegen verschiedene Epitope des gleichen Liganden auf die einzelnen Strahlungsempfänger aufgebracht sind, die aber verschiedene Bindungskonstanten aufweisen. Es ist aber auch möglich, dass die Affinität wenigstens eines Antikörpers durch eine chemische Behandlung reduziert ist.
Nachfolgend sind Ausfuhrungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigen zum Teil stärker schematisiert:
Fig. 1 einen Querschnitt durch eine Durchflussmesskammer, in deren Innenhöhlung ein Lumineszenz-Stoff angeordnet ist, wobei die Durchflussmesskammer Strahlungsempfänger zum Messen der Lumineszenzstrahlung aufweist,
Fig.2 einen Querschnitt durch eine Vorrichtung mit einer Durchflussmesskammer, die einen für eine Anregungs-Strahlung durchlässigen Wandungsbereich hat, dem eine reflektierende Begrenzungswand gegenüberliegt, wobei die Anregungs-Strahlung schematisch in Form von Strahlen dargestellt ist,
Fig. 3 einen Querschnitt durch eine Durchflussmesskammer, die einen als
Wellenleiter ausgebildeten Wandungsbereich hat, in dem die Anre- gungsstrahlung geführt wird,
Fig. 4 einen Querschnitt durch einen Strahlungsempfänger, auf dem eine
Rezeptorschicht immobilisiert ist, die durch einen Lumineszenz-Stoff markierte Liganden bindet,
Fig. 5 eine Darstellung ähnlich Fig. 4, wobei der Lumineszenz-Stoff mit Hilfe von
Anregungs-Strahlung zur Abgabe von Lumineszenz-Strahlung angeregt wird, wobei die Anregungs-Strahlung und die Lumineszenz-Strahlung schematisch in Form von Strahlen dargestellt sind,
Fig, ό einen Teilquerschnitt durch einen Wandungsbereich der Messkammer, der mehrere Strahlungsempfänger aufweist, auf denen Rezeptoren immobilisiert sind, und Fig. 7 eine graphische Darstellung der spektralen Empfindlichkeit einer
Photodiode, wobei auf der Abszisse die Wellenlänge in Nanometern und auf der Ordinate die Quanteneffizienz in Prozent aufgetragen ist.
Eine im Ganzen mit 1 bezeichnete Vorrichtung zum Detektieren mindestens eines Lumineszenz-Stoffe 2 weist eine in der Zeichnung nur schematisch dargestellte Strahlungsquelle 3 aut die derart angeordnet ist, dass eine von ihr ausgesandte Anregungsstrahlung 4 auf den Lumineszenz-Stoff 2 auftrifft. Die Strahlungsquelle 3 kann beispielsweise eine Halbleiterstrahlungsquelle sein, insbesondere eine Leuchtdiode oder eine Laserdiode. Das Spektrum der Anregungsstrahlung 4 weist mindestens eine Anregungswellenlänge auf, bei welcher der Lumineszenz-Stoff 2 zur Abgabe von Lumineszenzstrahlung 5 angeregt wird.
Der Lumineszenz-Stoff 2 ist in der Innenhöhlung ό einer Messkammer 7 angeordnet, deren Wandungen für die Lumineszenzstrahlung 5 im Wesentlichen undurchlässig sind. Die Messkammer 7 hat einen der Strahlungsquelle 3 zugewandten, für die Anregungs-Strahlung 3 durchlässigen Wandungsbereich, der durch ein scheiben- oder plattenförmiges Silzium-Halbleitersubstrat 8 gebildet ist. Das Halbleitersubstrat 8 kann bei der Fertigung der Messkammer 7 aus einem Silizium-Wafer kostengünstig hergestellt werden.
In Fig. 2 ist erkennbar, dass die Strahlungsquelle 3 außerhalb der Messkammer 7 angeordnet ist, und dass die Anregungsstrahlung 4 durch das Halbleitersubstrat 8 hindurch in die Innenhöhlung ό der Messkammer 7 eingekoppelt wird. Zum Detektieren der von dem Lumineszenz-Stoff 2 ausgesandten Lumineszenzstrahlung 5 sind auf dem Halbleitersubstrat 8 mehrere, jeweils als Photodioden ausgebildete Strahlungsempfänger 9 angeordnet, die mit Ihrer Detektionsseite der Innenhöhlung ό der Messkammer 7 zugewandt sind.
Die Spektralverteilung der Anregungsstrahlung 4 liegt in einem Wellenlängenbereich, der oberhalb von etwa 1080 nm angeordnet ist. Wie in Fig. 7 erkennbar ist, sind die Strahlungsempfänger 9 in diesem Wellenlängenbereich unempfindlich. Bei dem Lumineszenz-Stoff 2 handelt es sich um einen aufwärtskonvertierenden Lumineszenz-Stoff 2, bei dem die Wellenlänge der Lumineszenzstrahlung 5 kleiner ist als die Wellenlänge der Anregungs-Strahlung 3. Die für die Emission eines Lumineszenz-Strαhlungsquαnts benötigte Energie wird dabei aus mehreren Strahlungsquanten der Strahlungsquelle 3 bezogen. Das Spektrum der Lumineszenz-Strahlung liegt in einem Wellenlängenbereich unterhalb von 1080 nm, in dem die Strahlungsempfänger 9 empfindlich sind. Die Strahlungsempfänger 9 detektieren also nur die Lumineszenzstrahlung 5, nicht jedoch die Anregungsstrahlung 4. Die Messkammer 7 ist für Strahlung, die in dem Wellenlängenbereich liegt, in dem die Strahlungsempfänger 9 empfindlich sind, im Wesentlichen undurchlässig. Somit sind die Strahlungsempfänger 9 durch die Messkammer 7 gegen außerhalb der Messkammer 7 auftretende Störstrahlung 10 abgeschirmt.
in Fig. 1 bis 3 ist erkennbar, dass die Strahlungsempfänger 9 über Leiterbahnen mit einer in das Halbleitersubstrat integrierten Ansteuerungs- und Auswerteeinrichtung 1 1 verbunden sind. Die Auswerteeinrichtung 1 1 hat eine in der Zeichnung schematisch dargestellte Schnittstelleneinrichtung zum Verbinden mit einer übergeordne- ten Anzeige- und/oder Auswerteeinheit, beispielsweise einem Mikrocomputer,
Bei dem Ausführungsbeispiel nach Fig. 2 ist die dem Halbleitersubstrat 8 gegenüberliegende Begrenzungswand 12 der Messkammer 7 als Reflektor ausgebildet, an dem die durch das Halbleitersubstrat hindurch in die Innenhöhlung ό der Messkammer 7 eingekoppelte Anregungsstrahlung 4 in die Innenhöhlung ό zurückreflektiert wird. Die in die Messkammer 7 eingekoppelte Anregungsstrahlung 4 wird dadurch mehrfach durch die Messkammer 7 geleitet und somit besser zur Anregung des Lumineszenz-Stoffe 2 genutzt. Die Begrenzungswand 12 weist einen Grundkörper aus Silizium auf, der an seiner der Innenhöhlung ό zugewandten Innenseite mit einer die Anregungsstrahlung 4 reflektierenden Beschichtung versehen ist.
Bei dem in Fig. 3 gezeigten Ausführungsbeispiel ist das Halbleitersubstrat 8 über einen optischen Wellenleiter 13 mit der Innenhöhlung der Messkammer 7 verbun- den. Die Anregungsstrahlung 4 durchdringt - ausgehend von der Strahlungsquelle 3 zu der Innenhöhlung ό - zunächst das Halbleitersubstrat 8 und trifft dann auf ein optisches Fenster des Wellenleiters 13 aut an dem die Anregungsstrahlung 4 in den Wellenleiter 13 eingekoppelt wird. Das optische Fenster ist an einem prismen- förmigen Einkoppelelement 14 vorgesehen. Der Wellenleiter 13 ist als Wellenleiter- schicht ausgebildet, die etwa parallel zur Erstreckungsebene des Halbleitersubstrats 8 verläuft und an der der Innenhöhlung ό zugewandten Innenseite des Halbleitersubstrats 8 angeordnet ist. Bei dem Ausführungsbeispiel nach Fig. 3 erstreckt sich die Wellenleiterschicht 13 durchgängig über die Strahlungsempfänger 9. Es sind aber auch andere Ausfuhrungsformen denkbar, bei denen die Wellenleiterschicht 13 im Bereich der Strahlungsempfänger 9 Unterbrechungen aufweisen kann. Die Anregung des Lumineszenzstoffs erfolgt über das Evaneszenzfeld der in dem Wellenleiter 13 geführten Anregungsstrahlung 4, das sich bis in die Innenhöhlung ό erstreckt.
In Fig. 1 bis 3 ist noch erkennbar, dass die Messkammer 7 als Flusszelle oder Durchflussmesskammer mit einer Einlassöffhung 15 und einer Auslassöffhung 16 ausgebildet ist. In der Messkammer 7 können Nachweisreaktionen durchgeführt werden.
In Fig. 4 ist erkennbar, dass in der Innenhöhlung der Messkammer auf dem Strahlungsempfänger 9 ein Rezeptor 17 immobilisiert ist, der an einen spezifischen Liganden bindet. Die Immobilisierung des Rezeptors 17 kann beispielsweise durch eine Silanisierung oder eine auf dem Strahlungsempfänger 9 angeordnete Polyimidschicht erreicht werden, an welcher der Rezeptor 17 anhaftet. Der Rezeptor 17 kann auf den Strahlungsempfänger 9 bzw, die darauf befindliche Polyimidschicht aufgedruckt sein. Bei dem Ausführungsbeispiel nach Fig. 4 ist der Rezeptor
17 ein erster Antikörper gegen ein bestimmtes Epitop 18 des Liganden. Nach Bindung des Epitops 18 an den Rezeptor 17 wird der so gebildete, aus dem Epitop
18 und dem Rezeptor 19 bestehende Antikörperkomplex mittels eines zweiten, an das Epitop 18 bindenden Antikörpers 19 markiert. Dieser Antikörper 19 ist direkt oder indirekt mit dem Lumineszenz-Stoff 2 markiert. Der Lumineszenz-Stoff 2 kann beispielsweise ein fluoreszierender Farbstoff sein,
Bei dem Ausführungsbeispiel nach Fig, ό weist das Halbleitersubstrat 8 mehrere nebeneinander angeordnete Strahlungsempfänger 9, 9, 9 auf; auf denen unterschiedliche Rezeptoren 17, 17, 17 immobilisiert sind. Die Rezeptoren sind so ausgewählt, dass sie eine für einen bestimmten Liganden eine unterschiedliche, abgestufte Affinität aufweisen. Dabei hat der Rezeptor 17 eine große, der Rezeptor 17 eine mittlere und der Rezeptor 17 eine geringe Affinität für das Epitop 18 des Liganden. Demnach bindet an den Rezeptor 17 eine größere Anzahl Liganden als an den Rezeptor 17. In entsprechender Weise ist die Anzahl der Liganden, die an den Rezeptor 17 binden, größer als die Anzahl der an den Rezeptor 17 bindenden Liganden. Da die Liganden mit dem Lumineszenz-Stoff 2 markiert sind und dieser mittels der Strahlungsquelle 3 zur Emission von Lumineszenzstrahlung angeregt wird, ergibt sich an dem Strahlungsempfänger 9 eine größere Intensität der Lumineszenzstrahlung als an dem Strahlungsempfänger 9. In entsprechender Weise ist die Intensität der Lumineszenzstrahlung an dem Strahlungsempfänger 9' größer als an dem Strahlungsempfänger 9 . Aus den Messsignalen der Strahlungsempfänger 9, 9, 9 kann also auf die Konzentration der Liganden rückge- schlössen werden. Aufgrund der abgestuften Affinität der unterschiedlichen Rezeptoren 17, 17, 17 ermöglicht die Vorrichtung 1 eine Konzentrationsbestimmung des Liganden mit großer dynamischer Breite.
Die Vorrichtung 1 zum Detektieren mindestens eines Lumineszenz-Stoffe 2 hat also eine Strahlungsquelle 3 zur Aussendung von Anregungsstrahlung 4 auf den mindestens einen Lumineszenz-Stoff 2. Die Anregungsstrahlung 4 weist wenigstens eine Anregungswellenlänge auf; bei welcher der Lumineszenz-Stoff 2 zur Abgabe von Lumineszenzstrahlung 5 angeregt wird. Zum Detektieren der Lumineszenzstrahlung 5 ist wenigstens ein Strahlungsempfänger 9, 9, 9 vorgesehen, der bezüglich seiner spektralen Empfindlichkeit derart ausgebildet ist, dass er für die von der Strahlungsquelle 3 ausgesandte Anregungsstrahlung 4 unempfindlich ist. Der Lumineszenz-Stoff 2 ist im Inneren einer für die Lumineszenzstrahlung 5 im Wesentlichen undurchlässigen Messkammer 7 angeordnet, die wenigstens einen für die von der Strahlungsquelle 3 ausgesandte Anregungsstrahlung 4 transparenten Wandungsbereich hat, Die Strahlungsquelle 3 ist außerhalb der Messkammer 7 angeordnet, derart, dass die von der Strahlungsquelle 3 ausgesandte Anregungsstrahlung 4 durch den Wandungsbereich hindurch in das Innere der Messkammer 7 eingekoppelt wird.

Claims

Patentansprüche
1. Vorrichtung (1) zum Detektieren mindestens eines Lumineszenz-Stoffe (2), mit einer Strahlungsquelle (3) zur Aussendung von Anregungsstrahlung (4) auf den mindestens einen Lumineszenz-Stoff (2), wobei die Anregungsstrahlung
(4) wenigstens eine Anregungswellenlänge aufweist, bei welcher der Lumineszenz-Stoff (2) zur Abgabe von Lumineszenzstrahlung (5) angeregt wird, und mit wenigstens einem für die Anregungsstrahlung (4) unempfindlichen Strahlungsempfänger (9, 9, 9 ) zum Detektieren der Lumineszenzstrahlung (5), dadurch gekennzeichnet, dass der Lumineszenz-Stoff (2) im Inneren einer
Messkammer (7) angeordnet ist, die für die Anregungsstrahlung (4) transparent und für Strahlung, für die der Strahlungsempfänger (9, 9, 9 ) empfindlich ist, im Wesentlichen undurchlässig ist, und dass die Strahlungsquelle (3) außerhalb der Messkammer (7) derart angeordnet ist, dass die Anregungs- Strahlung (4) durch die Messkammer (7) hindurch in das Innere der Messkammer (7) eingekoppelt wird.
2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein der Strahlungsquelle (3) zugewandter, für die Anregungsstrahlung (4) transparen- ter Wandungsbereich der Messkammer (7) durch ein Halbleitersubstrat gebildet und dass der wenigstens eine Strahlungsempfänger (9, 9', 9 ) als Halbleiterbauelement in das Halbleitersubstrat integriert ist.
3. Vorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Lumineszenz-Stoff (2) derart ausgebildet ist, dass die Wellenlänge der Lumineszenzstrahlung (5) kleiner ist als die Anregungswellenlänge.
4. Vorrichtung (1) nach Anspruch 3, dadurch gekennzeichnet, dass das Halbleitersubstrat (8) ein Siliziumsubstrat ist.
Vorrichtung (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als Wärmebildkamera ausgebildet, die in der Messkammer (7) eine Vielzahl von vorzugsweise in Form einer zweidimensionalen Matrix angeordneten Strahlungsempfängern (9, 9, 9 ) aulweist, denen wenigstens eine
Abbildungsoptik zum Abbilden der Strαhlungsquelle (3) auf die Strahlungsempfänger (9, 9', 9 ) zugeordnet ist.
ό. Vorrichtung (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine dem Wandungsbereich gegenüberliegende Begrenzungswand
(12) der Messkammer (7) als Reflektor zum Reflektieren der Anregungsstrahlung (4) ausgebildet ist.
7. Vorrichtung (1) nach einem der Ansprüche 1 bis ό, dadurch gekennzeichnet, dass der transparente Wandungsbereich über einen optischen Wellenleiter
(1 3) mit dem Inneren (ό) der Messkammer (7) verbunden ist, und dass der Wellenleiter (1 3) vorzugsweise parallel zur Erstreckungsebene des transparenten Wandungsbereichs, insbesondere an dessen dem Lumineszenz-Stoff (2) zugewandter Innenseite verläuft.
8. Vorrichtung (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Messsignalausgang mindestens eines Strahlungsempfängers (9, 9, 9 ) mit einem Transponder zur Übertragung des Messsignals oder eines daraus abgeleiteten Signals zu einem Empfängerteil verbunden ist, und dass der Transponder vorzugsweise in das Halbleitersubstrat (8) integriert ist.
9. Vorrichtung (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass im Inneren (ό) der Messkammer (7) wenigstens zwei Lumineszenz-Stoffe
(2) mit voneinander abweichender Anregungswellenlänge angeordnet sind, und dass jedem dieser Lumineszenz-Stoffe (2) jeweils eine Strahlungsquelle
(3) mit an die Anregungswellenlänge des jeweiligen Lumineszenz-Stoffs (2) angepasster Spektralverteilung zugeordnet ist.
10. Vorrichtung (1 ) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Messkammer (7) als Durchflussmesskammer mit einer Innenhöhlung (ό), wenigstens einer Einlassöffhung (15) und mindestens einer Auslassöffhung (16) ausgebildet ist.
1 1. Vorrichtung (1 ) nach einem der Ansprüche 1 bis 1 0, dadurch gekennzeich- net, dass in der Innenhöhlung (ό) an der Oberfläche wenigstens eines Strah- lungsempfängers (9, 9, 9 ) mindestens ein Rezeptor (1 7, 17, 1 7 ) für einen Li- gαnden, insbesondere für ein Biomolekül, eine biologische Zelle und/oder wenigstens ein Fragment einer solchen immobilisiert ist, und dass der Ligand mit dem mindestens einen Lumineszenz-Stoff (2) markiert ist. 5
12. Vorrichtung (1) nach einem der Ansprüche 3 bis 1 1, dadurch gekennzeichnet, dass auf dem Halbleitersubstrat (8) mehrere Strahlungsempfänger (9, 9, 9 ) vorzugsweise in Form eines zweidimensionalen Arrays, nebeneinander angeordnet sind, und dass auf den Strahlungsempfängern (9, 9, 9 ) gege- i o benenfalls unterschiedliche Rezeptoren (17, 17 , 17 ) angeordnet sind.
1 3. Vorrichtung (1) nach Anspruch 10 oder 12, dadurch gekennzeichnet, dass wenigstens zwei der unterschiedlichen Rezeptoren (17, 17 , 17 ) eine unterschiedliche Affinität für wenigstens einen mit dem Lumineszenz-Stoff (2) mar-
15 Werten Liganden aufweisen, und dass gegebenenfalls mehr als zwei Rezeptoren (17, 17 , 17 ) vorgesehen sind, die eine abgestufte Affinität für den wenigstens einen Liganden aufweisen.
14. Verfahren zum Detektieren mindestens eines Lumineszenz-Stoffe (2), wobei 20 der Lumineszenz- Stoff (2) mit einer Anregungsstrahlung (4) bestrahlt wird, die wenigstens eine Anregungswellenlänge aufweist, bei welcher der Lumineszenz-Stoff (2) zur Abgabe von Lumineszenzstrahlung (5) angeregt wird, und wobei die von dem Lumineszenz-Stoff (2) abgegebene Lumineszenzstrahlung (5) mittels wenigstens eines, für die Anregungsstrahlung (4) unempfindli-
25 chen Strahlungsempfängers (9, 9, 9 ) delektiert wird, dadurch gekennzeichnet, dass der Lumineszenz-Stoff (2) im Inneren einer Messkammer (7) angeordnet wird, die für die Anregungsstrahlung (4) transparent und für Strahlung, für die der Strahlungsempfänger (9, 9, 9") empfindlich ist, im Wesentlichen undurchlässig ist, und dass der Lumineszenz-Stoff (2) durch die Messkammer
30 (7) hindurch mit der Anregungsstrahlung (4) bestrahlt wird.
PCT/EP2003/010144 2002-09-27 2003-09-12 Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs WO2004031747A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50307657T DE50307657D1 (de) 2002-09-27 2003-09-12 Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs
US10/529,048 US7312867B2 (en) 2002-09-27 2003-09-12 Method and device for the detection of at least one luminescent substance
AU2003275961A AU2003275961A1 (en) 2002-09-27 2003-09-12 Method and device for the detection of at least one luminescent substance
EP03798902A EP1511992B1 (de) 2002-09-27 2003-09-12 Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10245432.9 2002-09-27
DE10245432A DE10245432A1 (de) 2002-09-27 2002-09-27 Verfahren und Vorrichtung zum Detektieren mindestens eines Lumineszenz-Stoffs

Publications (1)

Publication Number Publication Date
WO2004031747A1 true WO2004031747A1 (de) 2004-04-15

Family

ID=31984233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010144 WO2004031747A1 (de) 2002-09-27 2003-09-12 Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs

Country Status (5)

Country Link
US (1) US7312867B2 (de)
EP (1) EP1511992B1 (de)
AU (1) AU2003275961A1 (de)
DE (2) DE10245432A1 (de)
WO (1) WO2004031747A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056949B4 (de) * 2006-11-30 2011-12-22 Ruprecht-Karls-Universität Heidelberg Verfahren und Vorrichtung zur Detektion mindestens einer Eigenschaft von mindestens einem Objekt mit einem Mikrochip
WO2009040721A1 (en) * 2007-09-28 2009-04-02 Koninklijke Philips Electronics N.V. A microelectronic sensor device comprising a carrier with electrical conductors
EP2439512A1 (de) 2010-10-01 2012-04-11 Aqsens Oy Vorrichtung zum Halten einer Probe
EP2439514A1 (de) 2010-10-01 2012-04-11 Aqsens Oy Verfahren, Vorrichtung und System zur optischen Untersuchung einer in mehreren Vertiefungen enthaltenen Probe
EP2993462B1 (de) * 2014-08-12 2019-05-22 Personal Genomics Inc. Optischer sensor umfassend einen wellenleiter
DE102016113042A1 (de) * 2016-07-15 2018-01-18 B. Braun Melsungen Ag Durchflussmesszellenvorrichtung zur Messung von Fluidparametern
EP3662237B1 (de) * 2017-08-03 2021-09-22 Littelfuse, Inc. Automobilantennenanordnung mit integriertem lichtstrahlungsintensitätssensor
DE102019219949A1 (de) * 2019-12-18 2021-06-24 Robert Bosch Gmbh Substrat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868103A (en) * 1986-02-19 1989-09-19 Enzo Biochem, Inc. Analyte detection by means of energy transfer
US5061076A (en) * 1989-01-31 1991-10-29 Enzo Diagnostics, Inc. Time-resolved fluorometer
EP0640828A1 (de) * 1993-08-27 1995-03-01 F. Hoffmann-La Roche AG Gleichzeitige Kontrolle mehrfacher Reaktionen und Analyse derselben
US5885843A (en) * 1996-08-16 1999-03-23 The Regents Of The University Of California Device and method for determining oxygen concentration and pressure in gases

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT383684B (de) * 1984-09-17 1987-08-10 Avl Verbrennungskraft Messtech Anordnung zur fluoreszenzoptischen messung von stoffkonzentrationen in einer probe
US5278048A (en) * 1988-10-21 1994-01-11 Molecular Devices Corporation Methods for detecting the effect of cell affecting agents on living cells
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
JP3420765B2 (ja) 1992-09-14 2003-06-30 エス・アール・アイ・インターナシヨナル レーザー励起技術を用いる生物学的および他の分析のためのアップコンバート性レポータ
US5976891A (en) * 1995-08-22 1999-11-02 U.S. Philips Corporation Method for investigating non-linear optical behavior of a layer formed from first and second reactants
US5774214A (en) * 1996-12-12 1998-06-30 Photometrics, Ltd. Multi-mode imaging apparatus for radiation-emitting or absorbing samples
DE19725050C2 (de) * 1997-06-13 1999-06-24 Fraunhofer Ges Forschung Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu deren Herstellung
DE19808936A1 (de) * 1998-03-03 1999-09-16 Aventis Res & Tech Gmbh & Co Photodetektor und seine Verwendung
AU749884B2 (en) * 1998-08-28 2002-07-04 Febit Ferrarius Biotechnology Gmbh Support for a method for determining an analyte and a method for producing the support
DE19844713C2 (de) * 1998-09-29 2001-09-20 Gsf Forschungszentrum Umwelt Fluoreszenz-Meßvorrichtung
US6701032B1 (en) * 1999-05-27 2004-03-02 Farfield Sensors Limited Device for housing a planar optical component
US6325977B1 (en) * 2000-01-18 2001-12-04 Agilent Technologies, Inc. Optical detection system for the detection of organic molecules
DE10036457A1 (de) * 2000-07-26 2002-02-14 Giesing Michael Verwendung eines bildgebenden photoelektrischen Flächensensors zur Auswertung von Biochips und Bildgebungsverfahren hierfür

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868103A (en) * 1986-02-19 1989-09-19 Enzo Biochem, Inc. Analyte detection by means of energy transfer
US5061076A (en) * 1989-01-31 1991-10-29 Enzo Diagnostics, Inc. Time-resolved fluorometer
EP0640828A1 (de) * 1993-08-27 1995-03-01 F. Hoffmann-La Roche AG Gleichzeitige Kontrolle mehrfacher Reaktionen und Analyse derselben
US5885843A (en) * 1996-08-16 1999-03-23 The Regents Of The University Of California Device and method for determining oxygen concentration and pressure in gases

Also Published As

Publication number Publication date
US20060055042A1 (en) 2006-03-16
EP1511992A1 (de) 2005-03-09
DE50307657D1 (de) 2007-08-23
EP1511992B1 (de) 2007-07-11
DE10245432A1 (de) 2004-04-08
US7312867B2 (en) 2007-12-25
AU2003275961A8 (en) 2004-04-23
AU2003275961A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
EP1451586B1 (de) Verfahren und vorrichtung zur bestimmung der konzentration von in einer zu untersuchenden probe enthaltenen liganden
AT403961B (de) Optochemisches messsystem mit einem fluoreszenzsensor
DE60030978T2 (de) Verfahren zur anwendung einer sensoreinheit
DE69909480T2 (de) Integriert-optischer Sensor
DE19628002C1 (de) Vorrichtung und Verfahren zur Durchführung von Fluoreszenzimmunotests
DE69926230T2 (de) Optische sensorvorrichtung mit evaneszenter felddetektion
EP0906572B1 (de) Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays
DE10133844A1 (de) Verfahren und Vorrichtung zur Detektion von Analyten
DE10145701A1 (de) Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
EP1543315B1 (de) Vorrichtung zur detektion mindestens eines in einer zu untersuchenden probe enthaltenen liganden
EP1511992B1 (de) Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs
DE60301821T2 (de) Küvette für ein Lesegerät zur Bestimmung von Substanzen mittels der Evaneszenzfeldmethode
EP1715341B1 (de) Verfahren und Vorrichtung zum Bestimmen der Konzentrationen von mindestens zwei Liganden
EP1872127A1 (de) Mikrooptisches detektionssystem und verfahren zur bestimmung temperaturabhängiger parameter von analyten
DE19822452C2 (de) Verfahren zur Bestimmung der Dichte lumineszierender Moleküle an einer Oberfläche, Verwendung des Verfahrens zur Bestimmung von Adsorptions- und Bindungskinetiken und Gleichgewichts- und Bindungskonstanten von Molekülen an einer Oberfläche durch Lumineszenz-Messungen und Vorrichtung zur Durchführung des Verfahrens
DE3025022C2 (de) Verfahren zur Bestimmung biologischer Teilchen durch induzierte Signale
EP1811300B1 (de) Sensorchip mit in einem Polymer-Netzwerk eingelagerten Rezeptoren
EP1930716A1 (de) Verfahren und Vorrichtung zur Detektion eines Liganden in einem Fluid
DE10245434B4 (de) Verfahren und Vorrichtung zur Bestimmung der Konzentration von in einer flüssigen Probe enthaltenen Liganden
DE4307042A1 (de) Verfahren zum optischen qualitativen und quantitativen Nachweis von Molekülen, Biomolekülen und Mikroorganismen
DE112021006503T5 (de) Optisches modul
EP4264235A1 (de) Optochemischer sensor sowie verfahren zum messen von lumineszierenden analyten in einem messmedium
DE102021102505A1 (de) Optochemischer Sensor sowie Verfahren zum Messen von lumineszierenden Analyten in einem Messmedium
EP1914549B1 (de) Verfahren und Vorrichtung zum Bestimmen der Konzentrationen von Liganden
EP1975247A1 (de) Biochip und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003798902

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006055042

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529048

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10529048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003798902

Country of ref document: EP