WO2004022794A1 - Procede de production d'acier a austenite residuelle - Google Patents

Procede de production d'acier a austenite residuelle Download PDF

Info

Publication number
WO2004022794A1
WO2004022794A1 PCT/US2003/027825 US0327825W WO2004022794A1 WO 2004022794 A1 WO2004022794 A1 WO 2004022794A1 US 0327825 W US0327825 W US 0327825W WO 2004022794 A1 WO2004022794 A1 WO 2004022794A1
Authority
WO
WIPO (PCT)
Prior art keywords
austenite
temperature
carbon
steel alloy
steel
Prior art date
Application number
PCT/US2003/027825
Other languages
English (en)
Inventor
John G. Speer
David K. Matlock
Matthew F. Gallagher
Original Assignee
Colorado School Of Mines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colorado School Of Mines filed Critical Colorado School Of Mines
Priority to AU2003270334A priority Critical patent/AU2003270334A1/en
Priority to US10/526,840 priority patent/US20060011274A1/en
Publication of WO2004022794A1 publication Critical patent/WO2004022794A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the invention is directed to a method for producing steels with microstructures containing retained austenite.
  • the difficulty that this invention seeks to address is that of creating a microstructure in steel, (e.g., but not limited to, low carbon sheet steel) that contains austenite at the ambient temperature at which the steel is to be used in some application, typically room temperature.
  • austenite usually must be enriched with carbon (or sometimes nitrogen) in order to stabilize it to room temperature. (Actually, it is metastable, and undergoes subsequent transformation to martensite during deformation, a key component of its utility in service.)
  • the problem is to enrich some austenite in the microstructure with carbon, by controlling microstructure evolution and carbon partitioning, without having to use a much higher carbon-containing steel, which is usually undesired for reasons such as reduced weldability.
  • the present invention recognizes that the carbon partitioning and growth of the body- centered phase are decoupled in martensite transformations and that this decoupling provides a mechanism for controlling the austenite fraction and its carbon concentration (the kinetics of carbon partitioning are separate from the mechanisms of ferrite formation), since the extent of martensite transformation is controlled primarily by temperature only, rather than both time and temperature.
  • This new concept provides additional flexibility for implementing more convenient or less costly processing strategies or methodologies for producing steel with retained austenite.
  • a steel alloy is subjected to a heating step to produce austenite.
  • the temperature to which the alloy is brought during the heating step is selected to achieve either full or partial austenitization.
  • the steel alloy is subjected to a quenching step that brings the alloy to a temperature within the temperature range at which martensite is produced.
  • the alloy is subjected to a carbon partitioning step by bringing the alloy to a carbon partitioning temperature, i.e., a temperature at which there is substantial carbon mobility.
  • a carbon partitioning temperature i.e., a temperature at which there is substantial carbon mobility.
  • there is a range of temperatures at which there is substantial carbon mobility there is a range of temperatures at which there is substantial carbon mobility.
  • carbon is transferred from the martensite to the austenite to enrich the austenite so that when the alloy is cooled to the ambient application temperature, typically room temperature, the austenite is stable.
  • Figure 1 depicts a time vs. temperature schematic of the conventional transformation induced plasticity (TRIP) steel bainite processing to produce steel with retained austenite;
  • TRIP transformation induced plasticity
  • Figure 2 depicts a time vs. temperature schematic of a process for producing steel with retained austenite that comprises a step of partitioning carbon to austenite; and Figure 3 depicts the austenite volume fraction for various partition times for a sheet steel.
  • the present invention is directed to a process to produce steels with carbon-enriched retained austenite based on a new understanding of the fundamentals of carbon partitioning in martensite/austenite mixtures. It should be appreciated that the process is broadly applicable to steels that contain more than just martensite plus austenite (and indeed the TRIP steels that are used in the following example of the method contain substantial fractions of equiaxed ferrite). It should further be appreciated that although some bainitic transformation of the retained austenite could also occur in parallel with the carbon partitioning step of the present invention, such bainitic transformation processes can be controlled by alloying so as to influence bainite transformation kinetics to provide an additional variant to the microstructures achieved with the process of the present invention.
  • the process involves: (a) heating the steel to form austenite (either completely or partially); (b) quenching the steel to a temperature, usually above ambient, that is in the temperature range at which martensite forms (M s to M f , where M s defines the upper temperature boundary of the range and M f defines the lower temperature boundary of the range) to create controlled amounts of martensite and retained austenite; and (c) thermally treating the steel to partition carbon into the austenite, and thereby increase the chemical stability of the austenite.
  • the present invention differs profoundly from the conventional quenching and tempering processes. Namely, conventional quenching and tempering processes are designed to temper the martensite, typically combining the available carbon in the form of carbides, and decomposing the retained austenite. Further, there is no intent to partition the carbon to austenite in these treatments. In contrast, in the present invention, formation of iron carbides is intentionally suppressed, and the austenite is intentionally stabilized rather than decomposed.
  • the present invention is believed to have potential application wherever carbon- enriched retained austenite offers improved product characteristics.
  • Several applications are envisioned, including (1) high strength sheet steel; (2) high strength bar and forging steels; (3) higher carbon steels, such as carburized gears and bearings; and (4) austempered ductile cast iron.
  • these types of steel are particularly applicable to ground transportation vehicles.
  • TRIP sheet steels are of great current interest for automotive sheet applications and high strength products that make use of controlled amounts of retained austenite, typically on the order of 10% austenite.
  • TRIP sheet steel with retained austenite such as that produced by processes that use bainite transformation, typically in excess of 1% carbon (by weight) in the austenite, are capable of undergoing martensite transformation during deformation. This capability provides several advantages that are useful in various applications. For example, TRIP sheet steel with retained austentite has improved formability, and increased energy absorbance (such as would apply to a vehicle collision in automotive application).
  • the microstructures for the TRIP sheet steel of this example also contain equiaxed ferrite, along with different amounts of high strength constituents such as bainite and pearlite, which provide various desired properties known to those skilled in the art. It should, however, be appreciated that the present invention does not require any of these additional constituents to realize a TRIP sheet steel with carbon enriched austenite that is stable or metastable at room temperature or an application temperature. Further, to the extent that additional constituents are employed, a greater or lesser number of constituents can be employed and the relative amounts of such constituents can be varied depending on the desired microstructure. Further, the use of additional constituents to achieve desired properties is applicable to steels other than TRIP sheet steel.
  • the present process offers an alternative approach to conventional TRIP sheet production, and a method is explained here, to design steel alloys and processing parameters (i.e. especially the temperatures used during the present process), to achieve desired microstructures.
  • the range of microstructures available via the present process is also greater than may be achieved via conventional bainitic processing.
  • a schematic for the present process is shown in Figure 2, which would apply to processing of cold-rolled and coated sheet products that use an annealing process.
  • the schematic diagram includes the annealing temperature (AT), the quench temperature (QT), and the partitioning temperature PT.
  • AT annealing temperature
  • QT quench temperature
  • PT partitioning temperature
  • an alloy of composition 0.15C is considered, typical of TRIP products where the carbon level is limited somewhat by weldability constraints.
  • the alloy might also contain manganese (and possibly other hardenability additions), perhaps 1%, to suppress undesired reactions during cooling, and significantly elevated silicon levels, perhaps 1.5%, to suppress carbide formation.
  • manganese and possibly other hardenability additions
  • silicon levels perhaps 1.5%, to suppress carbide formation.
  • Other elements such as N, Al, S, are also contained in typical sheet steels, but are not considered in detail for this example.
  • the annealing step causes recrystallization of the cold-rolled structure, and establishes the initial austenite.
  • the annealing temperature can be above the A 3 , providing full austenitization, or in the intercritical regime between Ai and A 3 (Ai being the temperature at which austenite begins to form), providing both ferrite and austenite.
  • the amounts of ferrite and austenite, and their carbon concentrations are established by the applicable phase equilibrium at the selected temperature.
  • a 3 (°C) 910 - 203VC - 15.2 + 44.7S/ + 104F + 31.5M> + 13.1fF (1)
  • C carbon by weight percentage
  • Ni nickel by weight percentage
  • Si silicon by weight percentage
  • V vanadium by weight percentage
  • Mo molybdenum by weight percentage
  • W Tungsten by weight percentage
  • f ⁇ is the amount of ferrite by weight percentage
  • C ⁇ is the carbon by weight percentage in the austenite phase
  • f ⁇ is the amount of austenite by weight percentage
  • C ⁇ is carbon by weight percentage in the ferrite phase
  • C a ⁇ 0 y is the carbon content in the steel overall, by weight percentage.
  • the carbon content in ferrite is low, and C ⁇ ⁇ 0 can be used to give an approximate solution for the purpose of illustration in this example. At 810°C in the 0.15C, l .OMn, 1.5Si steel, about 78% ferrite, plus 22% austenite, are anticipated.
  • the ferrite During the quenching step, which occurs after the annealing step, the ferrite remains essentially unchanged and the austenite transforms partially to martensite, depending on the relationship between the quenching temperature (QT), and the M s temperature of the remaining austenite.
  • QT quenching temperature
  • M s and M f define the temperature range over which martensite forms. See Figure 2.
  • the M s temperature can be estimated using another correlation of Andrews:
  • C carbon by weight percentage
  • Mn manganese by weight percentage
  • Cr chromium by weight percentage
  • Ni nickel by weight percentage
  • Mo molybdenum by weight percentage.
  • the M s temperature is about 456°C, although for austenite at an intercritical annealing temperature of 810°C (C ⁇ ⁇ 0.68%), the M s temperature is about 355°C.
  • / ⁇ r is the amount of austenite just prior to quenching, i.e. 22% in this example.
  • the quench temperature is 150°C, then about 12% martensite is formed during the quench, along with the remaining 10% austenite, and 78% equiaxed ferrite.
  • Constrained paraequilibrium defines the endpoint of carbon partitioning in the absence of either short- or long-range diffusion of iron or substitutional atoms, which applies to martensite/austenite mixtures at low temperatures where the ⁇ / ⁇ interface is stationary.
  • the recently developed CPE theory indicates that the austenite in the present example could be enriched in carbon to a level of approximately 1.5% at a partitioning temperature (PT) of about 450°C, while the martensite is depleted to quite low carbon levels.
  • PT partitioning temperature
  • the essence of the CPE theory involves a condition where the chemical potential of carbon is equal in the ⁇ and ⁇ phases, in the absence of substantial carbide formation, and the ⁇ / ⁇ interface is effectively stationary, i.e. constrained, at usual partitioning temperatures.)
  • the austenite is stable after final cooling to room temperature.
  • the partitioning kinetics are also temperature dependent, but suitable partitioning should be able to be accomplished under time/temperature conditions that are usually employed for bainitic transformation (the required time is also dependent upon microstructural and other factors).
  • bainitic ferrite growth in addition to carbon partitioning is required for conventional bainitic processing.
  • the steel composition and processing parameters used here produce a final microstructure of 78% equiaxed ferrite, 12% carbon-depleted martensite, and 10% retained austenite (having approximately 1.5% carbon).
  • Such a microstructure is expected to represent a commercially viable TRIP product.
  • other microstructure variants can be designed by altering the steel composition and critical processing parameters. Some of these microstructures would be difficult to achieve by conventional processing, and the new process allows the potential for higher levels of carbon enrichment in the austenite, increasing strength via formation of lath martensite in the microstructure, and application to Si/Al-containing iron castings.
  • Example results are shown in Figure 3, obtained for a 0.19C, 1.46Mn, 1.96 AI sheet steel., intercritical ly annealed for 180 s at 805°C to create a ferrite/austenite starting microstructure, followed by quenching to 284°C, and then partitioning for various times and temperatures (between 300 and 450°C) shown in the figure. The final austenite fraction after complete processing is shown. This example shows that substantial quantities of retained austenite are achieved by Q&P processing, where the quenching temperature was carefully selected to control the transformed microstructure prior to quenching.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne un procédé de production d'acier à austénite résiduelle. Dans un mode de réalisation, le procédé comprend les étapes consistant à chauffer un alliage d'acier pour produire de l'austénite, à tremper l'acier pour produire du martensite, et à séparer du carbone pour le transférer du martensite à l'austénite.
PCT/US2003/027825 2002-09-04 2003-09-04 Procede de production d'acier a austenite residuelle WO2004022794A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003270334A AU2003270334A1 (en) 2002-09-04 2003-09-04 Method for producing steel with retained austenite
US10/526,840 US20060011274A1 (en) 2002-09-04 2003-09-04 Method for producing steel with retained austenite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31952102P 2002-09-04 2002-09-04
US60/319,521 2002-09-04

Publications (1)

Publication Number Publication Date
WO2004022794A1 true WO2004022794A1 (fr) 2004-03-18

Family

ID=31978079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/027825 WO2004022794A1 (fr) 2002-09-04 2003-09-04 Procede de production d'acier a austenite residuelle

Country Status (3)

Country Link
US (1) US20060011274A1 (fr)
AU (1) AU2003270334A1 (fr)
WO (1) WO2004022794A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415902C (zh) * 2006-08-03 2008-09-03 上海交通大学 采用碳分配提高钢件表面硬度的方法
WO2009082107A1 (fr) 2007-12-20 2009-07-02 Posco Tige de fil d'acier pour acier à roulements, procédé de fabrication de tige de fil d'acier pour acier à roulements, procédé de traitement thermique de roulements en acier, roulements en acier et procédé de trempage d'acier à roulements
CN102002558A (zh) * 2010-11-26 2011-04-06 清华大学 含抑制碳化物形成元素钢的分级淬火-分配热处理工艺
DE102010003997A1 (de) 2010-01-04 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Verwendung einer Stahllegierung
KR101070154B1 (ko) * 2008-09-05 2011-10-05 주식회사 포스코 베어링용 강선재, 베어링용 강선재의 제조방법, 베어링의 열처리 방법, 베어링 및 베어링용 주편의 균열확산 처리 방법
CN102560023A (zh) * 2012-03-01 2012-07-11 哈尔滨工业大学 低碳铬硅锰低合金钢的热处理方法
CN102660712A (zh) * 2012-06-08 2012-09-12 黄凯敏 一种改进的30CrMnSi钢
EP2524970A1 (fr) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Produit plat en acier hautement résistant et son procédé de fabrication
WO2013006108A1 (fr) * 2011-07-06 2013-01-10 Gestamp Hardtech Ab Procédé de façonnage à chaud et de durcissement d'un flan de tôle d'acier
CN102876981A (zh) * 2012-10-17 2013-01-16 夏雨 一种具有硬化表面层的中低碳铬硅锰马氏体铸钢的制备方法
WO2013041541A1 (fr) 2011-09-20 2013-03-28 Nv Bekaert Sa Fil d'acier à haute teneur en carbone trempé et divisé
US8518195B2 (en) 2012-01-20 2013-08-27 GM Global Technology Operations LLC Heat treatment for producing steel sheet with high strength and ductility
CN103343191A (zh) * 2013-07-22 2013-10-09 哈尔滨工业大学 中碳锰钒系低合金钢强韧化二步等温热处理方法
CN103394573A (zh) * 2013-08-02 2013-11-20 上海交通大学 一种基于q&p一步法的热冲压成形工艺
WO2014186722A3 (fr) * 2013-05-17 2015-01-08 Ak Steel Properties, Inc. Acier à haute résistance manifestant une bonne ductilité et son procédé d'élaboration par traitement de trempe et de partitionnement en bain de zinc
CN105018843A (zh) * 2015-08-03 2015-11-04 北京科技大学 钒和钛复合添加的q&p钢及其制造方法
WO2016001701A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Ligne de traitement polyvalent pour traitement thermique et plaquage par immersion à chaud d'une bande d'acier
WO2016001707A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production de tôle d'acier revêtue ou non revêtue à ultra haute résistance et tôle ainsi obtenue
WO2016001706A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier haute résistance ayant une résistance et une aptitude au formage améliorées et feuille ainsi obtenue
WO2016001708A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production d'une tôle d'acier revêtue à haute résistance présentant une résistance, une aptitude au formage améliorées et tôle ainsi obtenue
WO2016016683A1 (fr) * 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication d'une pièce en acier à haute résistance
CN105385835A (zh) * 2015-12-11 2016-03-09 上海交通大学 一种提高中厚板高强钢件强韧性的热处理方法
CN106424280A (zh) * 2016-11-30 2017-02-22 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
WO2017109538A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées
EP2726637B1 (fr) 2011-07-01 2018-11-14 Rautaruukki Oyj Methode de production d'un acier pour structures à haute resistance et produit associé
WO2019033711A1 (fr) * 2017-08-15 2019-02-21 上海交通大学 Procédé intégré d'estampage à chaud et de détourage
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
US11035020B2 (en) 2015-12-29 2021-06-15 Arcelormittal Galvannealed steel sheet
US11371113B2 (en) 2016-12-14 2022-06-28 Evonik Operations Gmbh Hot-rolled flat steel product and method for the production thereof
US12054799B2 (en) 2015-12-21 2024-08-06 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127711B (zh) * 2011-02-22 2012-05-23 武汉科技大学 一种纳米结构的超高强度双相钢及其制造方法
CN102337386A (zh) * 2011-11-14 2012-02-01 湖南华菱湘潭钢铁有限公司 高韧性超高强钢的生产工艺及生产系统
KR101594670B1 (ko) 2014-05-13 2016-02-17 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016001700A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production d'une tôle d'acier à haute résistance présentant une résistance, une ductilité et une aptitude au formage améliorées
WO2016001702A1 (fr) 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier revêtue à haute résistance présentant une résistance, une ductilité et une formabilité améliorées
WO2016001710A1 (fr) 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'un acier revêtu à haute résistance ayant une résistance et une ductilité améliorée et tôle obtenue
WO2016001705A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance présentant une aptitude au formage et une ductilité améliorées, et tôle ainsi obtenue
WO2016001703A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance et tôle obtenue par le procédé
WO2016001699A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance présentant une formabilité améliorée, et tôle ainsi obtenue
JP6282577B2 (ja) * 2014-11-26 2018-02-21 株式会社神戸製鋼所 高強度高延性鋼板
KR101630976B1 (ko) 2014-12-08 2016-06-16 주식회사 포스코 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR101714930B1 (ko) 2015-12-23 2017-03-10 주식회사 포스코 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
KR101830538B1 (ko) 2016-11-07 2018-02-21 주식회사 포스코 항복비가 우수한 초고강도 강판 및 그 제조방법
KR101858852B1 (ko) 2016-12-16 2018-06-28 주식회사 포스코 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
US10260121B2 (en) 2017-02-07 2019-04-16 GM Global Technology Operations LLC Increasing steel impact toughness
KR101968001B1 (ko) 2017-09-26 2019-04-10 주식회사 포스코 연신율이 우수한 기가급 초고강도 냉연강판 및 제조방법
US11920209B2 (en) 2018-03-08 2024-03-05 Northwestern University Carbide-free bainite and retained austenite steels, producing method and applications of same
CN109321719B (zh) * 2018-08-14 2020-10-02 山东建筑大学 一种基于逆转变的800MPa级低碳锰硅钢制备方法
CN109825683B (zh) * 2018-08-14 2020-10-09 山东建筑大学 一种锰配分和逆转变800MPa低碳Q&P钢制备方法
CN109825690A (zh) * 2018-08-14 2019-05-31 山东建筑大学 一种基于d-q-p工艺提升碳-锰-硅钢综合力学性能的方法
KR102231344B1 (ko) 2019-05-17 2021-03-24 주식회사 포스코 구멍확장성 및 연성이 우수한 초고강도 강판 및 이의 제조방법
WO2021123877A1 (fr) 2019-12-17 2021-06-24 Arcelormittal Tôle d'acier laminée à chaud et son procédé de fabrication
WO2022242859A1 (fr) 2021-05-20 2022-11-24 Nlmk Clabecq Procédé de fabrication d'une plaque d'acier à haute résistance et plaque d'acier à haute résistance
KR20230073569A (ko) 2021-11-19 2023-05-26 주식회사 포스코 우수한 강도 및 성형성을 갖는 냉연강판 및 그 제조방법
WO2024132987A1 (fr) 2022-12-18 2024-06-27 Tata Steel Nederland Technology B.V. Procédé de fabrication d'un acier structural à haute résistance laminé à chaud présentant une formabilité améliorée et son procédé de fabrication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544422A (en) * 1984-04-02 1985-10-01 General Motors Corporation Ferrite-austenite dual phase steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW363082B (en) * 1994-04-26 1999-07-01 Nippon Steel Corp Steel sheet having high strength and being suited to deep drawing and process for producing the same
US6319338B1 (en) * 1996-11-28 2001-11-20 Nippon Steel Corporation High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544422A (en) * 1984-04-02 1985-10-01 General Motors Corporation Ferrite-austenite dual phase steel

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415902C (zh) * 2006-08-03 2008-09-03 上海交通大学 采用碳分配提高钢件表面硬度的方法
WO2009082107A1 (fr) 2007-12-20 2009-07-02 Posco Tige de fil d'acier pour acier à roulements, procédé de fabrication de tige de fil d'acier pour acier à roulements, procédé de traitement thermique de roulements en acier, roulements en acier et procédé de trempage d'acier à roulements
US9593389B2 (en) 2007-12-20 2017-03-14 Posco Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
KR101070154B1 (ko) * 2008-09-05 2011-10-05 주식회사 포스코 베어링용 강선재, 베어링용 강선재의 제조방법, 베어링의 열처리 방법, 베어링 및 베어링용 주편의 균열확산 처리 방법
DE102010003997A1 (de) 2010-01-04 2011-07-07 Benteler Automobiltechnik GmbH, 33102 Verwendung einer Stahllegierung
CN102002558A (zh) * 2010-11-26 2011-04-06 清华大学 含抑制碳化物形成元素钢的分级淬火-分配热处理工艺
WO2012156428A1 (fr) * 2011-05-18 2012-11-22 Thyssenkrupp Steel Europe Ag Produit plat en acier à haute résistance mécanique et son procédé de fabrication
EP2524970A1 (fr) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Produit plat en acier hautement résistant et son procédé de fabrication
CN103597100A (zh) * 2011-05-18 2014-02-19 蒂森克虏伯钢铁欧洲股份公司 高强度的扁钢产品及其制造方法
US9650708B2 (en) 2011-05-18 2017-05-16 Thyssenkrupp Steel Europe Ag High-strength flat steel product and method for producing same
EP2726637B1 (fr) 2011-07-01 2018-11-14 Rautaruukki Oyj Methode de production d'un acier pour structures à haute resistance et produit associé
EP2726637B2 (fr) 2011-07-01 2021-12-29 Rautaruukki Oyj Méthode de production d'un acier pour structures à haute résistance et produit associé
WO2013006108A1 (fr) * 2011-07-06 2013-01-10 Gestamp Hardtech Ab Procédé de façonnage à chaud et de durcissement d'un flan de tôle d'acier
CN103582707A (zh) * 2011-07-06 2014-02-12 耶斯塔姆普硬技术股份公司 一种热成型和硬化钢板坯料的方法
WO2013041541A1 (fr) 2011-09-20 2013-03-28 Nv Bekaert Sa Fil d'acier à haute teneur en carbone trempé et divisé
US8518195B2 (en) 2012-01-20 2013-08-27 GM Global Technology Operations LLC Heat treatment for producing steel sheet with high strength and ductility
CN102560023A (zh) * 2012-03-01 2012-07-11 哈尔滨工业大学 低碳铬硅锰低合金钢的热处理方法
CN102660712A (zh) * 2012-06-08 2012-09-12 黄凯敏 一种改进的30CrMnSi钢
CN102876981A (zh) * 2012-10-17 2013-01-16 夏雨 一种具有硬化表面层的中低碳铬硅锰马氏体铸钢的制备方法
WO2014186722A3 (fr) * 2013-05-17 2015-01-08 Ak Steel Properties, Inc. Acier à haute résistance manifestant une bonne ductilité et son procédé d'élaboration par traitement de trempe et de partitionnement en bain de zinc
CN105247090A (zh) * 2013-05-17 2016-01-13 Ak钢铁资产公司 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
CN103343191A (zh) * 2013-07-22 2013-10-09 哈尔滨工业大学 中碳锰钒系低合金钢强韧化二步等温热处理方法
CN103394573A (zh) * 2013-08-02 2013-11-20 上海交通大学 一种基于q&p一步法的热冲压成形工艺
CN106661701A (zh) * 2014-07-03 2017-05-10 安赛乐米塔尔公司 用于生产具有改进的强度和可成形性的高强度钢板的方法及获得的板
US11001904B2 (en) 2014-07-03 2021-05-11 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
WO2016001888A3 (fr) * 2014-07-03 2016-02-25 Arcelormittal Chaîne de traitement polyvalente pour traitement thermique et revêtement par immersion à chaud d'une bande d'acier
US11718888B2 (en) 2014-07-03 2023-08-08 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
WO2016001897A3 (fr) * 2014-07-03 2016-03-10 Arcelormittal Procédé de production d'une tôle d'acier revêtue à haute résistance ayant une résistance et une aptitude au formage améliorées et feuille obtenue
WO2016001890A3 (fr) * 2014-07-03 2016-03-10 Arcelormittal Procédé de fabrication d'une tôle d'acier à ultra-haute résistance revêtue ou non revêtue et tôle obtenue
WO2016001893A3 (fr) * 2014-07-03 2016-03-17 Arcelormittal Procédé de production d'une tôle d'acier à haute résistance présentant une résistance et une aptitude au façonnage améliorées et tôle obtenue
US11555226B2 (en) 2014-07-03 2023-01-17 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
US11131003B2 (en) 2014-07-03 2021-09-28 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
WO2016001708A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production d'une tôle d'acier revêtue à haute résistance présentant une résistance, une aptitude au formage améliorées et tôle ainsi obtenue
US11124853B2 (en) 2014-07-03 2021-09-21 Arcelormittal Method for producing a ultra high strength coated or not coated steel sheet and obtained sheet
CN106661652A (zh) * 2014-07-03 2017-05-10 安赛乐米塔尔公司 用于制造超高强度涂覆或未涂覆钢板的方法和获得的板
WO2016001706A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier haute résistance ayant une résistance et une aptitude au formage améliorées et feuille ainsi obtenue
WO2016001707A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de production de tôle d'acier revêtue ou non revêtue à ultra haute résistance et tôle ainsi obtenue
US10907232B2 (en) 2014-07-03 2021-02-02 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
EP3722445A1 (fr) * 2014-07-03 2020-10-14 ArcelorMittal Une tôle d'acier revêtue haute résistance présentant une résistance et une aptitude au formage améliorées
EP3663416A1 (fr) * 2014-07-03 2020-06-10 ArcelorMittal Procédé de production d'une tôle d'acier à haute résistance présentant une résistance et une aptitude au formage améliorées et tôle ainsi obtenue
EP3564397A1 (fr) * 2014-07-03 2019-11-06 ArcelorMittal Procédé de fabrication d'une tôle d'acier à ultra-haute résistance revêtue et tôle obtenue
CN106661652B (zh) * 2014-07-03 2018-10-12 安赛乐米塔尔公司 用于制造超高强度涂覆或未涂覆钢板的方法和获得的板
WO2016001701A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Ligne de traitement polyvalent pour traitement thermique et plaquage par immersion à chaud d'une bande d'acier
US10407751B2 (en) 2014-07-03 2019-09-10 Arcelormittal Multipurpose processing line for heat treating and hot dip coating a steel strip
RU2684912C2 (ru) * 2014-07-03 2019-04-16 Арселормиттал Способ изготовления сверхпрочного стального листа с покрытием или без покрытия и полученный лист
EP3492608A1 (fr) * 2014-07-03 2019-06-05 ArcelorMittal Procédé de fabrication d'une tôle d'acier à ultra-haute résistance non revêtue et tôle obtenue
US10378077B2 (en) 2014-07-03 2019-08-13 Arcelormittal Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
KR20170041704A (ko) * 2014-07-30 2017-04-17 아르셀러미탈 고강도 강 피스를 제조하기 위한 방법
US10415112B2 (en) 2014-07-30 2019-09-17 Arcelormittal Method for producing a high strength steel piece
CN108283003B (zh) * 2014-07-30 2019-11-01 安赛乐米塔尔公司 用于制造高强度钢件的方法
CN108283003A (zh) * 2014-07-30 2018-07-13 安赛乐米塔尔公司 用于制造高强度钢件的方法
RU2690851C2 (ru) * 2014-07-30 2019-06-06 Арселормиттал Способ изготовления высокопрочной стальной детали
KR102493114B1 (ko) 2014-07-30 2023-01-27 아르셀러미탈 고강도 강 피스를 제조하기 위한 방법
WO2016016779A3 (fr) * 2014-07-30 2016-03-31 Arcelormittal Procédé de fabrication d'une pièce en acier à haute résistance
WO2016016683A1 (fr) * 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication d'une pièce en acier à haute résistance
CN105018843A (zh) * 2015-08-03 2015-11-04 北京科技大学 钒和钛复合添加的q&p钢及其制造方法
CN105385835A (zh) * 2015-12-11 2016-03-09 上海交通大学 一种提高中厚板高强钢件强韧性的热处理方法
CN105385835B (zh) * 2015-12-11 2017-10-27 上海交通大学 一种提高中厚板高强钢件强韧性的热处理方法
EP3653737A1 (fr) * 2015-12-21 2020-05-20 ArcelorMittal Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées
US10954580B2 (en) 2015-12-21 2021-03-23 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
WO2017109538A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées
WO2017108956A1 (fr) * 2015-12-21 2017-06-29 Arcelormittal Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées
US12054799B2 (en) 2015-12-21 2024-08-06 Arcelormittal Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet
US12084738B2 (en) 2015-12-21 2024-09-10 Arcelormittal Method for producing a steel sheet having improved strength, ductility and formability
US11035020B2 (en) 2015-12-29 2021-06-15 Arcelormittal Galvannealed steel sheet
US11512362B2 (en) 2015-12-29 2022-11-29 Arcelormittal Method for producing an ultra high strength galvannealed steel sheet and obtained galvannealed steel sheet
CN106424280A (zh) * 2016-11-30 2017-02-22 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
US11371113B2 (en) 2016-12-14 2022-06-28 Evonik Operations Gmbh Hot-rolled flat steel product and method for the production thereof
WO2019033711A1 (fr) * 2017-08-15 2019-02-21 上海交通大学 Procédé intégré d'estampage à chaud et de détourage

Also Published As

Publication number Publication date
US20060011274A1 (en) 2006-01-19
AU2003270334A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
WO2004022794A1 (fr) Procede de production d'acier a austenite residuelle
Speer et al. Carbon partitioning into austenite after martensite transformation
Speer et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation
CN108474081B (zh) 用于冲压成形的钢材及其成形构件与热处理方法
Matlock et al. Applications of rapid thermal processing to advanced high strength sheet steel developments
EP3164516B1 (fr) Procédé de fabrication d'un tôle d'acier revêtu ou non-revêtu à ultra haute résistance et le tôle ainsi obtenu
Sugimoto et al. Formability of Nb bearing ultra high-strength TRIP-aided sheet steels
EP3704276B1 (fr) Acier estampé à chaud ayant des propriétés particulières après un traitement thermique innovant
Speich Dual-phase steels
EP3298174B1 (fr) Acier haute résistance amélioré de troisième génération faiblement allié
Ding et al. Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel
Huang et al. Combining a novel cyclic pre-quenching and two-stage heat treatment in a low-alloyed TRIP-aided steel to significantly enhance mechanical properties through microstructural refinement
Speer et al. Nb-microalloying in next-generation flat-rolled steels: an overview
US10323307B2 (en) Process and steel alloys for manufacturing high strength steel components with superior rigidity and energy absorption
Costa et al. Dilatometric study of continuous cooling transformation of intercritical austenite in cold rolled AHSS-DP steels
Deng et al. Microstructure and mechanical property relationship in a high strength high-Al low-Si hot-dip galvanized steel under quenching and partitioning process
Kim et al. Acceleration of bainitic transformation in 0.28 C-3.8 Mn-1.5 Si steel utilizing chemical heterogeneity
Girina et al. Effect of annealing parameters on austenite decomposition in a continuously annealed dual-phase steel
Fonstein et al. TRIP steels
Lee et al. Development of a press-hardened steel suitable for thin slab direct rolling processing
Jirkova et al. QP process on steels with various Carbon and Chromium contents
Speer et al. Austenitizing in steels
Fonshtein et al. Study of the effect of “new” ferrite on the properties of dual phase steels
DeCooman et al. Microstructure-properties relationships in quench and partition (Q&P) steel, implications for automotive anti-instrusion applications
Sahay Annealing of steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006011274

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526840

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10526840

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP