WO2004024982A1 - Film forming device - Google Patents

Film forming device Download PDF

Info

Publication number
WO2004024982A1
WO2004024982A1 PCT/JP2003/011599 JP0311599W WO2004024982A1 WO 2004024982 A1 WO2004024982 A1 WO 2004024982A1 JP 0311599 W JP0311599 W JP 0311599W WO 2004024982 A1 WO2004024982 A1 WO 2004024982A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
nozzle
gas
processing gas
processing
Prior art date
Application number
PCT/JP2003/011599
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Inagaki
Kazuma Yamamoto
Takashi Yokoyama
Takahiro Shirahata
Original Assignee
Air Water Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc. filed Critical Air Water Inc.
Publication of WO2004024982A1 publication Critical patent/WO2004024982A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the present invention relates to a film forming apparatus that supplies a plurality of types of processing gases into a processing space and forms a film on a surface of an object to be processed using the processing gases.
  • the processing gas is blown out from the shower head body 61 attached to the processing container 60 in a vacuum state, and the processing gas is blown onto the surface of the semiconductor wafer W arranged in the processing container 60, and An oxide film for insulation and a metal film for wiring are formed on the surface.
  • a column 62 is provided at the bottom of the processing container 60, and a mounting table 63 is coupled thereon.
  • the semiconductor wafer W is mounted on the mounting table 63. Further, the mounting table 63 is heated by a heating lamp 64 disposed below the processing vessel 60 through a transmission window 65 made of quartz glass, and the semiconductor wafer W is heated to a predetermined temperature suitable for the processing. Is maintained.
  • the shower head body 61 is composed of an integrated upper block 66, middle block 67, and lower block 68 made of thick plate material. Each block has a raw gas supply path 69 A reducing gas supply path 70 is provided. Figure 10 shows the state where these supply channels 69 and 70 are branched. This is shown in the figure.
  • the raw material gas supply passage 69 branches into two branches in the upper block 66 to form branch passages 69A and 69A, and these branch into two branches in the middle block 67, respectively.
  • a branch path 69 B is formed, and further, four gas ejection paths 69 C are formed in the lower block 68.
  • the reducing gas supply path 70 branches into two branches at the upper block 66 to form branch paths 70 A and 7OA, which further branch and bend at the middle block 67 respectively.
  • Five branch paths 70 B are formed for convenience, and five gas ejection paths 70 C are formed in the lower block 68.
  • the gas outlet 69 C is described as four for convenience and the gas outlet 70 C is described as five for convenience, but these are the numbers in the cross section in Fig. 9 and Fig.
  • a number of gas ejection channels 69 C and 70 C are opened over the entire lower surface of the lower block 68.
  • the processing gas is attached to the main head body 61.
  • a cooling water channel 71 is provided. The water channel 71 descends from near the end of the upper block 66, uniformly cools the gas ejection channels 69C and 70C of the lower block 68, and flows out from the upper block 66 on the opposite side. I'm going to go.
  • the heating means 72 heats the middle block 67 and the upper block 66, which are less susceptible to radiant heat from the semiconductor wafer W, so that the processing gas is not liquefied or thermally decomposed.
  • the exhaust passage 73 is connected to a vacuum pump (not shown) to evacuate the inside of the processing vessel 60 during film formation.
  • the flow paths of the raw material gas and the reducing gas are arranged in the thickness direction of the upper block 66, the middle block 67, and the lower block 68, respectively. , 68 through.
  • the source gas supply passage 69 and the reducing gas supply passage 70 are complicatedly branched in the upper block 66 and the middle block 67, so that the gas ejection passages 69C and
  • the flow path configuration is such that the flow resistance of each flow path reaching 0 C is difficult to equalize.
  • the processing gas that has flowed into the upper block 66 is, for example, a material gas supply path 69, and a portion where the flow path is bent at a substantially right angle is a gas ejection path 69C of the lower block 68.
  • a material gas supply path 69 a portion where the flow path is bent at a substantially right angle
  • a gas ejection path 69C of the lower block 68 Up to four locations, the increase in flow path resistance and pressure loss due to such a large number of bends will have a significant effect on the state of gas ejection.
  • the flow rate of the processing gas ejected from the gas ejection paths 69 C and 70 C varies, and the crystal growth on the surface of the semiconductor wafer W becomes uneven, and the thickness of the crystal film and other film formations Quality requirements are not satisfactory.
  • Such a problem occurs because the processing gas such as the source gas and the reducing gas passes through the blocks 66, 67, and 68 in the thickness direction, and passes through the branches. Configuration is the root cause.
  • Each of the upper block 66 and the middle block 67 is provided as a structure for branching the flow path of the processing gas, and finally, a large number of gas ejection paths 6 9 C, It has a structure in which 70 C is formed. For this reason, it is necessary to form a plurality of completely different flow paths for each processing gas in each of the blocks 66, 67, and 68, so that the flow path structure of each block becomes very complicated. Moreover, it is not advisable to control the production of each block. In addition, the complicated and diverse flow path configuration as described above increases the residence volume of the processing gas in the shower head. Therefore, the residual gas generated during the formation of the multilayer film may not be completely removed, thereby making it impossible to properly perform ALD (atomic layer deposition).
  • ALD atomic layer deposition
  • the branch path 70A of the upper block 66 and the branch path 70B of the middle block 67 are accurately communicated. This makes it extremely difficult in terms of assembly accuracy. If such an incompatibility is not properly secured, the flow area of the processing gas is reduced at this communication point, and the appropriate flow rate is reduced. As a result, the quality of the film can be adversely affected. In addition, if the branch paths 70A and 70B are displaced from each other at the communication point, a turbulent flow is generated in the flow of the processing gas there, so that the gas cannot be supplied properly.
  • the cooling water passage 71 uniformly cools the gas ejection passages 69 C and 70 C of the lower block 68, and the heating block 72 makes it difficult to receive the radiant heat from the semiconductor wafer W. And the upper block 66 are heated, so that it is not possible to control at different temperatures suitable for each processing gas for each source gas and reducing gas.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a film forming apparatus in which a gas ejection state from each nozzle of a gas ejection head is optimized. Disclosure of the invention
  • a film forming apparatus of the present invention has a gas ejection head for supplying a plurality of kinds of processing gases in a processing space, and forms a film on a surface of an object to be processed by the processing gas.
  • a gas jet head wherein each of the gas jet heads independently jets a processing gas onto a head surface facing the object to be processed.
  • Each of the gas ejection heads includes a flow path member having a flow path into which each processing gas is independently introduced, and a flow path member corresponding to each processing gas.
  • the flow path member has a laminated structure separated in a direction substantially along the head surface, and the processing gas flows from the flow path of each flow path member to the nozzle corresponding to the processing gas.
  • the gist is that it is configured to be supplied.
  • the gas ejection head is provided with a plurality of nozzles for independently ejecting each processing gas on a head surface facing the object side
  • the ejection head has a flow path member into which each processing gas is independently introduced, and is constituted by flow path members corresponding to each processing gas, and each of the flow path members has a head surface. It has a laminated structure that is separated in a direction substantially along the direction, and is configured such that the processing gas is supplied from the flow path of each flow path member to the nozzle corresponding to the processing gas.
  • one type of processing gas supplied to the flow path of the specific flow path member is branched in the flow path member and is directed to a nozzle for the processing gas. Further, other types of processing gases supplied to the flow paths of the other flow path members are also directed to the nozzles for the processing gases through the same circulation process. Since each processing gas is circulated to the nozzle in each of the flow path members having the laminated structure as described above, the structure for arranging the flow path of the processing gas toward the nozzle is simplified. The flow resistance in the passage is also easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that a stable film formation can be performed and a good film formation quality can be obtained. available. In addition, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving productivity.
  • each flow path member is located in a direction substantially along the head surface. After being extended to a certain point, it is turned to the nozzle for the process gas. Since the processing gas can be ejected from a number of nozzles based on such a flow path configuration, the gas flow path is bent at one point in this case, and the flow path resistance increases as described above. The problem of pressure loss can be avoided.
  • the flow path members are stacked substantially along the head surface, the flow path of the processing gas can be sufficiently provided over the entire area of the flow path members by utilizing the thickness of the flow path members. As a result, it becomes easier to direct the processing gas to a large number of nozzles for each processing gas.
  • the film forming apparatus of the present invention in the case where a plurality of processing gas jetting parts provided in close proximity to nozzles for jetting plural kinds of different processing gases are arranged at predetermined intervals on the head surface.
  • the flow path of the processing gas obtained by the flow path configuration in each flow path member laminated as described above is opened in the head surface in the state of a nozzle to constitute the ejection section, Since the plurality of ejection parts are arranged at predetermined intervals, the amount of processing gas ejected from each ejection part can be made as uniform as possible with respect to the object to be processed.
  • the best processing gas atmosphere is obtained for film formation.
  • the ejection section has a multi-layered structure in which nozzle openings and / or nozzle tubes for ejecting a plurality of different processing gases independently are concentrically arranged. If the nozzle has an opening near the pad surface and is connected to the flow path member so as to communicate with the flow path of the flow path member through which the processing gas to be ejected by the nozzle pipe is introduced, the nozzle pipe is concentric.
  • the nozzle opening and the Z or nozzle tube arranged in the above are respectively connected to the flow path of the flow path member for introducing a plurality of different processing gases. Therefore, different processing gases are ejected concentrically in an annular layer. Then, such eruptions are made in the vicinity of the head surface.
  • the nozzle pipe since the nozzle pipe is connected to the flow path of the flow path member, the nozzle pipe functions as a knock pin for positioning when the flow path members are stacked and assembled, thereby simplifying the assembly operation. And assembling accuracy is improved.
  • the nozzle tube located closer to the inside of the multiplex structure when the nozzle tube located closer to the inside of the multiplex structure is connected to a flow path member disposed farther from the workpiece, the nozzle tube located at the inner side Since the pipe is connected to the flow path member located farther from the workpiece, the processing gas from the flow path member farther away can be ejected by the nozzle pipe as an independent flow path. Similarly, since the outer nozzle pipe of the inner nozzle pipe is connected to the flow path member closer to the workpiece than the flow path member, a different processing gas is supplied to the outer nozzle pipe. It can be ejected from the pipe as an independent flow path. In other words, since different processing gases are introduced into each of the laminated flow path members, the processing gases can be ejected from the concentric nozzle tubes in an independent flow path form. .
  • a flow path member located at least on the processing object side of each flow path member, and a flow path member located on the opposite side to the processing object. If the temperature is controlled independently of each other, the flow path member (head surface) located on the side of the workpiece is appropriately cooled against radiant heat from the workpiece. It is possible to prevent the processing gas from decomposing or forming a film at or near the jetting portion, ie, the nozzle opening and / or the nozzle tube. Wear.
  • the flow path member located on the opposite side of the processing target the flow path member to which radiant heat from the processing target is difficult to receive is subjected to appropriate temperature control, so that a processing gas having a low dew point is used. When this occurs, condensation is prevented and normal processing gas can be supplied. Then, as described above, by independently controlling the temperature of the flow path member located on the processing object side and the flow path member located on the opposite side to the processing object, it is possible to correspond to each flow path member. The most suitable temperature control can be performed on the processed gas, and the properties of the injected processing gas become optimal for film formation.
  • the gas ejection head when configured such that the temperature of each channel member is independently controlled, the gas ejection head is adapted to the processing gas corresponding to each channel member. Since the temperature control is performed for each flow path member, the temperature control state of the entire gas ejection head can be optimized for the properties of the processing gas.
  • each of the flow path members is provided with a diffusion chamber for temporarily holding the introduced processing gas, and the volume of the diffusion chamber is sufficiently smaller than the size of the flow path member.
  • the diffusion chamber is set so that the volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path member, the dimensions such as the thickness of the flow path member for the diffusion chamber arrangement must be reduced. There is no need to increase the size, and the gas ejection head can be made compact.
  • the processing gas is temporarily held at a somewhat high pressure in the small-volume diffusion chamber. Therefore, the supply gas pressure for each flow path can be maintained high, and the processing gas can be ejected without shortage.
  • the diffusion chamber is reduced in volume, the volume required for the flow of the processing gas in each flow path member is significantly reduced. Therefore, when a multilayer film is formed by changing the type of processing gas, the amount of residual gas is reduced and the type of processing gas is changed quickly. For example, the first film is changed to the second film. The sharpness at the time of forming a so-called multilayer film can be obtained favorably. Such an effect becomes more remarkable due to the simplification of the flow path as described later.
  • the flow path includes an introduction-side flow path that guides the introduced processing gas to the diffusion chamber, and a nozzle-side flow path that extends from the diffusion chamber and supplies the processing gas to each nozzle.
  • the processing gas from the introduction-side flow path is temporarily held in the diffusion chamber, and is supplied to the plurality of ejection sections via the nozzle-side flow path extending from the diffusion chamber. The processing gas is blown out. Since the nozzle-side flow path extends from the diffusion chamber toward a number of nozzles, the structure is such that the diffusion chamber is arranged at the branch of the nozzle-side flow path, and as described above, the flow path resistance and pressure loss And a flow path configuration with a small amount of water.
  • the diffusion chamber is provided near a substantially central portion of each flow path member, and the processing gas is supplied to each nozzle via a nozzle-side flow path extending radially from the diffusion chamber.
  • the length of the nozzle-side flow path from the diffusion chamber located at the approximate center of each flow path member to each nozzle can be made as uniform as possible. Therefore, variations in the injection amount from each nozzle can be reduced.
  • FIG. 1 is a sectional view showing a film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the film forming apparatus.
  • FIG. 3A is a plan view of the gas ejection head
  • FIG. 3B is a plan view showing an opening of the nozzle tube.
  • FIG. 4 is a sectional view showing a modified example of the nozzle tube.
  • FIG. 5 is a cross-sectional view showing a modification of the flow path member.
  • FIG. 6 is a sectional view showing another modified example of the flow path member.
  • FIG. 7A is a cross-sectional view of a gas ejection head according to the second embodiment
  • FIGS. 7B and 7C are plan views showing positions of nozzle openings.
  • FIG. 8 is a plan view showing a processing state of the flow path member.
  • FIG. 9 is a cross-sectional view showing a conventional film forming apparatus.
  • FIG. 10 is an exploded cross-sectional view of the block body of the film forming apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an embodiment of the film forming apparatus of the present invention.
  • a separation plate 3 is provided in a processing vessel 2 having a processing space 1 inside, and a wafer 5 (e.g., a semiconductor) to be processed is aligned with an opening 4 opened in the separation plate 3. Wafer) is placed.
  • a heater H is arranged above the back surface of the wafer 5.
  • a vacuum pump (not shown) for evacuating the processing space 1 is provided, and the air in the processing space 1 is sucked from the exhaust port 6.
  • a gas ejection head 7 is arranged in the processing space 1.
  • the surface of the wafer 5 is subjected to CVD (Chemical 1 Vapor Deposition) processing by the processing gas injected from the gas blowing head 7, and an oxide film for insulation and a metal film for wiring are formed. A film is formed.
  • the gas ejection head 7 shown in the figure has three types of processing gas A, B and C are ejected, and a plurality of ejection portions 9 are arranged on a head surface 8 facing the wafer 5. As shown in FIG. 3, the head surface 8 has a plurality of the ejection portions 9 arranged at predetermined intervals.
  • the flow path members 1 OA, 11 B, and 12 C made of a thick plate-like material for each of the processing gases A, B, and C have a laminated structure.
  • Each of the flow path members 10 A, 11 B , 12 C are arranged along the head surface 8.
  • Diffusion chambers 13A, 14B, and 15C are located in the center of each flow path member 10A, 11B, and 12C, and each diffusion chamber has a processing gas supply source (shown in the figure). )
  • the flow path is arranged. Therefore, each flow path member 10 A, 11 B, 12.
  • the diffusion chambers 13 A, 14 B, 15 C, the inlet side passages 16 A, 17 B, 18 C and the nozzle side passage 1 9 A, 20 B and 21 C are provided exclusively for the respective processing gases A, B and C.
  • the nozzle-side flow paths 19 A, 20 B, 21 C extend radially from the diffusion chambers 13 A, 14 B, 15 C toward the ejection section 9. The state of the radial arrangement is shown in the processing diagram of the flow path member 10A in FIG.
  • the diffusion chambers 13 A, 14 B, and 15 C are provided near the center of each of the flow path members 10 A, 11 B, and 12 C, and extend radially from the diffusion chamber. Since the processing gas is supplied to each nozzle via 19 A, 20 B, and 21 C, it is located approximately in the center of each of the flow path members 10 A, 11 B, and 12 C. Nozzle-side flow paths 19 A, 20 B, 21 C from the diffusion chambers 13 A, 14 B, 15 C to each nozzle can be made as uniform as possible. As a result, the flow resistance of the processing gas is also made more uniform, and the variation in the injection amount from each nozzle can be reduced.
  • the jetting section 9 independently jets a plurality of different processing gases A, B, and C.
  • the nozzle opening and / or nozzle tube to be discharged is composed of a small-diameter nozzle tube 22, a large-diameter nozzle tube 23 concentrically arranged outside the nozzle tube 23, and a nozzle opening 24 further arranged outside the nozzle tube 22.
  • the nozzle pipes 22 and 23 having the multi-structure are connected to a flow path member 10 A in which a small-diameter nozzle pipe 22 located on the inner side is located farther from the wafer 5.
  • the large-diameter nozzle pipe 23 located outside the pipe 22 is connected to the flow path member 11 B closer to the wafer than the flow path member 10 A.
  • the processing gas A flows through the nozzle flow path 22 A in the nozzle pipe 22 and is supplied to the jetting section 9, and the processing gas B flows through the nozzle pipe 22 and the nozzle pipe 23.
  • the processing gas C is supplied to the jetting section 9 through the nozzle flow path 23 B formed by the gap between the nozzles 23, and the processing gas C is supplied to the jetting section 9 from the nozzle opening 24 formed outside the nozzle pipe 23.
  • each processing gas A, B, and C is circulated toward the jetting part 9, so that the gas flows toward the jetting part 9.
  • the routing structure of the processing gas A, B, and C flow passages is simplified, and accordingly, the flow passage resistance in each flow passage is easily made uniform. Is made as uniform as possible, and stable film formation progresses. Good film formation quality can be obtained.
  • the processing gases A, B, and C flowing into the flow paths 19, 20B, and 21C of the flow path members 10A, 11B, and 120 are separated from the head surfaces 8A, 11B, and 21C, respectively.
  • the thickness of the flow path member is utilized by utilizing the thickness of the flow path member. A sufficient flow path of the processing gas can be ensured over the entire region, which makes it easier to direct the processing gas to a large number of nozzle pipes 22, 23 and nozzle openings 24 for each processing gas.
  • the amount of the processing gas ejected from each ejection part 9 can be made as uniform as possible with respect to the wafer 5.
  • the best processing gas atmosphere for film formation can be obtained.
  • the arrangement density of the ejection parts 9 having a small amount of ejection is increased to increase the processing gas for the wafer 5. It is possible to optimize the jetting condition.
  • the concentrically arranged nozzle openings 24 and / or nozzle tubes 22, 23 are provided with the flow path members 10 A, 11 B, 1 through which a plurality of different types of processing gases A, B, C are introduced. Since they are connected to the 2C flow paths, different processing gases are ejected concentrically in an annular layer. Then, such ejection is performed in the vicinity of the head surface 8. Therefore, the various processing gases A, B, and C are good for forming a film at or near the location ejected from the nozzle opening 24 and / or the nozzle pipes 22 and 23. Mixing or reaction takes place. Further, since the nozzle pipes 22 and 23 are fitted into the flow paths of the flow path members 10A, 11B and 12C, the nozzle pipes are stacked and assembled when assembled. 22 and 23 function like knock pins for positioning, simplifying assembly work and improving assembly accuracy.
  • the flow path member 12C is positioned on the wafer 5 side, and the flow path member 12C is positioned on the opposite side to the wafer 5.
  • the temperature of the flow path member 10A is controlled independently of each other.
  • the flow path member 12C is provided with a cooling conduit 25 for guiding cooling water as a temperature control fluid as shown in FIGS.
  • the cooling conduits 25 are arranged so that the surface of the flow path member 12 C is along the head surface 8, and cool the radiant heat from the wafer 5 to the head surface 8 as uniformly as possible.
  • FIG. 3 (A) a curved flow path is formed over the entire area of the head surface 8.
  • the flow path member 12 C (head surface) located on the wafer 5 side is appropriately cooled with respect to the radiant heat from the heated wafer 5.
  • the flow path member 12C can be heated by flowing hot water through the cooling conduit 25.
  • the temperature control medium flowing through the cooling pipe 25 is not limited to water, but may be an appropriate fluid such as oil or gas.
  • the heating heater 26 is arranged near the flow path member 10 A in order to perform appropriate temperature control.
  • the flow path member 10 A to which the radiant heat from the wafer 5 is less likely to be subjected to appropriate temperature control so that when a processing gas having a low dew point in the flow path member 10 A is used, Prevention of condensation and normal supply of processing gas is possible.
  • the most suitable temperature control can be performed for the processing gases C and A corresponding to the respective flow path members 12 C and 10 A, and the properties of the injected processing gas are optimal for film formation. .
  • the flow path members 11 B Through a water pipe for temperature control.
  • the temperature control adapted to the processing gases A, B, C corresponding to the respective flow path members 10A, 11B, 12C can be performed by the respective flow path members 10A, 11B, Since the temperature control is performed every 12 C, the temperature control state of the entire gas ejection head 7 can be optimized for the properties of the processing gas and the like.
  • the temperature control medium flowing through the water pipe is not limited to water, but may be an appropriate fluid such as oil or gas.
  • Each of the flow path members 10A, 11B, and 12C is provided with diffusion chambers 13A, 14B, and 15C for temporarily holding the introduced processing gases A, B, and C.
  • the volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path members 10A, 11B, and 12C. From the diffusion chambers 13A, 14B, and 15C, the processing gas A is directed toward a number of nozzles in the flow path members 10A, 11B, and 12C in which the diffusion chambers are arranged.
  • a diffusion chamber is arranged in the branch of the nozzle-side flow paths 19 A, 2 OB, and 21 C, and a flow path configuration with low flow resistance and low pressure loss can be obtained as described above.
  • the volumes of the diffusion chambers 13A, 14B, and 15C are set to be sufficiently smaller than the size of the flow path members 10A, 11B, and 12C, the diffusion It is not necessary to increase the dimensions such as the thickness of the flow path member for the arrangement of the chamber, and the gas ejection head 7 can be made compact.
  • the processing gases A, B, and C are temporarily held at a somewhat higher pressure in the small-volume diffusion chamber, and the Since the gas is supplied to the nozzle from the state, the supply gas pressure for each channel can be maintained high, and the processing gas can be ejected without shortage.
  • Each of the diffusion chambers 13A, 14B, and 15C has a small volume, and the flow path members 10A, 11B, and 12C have simplified flow paths.
  • the volume required for the flow of processing gases A, B, and C in the road members is significantly reduced. Therefore, when a multilayer film is formed by changing the type of the processing gas, the amount of the residual gas is reduced and the type of the processing gas can be changed quickly, for example, from the first film formation to the second film formation. The sharpness at the time of forming a so-called multilayer film can be obtained favorably.
  • the processing gas jetting portion 9 is open near the head surface 8.
  • the processing gas A, B injected to the wafer 5, and the state of mixing and reaction are more clearly shown.
  • Fig. 3 (B) and Fig. 4 show that small, medium and large diameter nozzle pipes 22, 27, and 23 are arranged in three layers so that three types of processing gas are discharged.
  • Fig. 4 (A) shows the case where the nozzle tubes 22, 27, and 23 all have the same protruding length.
  • (B) shows the case where the nozzle tubes 22, 27, and 23 are cut obliquely and the end faces of each tube are aligned on one virtual plane.
  • You. shows the case where the inner nozzle tube is shorter.
  • D) is a case in which the ends of the nozzle tubes 22, 27, and 23 are obliquely cut in the form as in (C).
  • the inlet side flow paths 16A, 17B, 18C and the nozzle side flow paths 19A, 20B, 21C etc. are the flow path members. In this case, it can be replaced with the form shown in Fig. 5. That is, as shown in the flow path member 11B shown in the cross-sectional state of FIG. 5, the introduction-side flow path 17B is formed in the state of a groove on the upper surface side of the flow path member 11B, and this is the diffusion chamber. It is open to 1 4B.
  • the diffusion chamber 14B is also provided with a recess from the lower surface side of the flow path member 11B.
  • the nozzle side flow path 20B extending from the diffusion chamber 14B to each nozzle is also formed in a groove state on the lower surface side of the flow path member 11B.
  • Reference numerals 28 and 29 are cover plates that seal the groove-shaped nozzle-side flow path 19A and the introduction-side flow path 18C.
  • one channel member may be constituted by a plurality of components.
  • the flow path member 10 A is taken as an example, and the upper plate 30 is formed with a recess 31 forming a part of the diffusion chamber 13 A and a nozzle-side flow path 19 A, and the lower plate 30 is formed.
  • a recess 33, which constitutes a part of the diffusion chamber 13A, and a flow path 16A on the inlet side are formed in 32, and the upper plate 30 and the lower plate 32 are integrated by adhesive or welding.
  • the flow path member is manufactured by, for example, die force storage, and the manufacturing cost can be significantly reduced.
  • the head surface 8 is usually formed in a flat shape.
  • the boundary surface between the adjacent flow path members is inclined or concaved due to the shape and dimensions of the internal flow path of the flow path member. It can be convex.
  • the shape of the flow path member can be freely selected, and the flow of the processing gas can be optimized so as to obtain better film quality.
  • FIG. 7 shows another embodiment of the gas ejection head in the film forming apparatus of the present invention.
  • the flow paths branched from the respective nozzle-side flow paths 19 A, 20 B, 21 C are opened as the nozzle openings 34 A, 35 B, 36 C in the injection section 9. If you are.
  • Each nozzle opening 348, 358, 36. Can be arranged close to each other in the form of an equilateral triangle as shown in Fig. (8), and arranged close to one straight line as shown in Fig. (C). This is also possible.
  • the other parts are the same as those in the above embodiment, and the same parts are denoted by the same reference numerals.
  • the ejection section 9 can be manufactured with a simple structure without using components such as the nozzle tubes 22, 27, and 23 described above. Except for the above, the same operation and effect as those of the above embodiment can be obtained.
  • FIG. 8 is an explanatory diagram in the case where the flow path member 10A is manufactured by machining.
  • a plurality of diametrical holes 38 are made in a thick circular material plate 37, and these holes 38 are assumed to form a nozzle-side flow path 19A, and a central portion where each hole 38 intersects A diffusion chamber 13 A is formed by providing a recess 39 in the cavity.
  • the smallest diameter nozzle pipe 22 is connected to the hole indicated by reference numeral 40. Further, the opening end on the outer peripheral side of each hole 38 is closed with a plug 41.
  • the laminated flow path members 10A, 11B, and 12C are firmly connected by bolts penetrating the flow path members, and the ends of the flow path members are denoted by reference numerals 42 in FIG. Can be integrated by welding at the welds indicated by, or by bonding with an adhesive or the like.
  • one type of processing gas supplied to the flow path of a specific flow path member is branched in the flow path member. It is directed towards a nozzle for the process gas. Further, another type of processing gas supplied to the flow path of another flow path member is also directed to a nozzle for the processing gas through a similar circulation process. Since each processing gas is circulated toward the nozzle in each of the stacked flow path members, the structure for routing the processing gas flow path toward the nozzles is simplified.
  • the flow resistance in the nozzle becomes easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that a stable film formation can be performed and good film formation quality can be obtained. In addition, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving productivity.
  • the processing gas that has flowed into the flow path of each flow path member is extended to a predetermined position in a direction substantially along the head surface, and is then diverted toward a nozzle for the processing gas.
  • the processing gas can be ejected from a large number of nozzles based on such a flow path configuration, the gas flow path is bent at only one point in this case, thus increasing the flow path resistance as described above. The problem of pressure loss can be avoided.
  • the flow path members are laminated substantially along the head surface, a sufficient flow path of the processing gas is secured over the entire flow path member by utilizing the thickness of the flow path member. This makes it easier to direct the processing gas to a number of nozzles for each processing gas.

Abstract

A film forming device in which the injecting state of gas from each nozzle in a gas injection head is made appropriate. A gas injection head (7) in a processing space (1) comprises a number of spout sections (9) installed in a head surface (8) facing a treatment subject (5) for independently injecting individual processing gases, flow channels (16A, 17B, 18C) for introduction of individual processing gases, and flow channel members (10A, 11B, 12C) corresponding to individual processing gases, the flow channel members providing a laminated construction in which they are separated in a direction substantially along the head surface (8)to allow processing gases to be fed from nozzle-side flow channels (19A, 20B, 21C) of the flow channel members (10A, 11B, 12C) into the nozzles corresponding to the processing gases. Thereby, the individual processing gases are injected to the treatment subject (5) through the independent flow channels, so that film formation of good quality is attained.

Description

明 細 書 成膜装置 技術分野  Description Coating equipment Technical field
本発明は、 処理空間内に複数種類の処理ガスを供給し、 この処理ガス により被処理物の表面に成膜を行う成膜装置に関するものである。 背景技術  The present invention relates to a film forming apparatus that supplies a plurality of types of processing gases into a processing space and forms a film on a surface of an object to be processed using the processing gases. Background art
この種の成膜装置は、 種々な方式のものが知られているが、 本発明に もっとも近いと思われる先行技術として、 下記の特許文献 1に開示され た 「処理装置のシャワーヘッ ド構造及ぴ処理ガスの供給方法」 がある。 以下、 図 9およぴ図 1 0に示す上記先行技術について説明する。  Various types of film forming apparatuses of this type are known, but as a prior art that seems to be closest to the present invention, a “shower head structure and a processing apparatus of a processing apparatus” disclosed in Patent Document 1 below is disclosed.方法 Method of supplying processing gas ”. Hereinafter, the prior art shown in FIGS. 9 and 10 will be described.
真空状態の処理容器 6 0に取付けられたシャワーへッ ド本体 6 1か ら処理ガスが噴出され、 処理容器 6 0内に配置した半導体ウェハ Wの表 面に上記処理ガスが吹き付けられて、 その表面に絶縁用の酸化膜や配線 用の金属膜が形成されるようになっている。 処理容器 6 0の底部に支柱 6 2が設けられ、 その上に載置台 6 3が結合されている。 この載置台 6 3上に半導体ウェハ Wが載せられている。 また、 処理容器 6 0の下側に 配置した加熱ランプ 6 4により、 石英ガラス製の透過窓 6 5を経て載置 台 6 3を加熱して、 半導体ウェハ Wをその処理に適した所定の温度に維 持している。  The processing gas is blown out from the shower head body 61 attached to the processing container 60 in a vacuum state, and the processing gas is blown onto the surface of the semiconductor wafer W arranged in the processing container 60, and An oxide film for insulation and a metal film for wiring are formed on the surface. A column 62 is provided at the bottom of the processing container 60, and a mounting table 63 is coupled thereon. The semiconductor wafer W is mounted on the mounting table 63. Further, the mounting table 63 is heated by a heating lamp 64 disposed below the processing vessel 60 through a transmission window 65 made of quartz glass, and the semiconductor wafer W is heated to a predetermined temperature suitable for the processing. Is maintained.
上記シャワーへッ ド本体 6 1は、 分厚い板材で構成された上段プロッ ク 6 6, 中段ブロック 6 7, 下段ブロック 6 8が一体化されたもので、 各プロックには原料ガス供給路 6 9や還元ガス供給路 7 0が設けられて いる。 図 1 0は、 これらの供給路 6 9 , 7 0が分岐している状態を分解 図の形で示している。 原料ガス供給路 6 9は、 上段ブロック 6 6におい て二股に分岐して分岐路 6 9 A , 6 9 Aを形成し、 さらにそれらが中段 プロック 6 7においてそれぞれ二股に分岐して都合 4本の分岐路 6 9 B を形成し、 さらに、 下段ブロック 6 8において都合 4本のガス噴出路 6 9 Cを形成している。 The shower head body 61 is composed of an integrated upper block 66, middle block 67, and lower block 68 made of thick plate material. Each block has a raw gas supply path 69 A reducing gas supply path 70 is provided. Figure 10 shows the state where these supply channels 69 and 70 are branched. This is shown in the figure. The raw material gas supply passage 69 branches into two branches in the upper block 66 to form branch passages 69A and 69A, and these branch into two branches in the middle block 67, respectively. A branch path 69 B is formed, and further, four gas ejection paths 69 C are formed in the lower block 68.
また、 同様にして、 還元ガス供給路 7 0は上段ブロック 6 6において 二股に分岐して分岐路 7 0 A , 7 O Aを形成し、 さらにそれらが中段プ ロック 6 7においてそれぞれ分岐および屈曲して都合 5本の分岐路 7 0 Bを形成し、 さらに、 下段ブロック 6 8において都合 5本のガス噴出路 7 0 Cを形成している。 なお、 上記説明では、 ガス噴出路 6 9 Cは都合 4本、 ガス噴出路 7 0 Cは都合 5本と記載しているが、 これらは図 9や 図 1 0の断面における本数であり、 下段プロック 6 8を下から見ると多 数のガス噴出路 6 9 C , 7 0 Cが下段プロック 6 8の下面全域にわたつ て開口している。  Similarly, the reducing gas supply path 70 branches into two branches at the upper block 66 to form branch paths 70 A and 7OA, which further branch and bend at the middle block 67 respectively. Five branch paths 70 B are formed for convenience, and five gas ejection paths 70 C are formed in the lower block 68. In the above description, the gas outlet 69 C is described as four for convenience and the gas outlet 70 C is described as five for convenience, but these are the numbers in the cross section in Fig. 9 and Fig. When the block 68 is viewed from below, a number of gas ejection channels 69 C and 70 C are opened over the entire lower surface of the lower block 68.
処理ガスが半導体ウェハ Wからの輻射熱により、 下段ブロック 6 8のガ ス噴出路 6 9 C内に成膜状態になって付着することを防止するために、 シャヮ一へッ ド本体 6 1には冷却水路 7 1が設けてある。 この水路 7 1 は、 上段プロック 6 6の端部付近から下降して下段プロック 6 8のガス 噴出路 6 9 C, 7 0 Cを均一に冷却して、 反対側の上段プロック 6 6か ら流出して行くようになつている。 また、 加熱手段 7 2により、 半導体 ウェハ Wからの輻射熱を受けにくい中段ブロック 6 7や上段ブロック 6 6を加熱して、 処理ガスが液化したり熱分解したりすることのないよう にしている。 なお、 排気通路 7 3は真空ポンプ (図示していない) に接 続され、 成膜形成時に処理容器 6 0内を真空にしている。 In order to prevent the processing gas from being deposited in the gas ejection path 69 C of the lower block 68 by the radiant heat from the semiconductor wafer W and forming a film, the processing gas is attached to the main head body 61. A cooling water channel 71 is provided. The water channel 71 descends from near the end of the upper block 66, uniformly cools the gas ejection channels 69C and 70C of the lower block 68, and flows out from the upper block 66 on the opposite side. I'm going to go. In addition, the heating means 72 heats the middle block 67 and the upper block 66, which are less susceptible to radiant heat from the semiconductor wafer W, so that the processing gas is not liquefied or thermally decomposed. The exhaust passage 73 is connected to a vacuum pump (not shown) to evacuate the inside of the processing vessel 60 during film formation.
特開平 8 - 2 9 1 3 8 5号公報 発明が解決しょうとする課題 Japanese Patent Application Laid-Open No. Hei 8-2991385 Problems the invention is trying to solve
上記のようなシャワーへッ ド本体 6 1であると、 原料ガスや還元ガス の流路が上段ブロック 6 6, 中段ブロック 6 7 , 下段プロック 6 8の厚 さ方向に各ブロック 6 6 , 6 7 , 6 8を貫通した形態になっている。 同 時に、 原料ガス供給路 6 9や還元ガス供給路 7 0は、 上段ブロック 6 6 や中段ブロック 6 7において複雑に分岐しているために、 下段ブロック 6 8のガス噴出路 6 9 Cや 7 0 Cに至る各流路の流路抵抗が均一化しに くい流路構成となっている。 特に、 上段ブロック 6 6に流入した処理ガ スは、 例えば、 原料ガス供給路 6 9であれば、 流路が略直角に屈曲して いる箇所が、 下段ブロック 6 8のガス噴出路 6 9 Cまでに 4箇所にも及 ぴ、 このような多数の屈曲箇所による流路抵抗の増大や圧力損 は処理 ガスの噴出状態に大きな影響をもたらすことになる。  In the case of the shower head main body 61 as described above, the flow paths of the raw material gas and the reducing gas are arranged in the thickness direction of the upper block 66, the middle block 67, and the lower block 68, respectively. , 68 through. At the same time, the source gas supply passage 69 and the reducing gas supply passage 70 are complicatedly branched in the upper block 66 and the middle block 67, so that the gas ejection passages 69C and The flow path configuration is such that the flow resistance of each flow path reaching 0 C is difficult to equalize. In particular, the processing gas that has flowed into the upper block 66 is, for example, a material gas supply path 69, and a portion where the flow path is bent at a substantially right angle is a gas ejection path 69C of the lower block 68. Up to four locations, the increase in flow path resistance and pressure loss due to such a large number of bends will have a significant effect on the state of gas ejection.
したがって、 各ガス噴出路 6 9 Cや 7 0 Cから噴出される処理ガスの 流量にばらつきが発生し、 半導体ウェハ Wの表面における結晶の成長が 不均一となり、 結晶膜の厚さやその他の成膜品質要件が満足なものとな らない。 このような問題が発生するのは、 原料ガスや還元ガス等の各処 理ガスが、 それぞれ各ブロック 6 6 , 6 7 , 6 8を厚さ方向に貫通しな がら分岐を重ねて行く流路構成が根本的な原因になっている。  Therefore, the flow rate of the processing gas ejected from the gas ejection paths 69 C and 70 C varies, and the crystal growth on the surface of the semiconductor wafer W becomes uneven, and the thickness of the crystal film and other film formations Quality requirements are not satisfactory. Such a problem occurs because the processing gas such as the source gas and the reducing gas passes through the blocks 66, 67, and 68 in the thickness direction, and passes through the branches. Configuration is the root cause.
上記の上段プロック 6 6や中段ブロック 6 7は、 いずれも処理ガスの 流路を分岐させるための構造体として設けられ、 しかも最終的には下段 ブロック 6 8に多数のガス噴出路 6 9 C , 7 0 Cが形成された構造とな つている。 そのために、 各ブロック 6 6 , 6 7 , 6 8には、 各処理ガス ごとにそれぞれ全く異なった流路を複数形成する必要があるために、 各 ブロックの流路構造が非常に複雑になり、 しかも、 各ブロックの製作管 理においても得策ではない。 また、 上記のような複雑多岐にわたる流路 構成であると、 シャワーへッ ド内における処理ガスの滞留容積が大きく なるので、 多層膜成形時の残留ガスが完全に除去しきれないことが発生 し、 それにより A L D ( A t o m i c L a y e r D e p o s i t i o n ) の適正な進行が不可能となる。 Each of the upper block 66 and the middle block 67 is provided as a structure for branching the flow path of the processing gas, and finally, a large number of gas ejection paths 6 9 C, It has a structure in which 70 C is formed. For this reason, it is necessary to form a plurality of completely different flow paths for each processing gas in each of the blocks 66, 67, and 68, so that the flow path structure of each block becomes very complicated. Moreover, it is not advisable to control the production of each block. In addition, the complicated and diverse flow path configuration as described above increases the residence volume of the processing gas in the shower head. Therefore, the residual gas generated during the formation of the multilayer film may not be completely removed, thereby making it impossible to properly perform ALD (atomic layer deposition).
また、 各ブロック 6 6 , 6 7 , 6 8を積層して一体化するときには、 例えば、 上段プロック 6 6の分岐路 7 0 Aと中段ブロック 6 7の分岐路 7 0 Bとを正確に連通させることが、 組立て精度の面で非常に困難なこ ととなり、 このような違通性が正しく確保されていない場合には、 処理 ガスの流路面積がこの連通箇所において小さくなって、 適正な流量が確 保できなくなり、 結果的には成膜品質に悪影響を及ぼすことになる。 ま た、 連通箇所において分岐路 7 0 Aと 7 0 Bがずれていると、 そこで処 理ガスの流れに乱流が発生し、 やはり適正なガス供給ができないことと なる。  When the blocks 66, 67, 68 are stacked and integrated, for example, the branch path 70A of the upper block 66 and the branch path 70B of the middle block 67 are accurately communicated. This makes it extremely difficult in terms of assembly accuracy.If such an incompatibility is not properly secured, the flow area of the processing gas is reduced at this communication point, and the appropriate flow rate is reduced. As a result, the quality of the film can be adversely affected. In addition, if the branch paths 70A and 70B are displaced from each other at the communication point, a turbulent flow is generated in the flow of the processing gas there, so that the gas cannot be supplied properly.
さらに、 冷却水路 7 1は、 下段ブロック 6 8のガス噴出路 6 9 C, 7 0 Cを均一に冷却し、 また、 加熱手段 7 2により、 半導体ウェハ Wから の輻射熱を受けにくい中段ブロック 6 7や上段プロック 6 6を加熱する 構造になっているために、 原料ガスや還元ガス毎に各処理ガスに適した 異なった温度で制御することができない。  Further, the cooling water passage 71 uniformly cools the gas ejection passages 69 C and 70 C of the lower block 68, and the heating block 72 makes it difficult to receive the radiant heat from the semiconductor wafer W. And the upper block 66 are heated, so that it is not possible to control at different temperatures suitable for each processing gas for each source gas and reducing gas.
本発明は、 このような事情に鑑みなされたもので、 ガス噴出ヘッ ドの 各ノズルからのガス噴出状態が適正化された成膜装置の提供を目的とす る。 発明の開示  The present invention has been made in view of such circumstances, and an object of the present invention is to provide a film forming apparatus in which a gas ejection state from each nozzle of a gas ejection head is optimized. Disclosure of the invention
上記目的を達成するため、 本発明の成膜装置は、 処理空間内に複数種 類の処理ガスを供給するガス噴出へッ ドを有し、 上記処理ガスにより被 処理物の表面に成膜を行う成膜装置であって、上記ガス噴出へッ ドには、 被処理物側に面するへッ ド面に各処理ガスを独立して噴出させるノズル がそれぞれ多数設けられ、 上記ガス噴出ヘッ ドは、 各処理ガスが独立し て導入される流路をそれぞれ有し各処理ガス毎に対応して存在する流路 部材から構成されるとともに、 上記各流路部材がへッ ド面に実質的に沿 う方向で分離した積層構造を呈しており、 上記各流路部材の流路からそ れぞれの処理ガスに対応するノズルに対して処理ガスが供給されるよう に構成されていることを要旨とする。 In order to achieve the above object, a film forming apparatus of the present invention has a gas ejection head for supplying a plurality of kinds of processing gases in a processing space, and forms a film on a surface of an object to be processed by the processing gas. A gas jet head, wherein each of the gas jet heads independently jets a processing gas onto a head surface facing the object to be processed. Each of the gas ejection heads includes a flow path member having a flow path into which each processing gas is independently introduced, and a flow path member corresponding to each processing gas. The flow path member has a laminated structure separated in a direction substantially along the head surface, and the processing gas flows from the flow path of each flow path member to the nozzle corresponding to the processing gas. The gist is that it is configured to be supplied.
すなわち、 本発明の成膜装置は、 上記ガス噴出ヘッ ドには、 被処理物 側に面するへッ ド面に各処理ガスを独立して噴出させるノズルがそれぞ れ多数設けられ、 上記ガス噴出ヘッ ドは、 各処理ガスが独立して導入さ れる流路をそれぞれ有し各処理ガス毎に対応して存在する流路部材から 構成されるとともに、 上記各流路部材がへッ ド面に実質的に沿う方向で 分離した積層構造を呈しており、 上記各流路部材の流路からそれぞれの 処理ガスに対応するノズルに対して処理ガスが供給されるように構成さ れている。  That is, in the film forming apparatus of the present invention, the gas ejection head is provided with a plurality of nozzles for independently ejecting each processing gas on a head surface facing the object side, The ejection head has a flow path member into which each processing gas is independently introduced, and is constituted by flow path members corresponding to each processing gas, and each of the flow path members has a head surface. It has a laminated structure that is separated in a direction substantially along the direction, and is configured such that the processing gas is supplied from the flow path of each flow path member to the nozzle corresponding to the processing gas.
上記のような構成により、 特定の流路部材の流路に供給された 1種類 の処理ガスは、 その流路部材内で分岐されてその処理ガスのためのノズ ルの方へ仕向けられる。 また、 他の流路部材の流路に供給された他の種 類の処理ガスも同様な流通過程を経て、 その処理ガスのためのノズルの 方へ仕向けられる。 このように積層構造とされた各流路部材において各 処理ガス毎にノズルの方へ流通させられるので、 ノズルに向かう処理ガ スの流路の引き回し構造が簡素化され、 それにともなつて各流路におけ る流路抵抗も均一化しやすくなり、 結果的には多数のノズルにおける噴 出ガス量が可及的に均一化されて、 安定した成膜の進行がなされ、 良好 な成膜品質がえられる。また、このような安定した成膜が進行するので、 成膜に要する時間も短縮され、 生産性向上にとって有効である。  With the above-described configuration, one type of processing gas supplied to the flow path of the specific flow path member is branched in the flow path member and is directed to a nozzle for the processing gas. Further, other types of processing gases supplied to the flow paths of the other flow path members are also directed to the nozzles for the processing gases through the same circulation process. Since each processing gas is circulated to the nozzle in each of the flow path members having the laminated structure as described above, the structure for arranging the flow path of the processing gas toward the nozzle is simplified. The flow resistance in the passage is also easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that a stable film formation can be performed and a good film formation quality can be obtained. available. In addition, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving productivity.
例えば、 各流路部材の流路は、 上記ヘッ ド面に実質的に沿う方向に所 定の箇所まで延ばされてから、 その処理ガスのためのノズルの方へ変向 される。 このような流路構成を基本にして多数のノズルから処理ガスを 噴出させることができるので、 ガス流路の屈曲箇所は、 この場合は 1箇 所となり、 上述のような流路抵抗の増大や圧力損失の問題が回避できる のである。 また、 ヘッ ド面に実質的に沿わせた状態で流路部材が積層さ れているので、 流路部材の厚さを利用して流路部材の全域にわたって処 理ガスの流路を十分に確保できることとなり、 それにより処理ガス毎に 多数のノズルに処理ガスを向かわせることが行いやすくなる。 For example, the flow path of each flow path member is located in a direction substantially along the head surface. After being extended to a certain point, it is turned to the nozzle for the process gas. Since the processing gas can be ejected from a number of nozzles based on such a flow path configuration, the gas flow path is bent at one point in this case, and the flow path resistance increases as described above. The problem of pressure loss can be avoided. In addition, since the flow path members are stacked substantially along the head surface, the flow path of the processing gas can be sufficiently provided over the entire area of the flow path members by utilizing the thickness of the flow path members. As a result, it becomes easier to direct the processing gas to a large number of nozzles for each processing gas.
本発明の成膜装置において、 上記ヘッド面には、 複数種類の異なる処 理ガスを噴出させるノズルが近接して設けられた処理ガスの噴出部が所 定間隔を隔てて複数配置されている場合には、 上述のようにして積層さ れた各流路部材内の流路構成によってえられた処理ガスの流路がノズル の状態でへッ ド面に開口して上記噴出部を構成し、 この噴出部が所定間 隔を隔てて複数配置されていることから、 各噴出部からの処理ガスの噴 出量を被処理物に対して可及的に均一なものとすることができ、 良好な 成膜形成にとって最良の処理ガス雰囲気がえられる。 また、 複数配置さ れた噴出部の処理ガス噴出量にわずかな差が発生するような場合には、 噴出量の少ない噴出部の配置密度を大きくすることにより、 被処理物に 対する処理ガスの噴出状態を最適化することができる。  In the film forming apparatus of the present invention, in the case where a plurality of processing gas jetting parts provided in close proximity to nozzles for jetting plural kinds of different processing gases are arranged at predetermined intervals on the head surface. In the above, the flow path of the processing gas obtained by the flow path configuration in each flow path member laminated as described above is opened in the head surface in the state of a nozzle to constitute the ejection section, Since the plurality of ejection parts are arranged at predetermined intervals, the amount of processing gas ejected from each ejection part can be made as uniform as possible with respect to the object to be processed. The best processing gas atmosphere is obtained for film formation. In addition, if there is a slight difference in the amount of processing gas ejected from a plurality of ejection parts, increase the arrangement density of the ejection parts with a small amount of ejection to increase the processing gas emission relative to the workpiece. It is possible to optimize the ejection state.
本発明の成膜装置において、 上記噴出部は、 複数種類の異なる処理ガ スを独立して噴出させるノズル開口および/またはノズル管が同心円状 に配置された多重構造を呈し、 上記ノズル管はへッド面の近傍に開口を 有するとともに、 そのノズル管が噴出させる処理ガスが導入される流路 部材の流路と連通するよう当該流路部材に接続されている場合には、 同 心円状に配置された上記ノズル開口および Zまたはノズル管が複数種類 の異なる処理ガスを導入する上記流路部材の流路にそれぞれ接続されて いるので、異なった処理ガスが同心円状に環状の層をなして噴出される。 そして、 このような噴出はヘッ ド面の近傍においてなされる。 したがつ て、 各種の処理ガスは、 ノズル開口おょぴ Zまたはノズル管から嘖出さ れた箇所またはその近傍において、 成膜にとって良好な混合ないしは反 応がなされる。 さらに、 上記ノズル管が流路部材の流路に接続されてい ることにより、 流路部材を積層させて組立てるときに、 ノズル管が位置 決め用のノックピンのような機能を果たし、 組立て作業が簡素化され、 しかも組立て精度が向上する。 In the film forming apparatus of the present invention, the ejection section has a multi-layered structure in which nozzle openings and / or nozzle tubes for ejecting a plurality of different processing gases independently are concentrically arranged. If the nozzle has an opening near the pad surface and is connected to the flow path member so as to communicate with the flow path of the flow path member through which the processing gas to be ejected by the nozzle pipe is introduced, the nozzle pipe is concentric. The nozzle opening and the Z or nozzle tube arranged in the above are respectively connected to the flow path of the flow path member for introducing a plurality of different processing gases. Therefore, different processing gases are ejected concentrically in an annular layer. Then, such eruptions are made in the vicinity of the head surface. Therefore, various kinds of processing gases are mixed or reacted well for film formation at or near the position where the processing gas is discharged from the nozzle opening Z or the nozzle tube. Furthermore, since the nozzle pipe is connected to the flow path of the flow path member, the nozzle pipe functions as a knock pin for positioning when the flow path members are stacked and assembled, thereby simplifying the assembly operation. And assembling accuracy is improved.
本発明の成膜装置において、 上記ノズル管は、 多重構造の内側に位置 するノズル管ほど被処理物から遠い側に配置された流路部材と接続して いる場合には、 内側に位置するノズル管が被処理物から遠い側に配置さ れた流路部材と接続していることにより、 上記遠い側の流路部材からの 処理ガスをこのノズル管によって独立流路として噴出させることができ る。 同様にして、 上記の内側のノズル管の外側のノズル管は、 上記流路 部材よりも被処理物に近い側の流路部材に接続されているので、 異なつ た処理ガスをこの外側のノズル管から独立流路として噴出させることが できる。 つまり、 積層された各流路部材には個々に異なった処理ガスが 導入されているので、 それらの各処理ガスを独立した流路形態で同心円 状の各ノズル管から噴出させることができるのである。  In the film forming apparatus of the present invention, when the nozzle tube located closer to the inside of the multiplex structure is connected to a flow path member disposed farther from the workpiece, the nozzle tube located at the inner side Since the pipe is connected to the flow path member located farther from the workpiece, the processing gas from the flow path member farther away can be ejected by the nozzle pipe as an independent flow path. . Similarly, since the outer nozzle pipe of the inner nozzle pipe is connected to the flow path member closer to the workpiece than the flow path member, a different processing gas is supplied to the outer nozzle pipe. It can be ejected from the pipe as an independent flow path. In other words, since different processing gases are introduced into each of the laminated flow path members, the processing gases can be ejected from the concentric nozzle tubes in an independent flow path form. .
本発明の成膜装置において、 上記ガス噴出ヘッ ドにおいて、 各流路部 材のうち少なく とも被処理物側に位置する流路部材と、 被処理物とは反 対側に位置する流路部材とをそれぞれ独立して温度制御するようになつ ている場合には、 被処理物側に位置する流路部材 (ヘッ ド面) は、 被処 理物からの輻射熱に対する適正な冷却がなされるので、 処理ガスが上記 噴出部すなわちノズル開口および/またはノズル管内やその近傍におい て分解したり、 あるいは成膜現象が生じたりするのを防止することがで きる。 また、 被処理物からの輻射熱によって流路部材が加熱されるまで のあいだ、 流路部材を加温することにより、 処理ガスとして、 露点が低 く低温で凝結しやすいガスを用いる場合に、 流路内での処理ガスの凝結 を防止し、 当該処理ガスの噴出不足による成膜不良を防止することがで さる。 In the film forming apparatus of the present invention, in the gas ejection head, a flow path member located at least on the processing object side of each flow path member, and a flow path member located on the opposite side to the processing object. If the temperature is controlled independently of each other, the flow path member (head surface) located on the side of the workpiece is appropriately cooled against radiant heat from the workpiece. It is possible to prevent the processing gas from decomposing or forming a film at or near the jetting portion, ie, the nozzle opening and / or the nozzle tube. Wear. In addition, by heating the flow path member until the flow path member is heated by radiant heat from the object to be processed, when a gas having a low dew point and easy to condense at a low temperature is used as a processing gas, the flow rate is reduced. It is possible to prevent the processing gas from condensing in the road and prevent a film formation defect due to insufficient jetting of the processing gas.
また、 被処理物とは反対側に位置する流路部材においても、 被処理物か らの輻射熱が及びにくい流路部材が適正な温度制御を受けることとなる ので、 露点が低い処理ガスを用いたときにその凝結等を防止し正常な処 理ガスの供給が可能となる。 そして、 上記のように、 被処理物側に位置 する流路部材と、 被処理物とは反対側に位置する流路部材とをそれぞれ 独立して温度制御することにより、 各流路部材に対応した処理ガスに対 して最も適した温度制御ができ、 噴射される処理ガスの性状が成膜にと つて最適なものとなる。  Also, in the flow path member located on the opposite side of the processing target, the flow path member to which radiant heat from the processing target is difficult to receive is subjected to appropriate temperature control, so that a processing gas having a low dew point is used. When this occurs, condensation is prevented and normal processing gas can be supplied. Then, as described above, by independently controlling the temperature of the flow path member located on the processing object side and the flow path member located on the opposite side to the processing object, it is possible to correspond to each flow path member. The most suitable temperature control can be performed on the processed gas, and the properties of the injected processing gas become optimal for film formation.
本発明の成膜装置において、 上記ガス噴出ヘッドにおいて、 各流路部 '材をそれぞれ独立して温度制御するようになっている場合には、 各流路 部材に対応した処理ガスに適合させた温度制御が、 各流路部材毎に行わ れるので、 ガス噴出へッ ド全体の温度制御状態が処理ガスの性状等にと つて最適化することができる。  In the film forming apparatus of the present invention, when the gas ejection head is configured such that the temperature of each channel member is independently controlled, the gas ejection head is adapted to the processing gas corresponding to each channel member. Since the temperature control is performed for each flow path member, the temperature control state of the entire gas ejection head can be optimized for the properties of the processing gas.
本発明の成膜装置において、 上記各流路部材には、 導入された処理ガ スを一時的に保持する拡散室が設けられ、 上記拡散室の容積は流路部材 の大きさよりも十分に小さくなるよう設定されている場合には、 拡散室 の容積が流路部材の大きさよりも十分に小さくなるように設定してある ので、 拡散室配置のために流路部材の厚さ等の寸法を大きくする必要が なく、 ガス噴出ヘッ ドをコンパク トに構成することができる。 さらに、 拡散室の容積を小さくすることにより、 処理ガスが小さな容積の拡散室 において一時的にある程度高い圧力で保持され、 その状態から各ノズル に供給されるため、 各流路に対する供給ガス圧を高く維持し処理ガスの 噴出を不足なく行うことができる。 In the film forming apparatus of the present invention, each of the flow path members is provided with a diffusion chamber for temporarily holding the introduced processing gas, and the volume of the diffusion chamber is sufficiently smaller than the size of the flow path member. When the diffusion chamber is set so that the volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path member, the dimensions such as the thickness of the flow path member for the diffusion chamber arrangement must be reduced. There is no need to increase the size, and the gas ejection head can be made compact. Furthermore, by reducing the volume of the diffusion chamber, the processing gas is temporarily held at a somewhat high pressure in the small-volume diffusion chamber. Therefore, the supply gas pressure for each flow path can be maintained high, and the processing gas can be ejected without shortage.
そレて、 拡散室が小容積化されることにより、 各流路部材における処 理ガスの流通等に必要な容積が著しく小さくなる。 したがって、 処理ガ スの種類を変更して多層膜形成を行う際には、 残留ガスが少量化されて 処理ガスの種類変更が迅速になされ、 例えば、 第 1の成膜から第 2の成 膜への変換が明瞭になる、 いわゆる多層膜形成時の急峻性が良好にえら れる。 このような効果は、 後述するような流路の簡素化を伴うことによ り、 一層顕著となる。  Then, as the diffusion chamber is reduced in volume, the volume required for the flow of the processing gas in each flow path member is significantly reduced. Therefore, when a multilayer film is formed by changing the type of processing gas, the amount of residual gas is reduced and the type of processing gas is changed quickly. For example, the first film is changed to the second film. The sharpness at the time of forming a so-called multilayer film can be obtained favorably. Such an effect becomes more remarkable due to the simplification of the flow path as described later.
本発明の成膜装置において、 上記流路は、 導入された処理ガスを拡散 室に導く導入側流路と、 拡散室から延びて各ノズルに処理ガスを供給す るノズル側流路とから構成されている場合には、 上記導入側流路からの 処理ガスが拡散室で一時的に保持され、 拡散室から延ぴているノズル側 流路を経て複数の上記噴出部に供給されて、 良好な処理ガスの噴出がな される。 そして、 上記拡散室から多数のノズルに向かってノズル側流路 が延びてゆくので、 ノズル側流路の分岐に拡散室が配置された構造とな り、 上述のように流路抵抗や圧力損失の少ない流路構成がえられる。 本発明の成膜装置において、 上記拡散室は各流路部材の略中央部近傍 に設けられ、 上記拡散室から放射状に延びるノズル側流路を介して各ノ ズルに処理ガスが供給されるようになっている場合には、 各流路部材の 略中央部に位置する拡散室から各ノズルまでのノズル側流路の長さを極 力均一にすることができるので、 処理ガスの流路抵抗もより均一化され て、 各ノズルからの噴射量のばらつきを少なくすることができる。 図面の簡単な説明  In the film forming apparatus of the present invention, the flow path includes an introduction-side flow path that guides the introduced processing gas to the diffusion chamber, and a nozzle-side flow path that extends from the diffusion chamber and supplies the processing gas to each nozzle. In this case, the processing gas from the introduction-side flow path is temporarily held in the diffusion chamber, and is supplied to the plurality of ejection sections via the nozzle-side flow path extending from the diffusion chamber. The processing gas is blown out. Since the nozzle-side flow path extends from the diffusion chamber toward a number of nozzles, the structure is such that the diffusion chamber is arranged at the branch of the nozzle-side flow path, and as described above, the flow path resistance and pressure loss And a flow path configuration with a small amount of water. In the film forming apparatus of the present invention, the diffusion chamber is provided near a substantially central portion of each flow path member, and the processing gas is supplied to each nozzle via a nozzle-side flow path extending radially from the diffusion chamber. In this case, the length of the nozzle-side flow path from the diffusion chamber located at the approximate center of each flow path member to each nozzle can be made as uniform as possible. Therefore, variations in the injection amount from each nozzle can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施の形態の成膜装置を示す断面図である。 図 2は、 上記成膜装置の拡大図である。 FIG. 1 is a sectional view showing a film forming apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged view of the film forming apparatus.
図 3は、 (A)はガス噴出ヘッ ドの平面図、 (B)はノズル管の開口部を 示す平面図である。  3A is a plan view of the gas ejection head, and FIG. 3B is a plan view showing an opening of the nozzle tube.
図 4は、 ノズル管の変形例を示す断面図である。  FIG. 4 is a sectional view showing a modified example of the nozzle tube.
図 5は、 流路部材の変形例を示す断面図である。  FIG. 5 is a cross-sectional view showing a modification of the flow path member.
図 6は、 流路部材の他の変形例を示す断面図である。  FIG. 6 is a sectional view showing another modified example of the flow path member.
図 7は、 (A)は第 2の実施の形態におけるガス噴出へッ ドの断面図、 (B)および(C)はノズル開口の開口位置を示す平面図である。  FIG. 7A is a cross-sectional view of a gas ejection head according to the second embodiment, and FIGS. 7B and 7C are plan views showing positions of nozzle openings.
図 8は、 流路部材の加工状態を示す平面図である。  FIG. 8 is a plan view showing a processing state of the flow path member.
図 9は、 従来の成膜装置を示す断面図である。  FIG. 9 is a cross-sectional view showing a conventional film forming apparatus.
図 1 0は、上記成膜装置のプロック体を分解して示した断面図である。 発明を実施するための最良の形態  FIG. 10 is an exploded cross-sectional view of the block body of the film forming apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 本発明の実施の形態を詳しく説明する。  Next, embodiments of the present invention will be described in detail.
図 1は、 本発明の成膜装置の一実施の形態を示す。 この装置は、 内部 が処理空間 1 とされた処理容器 2内に分離板 3が設けられ、 分離板 3に あけた開口 4に合致させた状態で被処理物であるウェハ 5 (例えば、 半 導体ウェハ) が載置されている。 ウェハ 5の裏面の上方に加熱ヒーター Hが配置されている。 処理空間 1を真空にする真空ポンプ (図示してい ない) が配置され、 排気口 6から処理空間 1内の空気が吸引されるよう になっている。  FIG. 1 shows an embodiment of the film forming apparatus of the present invention. In this apparatus, a separation plate 3 is provided in a processing vessel 2 having a processing space 1 inside, and a wafer 5 (e.g., a semiconductor) to be processed is aligned with an opening 4 opened in the separation plate 3. Wafer) is placed. A heater H is arranged above the back surface of the wafer 5. A vacuum pump (not shown) for evacuating the processing space 1 is provided, and the air in the processing space 1 is sucked from the exhaust port 6.
上記ウェハ 5に処理ガスを供給するために、 ガス噴出へッ ド 7が処理 空間 1内に配置されている。 このガス噴出へッ ド 7から噴射された処理 ガスにより、 ウェハ 5の表面に CVD (C h e m i c a 1 V a p e r D e p o s i t i o n) 処理が施されて、 絶縁用の酸化膜や配線用の金 属膜等が成膜される。図示のガス噴出へッ ド 7は、 3種類の処理ガス A, B, Cを噴射する形式のものであり、 ウェハ 5に面するヘッ ド面 8に噴 出部 9が複数配置されている。 図 3に示すように、 へッ ド面 8には複数 の上記噴出部 9が所定間隔を隔てて配置されている。 In order to supply a processing gas to the wafer 5, a gas ejection head 7 is arranged in the processing space 1. The surface of the wafer 5 is subjected to CVD (Chemical 1 Vapor Deposition) processing by the processing gas injected from the gas blowing head 7, and an oxide film for insulation and a metal film for wiring are formed. A film is formed. The gas ejection head 7 shown in the figure has three types of processing gas A, B and C are ejected, and a plurality of ejection portions 9 are arranged on a head surface 8 facing the wafer 5. As shown in FIG. 3, the head surface 8 has a plurality of the ejection portions 9 arranged at predetermined intervals.
各処理ガス A, B, C毎に分厚い板状の材料でつく られた流路部材 1 O A, 1 1 B , 1 2 Cが積層構造とされ、 上記各流路部材 1 0 A, 1 1 B, 1 2 Cはヘッ ド面 8に沿った状態で配置されている。 各流路部材 1 0 A, 1 1 B , 1 2 Cの中央部には拡散室 1 3 A, 1 4 B, 1 5 Cが配 置され、 各拡散室には処理ガス供給源 (図示していない) から導入側流 路 1 6 A, 1 7 B , 1 8 Cを経て処理ガス A, B , Cが導かれるように 各流路部材 1 0 A, 1 1 B , 1 2 Cの内部に流路配置がなされている。 したがって、 各流路部材 1 0 A, 1 1 B , 1 2。は処理ガス , B , C 毎に設けられ、 それに伴って各拡散室 1 3 A, 1 4 B , 1 5 Cや導入側 通路 1 6 A, 1 7 B , 1 8 Cおよびノズル側流路 1 9 A, 2 0 B , 2 1 Cは各処理ガス A, B, C専用のものとして設けられている。 また、 各 拡散室 1 3 A, 1 4 B , 1 5 Cカゝら放射状にノズル側流路 1 9 A, 2 0 B , 2 1 Cが噴出部 9の方へ延ぴている。 上記放射状配置の状態は、 図 8の流路部材 1 0 Aの加工図に示されている。  The flow path members 1 OA, 11 B, and 12 C made of a thick plate-like material for each of the processing gases A, B, and C have a laminated structure. Each of the flow path members 10 A, 11 B , 12 C are arranged along the head surface 8. Diffusion chambers 13A, 14B, and 15C are located in the center of each flow path member 10A, 11B, and 12C, and each diffusion chamber has a processing gas supply source (shown in the figure). ) Through the inlet side flow passages 16 A, 17 B, and 18 C from the inside of each flow passage member 10 A, 11 B, and 12 C. The flow path is arranged. Therefore, each flow path member 10 A, 11 B, 12. Are provided for each of the processing gases B, C, and accordingly, the diffusion chambers 13 A, 14 B, 15 C, the inlet side passages 16 A, 17 B, 18 C and the nozzle side passage 1 9 A, 20 B and 21 C are provided exclusively for the respective processing gases A, B and C. In addition, the nozzle-side flow paths 19 A, 20 B, 21 C extend radially from the diffusion chambers 13 A, 14 B, 15 C toward the ejection section 9. The state of the radial arrangement is shown in the processing diagram of the flow path member 10A in FIG.
上記拡散室 1 3 A, 1 4 B, 1 5 Cは各流路部材 1 0 A, 1 1 B , 1 2 Cの略中央部近傍に設けられ、 上記拡散室から放射状に延びるノズル 側流路 1 9 A, 2 0 B, 2 1 Cを介して各ノズルに処理ガスが供給され るようになっているので、 各流路部材 1 0 A, 1 1 B , 1 2 Cの略中央 部に位置する拡散室 1 3 A, 1 4 B , 1 5 Cから各ノズルまでのノズル 側流路 1 9 A, 2 0 B, 2 1 Cの長さを極力均一にすることができ、 そ れにともなつて処理ガスの流路抵抗もより均一化されて、 各ノズルから の噴射量のばらっきを少なくすることができる。  The diffusion chambers 13 A, 14 B, and 15 C are provided near the center of each of the flow path members 10 A, 11 B, and 12 C, and extend radially from the diffusion chamber. Since the processing gas is supplied to each nozzle via 19 A, 20 B, and 21 C, it is located approximately in the center of each of the flow path members 10 A, 11 B, and 12 C. Nozzle-side flow paths 19 A, 20 B, 21 C from the diffusion chambers 13 A, 14 B, 15 C to each nozzle can be made as uniform as possible. As a result, the flow resistance of the processing gas is also made more uniform, and the variation in the injection amount from each nozzle can be reduced.
上記噴出部 9は、 複数種類の異なる処理ガス A, B , Cを独立して噴 出させるノズル開口およぴ/またはノズル管が、 小径のノズル管 2 2と その外側に同心的に配置された大径のノズル管 2 3とさらにその外側に 配置されたノズル開口 2 4によって構成されている。 このように多重構 造とされたノズル管 2 2, 2 3は、 内側に位置する小径のノズル管 2 2 がウェハ 5から遠い側に配置された流路部材 1 0 Aに接続され、 ノズル 管 2 2の外側に位置する大径のノズル管 2 3は流路部材 1 0 Aよりもゥ ェハに近い側の流路部材 1 1 Bに接続されている。 The jetting section 9 independently jets a plurality of different processing gases A, B, and C. The nozzle opening and / or nozzle tube to be discharged is composed of a small-diameter nozzle tube 22, a large-diameter nozzle tube 23 concentrically arranged outside the nozzle tube 23, and a nozzle opening 24 further arranged outside the nozzle tube 22. Have been. The nozzle pipes 22 and 23 having the multi-structure are connected to a flow path member 10 A in which a small-diameter nozzle pipe 22 located on the inner side is located farther from the wafer 5. The large-diameter nozzle pipe 23 located outside the pipe 22 is connected to the flow path member 11 B closer to the wafer than the flow path member 10 A.
上記のような流路形成によって、 処理ガス Aはノズル管 2 2内のノズ ル流路 2 2 Aを流れて噴出部 9に供給され、 処理ガス Bはノズル管 2 2 とノズル管 2 3とのあいだの隙間で構成されたノズル流路 2 3 Bを流れ て噴出部 9に供給され、 処理ガス Cはノズル管 2 3の外側に形成されて いるノズル開口 2 4から噴出部 9に供給される。 したがって、 積層され た各流路部材 1 0 A, 1 1 B , 1 2 Cには個々に異なった処理ガスが導 入されているので、 それらの各処理ガス A, B , Cを独立した流路形態 で同心円状の各ノズル管 2 2, 2 3から噴出させることができるのであ る。 '  Due to the flow path formation as described above, the processing gas A flows through the nozzle flow path 22 A in the nozzle pipe 22 and is supplied to the jetting section 9, and the processing gas B flows through the nozzle pipe 22 and the nozzle pipe 23. The processing gas C is supplied to the jetting section 9 through the nozzle flow path 23 B formed by the gap between the nozzles 23, and the processing gas C is supplied to the jetting section 9 from the nozzle opening 24 formed outside the nozzle pipe 23. You. Therefore, since different processing gases are introduced into each of the laminated flow path members 10A, 11B, and 12C, the processing gases A, B, and C flow independently. It can be ejected from each concentric nozzle pipe 22, 23 in the form of a road. '
上記のような構成により、 各流路部材 1 0 A, 1 1 B, 1 2 Cの流路 1 6 A, 1 7 B , 1 8 Cおよび 1 9 A, 2 0 B , 2 1 Cに供給された異 なる複数の処理ガス A, B , Cは、 その流路部材 1 0 A, 1 1 B, 1 2 C内で分岐されてその処理ガスのためのノズル管 2 2, 2 3および Zま たはノズル開口 2 4の方へ仕向けられる。 このように積層構造とされた 各流路部材 1 0 A, 1 1 B , 1 2 Cにおいて各処理ガス A, B, C毎に 噴出部 9の方へ流通させられるので、噴出部 9に向かう処理ガス A, B , Cの流路の引き回し構造が簡素化され、 それにともなつて各流路におけ る流路抵抗も均一化しやすくなり、 結果的には多数の噴出部 9における 噴出ガス量が可及的に均一化されて、 安定した成膜の進行がなされ、 良 好な成膜品質がえられる。 With the above configuration, supply to the flow paths 16 A, 17 B, 18 C and 19 A, 20 B, 21 C of the flow path members 10 A, 11 B, 12 C The plurality of different processing gases A, B, and C are branched in the flow path members 10 A, 11 B, and 12 C to form nozzle pipes 22, 23, and Z for the processing gas. Or, it is directed toward nozzle opening 24. In each of the flow path members 10 A, 11 B, and 12 C having the laminated structure as described above, each processing gas A, B, and C is circulated toward the jetting part 9, so that the gas flows toward the jetting part 9. The routing structure of the processing gas A, B, and C flow passages is simplified, and accordingly, the flow passage resistance in each flow passage is easily made uniform. Is made as uniform as possible, and stable film formation progresses. Good film formation quality can be obtained.
上記のように、 各流路部材 1 0 A, 1 1 B , 1 2 0の流路 1 9 , 2 0 B , 2 1 Cに流入した処理ガス A, B , Cは、 上記ヘッ ド面 8に実質 的に沿う方向に所定の箇所まで供給されてから、 その処理ガスのための ノズルの方へ変向される。 このような流路構成を基本にして多数の噴出 部 9から処理ガスを噴出させることができるので、 ガス流路の屈曲箇所 は、 この場合は 1箇所となり、 流路抵抗の増大や圧力損失の問題が回避 できるのである。 また、 ヘッ ド面 8に実質的に沿わせた状態で流路部材 1 0 A, 1 1 B , 1 2 Cが積層されているので、 流路部材の厚さを利用 して流路部材の全域にわたって処理ガスの流路を十分に確保できること となり、 それにより処理ガス毎に多数のノズル管 2 2, 2 3やノズル開 口 2 4に処理ガスを向かわせることが行いやすくなる。  As described above, the processing gases A, B, and C flowing into the flow paths 19, 20B, and 21C of the flow path members 10A, 11B, and 120 are separated from the head surfaces 8A, 11B, and 21C, respectively. After being supplied to a predetermined point in a direction substantially along the nozzle, it is turned to a nozzle for the processing gas. Since the processing gas can be ejected from a large number of ejection sections 9 based on such a flow path configuration, the bending point of the gas flow path becomes one in this case, and the flow path resistance increases and the pressure loss decreases. The problem can be avoided. Further, since the flow path members 10A, 11B, and 12C are laminated substantially along the head surface 8, the thickness of the flow path member is utilized by utilizing the thickness of the flow path member. A sufficient flow path of the processing gas can be ensured over the entire region, which makes it easier to direct the processing gas to a large number of nozzle pipes 22, 23 and nozzle openings 24 for each processing gas.
上記噴出部 9が所定間隔を隔てて複数配置されているので、 各噴出部 9からの処理ガスの噴出量をウェハ 5に対して可及的に均一なものとす ることができ、 良好な成膜形成にとって最良の処理ガス雰囲気がえられ る。 また、 複数配置された噴出部 9の処理ガス噴出量にわずかな差が発 生するような場合には、 噴出量の少ない噴出部 9の配置密度を大きくす ることにより、 ウェハ 5に対する処理ガスの噴出状態を最適化すること ができる。  Since the plurality of ejection parts 9 are arranged at predetermined intervals, the amount of the processing gas ejected from each ejection part 9 can be made as uniform as possible with respect to the wafer 5. The best processing gas atmosphere for film formation can be obtained. In the case where a slight difference occurs in the amount of processing gas ejected from the plurality of ejection parts 9, the arrangement density of the ejection parts 9 having a small amount of ejection is increased to increase the processing gas for the wafer 5. It is possible to optimize the jetting condition.
同心円状に配置された上記ノズル開口 2 4および/またはノズル管 2 2, 2 3が複数種類の異なる処理ガス A, B , Cを導入する上記流路部 材 1 0 A, 1 1 B , 1 2 Cの流路にそれぞれ接続されているので、 異な つた処理ガスが同心円状に環状の層をなして噴出される。 そして、 この ような噴出はヘッ ド面 8の近傍においてなされる。 したがって、 各種の 処理ガス A, B, Cは、 ノズル開口 2 4および またはノズル管 2 2, 2 3から噴出された箇所またはその近傍において、 成膜にとつて良好な 混合ないしは反応がなされる。 さらに、 上記ノズル管 2 2, 2 3が流路 部材 1 0 A, 1 1 B , 1 2 Cの流路に嵌合されていることにより、 流路 部材を積層させて組立てるときに、 ノズル管 2 2, 2 3が位置決め用の ノックピンのような機能を果たし、 組立て作業が簡素化され、 しかも組 立て精度が向上する。 The concentrically arranged nozzle openings 24 and / or nozzle tubes 22, 23 are provided with the flow path members 10 A, 11 B, 1 through which a plurality of different types of processing gases A, B, C are introduced. Since they are connected to the 2C flow paths, different processing gases are ejected concentrically in an annular layer. Then, such ejection is performed in the vicinity of the head surface 8. Therefore, the various processing gases A, B, and C are good for forming a film at or near the location ejected from the nozzle opening 24 and / or the nozzle pipes 22 and 23. Mixing or reaction takes place. Further, since the nozzle pipes 22 and 23 are fitted into the flow paths of the flow path members 10A, 11B and 12C, the nozzle pipes are stacked and assembled when assembled. 22 and 23 function like knock pins for positioning, simplifying assembly work and improving assembly accuracy.
上記ガス噴出ヘッ ド 7において、 各流路部材 1 0 A , 1 1 B , 1 2 C のうち少なく ともウェハ 5側に位置する流路部材 1 2 Cと、 ウェハ 5と は反対側に位置する流路部材 1 0 Aとをそれぞれ独立して温度制御する ようになつている。 そのために、 流路部材 1 2 Cには図 1〜図 3に示す ように、 温度制御流体としての冷却水を導く冷却管路 2 5が設けられて いる。 この冷却管路 2 5は、 流路部材 1 2 Cの表面部をヘッ ド面 8に沿 うような状態で配置され、 ウェハ 5からへッ ド面 8に及ぶ輻射熱をでき るだけ均一に冷却するために、図 3 (A ) に示すようにへッ ド面 8全域に わたって湾曲した流路を構成している。  In the gas ejection head 7, at least one of the flow path members 10A, 11B, and 12C is positioned on the wafer 5 side, and the flow path member 12C is positioned on the opposite side to the wafer 5. The temperature of the flow path member 10A is controlled independently of each other. For this purpose, the flow path member 12C is provided with a cooling conduit 25 for guiding cooling water as a temperature control fluid as shown in FIGS. The cooling conduits 25 are arranged so that the surface of the flow path member 12 C is along the head surface 8, and cool the radiant heat from the wafer 5 to the head surface 8 as uniformly as possible. As shown in FIG. 3 (A), a curved flow path is formed over the entire area of the head surface 8.
これにより、 ウェハ 5側に位置する流路部材 1 2 C (ヘッ ド面) は、 加熱されているウェハ 5からの輻射熱に対する適正な冷却がなされるの で、上記噴出部 9すなわちノズル開口 2 4および Zまたはノズル管 2 2 , 2 3内やその近傍において処理ガス A, B, Cが分解したり、 あるいは 成膜現象が生じたりするのを防止することができる。  As a result, the flow path member 12 C (head surface) located on the wafer 5 side is appropriately cooled with respect to the radiant heat from the heated wafer 5. In addition, it is possible to prevent decomposition of the processing gases A, B, and C in and around the nozzle pipes 22 and 23 and the nozzle pipes 22 and 23 and prevent the film formation phenomenon from occurring.
なお、 ウェハ 5からの輻射熱によって流路部材 1 2 Cが加熱されるま でのあいだ、 冷却管路 2 5に温水を流通させて流路部材 1 2 Cを加温す ることもできる。 このようにすることにより、 処理ガス Cとして、 露点 が低く低温で凝結しやすいガスを用いる場合に、 流路内での処理ガスの 凝結を防止し、 当該処理ガス Cの噴出不足による成膜不良を防止するこ とができるのである。 また、 冷却管路 2 5に流通させる温度制御媒体と しては、 水に限らず油やガス等の適当な流体を用いることができる。 また、 ウェハ 5とは反対側に位置する流路部材 1 0 Aにおいても、 適 正な温度制御を行うために、 加温ヒーター 2 6が流路部材 1 0 Aの近く に配置されている。 こうすることにより、 ウェハ 5からの輻射熱が及び にくい流路部材 1 0 Aが適正な温度制御を受けることとなるので、 流路 部材 1 0 Aにおける露点が低い処理ガスを用いたときに、 その凝結を防 止し正常な処理ガスの供給が可能となる。 そして、 上記のように、 ゥェ ハ 5側に位置する流路部材 1 2 Cと、 ウェハ 5 とは反対側に位置する流 路部材 1 0 Aとをそれぞれ独立して温度制御することにより、 各流路部 材 1 2 C , 1 0 Aに対応した処理ガス C, Aに対して最も適した温度制 御ができ、噴射される処理ガスの性状が成膜にとつて最適なものとなる。 上記ガス噴出ヘッ ド 7において、 各流路部材 1 0 A, 1 1 B , 1 2 C をそれぞれ独立して温度制御するために、 図示はしていないが、 中間部 の流路部材 1 1 Bに温度制御用の流水管を通すことができる。 こうする ことにより、各流路部材 1 0 A, 1 1 B , 1 2 Cに対応した処理ガス A , B , Cに適合させた温度制御が、 各流路部材 1 0 A, 1 1 B, 1 2 C毎 に行われるので、 ガス噴出へッ ド 7全体の温度制御状態を処理ガスの性 状等にとって最適化することができる。 なお、 上記流水管に流通させる 温度制御媒体としては、 水に限らず油やガス等の適当な流体を用いるこ とができる。 Until the flow path member 12C is heated by the radiant heat from the wafer 5, the flow path member 12C can be heated by flowing hot water through the cooling conduit 25. In this way, when a gas having a low dew point and a low temperature that easily condenses is used as the process gas C, it is possible to prevent the process gas from condensing in the flow path, and to form a film due to insufficient ejection of the process gas C. Can be prevented. The temperature control medium flowing through the cooling pipe 25 is not limited to water, but may be an appropriate fluid such as oil or gas. Also in the flow path member 10 A located on the opposite side of the wafer 5, the heating heater 26 is arranged near the flow path member 10 A in order to perform appropriate temperature control. By doing so, the flow path member 10 A to which the radiant heat from the wafer 5 is less likely to be subjected to appropriate temperature control, so that when a processing gas having a low dew point in the flow path member 10 A is used, Prevention of condensation and normal supply of processing gas is possible. As described above, by independently controlling the temperature of the flow path member 12 C located on the wafer 5 side and the flow path member 10 A located on the opposite side of the wafer 5, The most suitable temperature control can be performed for the processing gases C and A corresponding to the respective flow path members 12 C and 10 A, and the properties of the injected processing gas are optimal for film formation. . In the gas ejection head 7, although not shown, in order to independently control the temperature of each of the flow path members 10 A, 11 B, and 12 C, the flow path members 11 B Through a water pipe for temperature control. By doing so, the temperature control adapted to the processing gases A, B, C corresponding to the respective flow path members 10A, 11B, 12C can be performed by the respective flow path members 10A, 11B, Since the temperature control is performed every 12 C, the temperature control state of the entire gas ejection head 7 can be optimized for the properties of the processing gas and the like. The temperature control medium flowing through the water pipe is not limited to water, but may be an appropriate fluid such as oil or gas.
上記各流路部材 1 0 A, 1 1 B, 1 2 Cには、導入された処理ガス A, B , Cを一時的に保持する拡散室 1 3 A, 1 4 B , 1 5 Cが設けられ、 上記拡散室の容積は流路部材 1 0 A, 1 1 B , 1 2 Cの大きさよりも十 分に小さくなるよう設定されている。 上記拡散室 1 3 A, 1 4 B , 1 5 Cからその拡散室が配置された流路部材 1 0 A, 1 1 B , 1 2 C内にお いて、 多数のノズルに向かって処理ガス A , B , Cのノズル側流路 1 9 A, 2 0 B , 2 1 Cが延びてゆくので、 放射的に流路を形成するような 場合であっても、 ノズル側流路 1 9 A, 2 O B, 2 1 Cの分岐に拡散室 が配置された構造となり、 上述のように流路抵抗や圧力損失の少ない流 路構成がえられる。 また、 拡散室 1 3 A, 1 4 B, 1 5 Cの容積が流路 部材 1 0 A, 1 1 B, 1 2 Cの大きさよりも十分に小さくなるように設 定してあるので、 拡散室配置のために流路部材の厚さ等の寸法を大きく する必要がなく、 ガス噴出へッ ド 7をコンパク トに構成することができ る。 さらに、 拡散室 1 3 A, 1 4 B , 1 5 Cの容積を小さくすることに より、 処理ガス A, B , Cが小さな容積の拡散室において一時的にある 程度高い圧力で保持され、 その状態からノズルに供給されるため、 各流 路に対する供給ガス圧を高く維持し処理ガスの噴出を不足なく行うこと ができる。 Each of the flow path members 10A, 11B, and 12C is provided with diffusion chambers 13A, 14B, and 15C for temporarily holding the introduced processing gases A, B, and C. The volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path members 10A, 11B, and 12C. From the diffusion chambers 13A, 14B, and 15C, the processing gas A is directed toward a number of nozzles in the flow path members 10A, 11B, and 12C in which the diffusion chambers are arranged. , B, C Nozzle side flow path 19 A, 20 B, 21 C Even in this case, a diffusion chamber is arranged in the branch of the nozzle-side flow paths 19 A, 2 OB, and 21 C, and a flow path configuration with low flow resistance and low pressure loss can be obtained as described above. . In addition, since the volumes of the diffusion chambers 13A, 14B, and 15C are set to be sufficiently smaller than the size of the flow path members 10A, 11B, and 12C, the diffusion It is not necessary to increase the dimensions such as the thickness of the flow path member for the arrangement of the chamber, and the gas ejection head 7 can be made compact. Furthermore, by reducing the volume of the diffusion chambers 13A, 14B, and 15C, the processing gases A, B, and C are temporarily held at a somewhat higher pressure in the small-volume diffusion chamber, and the Since the gas is supplied to the nozzle from the state, the supply gas pressure for each channel can be maintained high, and the processing gas can be ejected without shortage.
そして、 拡散室 1 3 A, 1 4 B, 1 5 Cが小容積化されることと流路 部材 1 0 A, 1 1 B , 1 2 Cの流路が簡素化されることにより、 各流路 部材における処理ガス A, B, Cの流通等に必要な容積が著しく小さく なる。したがって、処理ガスの種類を変更して多層膜形成を行う際には、 残留ガスが少量化されて処理ガスの種類変更が迅速になされ、 例えば、 第 1の成膜から第 2の成膜への変換が明瞭になる、 いわゆる多層膜形成 時の急峻性が良好にえられる。  Each of the diffusion chambers 13A, 14B, and 15C has a small volume, and the flow path members 10A, 11B, and 12C have simplified flow paths. The volume required for the flow of processing gases A, B, and C in the road members is significantly reduced. Therefore, when a multilayer film is formed by changing the type of the processing gas, the amount of the residual gas is reduced and the type of the processing gas can be changed quickly, for example, from the first film formation to the second film formation. The sharpness at the time of forming a so-called multilayer film can be obtained favorably.
図 4に示すように、 上記処理ガスの噴出部 9は、 ヘッ ド面 8の近傍に 開口しているのであるが、 ウェハ 5に噴射される処理ガス A , B, 混合や反応の状態をより改善するために、 噴射部 9をヘッ ド面 8から突 出させることが得策である。 なお、 図 3 (B) と図 4は、 小径, 中径, 大 径のノズル管 2 2, 2 7 , 2 3を 3重に配置して 3種類の処理ガスを嘖 出するようにしている。 図 4 (A) は、 ノズル管 2 2, 2 7, 2 3全てが 同じ突出長さとされている場合である。 (B) は、 ノズル管 2 2, 2 7 , 2 3を斜めに切断して 1仮想平面上に各管の端面を整列させた場合であ る。 (C ) は、 内側のノズル管ほど短く した場合である。 (D ) は、 (C ) のような形態において各ノズル管 2 2, 2 7 , 2 3の端部を斜めに切断 した場合である。 As shown in FIG. 4, the processing gas jetting portion 9 is open near the head surface 8. The processing gas A, B injected to the wafer 5, and the state of mixing and reaction are more clearly shown. In order to improve, it is advisable to make the injection part 9 protrude from the head surface 8. Fig. 3 (B) and Fig. 4 show that small, medium and large diameter nozzle pipes 22, 27, and 23 are arranged in three layers so that three types of processing gas are discharged. . Fig. 4 (A) shows the case where the nozzle tubes 22, 27, and 23 all have the same protruding length. (B) shows the case where the nozzle tubes 22, 27, and 23 are cut obliquely and the end faces of each tube are aligned on one virtual plane. You. (C) shows the case where the inner nozzle tube is shorter. (D) is a case in which the ends of the nozzle tubes 22, 27, and 23 are obliquely cut in the form as in (C).
図 1, 図 2等においては、 流路である導入側流路 1 6 A, 1 7 B , 1 8 Cやノズル側流路 1 9 A, 2 0 B , 2 1 C等が各流路部材の肉厚内部 に形成してある場合であるが、 これを図 5のような形式に置きかえるこ とができる。 すなわち、 図 5の断面状態で図示された流路部材 1 1 Bの ように、 流路部材 1 1 Bの上面側に溝の状態で導入側流路 1 7 Bが形成 され、 それが拡散室 1 4 Bに開口している。 そして、 この拡散室 1 4 B も流路部材 1 1 Bの下面側から窪部を設けて構成している。 さらに、 拡 散室 1 4 Bから各ノズルへ延ぴているノズル側流路 2 0 Bも、 流路部材 1 1 Bの下面側に溝の状態で形成されている。なお、符号 2 8 , 2 9は、 溝状のノズル側流路 1 9 Aや導入側流路 1 8 Cを封止するカバー板であ る。 このような構成を採用することにより、 流路部材 1 0 A, 1 1 B , 1 2 Cを例えば、 ダイカス ト铸造等で製作し製造コス トを大幅に低減す ることができる。  In FIGS. 1 and 2, etc., the inlet side flow paths 16A, 17B, 18C and the nozzle side flow paths 19A, 20B, 21C etc. are the flow path members. In this case, it can be replaced with the form shown in Fig. 5. That is, as shown in the flow path member 11B shown in the cross-sectional state of FIG. 5, the introduction-side flow path 17B is formed in the state of a groove on the upper surface side of the flow path member 11B, and this is the diffusion chamber. It is open to 1 4B. The diffusion chamber 14B is also provided with a recess from the lower surface side of the flow path member 11B. Further, the nozzle side flow path 20B extending from the diffusion chamber 14B to each nozzle is also formed in a groove state on the lower surface side of the flow path member 11B. Reference numerals 28 and 29 are cover plates that seal the groove-shaped nozzle-side flow path 19A and the introduction-side flow path 18C. By adopting such a configuration, the flow path members 10A, 11B, and 12C can be manufactured by, for example, die casting, and the manufacturing cost can be significantly reduced.
さらに、 図 6に示すように、 1つの流路部材を複数の部品で構成する ようにしてもよい。 ここでは流路部材 1 0 Aを例にしているもので、 上 板 3 0に拡散室 1 3 Aの一部を構成する窪部 3 1 とノズル側流路 1 9 A が形成され、 下板 3 2に拡散室 1 3 Aの一部を構成する窪部 3 3と導入 側流路 1 6 Aが形成され、 上板 3 0と下板 3 2を接着剤あるいは溶接等 により一体化している。 このような構造も、 流路部材を例えば、 ダイ力 ス ト铸造等で製作し製造コス トを大幅に低減することができる。  Further, as shown in FIG. 6, one channel member may be constituted by a plurality of components. Here, the flow path member 10 A is taken as an example, and the upper plate 30 is formed with a recess 31 forming a part of the diffusion chamber 13 A and a nozzle-side flow path 19 A, and the lower plate 30 is formed. A recess 33, which constitutes a part of the diffusion chamber 13A, and a flow path 16A on the inlet side are formed in 32, and the upper plate 30 and the lower plate 32 are integrated by adhesive or welding. . In such a structure, the flow path member is manufactured by, for example, die force storage, and the manufacturing cost can be significantly reduced.
また、 ヘッ ド面 8は、 通常、 平面状に形成されているのであるが、 流 路部材の内部流路の形状や寸法の関係で隣合う流路部材の境界面を傾斜 させたり、凹状や凸状にしたりすることができる。こうすることにより、 流路部材の形状を自由に選定できて、 処理ガスの流通をよりすぐれた成 膜品質となるように最適化することが可能となる。 In addition, the head surface 8 is usually formed in a flat shape. However, the boundary surface between the adjacent flow path members is inclined or concaved due to the shape and dimensions of the internal flow path of the flow path member. It can be convex. By doing this, The shape of the flow path member can be freely selected, and the flow of the processing gas can be optimized so as to obtain better film quality.
図 7は、 本発明の成膜装置におけるガス噴出へッ ドの他の実施の形態 を示す。  FIG. 7 shows another embodiment of the gas ejection head in the film forming apparatus of the present invention.
この実施の形態では、 各ノズル側流路 1 9 A, 2 0 B , 2 1 Cから分 岐した流路が、 噴射部 9にノズル開口 3 4 A, 3 5 B , 3 6 Cとして開 口している場合である。各ノズル開口 3 4八, 3 58, 3 6。は、同図(8) に示すように正三角形をなした状態で接近させて配置とすることも可能 であり、 また、 同図(C) に示すように 1直線上に接近させて配列するこ とも可能である。 それ以外は、 上記実施の形態と同様であり、 同様の部 分には同じ符号を付している。  In this embodiment, the flow paths branched from the respective nozzle-side flow paths 19 A, 20 B, 21 C are opened as the nozzle openings 34 A, 35 B, 36 C in the injection section 9. If you are. Each nozzle opening 348, 358, 36. Can be arranged close to each other in the form of an equilateral triangle as shown in Fig. (8), and arranged close to one straight line as shown in Fig. (C). This is also possible. The other parts are the same as those in the above embodiment, and the same parts are denoted by the same reference numerals.
上記構成により、 前述のノズル管 2 2, 2 7, 2 3のような部品を使 用することなく、 噴出部 9を簡単な構造で製造することができる。 それ 以外は、 上記実施の形態と同様の作用効果を奏する。  With the above-described configuration, the ejection section 9 can be manufactured with a simple structure without using components such as the nozzle tubes 22, 27, and 23 described above. Except for the above, the same operation and effect as those of the above embodiment can be obtained.
図 8は、 流路部材 1 0 Aを機械加工で製作する場合の説明図である。 肉厚の円形の素材板 3 7に直径方向の穴 3 8を複数本あけ、 これらの穴 3 8がノズル側流路 1 9 Aを形成するものとされ、 各穴 3 8が交わる中 央部に窪部 3 9を設けて拡散室 1 3 Aを構成している。 なお、 符号 4 0 で示した穴に最も小径なノズル管 2 2が接続されるようになっている。 また、 各穴 3 8の外周側の開口端はプラグ 4 1で封鎖してある。  FIG. 8 is an explanatory diagram in the case where the flow path member 10A is manufactured by machining. A plurality of diametrical holes 38 are made in a thick circular material plate 37, and these holes 38 are assumed to form a nozzle-side flow path 19A, and a central portion where each hole 38 intersects A diffusion chamber 13 A is formed by providing a recess 39 in the cavity. The smallest diameter nozzle pipe 22 is connected to the hole indicated by reference numeral 40. Further, the opening end on the outer peripheral side of each hole 38 is closed with a plug 41.
積層構造とされた流路部材 1 0 A, 1 1 B, 1 2 Cは各流路部材を貫 通するボルトで強固に結合したり、 各流路部材の端部を図 2の符号 4 2 で示す溶接部で溶着したり、 あるいは接着剤等で接合して一体化するこ とができる。  The laminated flow path members 10A, 11B, and 12C are firmly connected by bolts penetrating the flow path members, and the ends of the flow path members are denoted by reference numerals 42 in FIG. Can be integrated by welding at the welds indicated by, or by bonding with an adhesive or the like.
上記の実施の形態では、 各流路部材 1 0 A, 1 1 B, 1 2 Cにそれぞ れ 1つの拡散室 1 3 A, 1 4 B, 1 5 Cが配置されている場合であるが、 この拡散室を各流路部材または特定の流路部材に複数、 例えば、 2つ配 置して、 処理ガスの分配性を自由に選定することも可能である。 発明の効果 In the above embodiment, there is a case where one diffusion chamber 13 A, 14 B, 15 C is disposed in each of the flow path members 10 A, 11 B, 12 C, respectively. , It is also possible to arrange a plurality, for example, two, of the diffusion chambers in each flow path member or a specific flow path member, and freely select the distribution of the processing gas. The invention's effect
以上のように、本発明の成膜装置によれば、上記のような構成により、 特定の流路部材の流路に供給された 1種類の処理ガスは、 その流路部材 内で分岐されてその処理ガスのためのノズルの方へ仕向けられる。また、 他の流路部材の流路に供給された他の種類の処理ガスも同様な流通過程 を経て、 その処理ガスのためのノズルの方へ仕向けられる。 このように 積層構造とされた各流路部材において各処理ガス毎にノズルの方へ流通 させられるので、 ノズルに向かう処理ガスの流路の引き回し構造が簡素 化され、 それにともなつて各流路における流路抵抗も均一化しやすくな り、 結果的には多数のノズルにおける噴出ガス量が可及的に均一化され て、 安定した成膜の進行がなされ、 良好な成膜品質がえられる。 また、 このような安定した成膜が進行するので、成膜に要する時間も短縮され、 生産性向上にとって有効である。  As described above, according to the film forming apparatus of the present invention, with the above configuration, one type of processing gas supplied to the flow path of a specific flow path member is branched in the flow path member. It is directed towards a nozzle for the process gas. Further, another type of processing gas supplied to the flow path of another flow path member is also directed to a nozzle for the processing gas through a similar circulation process. Since each processing gas is circulated toward the nozzle in each of the stacked flow path members, the structure for routing the processing gas flow path toward the nozzles is simplified. Also, the flow resistance in the nozzle becomes easy to be uniform, and as a result, the amount of gas ejected from a large number of nozzles is made as uniform as possible, so that a stable film formation can be performed and good film formation quality can be obtained. In addition, since such a stable film formation proceeds, the time required for the film formation is shortened, which is effective for improving productivity.
例えば、 各流路部材の流路に流入した処理ガスは、 上記ヘッ ド面に実質 的に沿う方向に所定の箇所まで延ばされてから、 その処理ガスのための ノズルの方へ変向される。 このような流路構成を基本にして多数のノズ ルから処理ガスを噴出させることができるので、ガス流路の屈曲箇所は、 この場合は 1箇所となり、 上述のような流路抵抗の増大や圧力損失の問 題が回避できるのである。 また、 ヘッ ド面に実質的に沿わせた状態で流 路部材が積層されているので、 流路部材の厚さを利用して流路部材の全 域にわたって処理ガスの流路を十分に確保できることとなり、 それによ り処理ガス毎に多数のノズルに処理ガスを向かわせることが行いやすく なる。 For example, the processing gas that has flowed into the flow path of each flow path member is extended to a predetermined position in a direction substantially along the head surface, and is then diverted toward a nozzle for the processing gas. You. Since the processing gas can be ejected from a large number of nozzles based on such a flow path configuration, the gas flow path is bent at only one point in this case, thus increasing the flow path resistance as described above. The problem of pressure loss can be avoided. In addition, since the flow path members are laminated substantially along the head surface, a sufficient flow path of the processing gas is secured over the entire flow path member by utilizing the thickness of the flow path member. This makes it easier to direct the processing gas to a number of nozzles for each processing gas.

Claims

請求の範囲 The scope of the claims
1 .処理空間内に複数種類の処理ガスを供給するガス噴出へッ ドを有し、 上記処理ガスにより被処理物の表面に成膜を行う成膜装置であって、 上記ガス噴出へッドには、 被処理物側に面するへッ ド面に各処理ガス を独立して噴出させるノズルがそれぞれ多数設けられ、  1. A film forming apparatus that has a gas ejection head for supplying a plurality of types of processing gases into a processing space, and forms a film on a surface of an object to be processed with the processing gas, wherein the gas ejection head is Has a large number of nozzles for independently ejecting each processing gas on the head surface facing the workpiece,
上記ガス噴出へッ ドは、 各処理ガスが独立して導入される流路をそれ ぞれ有し各処理ガス毎に対応して存在する流路部材から構成されるとと もに、 上記各流路部材がへッ ド面に実質的に沿う方向で分離した積層構 造を呈しており、  The gas ejection head is configured by a flow path member having a flow path into which each processing gas is independently introduced, and a flow path member corresponding to each processing gas. It has a laminated structure in which the flow path members are separated in a direction substantially along the head surface,
上記各流路部材の流路からそれぞれの処理ガスに対応するノズルに対 して処理ガスが供給されるように構成されていることを特徴とする成膜  A film forming means for supplying a processing gas from a flow path of each of the flow path members to a nozzle corresponding to the processing gas.
2 . 上記ヘッ ド面には、 複数種類の異なる処理ガスを噴出させるノズル が近接して設けられた処理ガスの噴出部が所定間隔を隔てて複数配置さ れている請求項 1記載の成膜装置。 2. The film forming method according to claim 1, wherein a plurality of nozzles for ejecting a plurality of different kinds of processing gases are provided in close proximity to the head surface at predetermined intervals. apparatus.
3 . 上記噴出部は、 複数種類の異なる処理ガスを独立して噴出させるノ ズル開口おょぴ/またはノズル管が同心円状に配置された多重構造を呈 し、 上記ノズル管はヘッ ド面の近傍に開口を有するとともに、 そのノズ ル管が噴出させる処理ガスが導入される流路部材の流路と連通するよう 当該流路部材に接続されている請求項 2記載の成膜装置。  3. The jetting part has a multi-layered structure in which nozzle openings and / or nozzle pipes for independently jetting a plurality of different processing gases are arranged concentrically. 3. The film forming apparatus according to claim 2, wherein the film forming apparatus has an opening in the vicinity and is connected to the flow path member so as to communicate with a flow path of the flow path member into which the processing gas to be ejected by the nozzle pipe is introduced.
4 . 上記ノズル管は、 多重構造の内側に位置するノズル管ほど被処理物 から遠い側に配置された流路部材と接続している請求項 3記載の成膜装  4. The film forming apparatus according to claim 3, wherein the nozzle pipe is connected to a flow path member that is disposed on a side farther from the object to be processed as the nozzle pipe is positioned inside the multiplex structure.
5 . 上記ガス噴出へッ ドにおいて、 各流路部材のうち少なく とも被処理 物側に位置する流路部材と、 被処理物とは反対側に位置する流路部材と をそれぞれ独立して温度制御するようになっている請求項 1〜 4のいず れか一項に記載の成膜装置。 5. In the gas ejection head, the temperature of at least one of the flow path members located on the processing object side and the flow path member located on the side opposite to the processing object are independently controlled. Any of claims 1 to 4 that are controlled The film forming apparatus according to claim 1.
6 . 上記ガス噴出ヘッドにおいて、 各流路部材をそれぞれ独立して温度 制御するようになっている請求項 5記載の成膜装置。  6. The film forming apparatus according to claim 5, wherein in the gas ejection head, the temperature of each of the flow path members is independently controlled.
7 . 上記各流路部材には、 導入された処理ガスを一時的に保持する拡散 室が設けられ、 上記拡散室の容積は流路部材の大きさよりも十分に小さ くなるよう設定されている請求項 1〜 6のいずれか一項に記載の成膜装  7. Each of the flow path members is provided with a diffusion chamber for temporarily holding the introduced processing gas, and the volume of the diffusion chamber is set to be sufficiently smaller than the size of the flow path member. A film forming apparatus according to any one of claims 1 to 6.
8 . 上記流路は、 導入された処理ガスを拡散室に導く導入側流路と、 拡 散室から延びて各ノズルに処理ガスを供給するノズル側流路とから構成 されている請求項 7記載の成膜装置。 8. The flow path includes an introduction-side flow path that guides the introduced processing gas to the diffusion chamber, and a nozzle-side flow path that extends from the diffusion chamber and supplies the processing gas to each nozzle. The film forming apparatus as described in the above.
9 . 上記拡散室は各流路部材の略中央部近傍に設けられ、 上記拡散室か ら放射状に延びるノズル側流路を介して各ノズルに処理.ガスが供給され るようになっている請求項 8記載の成膜装置。  9. The diffusion chamber is provided near a substantially central portion of each flow path member, and the processing gas is supplied to each nozzle via a nozzle-side flow path extending radially from the diffusion chamber. Item 10. The film forming apparatus according to Item 8.
PCT/JP2003/011599 2002-09-11 2003-09-10 Film forming device WO2004024982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-265452 2002-09-11
JP2002265452A JP3869778B2 (en) 2002-09-11 2002-09-11 Deposition equipment

Publications (1)

Publication Number Publication Date
WO2004024982A1 true WO2004024982A1 (en) 2004-03-25

Family

ID=31986583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011599 WO2004024982A1 (en) 2002-09-11 2003-09-10 Film forming device

Country Status (3)

Country Link
JP (1) JP3869778B2 (en)
TW (1) TW200412375A (en)
WO (1) WO2004024982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103501A (en) * 2013-01-14 2013-05-15 东莞市中镓半导体科技有限公司 Fan-shaped spray head structure for vapor phase epitaxy of material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045000B2 (en) * 2006-06-20 2012-10-10 東京エレクトロン株式会社 Film forming apparatus, gas supply apparatus, film forming method, and storage medium
KR100849929B1 (en) * 2006-09-16 2008-08-26 주식회사 피에조닉스 Apparatus of chemical vapor deposition with a showerhead regulating the injection velocity of reactive gases positively and a method thereof
KR100931331B1 (en) * 2007-08-24 2009-12-15 주식회사 케이씨텍 Injection unit of thin film deposition apparatus
JP5058727B2 (en) * 2007-09-06 2012-10-24 東京エレクトロン株式会社 Top plate structure and plasma processing apparatus using the same
JP2010084190A (en) * 2008-09-30 2010-04-15 Sharp Corp Vapor deposition system and vapor deposition method
US8562785B2 (en) * 2011-05-31 2013-10-22 Lam Research Corporation Gas distribution showerhead for inductively coupled plasma etch reactor
JP6013077B2 (en) * 2012-08-13 2016-10-25 株式会社カネカ Vacuum deposition apparatus and organic EL device manufacturing method
JP6664993B2 (en) * 2016-03-01 2020-03-13 株式会社ニューフレアテクノロジー Film forming equipment
JP6352993B2 (en) * 2016-08-10 2018-07-04 株式会社東芝 Flow path structure and processing apparatus
KR101817254B1 (en) 2016-09-23 2018-01-10 주식회사 동원파츠 Gas distributor and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122281A (en) * 1989-10-06 1991-05-24 Anelva Corp Cvd device
JPH0638235U (en) * 1992-10-14 1994-05-20 沖電気工業株式会社 Chemical vapor deposition equipment
JPH08186107A (en) * 1994-12-29 1996-07-16 Sony Corp Film forming apparatus
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH10280150A (en) * 1997-04-09 1998-10-20 Tokyo Electron Ltd Device for treating substrate to be treated
JP2000144432A (en) * 1998-11-04 2000-05-26 Ebara Corp Gas injection head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122281A (en) * 1989-10-06 1991-05-24 Anelva Corp Cvd device
JPH0638235U (en) * 1992-10-14 1994-05-20 沖電気工業株式会社 Chemical vapor deposition equipment
JPH08186107A (en) * 1994-12-29 1996-07-16 Sony Corp Film forming apparatus
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH10280150A (en) * 1997-04-09 1998-10-20 Tokyo Electron Ltd Device for treating substrate to be treated
JP2000144432A (en) * 1998-11-04 2000-05-26 Ebara Corp Gas injection head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103501A (en) * 2013-01-14 2013-05-15 东莞市中镓半导体科技有限公司 Fan-shaped spray head structure for vapor phase epitaxy of material

Also Published As

Publication number Publication date
TW200412375A (en) 2004-07-16
JP2004100001A (en) 2004-04-02
JP3869778B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
TWI424084B (en) High temperature ald inlet manifold
US6616766B2 (en) Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
KR101062462B1 (en) Shower head and chemical vapor deposition apparatus comprising the same
US7018940B2 (en) Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6878206B2 (en) Lid assembly for a processing system to facilitate sequential deposition techniques
US8876974B2 (en) Chemical vapor deposition apparatus capable of controlling discharging fluid flow path in reaction chamber
KR100509231B1 (en) Apparatus for depositing thin film on wafer
WO2004024982A1 (en) Film forming device
US7588804B2 (en) Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
JP3663400B2 (en) Deposition equipment
KR101409974B1 (en) Gas injection-suction unit and atomic layer deposition apparatus having the same
JP6629248B2 (en) Gas injection device for epitaxial chamber
CN115595560A (en) Semiconductor processing device
TW201801795A (en) Fluid-temperature-controlled gas distributor in layer design
TW201832272A (en) Gas injector for semiconductor processes and film deposition apparatus
KR102482464B1 (en) Atomic layer deposition apparatus
TWI624561B (en) Gas injector for semiconductor processes and film deposition apparatus
CN111534807A (en) Temperature regulating device
TW202314036A (en) Buffer tank, supply block including the same, and gas supply device
JP2024510364A (en) Gas injector for epitaxy chamber and CVD chamber
JP2001284258A (en) Semiconductor production system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase