WO2004022794A1 - Procede de production d'acier a austenite residuelle - Google Patents
Procede de production d'acier a austenite residuelle Download PDFInfo
- Publication number
- WO2004022794A1 WO2004022794A1 PCT/US2003/027825 US0327825W WO2004022794A1 WO 2004022794 A1 WO2004022794 A1 WO 2004022794A1 US 0327825 W US0327825 W US 0327825W WO 2004022794 A1 WO2004022794 A1 WO 2004022794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- austenite
- temperature
- carbon
- steel alloy
- steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/185—Hardening; Quenching with or without subsequent tempering from an intercritical temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
Definitions
- the invention is directed to a method for producing steels with microstructures containing retained austenite.
- the difficulty that this invention seeks to address is that of creating a microstructure in steel, (e.g., but not limited to, low carbon sheet steel) that contains austenite at the ambient temperature at which the steel is to be used in some application, typically room temperature.
- austenite usually must be enriched with carbon (or sometimes nitrogen) in order to stabilize it to room temperature. (Actually, it is metastable, and undergoes subsequent transformation to martensite during deformation, a key component of its utility in service.)
- the problem is to enrich some austenite in the microstructure with carbon, by controlling microstructure evolution and carbon partitioning, without having to use a much higher carbon-containing steel, which is usually undesired for reasons such as reduced weldability.
- the present invention recognizes that the carbon partitioning and growth of the body- centered phase are decoupled in martensite transformations and that this decoupling provides a mechanism for controlling the austenite fraction and its carbon concentration (the kinetics of carbon partitioning are separate from the mechanisms of ferrite formation), since the extent of martensite transformation is controlled primarily by temperature only, rather than both time and temperature.
- This new concept provides additional flexibility for implementing more convenient or less costly processing strategies or methodologies for producing steel with retained austenite.
- a steel alloy is subjected to a heating step to produce austenite.
- the temperature to which the alloy is brought during the heating step is selected to achieve either full or partial austenitization.
- the steel alloy is subjected to a quenching step that brings the alloy to a temperature within the temperature range at which martensite is produced.
- the alloy is subjected to a carbon partitioning step by bringing the alloy to a carbon partitioning temperature, i.e., a temperature at which there is substantial carbon mobility.
- a carbon partitioning temperature i.e., a temperature at which there is substantial carbon mobility.
- there is a range of temperatures at which there is substantial carbon mobility there is a range of temperatures at which there is substantial carbon mobility.
- carbon is transferred from the martensite to the austenite to enrich the austenite so that when the alloy is cooled to the ambient application temperature, typically room temperature, the austenite is stable.
- Figure 1 depicts a time vs. temperature schematic of the conventional transformation induced plasticity (TRIP) steel bainite processing to produce steel with retained austenite;
- TRIP transformation induced plasticity
- Figure 2 depicts a time vs. temperature schematic of a process for producing steel with retained austenite that comprises a step of partitioning carbon to austenite; and Figure 3 depicts the austenite volume fraction for various partition times for a sheet steel.
- the present invention is directed to a process to produce steels with carbon-enriched retained austenite based on a new understanding of the fundamentals of carbon partitioning in martensite/austenite mixtures. It should be appreciated that the process is broadly applicable to steels that contain more than just martensite plus austenite (and indeed the TRIP steels that are used in the following example of the method contain substantial fractions of equiaxed ferrite). It should further be appreciated that although some bainitic transformation of the retained austenite could also occur in parallel with the carbon partitioning step of the present invention, such bainitic transformation processes can be controlled by alloying so as to influence bainite transformation kinetics to provide an additional variant to the microstructures achieved with the process of the present invention.
- the process involves: (a) heating the steel to form austenite (either completely or partially); (b) quenching the steel to a temperature, usually above ambient, that is in the temperature range at which martensite forms (M s to M f , where M s defines the upper temperature boundary of the range and M f defines the lower temperature boundary of the range) to create controlled amounts of martensite and retained austenite; and (c) thermally treating the steel to partition carbon into the austenite, and thereby increase the chemical stability of the austenite.
- the present invention differs profoundly from the conventional quenching and tempering processes. Namely, conventional quenching and tempering processes are designed to temper the martensite, typically combining the available carbon in the form of carbides, and decomposing the retained austenite. Further, there is no intent to partition the carbon to austenite in these treatments. In contrast, in the present invention, formation of iron carbides is intentionally suppressed, and the austenite is intentionally stabilized rather than decomposed.
- the present invention is believed to have potential application wherever carbon- enriched retained austenite offers improved product characteristics.
- Several applications are envisioned, including (1) high strength sheet steel; (2) high strength bar and forging steels; (3) higher carbon steels, such as carburized gears and bearings; and (4) austempered ductile cast iron.
- these types of steel are particularly applicable to ground transportation vehicles.
- TRIP sheet steels are of great current interest for automotive sheet applications and high strength products that make use of controlled amounts of retained austenite, typically on the order of 10% austenite.
- TRIP sheet steel with retained austenite such as that produced by processes that use bainite transformation, typically in excess of 1% carbon (by weight) in the austenite, are capable of undergoing martensite transformation during deformation. This capability provides several advantages that are useful in various applications. For example, TRIP sheet steel with retained austentite has improved formability, and increased energy absorbance (such as would apply to a vehicle collision in automotive application).
- the microstructures for the TRIP sheet steel of this example also contain equiaxed ferrite, along with different amounts of high strength constituents such as bainite and pearlite, which provide various desired properties known to those skilled in the art. It should, however, be appreciated that the present invention does not require any of these additional constituents to realize a TRIP sheet steel with carbon enriched austenite that is stable or metastable at room temperature or an application temperature. Further, to the extent that additional constituents are employed, a greater or lesser number of constituents can be employed and the relative amounts of such constituents can be varied depending on the desired microstructure. Further, the use of additional constituents to achieve desired properties is applicable to steels other than TRIP sheet steel.
- the present process offers an alternative approach to conventional TRIP sheet production, and a method is explained here, to design steel alloys and processing parameters (i.e. especially the temperatures used during the present process), to achieve desired microstructures.
- the range of microstructures available via the present process is also greater than may be achieved via conventional bainitic processing.
- a schematic for the present process is shown in Figure 2, which would apply to processing of cold-rolled and coated sheet products that use an annealing process.
- the schematic diagram includes the annealing temperature (AT), the quench temperature (QT), and the partitioning temperature PT.
- AT annealing temperature
- QT quench temperature
- PT partitioning temperature
- an alloy of composition 0.15C is considered, typical of TRIP products where the carbon level is limited somewhat by weldability constraints.
- the alloy might also contain manganese (and possibly other hardenability additions), perhaps 1%, to suppress undesired reactions during cooling, and significantly elevated silicon levels, perhaps 1.5%, to suppress carbide formation.
- manganese and possibly other hardenability additions
- silicon levels perhaps 1.5%, to suppress carbide formation.
- Other elements such as N, Al, S, are also contained in typical sheet steels, but are not considered in detail for this example.
- the annealing step causes recrystallization of the cold-rolled structure, and establishes the initial austenite.
- the annealing temperature can be above the A 3 , providing full austenitization, or in the intercritical regime between Ai and A 3 (Ai being the temperature at which austenite begins to form), providing both ferrite and austenite.
- the amounts of ferrite and austenite, and their carbon concentrations are established by the applicable phase equilibrium at the selected temperature.
- a 3 (°C) 910 - 203VC - 15.2 + 44.7S/ + 104F + 31.5M> + 13.1fF (1)
- C carbon by weight percentage
- Ni nickel by weight percentage
- Si silicon by weight percentage
- V vanadium by weight percentage
- Mo molybdenum by weight percentage
- W Tungsten by weight percentage
- f ⁇ is the amount of ferrite by weight percentage
- C ⁇ is the carbon by weight percentage in the austenite phase
- f ⁇ is the amount of austenite by weight percentage
- C ⁇ is carbon by weight percentage in the ferrite phase
- C a ⁇ 0 y is the carbon content in the steel overall, by weight percentage.
- the carbon content in ferrite is low, and C ⁇ ⁇ 0 can be used to give an approximate solution for the purpose of illustration in this example. At 810°C in the 0.15C, l .OMn, 1.5Si steel, about 78% ferrite, plus 22% austenite, are anticipated.
- the ferrite During the quenching step, which occurs after the annealing step, the ferrite remains essentially unchanged and the austenite transforms partially to martensite, depending on the relationship between the quenching temperature (QT), and the M s temperature of the remaining austenite.
- QT quenching temperature
- M s and M f define the temperature range over which martensite forms. See Figure 2.
- the M s temperature can be estimated using another correlation of Andrews:
- C carbon by weight percentage
- Mn manganese by weight percentage
- Cr chromium by weight percentage
- Ni nickel by weight percentage
- Mo molybdenum by weight percentage.
- the M s temperature is about 456°C, although for austenite at an intercritical annealing temperature of 810°C (C ⁇ ⁇ 0.68%), the M s temperature is about 355°C.
- / ⁇ r is the amount of austenite just prior to quenching, i.e. 22% in this example.
- the quench temperature is 150°C, then about 12% martensite is formed during the quench, along with the remaining 10% austenite, and 78% equiaxed ferrite.
- Constrained paraequilibrium defines the endpoint of carbon partitioning in the absence of either short- or long-range diffusion of iron or substitutional atoms, which applies to martensite/austenite mixtures at low temperatures where the ⁇ / ⁇ interface is stationary.
- the recently developed CPE theory indicates that the austenite in the present example could be enriched in carbon to a level of approximately 1.5% at a partitioning temperature (PT) of about 450°C, while the martensite is depleted to quite low carbon levels.
- PT partitioning temperature
- the essence of the CPE theory involves a condition where the chemical potential of carbon is equal in the ⁇ and ⁇ phases, in the absence of substantial carbide formation, and the ⁇ / ⁇ interface is effectively stationary, i.e. constrained, at usual partitioning temperatures.)
- the austenite is stable after final cooling to room temperature.
- the partitioning kinetics are also temperature dependent, but suitable partitioning should be able to be accomplished under time/temperature conditions that are usually employed for bainitic transformation (the required time is also dependent upon microstructural and other factors).
- bainitic ferrite growth in addition to carbon partitioning is required for conventional bainitic processing.
- the steel composition and processing parameters used here produce a final microstructure of 78% equiaxed ferrite, 12% carbon-depleted martensite, and 10% retained austenite (having approximately 1.5% carbon).
- Such a microstructure is expected to represent a commercially viable TRIP product.
- other microstructure variants can be designed by altering the steel composition and critical processing parameters. Some of these microstructures would be difficult to achieve by conventional processing, and the new process allows the potential for higher levels of carbon enrichment in the austenite, increasing strength via formation of lath martensite in the microstructure, and application to Si/Al-containing iron castings.
- Example results are shown in Figure 3, obtained for a 0.19C, 1.46Mn, 1.96 AI sheet steel., intercritical ly annealed for 180 s at 805°C to create a ferrite/austenite starting microstructure, followed by quenching to 284°C, and then partitioning for various times and temperatures (between 300 and 450°C) shown in the figure. The final austenite fraction after complete processing is shown. This example shows that substantial quantities of retained austenite are achieved by Q&P processing, where the quenching temperature was carefully selected to control the transformed microstructure prior to quenching.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003270334A AU2003270334A1 (en) | 2002-09-04 | 2003-09-04 | Method for producing steel with retained austenite |
US10/526,840 US20060011274A1 (en) | 2002-09-04 | 2003-09-04 | Method for producing steel with retained austenite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31952102P | 2002-09-04 | 2002-09-04 | |
US60/319,521 | 2002-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004022794A1 true WO2004022794A1 (fr) | 2004-03-18 |
Family
ID=31978079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/027825 WO2004022794A1 (fr) | 2002-09-04 | 2003-09-04 | Procede de production d'acier a austenite residuelle |
Country Status (3)
Country | Link |
---|---|
US (1) | US20060011274A1 (fr) |
AU (1) | AU2003270334A1 (fr) |
WO (1) | WO2004022794A1 (fr) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100415902C (zh) * | 2006-08-03 | 2008-09-03 | 上海交通大学 | 采用碳分配提高钢件表面硬度的方法 |
WO2009082107A1 (fr) | 2007-12-20 | 2009-07-02 | Posco | Tige de fil d'acier pour acier à roulements, procédé de fabrication de tige de fil d'acier pour acier à roulements, procédé de traitement thermique de roulements en acier, roulements en acier et procédé de trempage d'acier à roulements |
CN102002558A (zh) * | 2010-11-26 | 2011-04-06 | 清华大学 | 含抑制碳化物形成元素钢的分级淬火-分配热处理工艺 |
DE102010003997A1 (de) | 2010-01-04 | 2011-07-07 | Benteler Automobiltechnik GmbH, 33102 | Verwendung einer Stahllegierung |
KR101070154B1 (ko) * | 2008-09-05 | 2011-10-05 | 주식회사 포스코 | 베어링용 강선재, 베어링용 강선재의 제조방법, 베어링의 열처리 방법, 베어링 및 베어링용 주편의 균열확산 처리 방법 |
CN102560023A (zh) * | 2012-03-01 | 2012-07-11 | 哈尔滨工业大学 | 低碳铬硅锰低合金钢的热处理方法 |
CN102660712A (zh) * | 2012-06-08 | 2012-09-12 | 黄凯敏 | 一种改进的30CrMnSi钢 |
EP2524970A1 (fr) * | 2011-05-18 | 2012-11-21 | ThyssenKrupp Steel Europe AG | Produit plat en acier hautement résistant et son procédé de fabrication |
WO2013006108A1 (fr) * | 2011-07-06 | 2013-01-10 | Gestamp Hardtech Ab | Procédé de façonnage à chaud et de durcissement d'un flan de tôle d'acier |
CN102876981A (zh) * | 2012-10-17 | 2013-01-16 | 夏雨 | 一种具有硬化表面层的中低碳铬硅锰马氏体铸钢的制备方法 |
WO2013041541A1 (fr) | 2011-09-20 | 2013-03-28 | Nv Bekaert Sa | Fil d'acier à haute teneur en carbone trempé et divisé |
US8518195B2 (en) | 2012-01-20 | 2013-08-27 | GM Global Technology Operations LLC | Heat treatment for producing steel sheet with high strength and ductility |
CN103343191A (zh) * | 2013-07-22 | 2013-10-09 | 哈尔滨工业大学 | 中碳锰钒系低合金钢强韧化二步等温热处理方法 |
CN103394573A (zh) * | 2013-08-02 | 2013-11-20 | 上海交通大学 | 一种基于q&p一步法的热冲压成形工艺 |
WO2014186722A3 (fr) * | 2013-05-17 | 2015-01-08 | Ak Steel Properties, Inc. | Acier à haute résistance manifestant une bonne ductilité et son procédé d'élaboration par traitement de trempe et de partitionnement en bain de zinc |
CN105018843A (zh) * | 2015-08-03 | 2015-11-04 | 北京科技大学 | 钒和钛复合添加的q&p钢及其制造方法 |
WO2016001701A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Ligne de traitement polyvalent pour traitement thermique et plaquage par immersion à chaud d'une bande d'acier |
WO2016001707A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de production de tôle d'acier revêtue ou non revêtue à ultra haute résistance et tôle ainsi obtenue |
WO2016001706A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier haute résistance ayant une résistance et une aptitude au formage améliorées et feuille ainsi obtenue |
WO2016001708A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de production d'une tôle d'acier revêtue à haute résistance présentant une résistance, une aptitude au formage améliorées et tôle ainsi obtenue |
WO2016016683A1 (fr) * | 2014-07-30 | 2016-02-04 | Arcelormittal | Procédé de fabrication d'une pièce en acier à haute résistance |
CN105385835A (zh) * | 2015-12-11 | 2016-03-09 | 上海交通大学 | 一种提高中厚板高强钢件强韧性的热处理方法 |
CN106424280A (zh) * | 2016-11-30 | 2017-02-22 | 华中科技大学 | 一种高强钢热成形差异化力学性能分布柔性控制方法 |
WO2017109538A1 (fr) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées |
EP2726637B1 (fr) | 2011-07-01 | 2018-11-14 | Rautaruukki Oyj | Methode de production d'un acier pour structures à haute resistance et produit associé |
WO2019033711A1 (fr) * | 2017-08-15 | 2019-02-21 | 上海交通大学 | Procédé intégré d'estampage à chaud et de détourage |
US10954580B2 (en) | 2015-12-21 | 2021-03-23 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet |
US11035020B2 (en) | 2015-12-29 | 2021-06-15 | Arcelormittal | Galvannealed steel sheet |
US11371113B2 (en) | 2016-12-14 | 2022-06-28 | Evonik Operations Gmbh | Hot-rolled flat steel product and method for the production thereof |
US12054799B2 (en) | 2015-12-21 | 2024-08-06 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102127711B (zh) * | 2011-02-22 | 2012-05-23 | 武汉科技大学 | 一种纳米结构的超高强度双相钢及其制造方法 |
CN102337386A (zh) * | 2011-11-14 | 2012-02-01 | 湖南华菱湘潭钢铁有限公司 | 高韧性超高强钢的生产工艺及生产系统 |
KR101594670B1 (ko) | 2014-05-13 | 2016-02-17 | 주식회사 포스코 | 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법 |
WO2016001700A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de production d'une tôle d'acier à haute résistance présentant une résistance, une ductilité et une aptitude au formage améliorées |
WO2016001702A1 (fr) | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier revêtue à haute résistance présentant une résistance, une ductilité et une formabilité améliorées |
WO2016001710A1 (fr) | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'un acier revêtu à haute résistance ayant une résistance et une ductilité améliorée et tôle obtenue |
WO2016001705A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier à haute résistance présentant une aptitude au formage et une ductilité améliorées, et tôle ainsi obtenue |
WO2016001703A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier à haute résistance et tôle obtenue par le procédé |
WO2016001699A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier à haute résistance présentant une formabilité améliorée, et tôle ainsi obtenue |
JP6282577B2 (ja) * | 2014-11-26 | 2018-02-21 | 株式会社神戸製鋼所 | 高強度高延性鋼板 |
KR101630976B1 (ko) | 2014-12-08 | 2016-06-16 | 주식회사 포스코 | 표면품질 및 도금 밀착성이 우수한 초고강도 용융아연도금강판 및 그 제조방법 |
KR101714930B1 (ko) | 2015-12-23 | 2017-03-10 | 주식회사 포스코 | 구멍확장성이 우수한 초고강도 강판 및 그 제조방법 |
KR101830538B1 (ko) | 2016-11-07 | 2018-02-21 | 주식회사 포스코 | 항복비가 우수한 초고강도 강판 및 그 제조방법 |
KR101858852B1 (ko) | 2016-12-16 | 2018-06-28 | 주식회사 포스코 | 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법 |
US10260121B2 (en) | 2017-02-07 | 2019-04-16 | GM Global Technology Operations LLC | Increasing steel impact toughness |
KR101968001B1 (ko) | 2017-09-26 | 2019-04-10 | 주식회사 포스코 | 연신율이 우수한 기가급 초고강도 냉연강판 및 제조방법 |
US11920209B2 (en) | 2018-03-08 | 2024-03-05 | Northwestern University | Carbide-free bainite and retained austenite steels, producing method and applications of same |
CN109321719B (zh) * | 2018-08-14 | 2020-10-02 | 山东建筑大学 | 一种基于逆转变的800MPa级低碳锰硅钢制备方法 |
CN109825683B (zh) * | 2018-08-14 | 2020-10-09 | 山东建筑大学 | 一种锰配分和逆转变800MPa低碳Q&P钢制备方法 |
CN109825690A (zh) * | 2018-08-14 | 2019-05-31 | 山东建筑大学 | 一种基于d-q-p工艺提升碳-锰-硅钢综合力学性能的方法 |
KR102231344B1 (ko) | 2019-05-17 | 2021-03-24 | 주식회사 포스코 | 구멍확장성 및 연성이 우수한 초고강도 강판 및 이의 제조방법 |
WO2021123877A1 (fr) | 2019-12-17 | 2021-06-24 | Arcelormittal | Tôle d'acier laminée à chaud et son procédé de fabrication |
WO2022242859A1 (fr) | 2021-05-20 | 2022-11-24 | Nlmk Clabecq | Procédé de fabrication d'une plaque d'acier à haute résistance et plaque d'acier à haute résistance |
KR20230073569A (ko) | 2021-11-19 | 2023-05-26 | 주식회사 포스코 | 우수한 강도 및 성형성을 갖는 냉연강판 및 그 제조방법 |
WO2024132987A1 (fr) | 2022-12-18 | 2024-06-27 | Tata Steel Nederland Technology B.V. | Procédé de fabrication d'un acier structural à haute résistance laminé à chaud présentant une formabilité améliorée et son procédé de fabrication |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544422A (en) * | 1984-04-02 | 1985-10-01 | General Motors Corporation | Ferrite-austenite dual phase steel |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW363082B (en) * | 1994-04-26 | 1999-07-01 | Nippon Steel Corp | Steel sheet having high strength and being suited to deep drawing and process for producing the same |
US6319338B1 (en) * | 1996-11-28 | 2001-11-20 | Nippon Steel Corporation | High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same |
-
2003
- 2003-09-04 US US10/526,840 patent/US20060011274A1/en not_active Abandoned
- 2003-09-04 WO PCT/US2003/027825 patent/WO2004022794A1/fr not_active Application Discontinuation
- 2003-09-04 AU AU2003270334A patent/AU2003270334A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544422A (en) * | 1984-04-02 | 1985-10-01 | General Motors Corporation | Ferrite-austenite dual phase steel |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100415902C (zh) * | 2006-08-03 | 2008-09-03 | 上海交通大学 | 采用碳分配提高钢件表面硬度的方法 |
WO2009082107A1 (fr) | 2007-12-20 | 2009-07-02 | Posco | Tige de fil d'acier pour acier à roulements, procédé de fabrication de tige de fil d'acier pour acier à roulements, procédé de traitement thermique de roulements en acier, roulements en acier et procédé de trempage d'acier à roulements |
US9593389B2 (en) | 2007-12-20 | 2017-03-14 | Posco | Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel |
KR101070154B1 (ko) * | 2008-09-05 | 2011-10-05 | 주식회사 포스코 | 베어링용 강선재, 베어링용 강선재의 제조방법, 베어링의 열처리 방법, 베어링 및 베어링용 주편의 균열확산 처리 방법 |
DE102010003997A1 (de) | 2010-01-04 | 2011-07-07 | Benteler Automobiltechnik GmbH, 33102 | Verwendung einer Stahllegierung |
CN102002558A (zh) * | 2010-11-26 | 2011-04-06 | 清华大学 | 含抑制碳化物形成元素钢的分级淬火-分配热处理工艺 |
WO2012156428A1 (fr) * | 2011-05-18 | 2012-11-22 | Thyssenkrupp Steel Europe Ag | Produit plat en acier à haute résistance mécanique et son procédé de fabrication |
EP2524970A1 (fr) * | 2011-05-18 | 2012-11-21 | ThyssenKrupp Steel Europe AG | Produit plat en acier hautement résistant et son procédé de fabrication |
CN103597100A (zh) * | 2011-05-18 | 2014-02-19 | 蒂森克虏伯钢铁欧洲股份公司 | 高强度的扁钢产品及其制造方法 |
US9650708B2 (en) | 2011-05-18 | 2017-05-16 | Thyssenkrupp Steel Europe Ag | High-strength flat steel product and method for producing same |
EP2726637B1 (fr) | 2011-07-01 | 2018-11-14 | Rautaruukki Oyj | Methode de production d'un acier pour structures à haute resistance et produit associé |
EP2726637B2 (fr) † | 2011-07-01 | 2021-12-29 | Rautaruukki Oyj | Méthode de production d'un acier pour structures à haute résistance et produit associé |
WO2013006108A1 (fr) * | 2011-07-06 | 2013-01-10 | Gestamp Hardtech Ab | Procédé de façonnage à chaud et de durcissement d'un flan de tôle d'acier |
CN103582707A (zh) * | 2011-07-06 | 2014-02-12 | 耶斯塔姆普硬技术股份公司 | 一种热成型和硬化钢板坯料的方法 |
WO2013041541A1 (fr) | 2011-09-20 | 2013-03-28 | Nv Bekaert Sa | Fil d'acier à haute teneur en carbone trempé et divisé |
US8518195B2 (en) | 2012-01-20 | 2013-08-27 | GM Global Technology Operations LLC | Heat treatment for producing steel sheet with high strength and ductility |
CN102560023A (zh) * | 2012-03-01 | 2012-07-11 | 哈尔滨工业大学 | 低碳铬硅锰低合金钢的热处理方法 |
CN102660712A (zh) * | 2012-06-08 | 2012-09-12 | 黄凯敏 | 一种改进的30CrMnSi钢 |
CN102876981A (zh) * | 2012-10-17 | 2013-01-16 | 夏雨 | 一种具有硬化表面层的中低碳铬硅锰马氏体铸钢的制备方法 |
WO2014186722A3 (fr) * | 2013-05-17 | 2015-01-08 | Ak Steel Properties, Inc. | Acier à haute résistance manifestant une bonne ductilité et son procédé d'élaboration par traitement de trempe et de partitionnement en bain de zinc |
CN105247090A (zh) * | 2013-05-17 | 2016-01-13 | Ak钢铁资产公司 | 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法 |
CN103343191A (zh) * | 2013-07-22 | 2013-10-09 | 哈尔滨工业大学 | 中碳锰钒系低合金钢强韧化二步等温热处理方法 |
CN103394573A (zh) * | 2013-08-02 | 2013-11-20 | 上海交通大学 | 一种基于q&p一步法的热冲压成形工艺 |
CN106661701A (zh) * | 2014-07-03 | 2017-05-10 | 安赛乐米塔尔公司 | 用于生产具有改进的强度和可成形性的高强度钢板的方法及获得的板 |
US11001904B2 (en) | 2014-07-03 | 2021-05-11 | Arcelormittal | Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet |
WO2016001888A3 (fr) * | 2014-07-03 | 2016-02-25 | Arcelormittal | Chaîne de traitement polyvalente pour traitement thermique et revêtement par immersion à chaud d'une bande d'acier |
US11718888B2 (en) | 2014-07-03 | 2023-08-08 | Arcelormittal | Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet |
WO2016001897A3 (fr) * | 2014-07-03 | 2016-03-10 | Arcelormittal | Procédé de production d'une tôle d'acier revêtue à haute résistance ayant une résistance et une aptitude au formage améliorées et feuille obtenue |
WO2016001890A3 (fr) * | 2014-07-03 | 2016-03-10 | Arcelormittal | Procédé de fabrication d'une tôle d'acier à ultra-haute résistance revêtue ou non revêtue et tôle obtenue |
WO2016001893A3 (fr) * | 2014-07-03 | 2016-03-17 | Arcelormittal | Procédé de production d'une tôle d'acier à haute résistance présentant une résistance et une aptitude au façonnage améliorées et tôle obtenue |
US11555226B2 (en) | 2014-07-03 | 2023-01-17 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
US11131003B2 (en) | 2014-07-03 | 2021-09-28 | Arcelormittal | Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet |
WO2016001708A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de production d'une tôle d'acier revêtue à haute résistance présentant une résistance, une aptitude au formage améliorées et tôle ainsi obtenue |
US11124853B2 (en) | 2014-07-03 | 2021-09-21 | Arcelormittal | Method for producing a ultra high strength coated or not coated steel sheet and obtained sheet |
CN106661652A (zh) * | 2014-07-03 | 2017-05-10 | 安赛乐米塔尔公司 | 用于制造超高强度涂覆或未涂覆钢板的方法和获得的板 |
WO2016001706A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de fabrication d'une tôle d'acier haute résistance ayant une résistance et une aptitude au formage améliorées et feuille ainsi obtenue |
WO2016001707A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Procédé de production de tôle d'acier revêtue ou non revêtue à ultra haute résistance et tôle ainsi obtenue |
US10907232B2 (en) | 2014-07-03 | 2021-02-02 | Arcelormittal | Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet |
EP3722445A1 (fr) * | 2014-07-03 | 2020-10-14 | ArcelorMittal | Une tôle d'acier revêtue haute résistance présentant une résistance et une aptitude au formage améliorées |
EP3663416A1 (fr) * | 2014-07-03 | 2020-06-10 | ArcelorMittal | Procédé de production d'une tôle d'acier à haute résistance présentant une résistance et une aptitude au formage améliorées et tôle ainsi obtenue |
EP3564397A1 (fr) * | 2014-07-03 | 2019-11-06 | ArcelorMittal | Procédé de fabrication d'une tôle d'acier à ultra-haute résistance revêtue et tôle obtenue |
CN106661652B (zh) * | 2014-07-03 | 2018-10-12 | 安赛乐米塔尔公司 | 用于制造超高强度涂覆或未涂覆钢板的方法和获得的板 |
WO2016001701A1 (fr) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Ligne de traitement polyvalent pour traitement thermique et plaquage par immersion à chaud d'une bande d'acier |
US10407751B2 (en) | 2014-07-03 | 2019-09-10 | Arcelormittal | Multipurpose processing line for heat treating and hot dip coating a steel strip |
RU2684912C2 (ru) * | 2014-07-03 | 2019-04-16 | Арселормиттал | Способ изготовления сверхпрочного стального листа с покрытием или без покрытия и полученный лист |
EP3492608A1 (fr) * | 2014-07-03 | 2019-06-05 | ArcelorMittal | Procédé de fabrication d'une tôle d'acier à ultra-haute résistance non revêtue et tôle obtenue |
US10378077B2 (en) | 2014-07-03 | 2019-08-13 | Arcelormittal | Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet |
KR20170041704A (ko) * | 2014-07-30 | 2017-04-17 | 아르셀러미탈 | 고강도 강 피스를 제조하기 위한 방법 |
US10415112B2 (en) | 2014-07-30 | 2019-09-17 | Arcelormittal | Method for producing a high strength steel piece |
CN108283003B (zh) * | 2014-07-30 | 2019-11-01 | 安赛乐米塔尔公司 | 用于制造高强度钢件的方法 |
CN108283003A (zh) * | 2014-07-30 | 2018-07-13 | 安赛乐米塔尔公司 | 用于制造高强度钢件的方法 |
RU2690851C2 (ru) * | 2014-07-30 | 2019-06-06 | Арселормиттал | Способ изготовления высокопрочной стальной детали |
KR102493114B1 (ko) | 2014-07-30 | 2023-01-27 | 아르셀러미탈 | 고강도 강 피스를 제조하기 위한 방법 |
WO2016016779A3 (fr) * | 2014-07-30 | 2016-03-31 | Arcelormittal | Procédé de fabrication d'une pièce en acier à haute résistance |
WO2016016683A1 (fr) * | 2014-07-30 | 2016-02-04 | Arcelormittal | Procédé de fabrication d'une pièce en acier à haute résistance |
CN105018843A (zh) * | 2015-08-03 | 2015-11-04 | 北京科技大学 | 钒和钛复合添加的q&p钢及其制造方法 |
CN105385835A (zh) * | 2015-12-11 | 2016-03-09 | 上海交通大学 | 一种提高中厚板高强钢件强韧性的热处理方法 |
CN105385835B (zh) * | 2015-12-11 | 2017-10-27 | 上海交通大学 | 一种提高中厚板高强钢件强韧性的热处理方法 |
EP3653737A1 (fr) * | 2015-12-21 | 2020-05-20 | ArcelorMittal | Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées |
US10954580B2 (en) | 2015-12-21 | 2021-03-23 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet |
WO2017109538A1 (fr) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées |
WO2017108956A1 (fr) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Procédé de production d'une tôle d'acier présentant une résistance, une ductilité et une aptitude au formage améliorées |
US12054799B2 (en) | 2015-12-21 | 2024-08-06 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
US12084738B2 (en) | 2015-12-21 | 2024-09-10 | Arcelormittal | Method for producing a steel sheet having improved strength, ductility and formability |
US11035020B2 (en) | 2015-12-29 | 2021-06-15 | Arcelormittal | Galvannealed steel sheet |
US11512362B2 (en) | 2015-12-29 | 2022-11-29 | Arcelormittal | Method for producing an ultra high strength galvannealed steel sheet and obtained galvannealed steel sheet |
CN106424280A (zh) * | 2016-11-30 | 2017-02-22 | 华中科技大学 | 一种高强钢热成形差异化力学性能分布柔性控制方法 |
US11371113B2 (en) | 2016-12-14 | 2022-06-28 | Evonik Operations Gmbh | Hot-rolled flat steel product and method for the production thereof |
WO2019033711A1 (fr) * | 2017-08-15 | 2019-02-21 | 上海交通大学 | Procédé intégré d'estampage à chaud et de détourage |
Also Published As
Publication number | Publication date |
---|---|
US20060011274A1 (en) | 2006-01-19 |
AU2003270334A1 (en) | 2004-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004022794A1 (fr) | Procede de production d'acier a austenite residuelle | |
Speer et al. | Carbon partitioning into austenite after martensite transformation | |
Speer et al. | Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation | |
CN108474081B (zh) | 用于冲压成形的钢材及其成形构件与热处理方法 | |
Matlock et al. | Applications of rapid thermal processing to advanced high strength sheet steel developments | |
EP3164516B1 (fr) | Procédé de fabrication d'un tôle d'acier revêtu ou non-revêtu à ultra haute résistance et le tôle ainsi obtenu | |
Sugimoto et al. | Formability of Nb bearing ultra high-strength TRIP-aided sheet steels | |
EP3704276B1 (fr) | Acier estampé à chaud ayant des propriétés particulières après un traitement thermique innovant | |
Speich | Dual-phase steels | |
EP3298174B1 (fr) | Acier haute résistance amélioré de troisième génération faiblement allié | |
Ding et al. | Heat treatment, microstructure and mechanical properties of a C–Mn–Al–P hot dip galvanizing TRIP steel | |
Huang et al. | Combining a novel cyclic pre-quenching and two-stage heat treatment in a low-alloyed TRIP-aided steel to significantly enhance mechanical properties through microstructural refinement | |
Speer et al. | Nb-microalloying in next-generation flat-rolled steels: an overview | |
US10323307B2 (en) | Process and steel alloys for manufacturing high strength steel components with superior rigidity and energy absorption | |
Costa et al. | Dilatometric study of continuous cooling transformation of intercritical austenite in cold rolled AHSS-DP steels | |
Deng et al. | Microstructure and mechanical property relationship in a high strength high-Al low-Si hot-dip galvanized steel under quenching and partitioning process | |
Kim et al. | Acceleration of bainitic transformation in 0.28 C-3.8 Mn-1.5 Si steel utilizing chemical heterogeneity | |
Girina et al. | Effect of annealing parameters on austenite decomposition in a continuously annealed dual-phase steel | |
Fonstein et al. | TRIP steels | |
Lee et al. | Development of a press-hardened steel suitable for thin slab direct rolling processing | |
Jirkova et al. | QP process on steels with various Carbon and Chromium contents | |
Speer et al. | Austenitizing in steels | |
Fonshtein et al. | Study of the effect of “new” ferrite on the properties of dual phase steels | |
DeCooman et al. | Microstructure-properties relationships in quench and partition (Q&P) steel, implications for automotive anti-instrusion applications | |
Sahay | Annealing of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2006011274 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10526840 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase | ||
WWP | Wipo information: published in national office |
Ref document number: 10526840 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |