WO2004019487A1 - デジタル増幅装置 - Google Patents

デジタル増幅装置 Download PDF

Info

Publication number
WO2004019487A1
WO2004019487A1 PCT/JP2003/009442 JP0309442W WO2004019487A1 WO 2004019487 A1 WO2004019487 A1 WO 2004019487A1 JP 0309442 W JP0309442 W JP 0309442W WO 2004019487 A1 WO2004019487 A1 WO 2004019487A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
signal
pass filter
feedback circuit
terminal
Prior art date
Application number
PCT/JP2003/009442
Other languages
English (en)
French (fr)
Inventor
Toshiya Nakagaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/504,214 priority Critical patent/US7202742B2/en
Priority to EP03792637A priority patent/EP1455445B1/en
Priority to DE60302330T priority patent/DE60302330T2/de
Publication of WO2004019487A1 publication Critical patent/WO2004019487A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit

Definitions

  • the present invention relates to reducing distortion of a digital amplifying device, and more particularly to a digital amplifying device used in a cardio.
  • FIG. 6 shows a circuit block diagram of a conventional digital amplifier.
  • the ⁇ modulator (denoted by ⁇ in Fig. 6) 101 converts the input analog input signal 105 into a pulse signal that has been subjected to pulse density modulation.
  • the constant voltage switch (denoted as SW in FIG. 6) 102 is composed of a switch element having a small on-resistance such as an M ⁇ SFET, and power-amplifies the output signal of the ⁇ modulator 101.
  • Low-pass filter (shown as LPF in Fig. 6) 103 is composed of a coil and a capacitor. The cut-off frequency of the low-pass filter 103 is set to a frequency lower than the switching frequency of the constant voltage switch 102.
  • the switching component included in the output signal of the constant voltage switch 102 is attenuated, and the power output of the constant voltage switch 102 is smoothed and restored to an analog output signal.
  • the feedback circuit (denoted by 3 in FIG. 6) 104 feeds back the output of the low-pass filter 103 to the input of the ⁇ modulator 101.
  • a means for detecting the output current is effective.
  • the output voltage is proportional to the output current, so it is possible to detect the output voltage and reduce the coil distortion accurately.
  • the output current may be greatly distorted even if the output voltage is not distorted, and it is difficult to correct this distortion by detecting the output voltage.
  • a digital amplifying section having a differential input terminal for inputting an analog signal and a differential output terminal for outputting a digital signal, converting the analog signal into a digital signal, amplifying power, and outputting a digital signal,
  • a current feedback circuit is provided to feed back a signal related to the signal obtained by transformer coupling with the low-pass filter to the differential input terminal.
  • FIG. 1 is a circuit block diagram of a digital amplifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a transfer characteristic diagram of the first current feedback circuit of the digital amplifier according to the first embodiment of the present invention.
  • FIG. 3 is a characteristic diagram of the total harmonic distortion with respect to the output power of the digital amplifier according to the first embodiment of the present invention.
  • FIG. 4 is an external view of a first transformer-coupled coil of the digital amplifying device according to the second embodiment of the present invention.
  • FIG. 5 is a circuit block diagram of a digital amplifier according to Embodiment 3 of the present invention.
  • FIG. 6 is a circuit block diagram of a conventional digital amplifier. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a digital amplifier that solves the above-mentioned problems of the conventional digital amplifier.
  • embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is a circuit block diagram of a digital amplifier according to Embodiment 1 of the present invention.
  • the analog input terminal 11 is connected to the differential input terminal 20 of the digital amplifier 13 through an input impedance element 12 (denoted by Z in FIG. 1).
  • the differential output terminal 21 of the digital amplifier 13 is connected to the load output terminal 22 through the low-pass filter 14.
  • the low-pass filter 14 includes a first transformer-coupled coil 15, a capacitor 16 connected between the first transformer-coupled coil 15 and the load output terminal 22, and a load output terminal 22. It consists of a bypass capacitor 17 connected to the ground.
  • the primary coil of the first transformer-coupled coil 15 is inserted in series between the differential output terminal 21 and the load output terminal 22.
  • the secondary coil of the first transformer-coupled coil 15 has one terminal connected to ground and the other terminal differentially connected through the first current feedback circuit (shown as / 3 C in Figure 1) 18 Connect to input terminal 20.
  • the differential output terminal 21 is also connected to the differential input terminal 20 through a voltage feedback circuit (denoted as jSV in FIG. 1) 19.
  • jSV voltage feedback circuit
  • the audio analog input signal applied to the analog input terminal 11 is input to the differential input terminal 20 of the digital amplifier 13 through a pair of input impedance elements 12.
  • This analog signal is converted to a digital signal PWM signal (pulse width modulation signal) that is sufficiently higher than the frequency of the analog audio signal by the digital amplifier 13 and power-amplified.
  • the power-amplified PWM signal is input from the differential output terminal 21 to the low pass filter 14.
  • the PWM signal is integrated by the low-pass filter 14, output to the speaker 33 through the load output terminal 22, and To be played.
  • the digital signal output from the differential output terminal 21 of the digital amplifier 13 is fed back to the differential input terminal 20 through the voltage feedback circuit 19.
  • current is fed back from the secondary coil of the first transformer-coupled coil 15, which is a component of the low-pass filter 14, to the differential input terminal 20 through the first current feedback circuit 18.
  • FIG. 2 shows a transfer characteristic diagram of the first current feedback circuit 18.
  • a curve 23 represents a voltage characteristic induced in the secondary coil of the first transformer-coupled coil 15 having a slope of the coupling coefficient M
  • a curve 24 represents a voltage characteristic of the first current feedback circuit 18. 6 shows transfer characteristics.
  • the first current feedback pack circuit 18 attenuates the switching frequency component as distortion by setting the cut-off frequency Fc of the current feedback circuit 18 lower than the switching frequency Fs of the PWM signal. It is necessary to let them. Further, it is necessary to adjust the loop gain and the phase of the current feedback circuit 18 so as to cancel the distortion component of the signal frequency Ft.
  • the third-order distortion generated in the first transformer-coupling coil 15 is the largest, and the transfer characteristics of the current feedback circuit 18 can be adjusted so that only this third-order distortion is fed back. Third-order distortion can be greatly reduced.
  • the feedback gain may be the reciprocal of the gain A of the digital amplifier 13, that is, 1 ZA.
  • FIG. 3 shows a characteristic diagram of the total harmonic distortion with respect to the output power of the digital amplifier according to the first embodiment of the present invention.
  • the horizontal axis is the output power, and the vertical axis is all It represents the harmonic distortion factor (denoted as THD + N in Fig. 3).
  • the polygonal line 25 indicates the characteristic in the case where the first current feedback circuit 18 is not provided, and the polygonal line 26 indicates the characteristic in the case where the first current feedback circuit 18 is provided.
  • the output power is about 2 to 30 W in the range of 1 to 30 W compared to the conventional digital amplifier. Improvement of 0 dB or more was confirmed.
  • FIG. 3 shows the case where the frequency F of the analog input signal is 50 Hz, the output load RL of the digital amplifier is 1 ⁇ , and the power supply voltage Vcc for driving the digital amplifier is 14.4 V. 3 shows an example of the characteristic.
  • the distortion of the low-pass filter could be reduced by the current feedback circuit that detects and returns the current distortion that caused the distortion.
  • FIG. 4 is an external view of the first transformer-coupled coil 15 in the digital amplifier according to the second embodiment of the present invention.
  • Figure 4 shows the first transformer-coupled coil composed of a toroidal double winding.
  • the resistance component of the first transformer-coupled coil 15 causes a loss, and thus needs to be reduced. Since this resistance component is proportional to the number of turns of the coil winding, it is necessary to obtain a desired inductance with a small number of turns. Therefore, it is desirable to use a core material having high magnetic permeability.
  • the number of turns of the primary winding 28 is set so as to obtain the inductance of the mouth-to-pass filter 14. In order to reduce the resistance component, it is desirable to use a thick winding as long as a predetermined number of turns can be obtained.
  • the secondary winding 29 may be formed by using a thin winding. The number of windings can be determined almost arbitrarily by a balance with the transfer characteristic of the first current feedback circuit 18, but it is preferable that the number of windings be several times or more so that the coupling coefficient M is stabilized. Also, by fixing the winding with an adhesive or the like, the stability of the coupling coefficient M can be obtained.
  • FIG. 5 shows a circuit block diagram of a digital amplifying device according to Embodiment 3 of the present invention.
  • the description will focus on the parts that are different from the first embodiment.
  • the second transformer-coupling coil 30 is a component of a line filter for power input, and its primary coil forms an inductance component of the line filter, and its resistance component is preferably small.
  • the secondary coil, which is electromagnetically coupled to the primary coil, is composed of two coils, which are wound with almost the same number of turns and opposite polarities, and one end of which is connected to the ground.
  • the capacitor 31 forms a capacitance component of the line filter, and is connected to the output side of the primary coil of the second transformer-coupling coil 30. It is desirable that the capacitance value of the capacitor 31 be set sufficiently large in order to supply a current with little fluctuation to the digital amplifier 13.
  • a pair of second current feedback circuits (denoted as / 3 1 in FIG. 5) 3 2 are connected to terminals of the second transformer coupled coil 30 that are not connected to the ground of the secondary coil. . Further, the polarity and the gain of the second current feedback circuit 32 are set so as to cancel the ripple voltage of the power and source circuits. As a component of the second current feedback circuit 32, a resistor alone can be used to adjust the gain only. It may be a low-pass filter with a low frequency.
  • the power supply line supplied from the power supply input terminal 34 to the digital amplification section 13 has a small but some impedance, so that a ripple current is generated in the power supply line. Since this power supply is the reference voltage of the digital amplifying unit 13, the ripple current directly becomes the output component. Therefore, the second transformer-coupling coil 30 detects the distortion current, and considers this as a ripple current of the power supply and adds it to the input signal. At this time, the correction amount is adjusted by the second current feedback circuit 32, and as a result, the distortion component due to the ripple current of the power supply can be canceled in the output voltage from the digital amplifier 13.
  • the ripple current of the power supply can be detected as the distortion current without increasing the impedance of the power supply line, and this is fed back. As a result, distortion due to the impedance of the power supply line can be reduced.
  • the digital amplifying device of the present invention includes the first current feedback circuit that detects and feeds back the current distortion that causes the distortion.
  • the distortion of the mouth-pass filter can be reduced.
  • the digital amplifying device of the present invention includes a voltage feed-back circuit that feeds back a digital signal from the differential output terminal to the differential input terminal, so that both the current and the voltage can be fed back. Furthermore, the distortion of the low-pass fill can be reduced.
  • the digital amplifying device of the present invention can be put to practical use with almost no change from the original configuration of the digital amplifying device by including a single-pass filter including a toroidal double winding and a capacitor. Therefore, current detection can be performed at low cost, and distortion can be reduced at low cost.
  • the digital amplifier of the present invention can reduce the distortion of the low-pass filter by the first current feedback circuit that detects and returns the current distortion that causes the distortion, and the power supply circuit can be reduced by the second current feedback circuit. Distortion due to impedance can also be reduced.
  • the digital amplifying device of the present invention is a digital amplifying device provided with a current feedback circuit that transduces a current to a differential input terminal by transducing with a low-pass filter, and detects current distortion that causes distortion.
  • the feedback of the current feedback circuit reduces the distortion of the single pass filter.
  • the digital amplifier by this invention can reduce the distortion of a single pass filter by carrying out current feedback. Further, the digital amplifying device according to the present invention, Distortion due to the impedance of the power supply circuit can be reduced by the current feedback from the power supply circuit.

Abstract

本発明のデジタル増幅装置は、デジタル増幅部とデジタル信号を積分するローパスフィルタとを有するデジタル増幅装置であって、ローパスフィルタとトランス結合して差動入力端子に帰還する電流フィードバック回路を備えるデジタル増幅装置である。歪に関連する信号が帰還され、歪が低減されたデジタル増幅装置が提供される。

Description

明細書 デジタル増幅装置 技術分野
本発明はデジタル増幅装置の低歪化に関するものであり、 特にカー ォ一ディォで用いられるデジタル増幅装置に関するものである。 背景技術
従来、 口一パスフィルタのコイル歪の低減を考慮したデジタル増幅 装置として特開 2 0 0 0— 3 0 7 3 5 9号公報に記載されたものが知 られている。
図 6は従来のデジタル増幅装置の回路ブロック図を示す。 △∑変調 器 (図 6では△∑と記載する) 1 0 1は、 入力されたアナログ入力信 号 1 0 5をパルス密度変調されたパルス信号に変換する。 定電圧スィ ツチ (図 6では S Wと記載する) 1 0 2は M〇 S F E Tなどのオン抵 杭の小さいスィツチ素子で構成され、 Δ∑変調器 1 0 1の出力信号を 電力増幅する。 ローパスフィル夕 (図 6では L P Fと記載する) 1 0 3は、 コイルとコンデンサにより構成される。 ローパスフィルタ 1 0 3のカツ トオフ周波数は、 定電圧スィツチ 1 0 2でのスイッチング周 波数より低い周波数に設定される。 こうすることにより、 定電圧スィ ツチ 1 0 2の出力信号に含まれているスィツチング成分が減衰され、 定電圧スィツチ 1 0 2の電力出力が平滑化されアナログ出力信号に復 調される。 フィードバック回路 (図 6では 3と記載する) 1 0 4は、 ローパスフィルタ 1 0 3の出力を Δ∑変調器 1 0 1の入力にフィード バックする。 以上の構成により、 口一パスフィルタ 1 0 3で発生した 歪はその出力電圧によって検出され、 逆相成分として入力にフィ一ド パックされることにより歪率が改善される。
また、 音質に関する課題としてローパスフィル夕で使用されるコィ ルの歪があげられる。 デジタル増幅装置ではパルス信号を積分する口 —パスフィルタが必要であるが、 特に高出力時のコイル歪が音質を低 下させる大きな要因となっている。 これはコイルに用いられる磁性体 の B—Hカーブの非線形特性によるもので、 電流によって生じる電流 歪であり、. 電流が大きくなるほど非線形特性が大きく影響し大きな課 題となる。
特に、 カーオーディォの場合は自動車用の電源である 1 2 V系で動 作させる場合が多く、 低い電源電圧で高出力を得る必要がある。 その ためには、 負荷となるスピーカのィンピ一ダンスを低くする方法など がある。 しかし、 負荷のインピーダンスが低くなると負荷の電流が大 きくなるため、 デジタル増幅装置におけるローパスフィルタのコイル での歪がさらに大きくなり音質が劣化する。
このデジタル増幅装置における口一パスフィルタ 1 0 3の歪率を低 減するためには、 出力電流を検出する手段が有効である。 純抵抗の負 荷の場合には出力電圧と出力電流は比例するため、 出力電圧を検出し て正確にコイルの歪を低減することが可能である。 しかし、 スピーカ などの非線形な負荷の場合には出力電圧が歪まなくても出力電流が大 きく歪むことがあり、 この歪を出力電圧の検出により補正することは 難しい。
しかし、 出力効率を上げるためには、 デジタルアンプ増幅段の出力 部を構成するスィツチングトランジス夕のオン抵抗やローパスフィル 夕 3におけるコイルの抵抗成分などの出力回路の抵抗成分をできるだ け小さくすることが必要である。 そのため、 抵抗などを出力回路に直 列に挿入することは好ましくない。 発明の開示 アナログ信号を入力する差動入力端子とデジタル信号を出力す る差動出力端子とを有し、 アナログ信号をデジタル信号に変換し電力 増幅してデジタル信号を出力するデジタル増幅部と、
デジタル信号を積分する口一パスフィル夕と、
ローパスフィル夕からの信号を出力するための負荷出力端子と からなるデジタル増幅装置であって、
ローパスフィル夕とトランス結合して得られる信号に関連する 信号を差動入力端子に帰還する電流フィードバック回路を備える。 図面の簡単な説明
図 1は、 本発明の実施の形態 1におけるデジタル増幅装置の回路ブ 口ック図である。
図 2は、 本発明の実施の形態 1におけるデジタル増幅装置の第 1の 電流フィードバック回路の伝達特性図である。
図 3は、 本発明の実施の形態 1におけるデジタル増幅装置の出力電 力に対する全高調波歪の特性図である。
図 4は、 本発明の実施の形態 2におけるデジタル増幅装置の第 1の トランス結合型コイルの外観図である。
図 5は、 本発明の実施の形態 3におけるデジタル増幅装置の回路ブ 口ック図である。
図 6は、 従来のデジタル増幅装置の回路プロック図である。 発明を実施する最良の形態
本発明は上述した従来のデジタル増幅装置の課題を解決するデジ夕 ル増幅装置を提供する。 以下、 本発明の実施の形態について、 図を用いて説明する。
(実施の形態 1 )
図 1は本発明の実施の形態 1におけるデジタル増幅装置の回路プロ ック図を示す。
アナログ入力端子 1 1は入力インピーダンス素子 1 2 (図 1では Z と記載する) を通してデジタル増幅部 1 3の差動入力端子 2 0に接続 される。 そしてデジタル増幅部 1 3の差動出力端子 2 1はローパスフ ィル夕 1 4を通して負荷出力端子 2 2に接続される。 このローパスフ ィルタ 1 4は第 1のトランス結合型コイル 1 5と、 第 1のトランス結 合型コイル 1 5と負荷出力端子 2 2の間に接続されるコンデンサ 1 6 と、 負荷出力端子 2 2とグランドとの間に接続されるバイパスコンデ ンサ 1 7とで構成される。 第 1のトランス結合型コイル 1 5の一次側 コイルは差動出力端子 2 1と負荷出力端子 2 2の間に直列に揷入され る。 第 1のトランス結合型コイル 1 5の二次側コイルは一方^端子が グランドに接続され、 他方の端子が第 1の電流フィードバック回路 (図 1では /3 Cと記載する) 1 8を通して差動入力端子 2 0に接続さ れる。 また差動出力端子 2 1からも電圧フィ一ドバック回路 (図 1で は jS Vと記載する) 1 9を通して差動入力端子 2 0に接続される。 以下、 動作について説明する。
アナログ入力端子 1 1に加えられた音声のアナログ入力信号は、 一 対の入カインピ一ダンス素子 1 2を通してデジタル増幅部 1 3の差動 入力端子 2 0に入力される。 このアナログ信号はデジタル増幅部 1 3 によりアナログ音声信号の周波数より十分に高いデジタル信号の P W M信号 (パルス幅変調信号) に変換され、 電力増幅される。 この電力 増幅された P WM信号は差動出力端子 2 1からロ一パスフィル夕 1 4 に入力される。 そしてこのローパスフィルタ 1 4により P WM信号は 積分され、 負荷出力端子 2 2を通してスピーカ 3 3に出力され、 音と して再生される。 またデジタル増幅部 1 3の差動出力端子 2 1から出 力されるデジタル信号は電圧フィードバック回路 1 9を通して差動入 力端子 2 0に電圧帰還される。 またローパスフィル夕 1 4の構成部品 である第 1のトランス結合型コイル 1 5の二次側コイルから第 1の電 流フィードバック回路 1 8を通して差動入力端子 2 0に電流帰還され る。
図 2は第 1の電流フィードバック回路 1 8の伝達特性図を示す。 こ こで曲線 2 3は結合係数 Mの傾きを持つ第 1のトランス結合型コイル 1 5の二次側コイルに誘起される電圧特性であり、 曲線 2 4は第 1の 電流フィードバック回路 1 8の伝達特性を示す。
第 1 の電流フィ一ドパック回路 1 8は、 この電流フィ一ドバック回 路 1 8のカツ トオフ周波数 F cを P WM信号のスィツチング周波数 F sより低くすることで、 歪としてのスイッチング周波数成分を減衰さ せることが必要である。 また、 信号周波数 F tの歪成分を打ち消すよ うに電流フィードバック回路 1 8のループゲインおよび位相とを調整 する必要がある。 つまりデジタル増幅装置の場合、 第 1のトランス結 合型コイル 1 5で発生する 3次歪が最も大きく、 電流フィードバック 回路 1 8の伝達特性をこの 3次歪だけをフィードバックするように調 整すれば、 3次歪を大きく低減することができる。 またこの場合、 3 次歪としての誤差信号だけをフィードパックするため、 フィードバッ クゲインはデジタル増幅部 1 3の持つゲイン Aの逆数つまり 1 Z Aで よいことになる。 このようにして電流フィードバック回路 1 8のフィ 一ドパック量を信号周波数 F tの 3倍である 3 X F tの周波数で最大 となるように調整することにより、 信号周波数 F tの 3次歪を効率良 く低減することができる。
図 3は本発明の実施の形態 1におけるデジタル増幅装置の出力電力 に対する全高調波歪率の特性図を示す。 横軸は出力電力を、 縦軸は全 高調波歪率 (図 3では T H D + Nと記載する) をそれぞれ現している。 折れ線 2 5は第 1の電流フィードバック回路 1 8がない場合の特性、 折れ線 2 6は第 1の電流フィ一ドバック回路 1 8がある場合の特性で ある。 第 1の卜ランス結合型コイル 1 5による第 1の電流フィ一ドバ ック回路 1 8を挿入した場合は従来のデジタル増幅装置に比べ、 出力 電力が 1 から 3 0 Wの範囲内で約 2 0 d B以上の改善が確認できた。
尚、 図 3は、 アナログ入力信号の周波数 Fが 5 0 H zで、 デジタル 増幅装置の出力負荷 R Lが 1 Ωで、 デジタル増幅装置を駆動する電源 電圧 V c cが 1 4 . 4 Vである場合の特性例を示している。
以上の構成により、 歪の原因の電流歪を検出し帰還する電流フィー ドバック回路によりローパスフィルタの歪が低減できた。
(実施の形態 2 )
図 4は本発明の実施の形態 2におけるデジタル増幅装置における第 1のトランス結合型コイル 1 5の外観図を示す。 図 4はトロイダル二 重卷線で構成された第 1のトランス結合型コイルである。 第 1のトラ ンス結合型コイル 1 5の抵抗成分は損失となるため小さくする必要が ある。 この抵抗成分はコイルの巻線の巻数に比例するため、 少ない巻 数で、 所望のインダクタンスを得る必要がある。 そのために透磁率の 高いコア材質を用いることが望ましい。
しかし、 一般に透磁率の高い材質は、 B— H力一ブの非線形性の大 きなものが多い。 本実施の形態は、 B— Hカーブの非線形性を補正す ることを目的とするが、 極端な B — Hカーブの非線形性をもつものは 好ましくない。 そこで、 B—Hカーブの線形性に優れたトロイダルコ ァ 2 7が使用される。
一次巻線 2 8は、 口一パスフィルタ 1 4のインダクタンスが得られ るように巻数が設定される。 抵抗成分を小さくするために、 所定の巻 数が得られる限り太い巻線を用いることが望ましい。 二次巻線 2 9は、 卷線は細いものを用いて形成されてもよい。 巻数 は第 1の電流フィードバック回路 1 8の伝達特性とのパランスでほぼ 任意に決めることができるが、 結合係数 Mが安定するように数回以上 とすることが望ましい。 また、 巻線を接着剤などで固定することによ り、 結合係数 Mの安定性が得られる。
以上の構成により、 従来のデジタル増幅装置でよく用いられるトロ ィダルコイルを用いるため従来とほぼ同様のプリント基板のパターン を用いることができる。 更に、 これにより輻射ノイズ対策のパターン が活用できると共にデジタル増幅装置本来の構成とほとんど変更なく 対応できるため、 低コストで電流検出ができる。
(実施の形態 3 )
図 5は本発明の実施の形態 3におけるデジタル増幅装置の回路プロ ック図を示す。 図 5において、 実施の形態 1 と異なる部分を中心に説 明する。
第 2のトランス結合型コイル 3 0は電源入力のラインフィル夕の一 構成部品であり、 その一次側コイルはラインフィルタのインダクタン ス成分を構成し、 その抵抗成分は小さいことが望ましい。 また一次側 コイルと電磁結合された二次側コイルは二つのコイルで構成され、 ほ ぼ同じ巻数で互いに逆極性に巻かれ、 それらの一端はグランドに接続 される。
コンデンサ 3 1はラインフィルタのキャパシタンス成分を構成し、 第 2のトランス結合型コイル 3 0の一次側コイルの出力側に接続され る。 デジタル増幅部 1 3に変動の少ない電流を供給するために、 コン デンサ 3 1の容量値は十分大きく設定することが望ましい。
ここで、 外部からの電源が電源入力端子 3 4に加えられ、 第 2のト ランス結合型コイル 3 0の一次側コイルを通り、 デジタル増幅部 1 3 の電源 3 5としてデジタル増幅部 1 3に供給される。 こう ル増幅部 1 3に電流が供給される。
一対の第 2の電流フィードバック回路 (図 5では /3 1 と記載する) 3 2は、 第 2のトランス結合型コイル 3 0の二次側コイルのグランド に接続されていない端子にそれぞれ接続される。 また、 第 2の電流フ イードバック回路 3 2の極性およびゲインは電、源回路のリプル電圧を 打ち消す様に設定される。 第 2の電流フィードバック回路 3 2の構成 要素としては、 ゲインを調整するだけであれば抵抗器のみでも構成で きるが、 一般には電源にスィツチング波形が重畳するため再生オーデ ィォ周波数帯域以上のカツ卜オフ周波数をもつローパスフィル夕とし てもよい。
次にこれらの動作を説明する。
電源入力端子 3 4からデジタル増幅部 1 3に供給される電源ライン は、 小さいながらもいく らかのィンピーダンスをもっているため電源 ラインにリプル電流が発生する。 この電源はデジタル増幅部 1 3の基 準電圧となっているため、 リプル電流はそのまま出力の奎成分となつ てしまう。 そこで、 第 2のトランス結合型コイル 3 0が歪電流を検出 し、 これを電源のリプル電流と考えて入力信号に加算する。 この際、 第 2の電流フィードバック回路 3 2により補正量が調整され、 結果と してデジタル増幅部 1 3からの出力電圧において電源のリプル電流に よる歪成分を打ち消すことができる。
また、 電源ラインに抵抗などのインピーダンスを挿入すれば損失と なり効率を低下させることとなるが、 第 2のトランス結合型コイル 3 0で歪電流の検出を行うことで抵抗成分を増加させることなく実現す ることができる。
以上の構成により、 第 2のトランス結合型コイル 3 0で歪電流を検 出することで、 電源ラインのインピーダンスを増加させることなく、 電源のリプル電流を歪電流として検出でき、 これをフィードバックす ることで電源ラインのィンピーダンスに起因する歪を低減することが できる。
以上の実施の形態 1から実施の形態 3で記載した様に、 本発明のデ ジ夕ル増幅装置は、 歪の原因の電流歪を検出し帰還する第 1の電流フ イードバック回路を備えることにより口一パスフィルタの歪を低減で きる。
また、 本発明のデジタル増幅装置は、 差動出力端子からのデジタル 信号を差動入力端子に電圧帰還する電圧フィードパック回路を備える ことにより、 電流および電圧の両方を帰還することが可能となり、 さ らにローパスフィル夕の歪が低減できる。
また、 本発明のデジタル増幅装置は、 トロイダル二重巻線とコンデ ンサからなる口一パスフィルタを備えることにより、 デジタル増幅装 置本来の構成とほとんど変更なく実用化できる。 そのため、 低コスト で電流検出ができるとともに、 低コストで歪が低減できる。
また、 本発明のデジタル増幅装置は、 歪の原因の電流歪を検出し帰 還する第 1の電流フィードバック回路によりローパスフィルタの歪が 低減できると共に、 第 2の電流フィ一ドバック回路により電源回路の インピーダンスに起因する歪も低減できる。
この様に、 本発明のデジタル増幅装置は、 ローパスフィルタとトラ ンス結合して差動入力端子に電流帰還する電流フィードバック回路を 設けたデジタル増幅装置であり、 歪の原因となる電流歪を検出し帰還 する電流フィ一ドバック回路により口一パスフィルタの歪が低減でき る。 産業の利用可能性
本発明によるデジタル増幅装置は、 電流帰還することで口一パスフ ィル夕の歪を低減できる。 また、 本発明によるデジタル増幅装置は、 電源回路からの電流帰還により電源回路のィンピーダンスに起因する 歪も低減できる。

Claims

請求の範囲
1 . アナログ信号を入力する差動入力端子とデジタル信号を出力す る差動出力端子とを有し、 前記アナログ信号をデジタル信号に変換し 電力増幅して前記デジタル信号を出力するデジタル増幅部と、
前記デジタル信号を積分する口一パスフィル夕と、
前記ローパスフィル夕からの信号を出力するための負荷出力端 子と
からなるデジタル増幅装置において、
前記口一パスフィルタとトランス結合して得られる信号に関連 する信号を前記差動入力端子に帰還する電流フィードバック回路を備 え
2 . 前記差動出力端子からのデジタル信号を前記差動入力端子に電 圧帰還する電圧フィードバック回路を更に備える請求項 1に記載のデ ジタル増幅装置。
3 . ローパスフィル夕にトランス結合するためのトランス結合型コ ィルを更に備え、
前記トランス結合型コイルは、 一次側がローパスフィル夕のィ ンダク夕ンス成分となるように接続され、 二次側の一方の端子はダラ ンドに接続され他方の端子は前記電流フィードバック回路に接続され、 前記ローパスフィルタの出力信号が前記差動入力端子に帰還さ れる請求項 1に記載のデジタル増幅装置。
4 . 前記ローパスフィルタはトロイダル二重巻線とコンデンサから なる請求項 1に記載のデジタル増幅装置。
5 . —次コイルと、 お互いに逆方向に巻かれた二つの巻線から成る 二次コイルとを有する第 2のトランス結合型コイルと、
第 2の電流フィードバック回路と
を更に備え、
前記一次コイルは電源入力のラインフィル夕のインダクタンス 成分となるように挿入されてデジタル増幅部に電源を供給し、
前記巻線の一方の端子は共にグランドに接続され、 前記巻線の 他方の端子は前記第 2の電流フィードバック回路に接続され、
前記第 2の電流フィ一ドバック回路は前記巻線からの信号に関 連する信号を前記差動入力端子に帰還する
請求項 1に記載のデジタル増幅装置。
PCT/JP2003/009442 2002-08-22 2003-07-25 デジタル増幅装置 WO2004019487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/504,214 US7202742B2 (en) 2002-08-22 2003-07-25 Digital amplification device
EP03792637A EP1455445B1 (en) 2002-08-22 2003-07-25 Digital amplification device
DE60302330T DE60302330T2 (de) 2002-08-22 2003-07-25 Digitale verstärkungseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002241425A JP3956800B2 (ja) 2002-08-22 2002-08-22 デジタル増幅装置
JP2002-241425 2002-08-22

Publications (1)

Publication Number Publication Date
WO2004019487A1 true WO2004019487A1 (ja) 2004-03-04

Family

ID=31943992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009442 WO2004019487A1 (ja) 2002-08-22 2003-07-25 デジタル増幅装置

Country Status (5)

Country Link
US (1) US7202742B2 (ja)
EP (1) EP1455445B1 (ja)
JP (1) JP3956800B2 (ja)
DE (1) DE60302330T2 (ja)
WO (1) WO2004019487A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720457B2 (en) * 2006-10-19 2010-05-18 Motorola, Inc. Method and apparatus for minimizing noise on a power supply line of a mobile radio
KR100829112B1 (ko) * 2006-12-04 2008-05-16 삼성전자주식회사 휴대 단말기의 오디오 신호 왜곡 보상 장치 및 방법
EP2109867A4 (en) * 2007-01-11 2014-12-24 Keyeye Comm BROADBAND planar transformers
US8224009B2 (en) 2007-03-02 2012-07-17 Bose Corporation Audio system with synthesized positive impedance
JP4978409B2 (ja) * 2007-10-03 2012-07-18 パナソニック株式会社 デジタル増幅装置
JP6269423B2 (ja) * 2014-09-30 2018-01-31 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
JP6229628B2 (ja) * 2014-09-30 2017-11-15 株式会社Jvcケンウッド 電力増幅装置および電力増幅方法
TWI716797B (zh) * 2019-01-04 2021-01-21 周重甫 動態阻抗調節音頻放大器架構及方法
US10749486B2 (en) * 2019-01-11 2020-08-18 Bose Corporation Class D amplifier current feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144411A (ja) * 1985-12-19 1987-06-27 Hitachi Shonan Denshi Kk 電力増幅回路
JPH04159803A (ja) * 1990-10-23 1992-06-03 Matsushita Electric Ind Co Ltd 電力増幅器
JPH07131272A (ja) * 1993-10-29 1995-05-19 N F Kairo Sekkei Block:Kk 電力増幅装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092610A (en) * 1977-02-17 1978-05-30 Raytheon Company Modulated carrier amplifying system
US5410592A (en) * 1993-06-04 1995-04-25 Harris Corporation Class `D` audio speaker amplifier circuit with state variable feedback control
US5721490A (en) * 1995-02-09 1998-02-24 Hitachi Medical Corporation Power source apparatus including a plurality of output current amplifiers connected in parallel and MRI apparatus using the same
NL1011002C2 (nl) 1999-01-12 2000-07-20 Univ Eindhoven Tech Versterkerschakeling.
JP3549042B2 (ja) 1999-04-21 2004-08-04 シャープ株式会社 Δς変調を用いるスイッチング増幅器
US6476674B2 (en) * 2001-01-24 2002-11-05 Momentum Data Systems Method and apparatus for error correction of amplifier
US6563377B2 (en) * 2001-10-09 2003-05-13 Evenstar, Inc. Class D switching audio amplifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144411A (ja) * 1985-12-19 1987-06-27 Hitachi Shonan Denshi Kk 電力増幅回路
JPH04159803A (ja) * 1990-10-23 1992-06-03 Matsushita Electric Ind Co Ltd 電力増幅器
JPH07131272A (ja) * 1993-10-29 1995-05-19 N F Kairo Sekkei Block:Kk 電力増幅装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1455445A4 *

Also Published As

Publication number Publication date
JP2004080661A (ja) 2004-03-11
JP3956800B2 (ja) 2007-08-08
DE60302330T2 (de) 2006-08-03
EP1455445A4 (en) 2005-03-23
EP1455445B1 (en) 2005-11-16
EP1455445A1 (en) 2004-09-08
US7202742B2 (en) 2007-04-10
DE60302330D1 (de) 2005-12-22
US20050113055A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US7417503B2 (en) Method for high efficiency audio amplifier
EP2975763B1 (en) Class d power amplifier
US20060280314A1 (en) Digital amplifier and switching power supply
US6476674B2 (en) Method and apparatus for error correction of amplifier
EP3698470B1 (en) Calibration of a dual-path pulse width modulation system
WO2004019487A1 (ja) デジタル増幅装置
US20180041173A1 (en) Configurable control loop topology for a pulse width modulation amplifier
US7276964B2 (en) PWM power amplifier and method for controlling the same
US20080260179A1 (en) Active loudspeaker
US4253070A (en) Feedback arrangement
US7171011B2 (en) Acoustic drive circuit
JP2005203968A (ja) デジタルアンプの保護装置
JP3106718B2 (ja) スピーカ駆動装置
GB2439983A (en) Frequency compensation for an audio power amplifier
US5191616A (en) Acoustic apparatus
JP2002359525A (ja) オーディオ電力増幅回路
WO2019203887A1 (en) A dual-path pulse width modulation system
US11476821B2 (en) Electronic filter apparatus
JP2007060510A (ja) デジタルアンプ
US20050200387A1 (en) Method for RIAA correction without capacitors in correcting circuits
WO2023200680A1 (en) Determination of gain of pulse width modulation amplifier system
WO2022258491A1 (en) Self-oscillating class d audio amplifier with voltage limiting circuit
RU2181932C1 (ru) Способ звукоусиления с токовым управлением электродинамическим громкоговорителем и усилитель мощности для активных акустических систем
JP2007104285A (ja) デジタルアンプおよびスイッチング電源
JP2004159346A (ja) スピーカー・ユニット駆動負帰還増幅器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003792637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10504214

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003792637

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003792637

Country of ref document: EP