WO2004018361A1 - 活性酸素を包含した無機化合物及びその製造法 - Google Patents

活性酸素を包含した無機化合物及びその製造法 Download PDF

Info

Publication number
WO2004018361A1
WO2004018361A1 PCT/JP2003/010497 JP0310497W WO2004018361A1 WO 2004018361 A1 WO2004018361 A1 WO 2004018361A1 JP 0310497 W JP0310497 W JP 0310497W WO 2004018361 A1 WO2004018361 A1 WO 2004018361A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aluminosilicate
active oxygen
cobalt oxide
cobalt
Prior art date
Application number
PCT/JP2003/010497
Other languages
English (en)
French (fr)
Inventor
Kenzi Suzuki
Satoru Fijita
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP03792734A priority Critical patent/EP1544169A4/en
Priority to US10/524,833 priority patent/US7514384B2/en
Priority to AU2003257608A priority patent/AU2003257608A1/en
Publication of WO2004018361A1 publication Critical patent/WO2004018361A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/04Metal peroxides or peroxyhydrates thereof; Metal superoxides; Metal ozonides; Peroxyhydrates thereof
    • C01B15/043Metal peroxides or peroxyhydrates thereof; Metal superoxides; Metal ozonides; Peroxyhydrates thereof of alkali metals, alkaline earth metals or magnesium or beryllium or aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst

Definitions

  • the present invention relates to a method for producing an inorganic compound containing active oxygen. More specifically, the present invention includes or occludes both superoxide anion (o 2 ⁇ ) and baroxide anion (0).
  • the present invention relates to a novel active oxygen expressing substance, a method for producing the same, and uses thereof. Conventionally, no inorganic compound that contains or occludes both superoxide anion and peroxide anion has been known, but the present invention provides a novel material that includes or occludes both of them. It is useful as
  • the active oxygen-expressing substance of the present invention is useful, for example, as a component of an oxidation catalyst, an electrode for a solid electrolyte fuel cell, an antibacterial agent, an ionic conductor, and the like.
  • the present invention also relates to a cobalt oxide-supported aluminosilicate catalyst, a method for producing the same, and a use thereof. More specifically, the present invention relates to a more active oxidation ability at a lower temperature than a conventional oxidation or combustion catalyst. The present invention relates to a new cobalt oxide-supported aluminosilicate catalyst having the following, a method for producing the same, a method for oxidatively decomposing a volatile organic compound using the catalyst, and the like.
  • New aluminosilicate Ichito is present onset bright catalyst components, active oxygen (super one O Kisaido: ⁇ 2 -, Pas one Okisaido: 0 2 2 _) the be aluminosilicate gate having encapsulated zeolites like structure Oxidation reaction of hydrocarbons by active oxygen contained in the structure, for example, epoxidation. Oxidation reactions such as partial oxidation and coupling can be performed. By supporting cobalt oxide on this novel aluminosilicate, a more highly active catalyst can be obtained.
  • the aluminosilicate catalyst supporting cobalt oxide of the present invention can be used in a wide range of fields such as environment, energy, and chemical industry (production process). It can be used in technical fields. Further, the molded body of the cobalt oxide-supported aluminosilicate of the present invention is useful, for example, for providing a new type of motorcycle exhaust gas purifying catalyst, a combustion exhaust gas purifying catalyst, and an oxygen storage member. Background
  • active oxygen 1 2 C aO ⁇ 7 a 1 2 0 3 compound prepared is in contact follicles, o 2 - and z or o-.
  • active oxygen-expressing substance conventionally, superoxide anion (o 2- ) and peroxide anion (0 2 2 _
  • Cat.B8, (1996) p.155, (3) N. Watanabe, H. Yamashita, H. Miyadera and S. Tominaga, Appl. Cat.B8, (1996) p .405).
  • Catalysts supporting noble metals such as P i ;, Pd, and Rh have high activity and are widely used today in automotive catalysts. Although these precious metals have high catalytic activity, they are valuable, costly, and used in large quantities, so they are recovered and reused.
  • a first aspect of the present invention strong super having oxidizing power O wherein the door two ON (o 2 -) and Pas one Okisaidoa two ON ( ⁇ 2 2 -) both the inclusion Oh Rui novel active oxygen expression of occluding the It is an object of the present invention to provide a substance and a method for producing the active oxygen expressing substance. '
  • the present invention is, o 2 2 - a to shall aims to provide a novel active oxygen expression substance characterized in that it comprises or occluded active oxygen in the structure of the material and the like.
  • the present invention also ⁇ 2 in the structure - (superoxide ⁇ anion) ⁇ beauty ⁇ 2 2 - to provide aluminosilicate one bets are novel active oxygen expression substance to cover or occlude (Pas one oxide ⁇ anion) It is for the purpose of.
  • the present invention provides a molded product of an aluminosilicate which is a novel active oxygen-expressing substance, and provides members such as a catalyst for purifying exhaust gas of a motorcycle or the like, a solid electrolyte for a secondary battery, and an oxygen storage carrier.
  • a catalyst for purifying exhaust gas of a motorcycle or the like a solid electrolyte for a secondary battery, and an oxygen storage carrier.
  • the present inventors conducted detailed research on hydrogas nets in the course of advancing intensive research with the aim of developing a more highly active catalyst. It was found that when heated to a low temperature, it changed to an aluminosilicate, and the aluminosilicate contained or absorbed active oxygen such as peroxide anion-peroxide anion in the structure.
  • the active oxygen remains in the structure at room temperature and can move at temperatures above 400 ° C. That is, active oxygen present in the structure jumps out of the structure, causing a chemical reaction such as an oxidation reaction.
  • the present inventors have found that after active oxygen has been transferred, oxygen in the air is taken into the structure and regenerated, active oxygen is continuously supplied, and active oxygen has a strong oxidizing power. It is very effective for oxidative decomposition and combustion of volatile organic compounds, etc., and low temperature is achieved by loading cobalt oxide, which is conventionally known as an oxidation catalyst, on an aluminosilicate that expresses active oxygen.
  • cobalt oxide which is conventionally known as an oxidation catalyst
  • a second aspect of the present invention is to develop and provide a catalyst having higher activity than a conventional oxidation or combustion catalyst, and to provide a method for producing the catalyst. Further, another object of the present invention is to provide a catalyst for purifying an exhaust gas of a motorcycle or the like, a catalyst for purifying a combustion exhaust gas, an oxygen storage member, and the like, using a molded body of aluminosilicate supporting cobalt oxide.
  • the method for producing a novel active oxygen-producing substance of the present invention does not require control of the oxygen partial pressure or the water vapor partial pressure, and the heating temperature may be relatively low, such as 100 ° C. or less. Less than An example of the production will be described below.
  • the method for producing the novel active oxygen-expressing substance of the present invention is not limited to the following method.
  • the active oxygen-expressing substance of the present invention is produced by using a garnet at a hide opening as a precursor and heating it at 700 ° C. or higher in an electric furnace or the like under an air atmosphere.
  • the chemical composition of the hydrated garnet used as a precursor is C aa A 1 2 (S i 0 4 ) 3- ⁇ ( ⁇ H) 4Y , and the Y value is in the range of 0 ⁇ Y ⁇ 3 It is characterized by.
  • the chemical composition of the aluminosilicate one bets with novel active oxygen expression function is denoted as C a 12 (A 1. X S i x) O 33 + 0. 5X, the value of X is the range of 0 ⁇ X ⁇ 4 Take.
  • X 4
  • the chemical composition is Ca 12 (A 1 10 S i 4 ) O 35
  • the precursor the composition of the garnet are C a 3 a 1 2 (S i 0 4) 0. 8 (OH) u
  • a calcium source, an alumina source and a silica source are first mixed according to the composition of the hydrated garnet, that is, the composition of the desired hydrated garnet of the Y value, and excess water is added thereto. Prepare the mixture obtained.
  • slaked lime, quicklime, calcium carbonate, gypsum, etc. are used as the source of calcite, kaolin, alumina sol, boehmite, aluminum hydroxide, aluminum oxide, etc. are used as the alumina source, and kaolin, silica, amorphous are used as the silica source.
  • Silica, diatomaceous earth, gay sand, quartz and the like can be used.
  • Hydrogarnet is synthesized by subjecting the prepared mixture to hydrothermal treatment in a autoclave at a temperature of 100 ° C to 200 for 5 hours or more. If the temperature is lower than 100 ° C, the reaction does not proceed sufficiently, whereas if it is higher than 200 ° C, excess heat energy is consumed.
  • the heating time may be shorter than 5 hours, but 5 hours or more is preferable to obtain a hydrated garnet having good crystallinity.
  • aluminosilicate which is a novel active oxygen-expressing substance, can be obtained by heating the hydrogas at 700 ° C. to 1,200 ° C. in an air atmosphere. Heating at a temperature lower than 700 ° C is not preferable because thermal decomposition is insufficient. Heating may be performed at a higher temperature, but it is necessary to keep the temperature at 1200 ° C or lower because extra heat energy is consumed.
  • a 8 (OH) 8. 8 (Y 2. 2), the thermal decomposition at the 700 ° C is Ru shown below.
  • C a 12 A 1 12 S i 2 0 34 + 6 C a 0 + 32 H 2 O C a 12 A 1 I0 S i 4 0 35 , C a I2 A 1 12 S i 20 obtained by the above reaction formula 34 and the like are examples of aluminosilicate which is a novel active oxygen-expressing substance of the present invention.
  • the novel active oxygen-expressing substance of the present invention is obtained in the range of 0 ⁇ X ⁇ 4, and is generated by thermal decomposition of a precursor, hydrogel net.
  • quicklime (Ca ⁇ ) is mixed as a by-product, but quicklime contributes to the expression and inclusion of active oxygen. do not do. CaO can be easily removed by dissolving it with a dilute acid such as hydrochloric acid or nitric acid.
  • the thermal decomposition product of the above-mentioned hide-port garnet that is, alumino silicate, which is a new active oxygen generating substance, converts active oxygen such as superoxide anion (o 2 ⁇ ) and / or peroxide anion ( ⁇ 2 ⁇ ).
  • active oxygen such as superoxide anion (o 2 ⁇ ) and / or peroxide anion ( ⁇ 2 ⁇ ).
  • ESR measurement and Raman spectroscopy As an example, to describe the results of C a 12 A 1 1 () S i 4 0 35 ESR and Raman spectroscopic measurements at room temperature shown in the examples described below, first, shows the ESR measurement results in FIG. The spectrum expressed at 2.049 mT indicates the presence of superoxide anion.
  • Figure 2 shows the results of Raman spectroscopy measurements at room temperature.
  • the presence of superoxide anion is confirmed from the peak at 1705 cm- 1 . 1 and C a 12 A 1 10 S i 4 ⁇ 35
  • none of the results of Figure 2 is representative that encompasses or occluded super one O Kisaidoa two on the structure.
  • Raman spectroscopic measurements of a clear peak one click is 1 07 5 cm- 1 in addition to 8 5 3 cm- 1.
  • the former corresponds to the peak derived from superoxide anion
  • the latter corresponds to the peak derived from peroxide.
  • the above results conclude that the novel active oxygen expressing substance of the present invention contains or occludes superoxide anion and peroxide anion in the structure.
  • the structure, (A 1, S i) ⁇ 4 tetrahedra has a Zeoraito like structures formed in framework-like, the frame voids in the work 0 (approximately 4 A degree of space) in the active oxygen 2 -And ⁇ 2 2 — exist.
  • the active oxygen contained or absorbed by the aluminosilicate, which is a novel active oxygen-expressing substance of the present invention, has a strong oxidizing power.
  • the active oxygen contained or stored by the novel active oxygen-expressing substance of the present invention can move at a temperature of 400 ° C. or higher.
  • new active oxygen expression material has a 4 0 0 ⁇ 6 0 0 ° C low temperature volatile organic compound completely oxidized decomposing capability to the (V_ ⁇ _C s) into C 0 2 or H 2 ⁇ .
  • the active oxygen expressing substance of the present invention can be used as an active ingredient of an oxidation catalyst.
  • the novel active oxygen expressing substance of the present invention having the above features can be obtained as a powder in the production method.
  • many conveniences and new functions are expected in the use as a molded body.
  • Molded body The shape is determined according to the purpose of use, and a molding method used in the production of a ceramic molded body can be used.
  • the shape of the molded body includes, for example, granules, flat plates, columns, cylindrical tubes, hollow fibers, monoliths, and non-cams, and the molding methods include molding, press molding, dry CIP molding, injection molding, and the like. Sheet molding or the like can be used.
  • the compact In addition to the shape, the compact is required to be dense or porous, and it is natural that the molding is performed in consideration of these factors.
  • the oxidation catalyst function of a pellet-shaped and a plate-shaped sample among various molded bodies will be described.
  • Fig. 5 shows an outline of a measuring device for examining the oxidation catalyst performance of the product of the present invention.
  • the apparatus is composed of a gas supply section (1), a heating section (2), and a gas analysis section (3).
  • the gas supply section supplies air or oxygen of hydrocarbons and a combustion aid to be subjected to oxidative decomposition, and a heating section.
  • the reaction tube is changed according to the shape of the sample, and an example of the outline is shown in Fig. 6.
  • For powder, pellet and granular samples (4) fill the center of a silica glass reaction tube (5) and fix both ends with rock wool (6).
  • For the flat sample (7) hold both ends of the flat plate with a silica glass tube (8) via a sealant, and fix the flat sample by attaching a silica glass tube to the flat sample.
  • Powdered product of the present invention C a 12 (A 1 14. X S i x ) 0 33 + o. 5X (0 ⁇ X ⁇ 4) mixed with conductive material and binder, paste-like mixture was prepared and applied to the surface of an aluminum foil current collector to form an electrode.
  • the conductive material is for ensuring electrical conductivity, and for example, one or a mixture of two or more of carbon black, acetylene black, and graphite can be used.
  • the binder is used to bind the powdered product of the present invention and the conductive material particles.
  • Teflon registered trademark
  • polytetrafluoroethylene polyvinylidene fluoride
  • fluorine rubber fluorine rubber
  • the electrode coated with the product of the present invention is opposed to lithium metal through a separator (non-woven cloth).
  • a voltage of up to 4.5 V is applied between the electrode and the lithium metal.
  • the present invention active oxygen (super one Okisaido: 0 2 -, Pas one Okisaido: 0 2 2 ”) the aluminosilicate has a encapsulated Zeoraito like structures - DOO, i.e., according to the new active oxygen expressed substance and a molded article thereof
  • a hydrocarbon oxidation reaction for example, epoxidation, complete oxidation, partial oxidation, or coupling
  • active oxygen contained or absorbed in the structure and the novel active oxygen of the present invention is obtained.
  • the expressed substance is used in a wide range of fields such as the environment, energy, and the chemical industry (manufacturing process).
  • the molded article of the inorganic compound of the present invention can be used for, for example, a catalyst for purifying exhaust gas of a motorcycle, This has the effect of being useful as a solid electrolyte, an oxygen storage carrier, etc.
  • a catalyst for purifying exhaust gas of a motorcycle This has the effect of being useful as a solid electrolyte, an oxygen storage carrier, etc.
  • the novel catalyst of the present invention uses an aluminosilicate as a carrier, for example, It can be manufactured by supporting fine particles of cobalt oxide on the surface of aluminosilicate by a holding method.
  • the above aluminosilicate Ichito is, C a 12 (A 1 14 _ X S i x) O. It has a composition formula of 5X , and the X value in the composition formula is in the range of 0 ⁇ X ⁇ 4.
  • the supporting method is, for example, immersing aluminosilicate in an aqueous solution of cobalt nitrate and evaporating it to dryness. When the obtained powdery substance is heated at 600 ° C.
  • the cobalt nitrate supported on the surface of the aluminosilicate is decomposed and changed into cobalt oxide, and a cobalt oxide-supported aluminosilicate catalyst is completed.
  • the cobalt oxide can be replaced with another metal oxide such as, for example, nigel oxide or iron oxide.
  • novel catalyst of the present invention can be obtained by synthesizing a cobalt-containing hydrogarnet as a precursor by a hydrothermal method and heating it at a temperature of 300 ° C. or more, and its chemical composition is (C a 3 _ Y C o Y ) A 1 2 (S i 0 4 ) z
  • the novel catalyst of the present invention is characterized in that the Y value in the composition formula is in the range of 0 ⁇ Y ⁇ 0.10 and the ⁇ value is in the range of 0 ⁇ 2.2. Further, the novel catalyst of the present invention can be used as an oxidation catalyst and the like.
  • Cobalt oxide supported aluminosilicate Ichito catalysts of the present invention is to synthesize cobalt-containing Haidoroga one net obtained by replacing part of the C a 2+ ions which are constituent elements of the previously hydro moth one net C o 2+ ions, it It is manufactured by thermal decomposition.
  • Hyde port garnet has a garnet structure. And whose composition formula is represented by C a 3 A 1 2 (S i 0 4) 3- ⁇ ( ⁇ _Ita) 4Upushiron.
  • the ⁇ value in the composition formula takes any value of 0 ⁇ 3.
  • a method for synthesizing a cobalt-containing hydrogarnet which is a precursor of a cobalt oxide-supported alumina silicate catalyst, is as follows. First, a cobalt source, a potassium ruthenium source, an alumina source, and a silica source are used in the composition of the hydrogarnet; Mix according to the composition of the X- and Y-valued cobalt-containing hydrogarnet, and prepare a mixture by adding excess water to it.
  • cobalt hydroxide, cobalt oxide, etc. are used for the cobalt source
  • slaked lime, quick lime, calcium carbonate, gypsum, etc. for the calcium hydroxide source
  • kaolin, alumina sol, boehmite, aluminum hydroxide, aluminum oxide, etc. are used for the alumina source.
  • silica source kaolin, silica, amorphous silica, diatomaceous earth, ky sand, quartz and the like can be used. But this The invention is not limited to these, and the same can be used as long as it has the same effect.
  • the prepared mixture is subjected to hydrothermal treatment in an autoclave at a temperature of 100 ° C. to 200 ° C. for 5 hours or more to synthesize a cobalt-containing hydrogarnet. If the temperature is lower than 100 ° C., the reaction does not proceed sufficiently.On the other hand, if the temperature is higher than 200 ° C., excess heat energy is consumed. Therefore, 100 to 200 ° C. is preferable. .
  • the heating time may be shorter than 5 hours, but is preferably 5 hours or more in order to obtain a cobalt-containing hydrogarnet having good crystallinity.
  • a cobalt oxide-supported aluminosilicate catalyst in which cobalt oxide is highly dispersed by heating the cobalt-containing hydret garnet in an air atmosphere at a temperature range of 300 ° C. or more and 1000 ° C. or less. Can be manufactured. When heated at a temperature lower than 300 ° C., the decomposition of the cobalt-containing hydrogarnet is not sufficient, and the heating may be performed at a temperature higher than 100 ° C., but this is not necessary from the viewpoint of energy saving.
  • the ion used for substitution is not limited to cobalt, and other ions can be used as long as they can be substituted. It is well known that a metal ion is substituted in a crystal structure, and a high-performance catalyst in which catalyst particles are highly dispersed by thermal decomposition can be synthesized.
  • the method for producing such a catalyst is a technology that has been demonstrated using layered double hydroxide (LDH) as a catalyst precursor (for example, F. Cavani, F. Trifiro and A. Vaccari, Catal. Today) , Vol.11 (1991) p.173, B. Chen and JL Falconer, J. Catal., Vol.144 (1993) p.214, S. Velu, R.
  • LDH layered double hydroxide
  • FIG. 8 shows the results of XRD measurement of the cobalt-containing hydrogarnet synthesized by the above method with the 0 / ⁇ & ratio varied from 0 to 0.0714.
  • Cobalt-containing Hyde port garnet [(Ga 3 _ x Go x ) AI 2 (Si0 4). 8 (OH) 8 8:. . 0 ⁇ X ⁇ 0 10 lattice constant of]
  • the products produced by heating at 350 ° C or higher were aluminosilicate hydroxide, quicklime and cobalt oxide. When heated above 70 Ot, the aluminosilicate hydroxide was further dehydrated to become anhydrous aluminosilicate (Ca 12 A 1 1 Q Si 4 ⁇ 35 ).
  • Table 2 shows the specific surface area and the particle size of cobalt oxide after heating at 00 ° C.
  • Increasing the particle size of cobalt oxide is not preferable because it leads to a decrease in the degree of dispersion, that is, a decrease in catalytic activity. Therefore, cobalt oxide having a particle size as small as possible is required.
  • CoZCa ratio is different from 0.0169,0.0238, 0.0344, 0.0714 Specific surface area and cobalt oxide particle diameter of four types of cobalt-containing hydrogarnet after heating at 400 ° C
  • the specific surface area was almost the same as 5.7 and 6.5 m 2 g after heating at 350 and 400, but it became smaller after heating above 450 ° C.
  • the cobalt oxide particle size was almost the same as 260 and 275 A after heating at 350 and 400, but it gradually increased from 447 A after heating at 450 ° C or more.
  • the reactor used is a small-bed, normal-pressure, fixed-flow reactor, with a catalyst particle size of 300 to 500 ⁇ m, a reaction temperature of room temperature to 500 ° C, and a reaction gas of 3 propylene, benzene, and toluene.
  • reaction gas concentration 1 000 ppm
  • flowing gas air
  • gas flow rate 100 ml / min
  • space velocity 10000 h—gas analysis-gas chromatography (filler: Porapak P, 5 A mo lsieve, activated carbon, power ram: 2mX 3).
  • the catalyst not substituted by Co that is, the catalytic activity of aluminosilicate
  • the decomposition rate was zero even at the reaction temperature of 32 ° C.
  • the decomposition rate was 2% at 400 ° C.
  • propylene was burned for the first time by heating to 600 ° C or more. The above results show that the combustion temperature can be reduced by using aluminosilicate as a catalyst, and the catalytic activity of aluminosilicate is reduced by replacing a part of Ca with Co.
  • the present invention means that the temperature is improved by about 100 ° C., and the present invention makes it possible to realize a further lower temperature of these oxidative decomposition reactions.
  • the catalyst of the present invention is useful as an oxidation catalyst for oxidatively decomposing an object to be treated such as a volatile organic compound or a hydrocarbon.
  • the cobalt oxide-supported aluminosilicate catalyst having the above features can be obtained as a powder in the production method.
  • the use as a molded body is expected to have many conveniences and to exhibit new functions.
  • the shape of the molded article is determined according to the purpose of use, and the molding method can be performed by a method used in the production of ceramic molded articles.
  • the shape of the molded body includes, for example, pellets, granules, flat plates, columns, cylindrical tubes, hollow fibers, monoliths, honeycombs, and the like.
  • the molding methods include embedding molding, pressure molding, dry CIP molding, and injection molding. , Sheet molding and the like can be used.
  • the compact is required to be dense or porous, and it is natural that the molding is performed in consideration of these factors.
  • Fig. 12 shows an outline of an example of a measuring device for examining the oxidation catalyst performance of the product of the present invention.
  • the device is composed of a gas supply section (1), a heating section (2), and a gas analysis section (3).
  • the gas supply section supplies air or oxygen of hydrocarbons and combustion aids for oxidative decomposition and heats
  • the unit heats the reaction tube filled with the sample to a predetermined temperature, and the gas analysis unit analyzes the composition of the supply gas that has passed through the sample.
  • the reaction tube is changed according to the shape of the sample, and a schematic example is shown in Fig.13.
  • For the flat sample (7) hold both ends of the flat plate with a silica glass tube (8) via a sealant, and fix the flat sample by attaching the silica glass tube to the flat sample.
  • the present invention relates to an aluminosilicate catalyst supported on cobalt oxide and a method for producing the same.
  • Figure 1 shows the C a 12 A l 1 () ESR measurements at room temperature of the S i 4 0 35.
  • Figure 2 shows the Raman spectroscopic measurements at room temperature of the C a 12 A l 1Q S i 4 ⁇ 35.
  • Figure 3 shows the crystal structure of C a 12 A 1 1D S i 4 ⁇ 35.
  • FIG. 1 shows a schematic diagram of a measuring device for examining.
  • FIG. 6 shows a schematic diagram of the shape of the reaction tube.
  • Figure 7 shows the C a 12 A 1 10 S i 4 0 35 Raman spectroscopy measurements of the following propylene degradation experiments in a nitrogen atmosphere.
  • FIG. 8 shows the XRD measurement results of the cobalt-containing hydrogarnet synthesized while changing the CoZCa ratio from 0 to 0.0714.
  • Fig. 9 shows the relationship between the lattice constant and the CoZCa ratio of the cobalt-containing hydrogarnet synthesized by changing the (: 0 & ratio from 0 to 0.0714.
  • Fig. 10 shows the aluminosilicate supported on cobalt oxide. It shows the relationship among the decomposition rate, specific surface area ( ⁇ ), and CoZCa ratio of each reaction gas of propylene ( ⁇ ), benzene (translation), and toluene ( ⁇ ) at a reaction temperature of 300 ° C using a catalyst.
  • Figure 1 1 is, (C a 2. 9 C ) A 1 2 (S I_ ⁇ 4). 8 (OH) 8 .
  • Figure 8 shows the results of oxidative decomposition of propylene by using 8 as a catalyst and changing the reaction temperature.
  • FIG. 12 shows a schematic diagram of a measurement device for examining the oxidation catalyst performance.
  • FIG. 13 shows a schematic diagram of the shape of the reaction tube.
  • Figure 8 shows the results of oxidative decomposition of benzene at different reaction temperatures using 8 as the catalyst.
  • Example 1 (The content of the A 1 2 ⁇ 3; 20) of alumina sol as a force Lucia source slaked 0. 7 7 g, as the alumina source 1. Weigh 8 g, amorphous silica 0. 2 1 g as the silica source, the total A mixture (suspension) was prepared by adding water to a volume of 14.6 ml. The suspension was placed in a 25 ml autoclave and heated at 200 ° C. for 15 hours with stirring at 25 rpm. Then, it is allowed to cool to room temperature, filtered and dried to obtain C a 3 A 1 2
  • Example 7 shows the results of Raman spectroscopy of active oxygen in C a 12 A 11 Q Si 4 ⁇ 35 obtained after decomposition of propylene in a nitrogen atmosphere at each reaction time. Active oxygen in structure decreases with propylene combustion . Furthermore, the C a 12 A 1 10 S i 4 0 35 lost active oxygen, active oxygen has been confirmed to be reproduced in the structure by exposure to air at 4 0 0 or more. It was shown that the active oxygen in the lattice consumed by the oxidation reaction again takes in oxygen from the air, is regenerated as active oxygen, and can continue to burn propylene.
  • Example 5 Example 5
  • the sample temperature was set to the desired temperature of 200-700 ° C.
  • a mixed gas of air and propylene was introduced into the reaction tube at a flow rate of 3 Om 1 Zmin.
  • the propylene concentration was 500 ppm.
  • the outlet gas of the reaction tube was introduced into gas chromatography, and gas analysis was performed. No decomposition of propylene was observed at 200 to 375 ° C, and a decomposition rate of 3% was observed at 400 ° C.
  • Example 7 C a I2 A 1 10 S i 4 0 2 5 parts by weight of Ketsuchienpura click 35 70 parts by weight of a conductive material, Teflon (registered trademark) were mixed 5 parts by weight as a binder, and the mixture material was prepared.
  • the mixture was pressed into the surface of a 22-m-thick aluminum foil current collector to produce a sheet with a thickness of 50 / zm, and then this sheet was punched out into a 15-mm diameter disc.
  • a lithium metal having a thickness of 0.1 mm and a diameter of 15 mm was opposed to the electrode, and a nonwoven fabric having a thickness of 100 m was provided as a separator between the electrode and the lithium metal.
  • the mixed solution obtained by dissolving in a solvent at.
  • Fig. 11 shows the results of oxidative decomposition of propylene using a cobalt oxide-supported aluminosilicate catalyst and changing the reaction temperature.
  • the catalytic reaction experiment was performed as follows.
  • Reaction temperature Figure 15 shows the results of oxidative decomposition of toluene.
  • the reaction temperature was 0% at 225 ° C and 25% at 250 ° C.
  • the decomposition rate increased with increasing temperature, reaching 100% at 325 ° C. .
  • the products after decomposition were CO 2 and benzene. Although H 2 O is produced, it has not been analyzed.
  • the present invention is, active oxygen (Super O key side: O 2 -, Pas one Okisaido: 0 2 2 _) the aluminosilicate one bets with encapsulated Zeoraito like structures, i.e., new active oxygen
  • the present invention relates to an expressed substance and a molded article thereof, and a hydrocarbon oxidation reaction (for example, epoxidation, complete oxidation, partial oxidation, coupling) is caused by active oxygen contained or absorbed in the structure, and the novel activity of the present invention.
  • Oxygen-expressing substances are used in a wide range of fields, such as the environment, energy, and the chemical industry (manufacturing process).
  • the molded product of the inorganic compound of the present invention is useful, for example, as a catalyst for purifying exhaust gas of a motorcycle, a solid electrolyte of a secondary battery, and an oxygen storage carrier.
  • the present invention relates to a cobalt oxide-supported aluminosilicate catalyst and a method for producing the same.
  • a catalyst having higher activity than conventional oxidation or combustion catalysts Due to the action of active oxygen contained or stored in the structure of the aluminosilicate, it is possible to exhibit a higher oxidizing ability at a lower temperature than conventional catalysts.
  • An aluminosilicate catalyst supporting cobalt oxide can be produced by a simple process under a low temperature condition of not less than 300 ° C. and not more than 1000 ° C. It is useful as a method for oxidatively decomposing volatile organic compounds.

Abstract

本発明は、前駆物質としてのハイドロガーネットを700℃以上で加熱することにより得られるアルミノシリケートからなる活性酸素発現物質、酸化コバルトを該アルミノシリケート表面に担持させた酸化コバルト担持アルミノシリケート触媒、それらの製造方法、及びそれらの酸化触媒、固体電解質、酸素吸蔵担体等としての用途に関するものである。

Description

明細書
活性酸素を包含した無機化合物及びその製造法 技術分野
本発明は、 活性酸素を包含した無機化合物の製造法に関するものであ り、 更に詳しくは、 スーパーオキサイドァニオン (o 2 - ) 及びバーオ キサイドア二オン (0 ) の両者を包含あるいは吸蔵している新規活 性酸素発現物質とその製造方法及びその用途に関するものである。 従来 、 スーパーォキサイドア二オン及びパーォキサイドア二オンの両者を包 含あるいは吸蔵する無機化合物は知られていなかつたが、 本発明は、 そ れらの両者を包含あるいは吸蔵する新規材料を提供するものとして有用 である。
本発明の活性酸素発現物質は、 例えば、 酸化触媒、 固体電解質燃料電 池用電極、 抗菌剤、 イオン導電体などの構成成分として有用であり、 更 に、 本発明の活性酸素発現物質の成形体は、 例えば、 新しいタイプの二 輪車の排ガス浄化用触媒、 二次電池の固体電解質、 及び酸素吸蔵担体な どを提供するものとして有用である。
また、 本発明は、 酸化コバルト担持アルミノシリゲート触媒、 その製 造方法及び用途に関するものであり、 更に詳しくは、 従来の酸化あるい は燃焼触媒に比べてより低い温度で更に高活性な酸化能力を有する新し い酸化コバルト担持アルミノシリケート触媒、 その製造方法及び当該触 媒による揮発性有機化合物の酸化分解方法等に闋するものである。 本発 明の触媒成分である新規アルミノシリケ一トは、 活性酸素 (スーパ一ォ キサイド : 〇2 - 、 パ一ォキサイド : 02 2_ ) をカプセル化したゼオラ イト様構造を有するアルミノシリゲートであり、 構造中に包含された活 性酸素により炭化水素等の酸化反応、 例えば、 エポキシ化 .完全酸化 · 部分酸化、 カップリング等の酸化反応を行うことができる。 この新規ァ ルミノシリケ一トに酸化コバルトを担持することにより更に高活性な触 媒となり、 本発明の酸化コバルト担持アルミノシリケ一ト触媒は、 例え ば、 環境 ·エネルギー ·化学工業 (製造プロセス) 等の広い技術分野で 利用することができる。 更に、 本発明の酸化コバルト担持アルミノシリ ケ一トの成形体は、 例えば、 新しいタイプの二輪車の排ガス浄化用触媒 、 燃焼排ガス浄化用触媒、 及び酸素吸蔵部材などを提供するものとして 有用である。 背景技術
都市部を中心に大気汚染が深刻化する中で、 光化学スモッグの原因と される炭化水素、 及び呼吸器疾患を起こす窒素酸化物の大幅な削減基準 が、 環境省の中央環境審議会でまとめられ、 大気汚染防止法に基づき 2 0 0 4年に告示されようとしている。 具体的には、 2 0 0 6〜 2 0 0 7 年以降に販売されるオートバイなど二輪車の排ガス規制が大幅に強化さ れる予定である。 新基準は、 例えば、 5 0 c c以下の原動機付自転車で は、 炭化水素が走行 1 k m当たり 0 . 5 g (現行値比で削減率 7 5 % ) 、 窒素酸化物が 0 . 1 5 g (同 5 0 % ) であり、 2 0 0 6年から適用予 定であり、 また、 2 5 0 c cを超えるオートバイでは、 炭化水素が 0 . 3 g (同 8 5 % ) 、 窒素酸化物が 0 . 1 5 g (同 5 0 % ) であり、 2 0 0 7年から適用予定である。
炭化水素は、 ガソリンの不完全燃焼により排出されるが、 二輪車では 乗用車の十倍以上排出され、 四輪者と二輪車の全排出量の約 2 0 %を占 めている。 こうした状況下、 二輪車でも乗用車で使用されている触媒の 使用が検討されているが、 既存の触媒は、 コストの安い二輪車には割高 となり、 より安価な排出ガス浄化用触媒の開発が切望されている。 自動車用触媒については、 今日、 P t、 P d、 P tZRh、 P d/R h、 P t/P dZRhなどが、 コーデイエライトで造られたモノリス型 の担体上に担持され、 三元触媒として使用されている。 更に、 空燃比の 変動を吸収するために、 酸素貯蔵物質セリァが助触媒成分として用いら れている。 これらの貴金属は、 触媒活性が高いが、 コストが高く、 しか も大量に使用されるため、 回収して再利用されている。
従来、 活性酸素発現物質として知られ、 実用化されている物質として は、 例えば、 酸化チタンに代表される光触媒がある。 光 (紫外線) が酸 化チタンに吸収されると、 電子と正孔が形成される。 酸化チタンの場合 、 励起電子による還元力よりも正孔による酸化力が大きいため、 触媒表 面の吸着水が正孔によって酸化され、 ヒドロキシラジカル ( · ΟΗ) が 生成する。 その一方において、 空気中の酸素の還元反応が進行し、 活性 酸素 (02 - ) が生成される。 活性酸素は、 酸化反応の中間体に付いて 過酸化物の形成あるいは過酸化水素 (Η22 ) を経て水になると考え られている。 また、 活性酸素は、 炭素一炭素結合に直接作用して有機系 有害物質を分解する場合もある。
活性酸素を発現する他の物質としては、 活性酸素種を包接する 1 2 C a Ο · 7 A 12 03 化合物が知られている (特開 2002— 321 8号 公報) 。 この 1 2 C aO ' 7 A 12 03 化合物は、 カルシウムとアルミ 二ゥムを原子当量比で 1 2 : 14とした混合原料を用い、 酸素分圧 1 0 4 P a以上、 好ましくは 1 05 P a以上、 水蒸気分圧 1 P a以下に制御 した乾燥酸化雰囲気で、 焼成温度 1 20 0。(:以上、 好ましくは 1300 での高温度の条件下で固相反応させることにより製造される。 酸素分圧 及び水蒸気分圧が精密に管理された雰囲気下で、 多量の熱エネルギーを 要して製造される 1 2 C aO · 7 A 12 03 化合物が包接する活性酸素 は、 o2 - 及び z又は o—である。 しかしながら、 この種の活性酸素発現物質については、 従来、 スーパ ーォキサイドア二オン (o2 - ) 及びパーォキサイドア二オン (02 2_
) の両者を包含あるいは吸蔵する無機化合物は知られておらず、 唯一、 上述のチタニア等の光触媒や 1 2 C a〇 · 7 A 123 化合物等でス一 パ一ォキサイドの生成が知られているのみであった。
更に、 今日、 揮発性有機化合物等が大気中に放出されることにより深 ' 刻な環境汚染を引き起こして る。 揮発性有機化合物の除去方法として は、 例えば、 燃焼による方法があるものの、 1 00 0°C以上の高い温度 が要求される。 より低い温度での燃焼を可能にするために触媒が利用さ れる。 このような用途に利用される触媒は、 燃焼触媒と呼ばれるが、 従 来、 コバルト、 銅、 マンガン、 クロム等の酸化物が、 多孔質アルミナ担 体上に担持されており、 燃焼温度は 3 0 0〜6 0 0 °Cにまで下げること ができる (例えば、 (1) Y. M. Kang and B. Z. Wan, Appl. Cat. A, Vo 1.114 (1994) p.35 、 (2) R. S. Drago, K. Jurczyk, D. L. Singh and V. Young, Appl. Cat. B8, (1996) p.155、 (3) N. Watanabe, H. Yama shita, H. Miyadera and S. Tominaga, Appl. Cat. B8, (1996) p.405 ) 。 しかし、 今日、 省エネルギーの観点から、 従来の触媒に比べて更に 高活性な触媒の開発が求められている。 P i;、 P d、 Rhなどの貴金属 を担持した触媒は、 活性が高く、 今日、 自動車用触媒に多く使われてい る。 これらの貴金属は触媒活性は高いが、 貴重でコストが高く、 且つ大 量に使用されるため、 回収して再利用されている。 内燃機関から排出さ れる環境汚染物質の炭化水素はガソリンの不完全燃焼により排出される が、 二輪車は乗用車の十倍以上排出し、 四輪者と二輪車の全排出量の約 20 %を占める。 こうした状況下で、 二輪車でも乗用車で使用されてい る触媒の使用が検討されているが、 既存の触媒は、 コストの安い二輪車 には割高となり、 当技術分野では、 貴金属を使用しない、 より安価な排 出ガス浄化用触媒の開発が切望されていた。 発明の開示
このような状況の中で、 本発明者らは、 上記従来技術に鑑みて、 チタ ニァ等の光触媒や 1 2 C a O · 7 A 1 2 03 化合物が発現することで知 られる〇2 ― 及び〇— 等の活性酸素種よりも更に強い酸化力を有する〇 2 2—を物質の構造中に包含又は吸蔵することを可能とする新規活性酸素 発現物質を開発することを目標として鋭意研究を積み重ねた結果、 C a 12 (A 1 14_X S i χ ) 033+ο と表記されるアルミノシリケ一卜が、 スーパ一ォキサイドア二オン ( o 2 - ) 及びパーォキサイドア二オン ( ο2 2- ) の両者を包含あるいは吸蔵することを初めて見出し、 本発明を 成すに至った。
本発明の第 1の態様は、 強い酸化力を有するスーパーォキサイドア二 オン (ο2 - ) 及びパ一ォキサイドア二オン (ο 2 2— ) の両者を包含あ るいは吸蔵する新規活性酸素発現物質及び当該活性酸素発現物質の製造 方法を提供することを目的とするものである。 '
また、 本発明は、 ο2 2—等の活性酸素を物質の構造中に包含又は吸蔵 することを特徴とする新規活性酸素発現物質を提供することを目的とす るものである。
また、 本発明は、 構造中に〇2 — (スーパーオキサイドァニオン) 及 び〇2 2— (パ一オキサイドァニオン) を包含又は吸蔵する新規活性酸素 発現物質であるアルミノシリケ一トを提供することを目的とするもので ある。
また、 本発明は、 新規活性酸素発現物質であるアルミノシリケ一トの 成形体を作製し、 二輪車などの排ガス浄化用触媒、 二次電池用固体電解 質、 及び酸素吸蔵担体などの部材を提供することを目的とするものであ る。
更に、 本発明者等は、 上記従来技術に鑑みて、 更に高活性な触媒を開 発することを目標として鋭意研究を進める過程で、 ハイドロガ一ネット を詳細に調べたところ、 3 5 0 °C以上に加熱するとアルミノシリケ一ト に変化し、 アルミノシリゲートはパーオキサイドァニオンゃス一パーォ キサイドア二オン等の活性酸素を構造中に包含又は吸蔵することを見出 した。 それらの活性酸素は、 室温では構造中に留まり、 4 0 0 °Cを超え た温度で移動可能である。 即ち、 構造中に存在する活性酸素が構造の外 に飛び出し、 酸化反応等の化学反応を生起する。 更に、 本発明者等は、 活性酸素が移動した後は、 空気中の酸素を構造中に取り込み、 再生する こと、 活性酸素は絶えることなく供給され続けること、 活性酸素は、 強 い酸化力を有しており、 揮発性有機化合物等の酸化分解あるいは燃焼に は非常に有効であり、 活性酸素を発現するアルミノシリケ一トに、 従来 から酸化触媒として知られる酸化コバルトを担持することにより、 低い 温度で更に高い酸化能力を付与できること等の新しい知見を見出し、 本 発明を成すに至った。
本発明の第 2の態様は、 従来の酸化あるいは燃焼触媒に比べて更に高 活性な触媒を開発し、 提供すること、 及びその製造法を提供することを 目的とするものである。 更に、 本発明は、 酸化コバルト担持アルミノシ リケートを成形体とし、 二輪車などの排ガス浄化用触媒、 燃焼排ガス浄 化用触媒、 及び酸素吸蔵部材などを提供することを目的とするものであ る。 次に、 本発明の第 1の態様について更に詳細に説明する。
本発明の新規活性酸素発現物質の製造法は、 酸素分圧や水蒸気分圧の 制御を必要とせず、 加熱温度も 1 0 0 o 以下の比較的低温でよい。 以 下に、 その製造例を説明する。 しかし、 本発明の新規活性酸素発現物質 の製造法は、 以下の方法のみに限定されるものではない。 本発明の活性 酸素発現物質は、 前駆物質としてハイド口ガーネットを使用し、 それを 空気雰囲気下の電気炉等で 7 0 0°C以上で加熱することにより製造され る。 前駆体として使用されるハイド口ガーネットの化学組成式は、 C a a A 12 (S i 04 ) 3-ϊ (〇H) 4Yであり、 Y値が 0≤Yく 3の範囲 であることを特徴とする。
一方、 新規活性酸素発現機能を有するアルミノシリケ一トの化学組成 は C a12 (A 1 .XS i x ) O33+0.5X と表記され、 Xの値は 0<X≤ 4の範囲をとる。 X= 4のときの化学組成は C a12 (A 110S i 4 ) O 35となり、 C a12 (A 11()S i 4 ) 〇35を合成する場合、 前駆物質のハ イド口ガーネットの組成は C a3 A 12 (S i 04 ) 0.8 (OH) u
(Y= 2. 2) である。 ハイド口ガーネットの合成法は、 最初にカルシ ァ源、 アルミナ源、 シリカ源をハイド口ガーネットの組成、 即ち、 希望 する Y値のハイド口ガーネットの組成に合わせて混合し、 それに過剰の 水を添加した混合物を調製する。
ここで、 力ルシア源には消石灰、 生石灰、 炭酸カルシウム、 石膏等、 アルミナ源にはカオリン、 アルミナゾル、 ベーマイト、 水酸化アルミ二 ゥム、 酸化アルミニウム等、 シリカ源にはカオリン、 シリカ、 非晶質シ リカ、 珪藻土、 ゲイ砂、 石英等を用いることができる。 調製した混合物 をォ一トクレーブにて 100°Cから 200 の温度で 5時間以上、 水熱 処理を施すことによりハイドロガーネッ卜が合成される。 1 00°C以下 の温度では反応が十分に進行せず、 一方、 200 °C以上では余分な熱ェ ネルギ一を消費することになる。 加熱時間は 5時間より短くても良いが 、 結晶性の良いハイド口ガーネットを得るには 5時間以上が好適である 更に、 ハイドロガ一ネットを空気雰囲気にて 700 °C以上 1 200°C 以下で加熱することにより新規活性酸素発現物質であるアルミノシリケ ートを得ることができる。 7 0 0 °Cより低い温度で加熱すると熱分解が 不十分であり好ましくない。 また、 それより高い温度で加熱しても良い が、 余分な熱エネルギーを消費することになるので 1 20 0°C以下とす る。 上記方法で合成したハイド口ガーネットを加熱することにより、 本 発明の新規活性酸素発現物質であるアルミノシリケ一卜を得ることがで きる。 一例として、 X= 4及び X= 2の場合について示す。
C a!2A 1 lflS i 4 035 (X= 4) を合成するための前駆物質である ハイドロガ一ネットの組成式は C a3 A 12 (S i 04 ) 。,8 (OH) 8.8 (Y= 2. 2) であり、 その 700°Cでの熱分解は、 以下に示され る。
5 C a3 A 12 (S i〇4 ) 。.8 (OH) s.8
C a 12A 1 I0S i 4 035+ 3 C a O + 2 2 H2 O また、 Xの中間値に相当する C a12A 112S i 2 034 (X= 2 ) を合 成するための前駆物質であるハイドロガーネットの組成式は C a3 A 1 2 (S i〇4 ) 1/3 (〇H) 32/3 (Y= 8Z3) であり、 その 7 00°C での熱分解は、 以下に示される。
6 C a3 A 12 (S i 04 ) 1/3 (OH) 32/3
C a12A 112S i 2 034+ 6 C a 0 + 32 H2 O 上記の反応式で得られる C a12A 1 I0S i 4 035、 C a I2A 112S i 2 034等が、 本発明の新規活性酸素発現物質であるアルミノシリケート の一例である。 本発明の新規活性酸素発現物質は、 0<X≤4の範囲で 得られ、 その前駆物質であるハイドロガ一ネットの熱分解により生成さ れるものである。 なお、 熱分解式から分かる通り、 生石灰 (C a〇) が 副生物として混在するが、 生石灰は、 活性酸素の発現及び包含には寄与 しない。 C aOは、 塩酸や硝酸等の希酸で溶解させることにより容易に 除去することができる。
上記ハイド口ガーネットの熱分解物、 即ち、 新規活性酸素発現物質で あるアルミノシリゲートが、 スーパ一オキサイドァニオン (o2 - ) 及 び/又はパーォキサイドア二オン (〇2 - ) 等の活性酸素を包含又は吸 蔵するか否かを調べる手段としては、 E S R測定法あるいはラマン分光 測定法がある。 一例として、 後記する実施例に示した C a12A 11()S i 4 035の室温における E S R及びラマン分光測定の結果を説明すると、 まず、 E S R測定結果を図 1に示す。 = 2. 049mTに発現する スペクトルは、 スーパ一オキサイドァニオンの存在を示す。 図 2は、 室 温におけるラマン分光測定結果を示す。 ES R測定と同様に、 スーパ一 ォキサイドア二オンの存在が 1 0 7 5 c m—1のピークから確認される。 図 1及び図 2のいずれの結果も C a12A 110S i 435がスーパ一ォ キサイドア二オンを構造中に包含又は吸蔵していることを表している。 更に、 C a12A 11()S i 4 035のラマン分光測定結果より、 明確なピ一 クが 1 07 5 cm—1のほかに 8 5 3 cm—1に認められる。 前者はスーパ ーォキサイドア二オン、 後者はパ一ォキサイドア二オン由来のピークに 相当する。 以上の結果は、 本発明の新規活性酸素発現物質が、 構造中に スーパ一ォキサイドア二オン及びパーォキサイドア二オンを包含又は吸 蔵していることを結論する。
C a12A 110S i 435の結晶構造を図 3に示す。 C a12A 110S i 435の構造は、 立方晶系、 格子定数: a = 1 2. 0 1 1 6 A 空間群 : 1 —43 dである。 その構造は、 (A 1、 S i ) 〇4 四面体がフレー ムワーク状に形成されたゼォライト様構造を有し、 そのフレームワーク 中の空隙 (約 4 A程度の空間) に活性酸素の 02 - 及び〇2 2— が存在す る。 本発明の新規活性酸素発現物質であるアルミノシリゲートが包含又は 吸蔵する活性酸素は、 強い酸化力を有しており、 4 0 0 ^以上に加熱す ると構造内部から排出され、 化学反応等に寄与する。 換言すると、 本発 明の新規活性酸素発現物質が包含又は吸蔵する活性酸素は、 4 0 0 °C以 上の温度で移動可能である。 例えば、 新規活性酸素発現物質は、 4 0 0 〜6 0 0 °Cの低い温度で揮発性有機化合物 (V〇C s ) を C 02 や H 2 〇にまで完全酸化分解する能力を有する。 このことから、 本発明の活性 酸素発現物質は、 酸化触媒の有効成分として使用することができる。 無酸素雰囲気下で酸化分解反応を持続させると構造中の活性酸素は徐 々に消費され、 反応が長時間続くと活性酸素は消費されてしまい、 それ 以後は供給されなくなる。 しかし、 活性酸素が供給されなくなった後、 新規活性酸素発現物質に空気あるいは酸素を供給すると、 構造中に再び 活性酸素が再生されて強い酸化能力が回復するという特異な性質を有す る。 実験による結果を図 4に示す。 したがって、 V O C s等の酸化分解 反応時に空気あるいは酸素を供給し続けるならば、 新規活性酸素発現物 質からの活性酸素供給は絶えることがない。
スーパーォキサイドア二オン及びパーォキサイドア二オンは、 共に強 い酸化作用を有することから、 V O C s等の有害化学物質を分解するこ とが可能であり、 例えば、 環境分野でこれらの有害化学物質を酸化分解 する方法としての用途が期待される。 更に、 消費された活性酸素 (スー パーオキサイドァニオン及びパーオキサイドァニオン) は、 本発明の新 規活性酸素発現物質の構造内で再生されるため、 永久に使用できるとい う特長を有する。
以上の特長を有する本発明の新規活性酸素発現物質は、 その製造法に おいて粉末として得ることができる。 粉末としての利用以外に、 成形体 としての利用では多くの利便性と新たな機能発現が期待される。 成形体 の形状は使用目的に合わせて決定され、 成形方法としてはセラミックス 成形体の製造において使用される方法を用いることができる。 成形体の 形状は、 例えば、 顆粒、 平板、 柱状、 円筒管、 中空糸、 モノリシス、 ノ\ 二カムなどがあり、 成形法としては、 铸込み成形、 加圧成形、 乾式 C I P成形、 射出成形、 シート成形などを使用することができる。 また、 形 状と共に成形体の緻密さ、 あるいは多孔質化が求められ、 成形時にはこ れらも考慮して成形がなされることは当然のことである。 一例として、 各種成形体のうち、 ペレツト状及び平板状試料の酸化触媒機能について 説明する。
本発明品の酸化触媒性能を調べる測定装置の概略を図 5に示す。 装置 は、 ガス供給部 (1) 、 加熱部 (2) 、 ガス分析部 .(3) から構成され 、 ガス供給部は酸化分解に供する炭化水素や助燃剤の空気あるいは酸素 を供給し、 加熱部は試料を充填した反応管を所定の温度に加熱し、 ガス 分析部は試料を通過した供給ガスの組成分析を行う。 反応管は試料の形 状に合わせて変えてあり、 その概略の一例を図 6に示す。 粉末、 ペレツ ト状及び顆粒状試料 (4) については、 シリカガラス製反応管 (5) の 中央に充填し、 その両端をロックウール (6) で押さえて固定する。 平 板状試料 ( 7 ) については、 平板の両端をシール剤を介してシリカガラ ス管 (8) で押さえ、 平板状試料にシリカガラス管を張り付けて固定す る。
粉末及び成形体の酸化触媒機能をプロピレン、 ベンゼン、 メタンにつ いて調べると、 いずれの炭化水素も 400°C以上の温度で分解すること が認められる。
更に、 本発明の新規活性酸素発現物質のイオン導電体としての機能に ついて、 説明する。 粉末状の本発明品、 C a12 (A 114.XS i x ) 033 +o.5X (0<X≤4) に導電材及び結着剤を混合し、 ペースト状の合材 を調製し、 これをアルミニウム箔製集電体表面に塗布して電極とした。 導電材は、 電気伝導性を確保するためのものであり、 例えば、 カーボン ブラック、 アセチレンブラック、 黒鉛などの 1種又は 2種以上を混合し たものを用いることができる。 結着剤は、 粉末状の本発明品及び導電材 粒子を繋ぎ止めるためのものであり、 例えば、 テフロン (登録商標) 、 ポリテトラフルォロエチレン、 ポリフッ化ビニリデン、 フッ素ゴムなど を用いることができる。 本発明品が塗布された電極をセパレー夕一 (不 織布) を介してリチウム金属と対向させ、 例えば、 リチウム塩を含む有 機溶媒中で電極とリチウム金属間に 4 . 5 Vまで 0 . I mAZ c m2 で 定電流を一定時間流した後、 本発明品を回収し、 洗浄してその組成を調 ベると、 L i y C a 12 ( A 1 14X S i x ) 03 5X (ただし、 0 < y ≤ 3 0 ) であり、 これから、 本発明品は、 リチウムイオンが挿入される 特性を有することが確認される。
本発明は、 活性酸素 (スーパ一ォキサイド : 02 — 、 パ一ォキサイド : 02 2" ) をカプセル化したゼォライト様構造を有するアルミノシリケ —ト、 即ち、 新規活性酸素発現物質及びその成形体に係るものであり、 本発明により、 (1 ) 構造中に包含あるいは吸蔵された活性酸素により 炭化水素酸化反応 (例えば、 エポキシ化、 完全酸化、 部分酸化、 カップ リング) が生じ、 本発明の新規活性酸素発現物質は、 環境、 エネルギー 、 化学工業 (製造プロセス) 等、 広い分野で利用される、 (2 ) 本発明 の無機化合物の成形体は、 例えば、 二輪車の排ガス浄化用触媒、 二次電 池の固体電解質、 及び酸素吸蔵担体などとして有用である、 という効果 が奏される。 次に、 本発明の第 2の態様について更に詳細に説明する。
本発明の新規触媒は、 アルミノシリケ一トを担体として、 例えば、 担 持法で酸化コバルトの微粒子をアルミノシリケート表面に担持して作製 することができる。 なお、 上記アルミノシリケ一トは、 C a12 (A 114 _XS i x ) O 。.5X の組成式を有し、 組成式中の X値は 0≤X≤4の 範囲である。 担持法とは、 例えば、 硝酸コバルト水溶液にアルミノシリ ゲートを浸漬し、 蒸発乾固する。 得られる粉末状物質を 60 0°C以上で 加熱すると、 アルミノシリケ一ト表面に担持された硝酸コバルトは分解 して酸化コバルトに変化し、 酸化コバルト担持アルミノシリケート触媒 ができ上がる。 本発明の方法では、 酸化コバルトを、 例えば、 酸化ニッ ゲル、 酸化鉄など他の金属酸化物で代替することもできる。
更に、 本発明の新規触媒は、 前駆物質としてコバルト含有ハイドロガ —ネットを水熱法にて合成し、 それを 300 °C以上で加熱することによ り得られ、 その化学組成は (C a3_Y C oY ) A 12 (S i 04 ) z
(OH) 4Zと表記される。 なお、 本発明の新規触媒は、 組成式中の Y値 が 0<Y≤ 0. 1 0、 Ζ値が 0≤Ζ≤2. 2の範囲であることを特徴と する。 また、 本発明の新規触媒は、 酸化触媒等に利用できる。
本発明の酸化コバルト担持アルミノシリケ一ト触媒は、 予めハイドロ ガ一ネットの構成元素である C a2+イオンの一部を C ο2+イオンで置換 したコバルト含有ハイドロガ一ネットを合成し、 それを加熱分解して製 造される。 以下の説明の理解を深めるために、 最初に、 ハイド口ガ一ネ ットについて説明する。 ハイド口ガーネットは、 ガーネット構造を有し . ており、 その組成式は C a3 A 12 (S i 04 ) 3-γ (〇Η) で示さ れる。 組成式中の Υ値は 0≤Υ≤ 3の任意の値をとる。 ハイド口ガ一ネ ットの組成式は、 Υ値により異なり、 例えば、 Υ= 0の場合は C a3 A 12 (S i〇4 ) 3 、 Y= l . 5の場合は C a3 A 12 (S i 04 ) ,.
5 (〇Η) 6 、 Υ= 2. 2の場合は C a 3 A 12 (S i 04 ) 。.8 (O
H) 8.8 、 Y= 3の場合は C a3 A 12 (OH) l2である。 ハイドロガ ーネットの構造に占める C a"イオンは、 イオン半径の近い他の陽ィォ ンと置換可能であり、 例えば、 C o2+イオンと置換させることができる
C a2+及び C o2+イオンのイオン半径は、 それぞれ 0. 1 1 2 nm及 び 0. 090 nmであり、 後者の方が僅かに小さい。 したがって、 C a 2+イオンが C o2+イオンと置換したとすれば、 ハイドロガーネッ卜の格 子定数は若干小さくなる。 C a"イオンに対する C o2+イオンの置換量 には限界が有ることから、 実験からその限界値を求めた結果、 C oZC a = 0. 0 344 (= 0. 1 0/2. 90モル比) であった。 CoZC a = 0. 0 344モル比のとき、 ハイド口ガーネットの組成式は、 (C a 2.9 C o0.! ) A 12 (S i 04 ) 3-γ (OH) 4Yである。 コバルト の添加量は増えても良いが、 後述するように、 触媒活性が低下するため 、 C o/C a= 0. 0344モル比以上の過剰なコバルトは加えない方 が得策である。
本発明の酸化コバルト担持アルミノシリケ一ト触媒の製造方法を以下 に示す。 しかし、 これにより、 本発明の酸化コバルト担持アルミノシリ ケ一ト触媒の製造方法が限定されるものではない。 酸化コバルト担持ァ ルミノシリケ一ト触媒の前駆物質となるコバルト含有ハイドロガーネッ トの合成法は、 最初に、 コバルト源、 力ルシア源、 アルミナ源、 シリカ 源をハイドロガ一ネットの組成、 即ち、 希望する X及び Y値のコバルト 含有ハイドロガーネットの組成に合わせて混合し、 それに過剰の水を添 加した混合物を調製する。 ここで、 コバルト源には水酸化コバルト、 酸 化コバルト等、 力ルシア源には消石灰、 生石灰、 炭酸カルシウム、 石膏 等、 アルミナ源にはカオリン、 アルミナゾル、 ベーマイト、 水酸化アル ミニゥム、 酸化アルミニウム等、 シリカ源にはカオリン、 シリカ、 非晶 質シリカ、 珪藻土、 ケィ砂、 石英等を用いることができる。 しかし、 こ れらに制限されるものではなく、 これらと同効のものであれば同様に使 用することができる。 なお、 コバルトとカルシウムの合計値は、 コバル ト含有ハイドロガ一ネットの組成式 (C a3x C ox ) A 12 (S i〇 4 ) 3_Y (OH) 4Y中の 「3」 になるようにする。 好適には 0<X≤ 0 . 1 0とする。 また、 Y値は 0≤Y≤ 2. 2の範囲が好適である。
調製した混合物をオートクレープにて 1 0 0 °Cから 2 0 0 °Cの温度で 5時間以上、 水熱処理を施すことによりコバルト含有ハイドロガーネッ トが合成される。 1 0 0°C以下の温度では反応が十分に進行せず、 一方 、 2 00 °C以上では余分な熱エネルギーを消費することになるため、 1 0 0〜2 0 0 °Cが好適である。 加熱時間は 5時間より短くても良いが、 結晶性の良いコバルト含有ハイドロガ一ネットを得るには 5時間以上が 好適である。 更に、 コバルト含有ハイド口ガーネットを空気雰囲気にて 3 0 0°C以上、 1 0 0 0°C以下の温度範囲で加熱することにより酸化コ バルトが高分散化した酸化コバルト担持アルミノシリケー卜触媒を製造 することができる。 3 0 0 °Cより低い温度で加熱した場合は、 コバルト 含有ハイドロガーネットの分解が十分でなく、 1 0 0 o°cより高い温度 で加熱しても良いが、 省エネルギーの観点から必要ない。
なお、 置換に用いるイオンはコバルトに限る必要はなく、 他のイオン であっても置換可能なイオンであれば使用できる。 結晶構造中に金属ィ オンを置換させ、 熱分解により触媒粒子が高分散化した高性能触媒を合 成することができることはよく知られている。 こうした触媒の製造方法 は、 層状複水酸化物 (LDH) を触媒前駆体とした例で実証済みの技術 であるが (例えば、 F. Cavani, F. Trif iro and A. Vaccari, Catal. T oday, Vol.11 (1991) p.173 、 B. Chen and J. L. Falconer, J. Catal . , Vol.144 (1993) p.214 、 S. Velu, R. Veda, A Raman i, B. M, Chen da and S. Sivasanker, Chem. Commun. , (1997) p.2107, S. Velu, K. Suzuki, M. P. Kapoor, F. Ohashi and T. Osaki, Appl. Catal. Vo 1.213 (2001) p.47 、 S. Velu, K. Suzuki and T. Osaki, Catal. Let. , Vol.69 (2000) p.43) 、 ガーネット構造を有するコバルト含有ハイド ロガ一ネットを触媒前駆体とした本発明の触媒及びその製造方法は、 本 発明者等が初めて見出したものである。
次に、 本発明の方法において、 Υ= 2· 2のハイド口ガーネットを一 例として、 当該ハイドロガ一ネット中に C ο2+イオンが置換し得る量に ついて説明する。 (: 0/〇 &比を0から 0. 0 7 14まで変えて上記方 法で合成したコバルト含有ハイドロガーネッ卜の XRD測定結果を図 8 に示す。 なお、 図 8中の白丸 (〇) はハイド口ガーネット (C a3 A 1 2 (S i 04 ) 。.8 (OH) 8.8 ) 、 黒丸 (眷) はコバルト含有ハイド ロガ—ネット ( (C a3x C ox ) A 12 (S i 04 ) u (OH) 8. 8 ) 、 三角 (△) は酸化コバルト (C o3 04 ) 由来の回折ピークであ る。 コバルト未添加 (C oZC a= 0) の試料はハイド口ガーネットの みが合成される。 カルシウムの一部がコバルトで置換される (C O/C a = 0. 0 169) と、 格子定数が小さくなるために回折線角度が高角 側にシフトし、 コバルト含有ハイドロガーネッ卜の生成が確認される。 コバルト添加量が C o/C a = 0. 0380まで増えると、 置換できな い酸化コバルトが析出してくる。
したがって、 コバルトが置換し得る量は、 C oZC a = 0 · 03 44 が限界である。 このときの組成式は前述した通り、 (C a^ C Oo., ) A 12 (S i 04 ) 。,8 (〇H) 8.8 である。 図 8の結果を整理して 、 格子定数と C oZC a比の関係を図 9に示す。 C oZC a比が 0から 0. 0344までは格子定数が 1. 240 8 nmから 1. 23 13 nm まで次第に減少し、 その後は 0. 07 14まで 1. 23 1 3 nmで変わ らなかった。 このことは、 C o2+イオンの置換が C oZC a = 0〜 0. 0 344までは添加した C o2+イオンの全量が行われ、 それ以上、 即ち 、 C o/C a> 0. 0 344の置換は行われないことを意味している。 以上の結果をまとめて表 1に示す。
表 1
コバルト含有ハイド口ガーネット [(Ga3_xGox)AI2(Si04)。8(OH)8.8:0≤X≤0. 10]の格子定数
Co/Ca X 組成式 a/" nm VZnm:
0 0 Ga3AI2(Si04)a8(OH)8.8 1.24078(15) 1.910
0.0101 0.03 (Ga2.97Go,)AI2(Si04)。8(OH)8.8 1.23563(6) 1.886
0.0169 0.05 (Ga2.95Co005)AI2(Si04)o.8(OH)8.8 1.23263(6) 1.872
0.0204 0.06 (Ca2.g4Co0.06)AI2(SiO4)0.8(OH)8.8 1.23231(7) 1.871
0.0238 0.07 (Ca2.93Co0.07)AI2(SiO4)0.8(OH)8.8 1.23196(6) 1.869
0.0273 0.08 (Ca2.92Go0.08)AI2(SiO4)0.8(OH)88 1.23162(12) 1.868
0.0309 0.09 (Ga2.91Go。。9)AI2(Si04)8(OH)8.8 1.23141(13) 1.867
0.0344 0.10 (Ca2.90Co0.10)AI2(SiO4)0.8(OH)88 1.23131(10) 1.866
(し a 2.9 C o0A ) A 12 (S i 04 ) 0.8 (OH) 8.8 の 加熱温度と生成物の関係を XRD測定にて調べたところ、 室温から 3 0 0 までは (C a2.9 C ο0-1 ) A 12 (S i〇4 ) 。.8 (OH) 88 のままで変化しなかったが、 3 5 0 °Cで加熱するとアルミノシリケ一ト 水酸化物 (C a12A 110S i 4 032 (OH) 6 ) 、 生石灰 (C aO) 及 び酸化コバルト (C o3 04 ) に変化した。 3 5 0°C以上の加熱での生 成物は、 いずれもアルミノシリケート水酸化物、 生石灰及び酸化コバル トであった。 7 0 Ot以上で加熱するとアルミノシリゲート水酸化物が 更に脱水して無水のアルミノシリケート (C a12A 11QS i 435) と なった。
C o/C a比が 0. 0 1 6 9、 0. 0 2 3 8、 0. 0 344、 0. 0 7 14と異なる 4種類のコバルト含有ハイドロガーネットを合成し、 4 0 0°Cで加熱した後の比表面積、 酸化コバルトの粒子径を表 2に示す。 比表面積は C o/C a = 0. 0 344のハイドロガ一ネットが 6. 5 m 2 /gで最も大きく、 その他のハイドロガーネットでは 2〜 3m2 /g 程度であった。 比表面積は、 なるべく大きい方が触媒活性にとって良い 。 一方、 酸化コバルトの粒子径は C oZC a = 0. 0 1 6 9〜0. 0 3 44のコバルト含有ハイドロガーネットで 2 50〜 2 7 5 Aとほぼ同程 度であり、 C o/C a= 0. 0 7 14のそれで 8 50 Aへと大きくなつ た。 酸化コバルトの粒子径が大きくなることは、 分散度の低下、 即ち、 触媒活性の低下に繋がるために好ましくなく、 なるべく小さな粒子径の 酸化コバルトが求められる。
表 2
CoZCa比が 0.0169,0.0238、 0.0344、 0.0714と異なる 4種類のコバルト含有 ハイドロガ一ネットの 400°C加熱後の比表面積及び酸化コバルト粒子径
Co/Ca 0.0169 0.0238 0.0344 0.0714
X 0.05 0.07 0.10
比表面積 (m2Zg) 1.9 2.8 6.5 2.9
Go304粒子径(A) 250 260 275 850
次に、 C o/C a= 0. 0 344のコバルト含有ハイド口ガーネット の加熱温度と比表面積及び酸化コバルト粒子径の関係を表 3に示す。 比 表面積は、 3 50及び 400 で加熱した後で 5. 7及び 6. 5 m2 gとほぼ同じ大きさを示したが、 450°C以上で加熱した後のそれは次 第に小さくなつた。 一方、 酸化コバルト粒子径は、 3 50及び400で で加熱した後で 260及び 27 5 Aとほぼ同じ大きさを示したが、 45 0°C以上で加熱した後のそれは 447 Aから次第に大きくなつた。 以上 の結果は、 酸化コバルト担持アルミノシリゲート触媒の製造には、 C o /C a = 0. 0344、 加熱温度 = 400 °C以下、 が好適であることを 意味している。
表 3
Co/Ca=0.0344のコバルト含有ガイド口ガーネットの加熱温度と比表面積及び酸化 コバルト粒子径
加熱温度 (°c) 350 400 450 500 600 比表面積 (m2Zg) 5.7 6.5 4.2 3.5 2.4
Co304粒子径(A) 260 275 447 489 856
次に、 酸化コバルト担持アルミノシリケート触媒の触媒活性を調べる 方法について説明する。 反応装置としては、 常圧小型固定床流通式反応 装置を使用し、 触媒粒子径 = 3 0 0〜500 ^m、 反応温度 =室温〜 5 00°C、 反応ガス二プロピレン、 ベンゼン、 トルエンの 3種類、 反応ガ ス濃度 = 1 000 p pm、 流通ガス =空気、 ガス流量 = 1 0 0m l /m i n、 空間速度 = 10000 h— ガス分析-ガスクロマトグラフィー (充填剤: P o r a p a k P、 5 A mo l s i e v e、 活性炭、 力 ラム: 2mX 3) で行った。 図 1 0に、 400°C加熱で製造した酸化コ バルト担持アルミノシリケ一ト触媒を用いた場合の、 プロピレン、 ベン ゼン、 トルエンの各反応ガスの分解率、 比表面積と C oZC a比の関係 を示す。 分解率は比表面積と良い相関が認められ、 いずれの反応ガスも C o/C a = 0. 0344の触媒 ( ( C a 2.9 C o ^ ) A 12 (S i 〇4 ) 。.8 (OH) 8.8 ) で最高の分解率を示した。
(C a2.9 C Ou ) A 12 (S i 04 ) o.8 (OH) 8.8 を触媒に 用い、 反応温度を変えてプロピレンの酸化分解を行った結果を図 1 1に 示す。 反応温度が 200°Cで 2 %の分解率を示し、 分解率は温度の上昇 と共に向上し、 325°Cで 1 00 %に達した。 分解後の生成物は、 CO 2 のみであった。 なお、 H2 Oは生成するものの分析をしていない。 一 方、 C oで置換されていない触媒、 即ち、 アルミノシリゲートの触媒活 性は、 反応温度が 3 2 5 °Cでも分解率はゼロであり、 4 0 0 °Cで 2 %の 分解率を示し、 6 2 5 °Cで 1 0 0 %に達した。 なお、 触媒を使用せず、 自己燃焼実験を行ったところ、 プロピレンは 6 0 0 °C以上に加熱して初 めて燃焼した。 以上の結果は、 アルミノシリゲートを触媒として使用す ることにより燃焼温度を低下させることが可能となり、 更に、 C aの一 部を C oで置換することによりアルミノシリゲートの触媒活性は、 2 0 0 °C程度向上することを意味し、 本発明は、 これらの酸化分解反応の一 層の低温化を実現することを可能とするものである。 本発明の触媒は、 揮発性有機化合物、 炭化水素等の被処理物を酸化分解する酸化触媒とし て有用である。
以上の特長を有する酸化コバルト担持アルミノシリケ一ト触媒は、 そ の製造法において粉末として得ることができる。 粉末としての利用以外 に、 成形体としての利用は多くの利便性と新たな機能発現が期待される 。 成形体の形状は使用目的に合わせて決定され、 成形方法はセラミック ス成形体の製造において使用される方法で行うことができる。 成形体の 形状は、 例えば、 ペレット、 顆粒、 平板、 柱状、 円筒管、 中空糸、 モノ リシス、 ハニカムなどがあり、 成形法には、 铸込み成形、 加圧成形、 乾 式 C I P成形、 射出成形、 シート成形などを使用することができる。 ま た、 形状と共に成形体の緻密さ、 あるいは多孔質化が求められ、 成形時 にはこれらも考慮して成形がなされることは当然のことである。
本発明品の酸化触媒性能を調べる測定装置の一例の概略を図 1 2に示 す。 装置は、 ガス供給部 (1 ) 、 加熱部 (2 ) 、 ガス分析部 (3 ) から 構成され、 ガス供給部は酸化分解に供する炭化水素や助燃剤の空気ある いは酸素を供給し、 加熱部は試料を充填した反応管を所定の温度に加熱 し、 ガス分析部は試料を通過した供給ガスの組成分析を行う。 反応管は 試料の形状に合わせて変えてあり、 その概略の一例を図 1 3に示す。 粉 末、 ペレット状及び顆粒状試料 (4) については、 シリカガラス製反応 管 (5) の中央に充填し、 その両端をロックウール (6) で押さえて固 定する。 平板状試料 (7) については、 平板の両端をシール剤を介して シリカガラス管 (8) で押さえ、 平板状試料にシリカガラス管を張り付 けて固定する。
成形体とした酸化コバルト担持アルミノシリケート触媒機能を、 例え ば、 プロピレン、 ベンゼン、 トルエンについて調べたると、 いずれの炭 化水素も 200°C以上の温度で分解することが認められ、 その分解率は 粉末状でのそれと同等である。
本発明は、 酸化コバルト担持アルミノシリケート触媒及びその製造法 に係り、 本発明により、 1) 従来の酸化あるいは燃焼触媒に比べて更に 高活性な触媒を提供することができる、 2) アルミノシリゲートの構造 中に包含又は吸蔵される活性酸素の作用により、 従来の触媒に比べて低 い温度で更に高い酸化能力を発揮できる、 3) 300°C以上、 1 000 °C以下の低い温度条件で、 簡便なプロセスで酸化コバルト担持アルミノ シリケ一卜触媒を製造することができる、 4) 揮発性有機化合物等を酸 化分解する方法として有用である、 という格別の効果が奏される。 図面の簡単な説明
図 1は、 C a12A l 1()S i 4 035の室温における E S R測定結果を示 す。
図 2は、 C a12A l 1QS i 435の室温におけるラマン分光測定結果 を示す。
図 3は、 C a12A 11DS i 435の結晶構造を示す。
図 4は、 C a12A 11DS i 4 035を触媒とした窒素雰囲気 (a) での プロピレン分解率と反応時間の関係を示す。 (反応開始 220分後に空 気を導入 (b) し、 C a12A 11QS i 435中の消費された活性酸素を 再生した後、 再度、 窒素雰囲気でのプロピレン酸化分解を実施) 図 5は、 酸化触媒性能を調べる測定装置の概略図を示す。
図 6は、 反応管の形状の概略図を示す。
図 7は、 窒素雰囲気におけるプロピレン分解実験後の C a12A 110S i 4 035のラマン分光測定結果を示す。
図 8は、 C oZC a比を 0から 0. 07 14まで変えて合成したコバ ルト含有ハイドロガーネットの XRD測定結果を示す。
図 9は、 (: 0 じ &比を0から 0. 0 7 14まで変えて合成したコバ ルト含有ハイドロガーネットの格子定数と C oZC a比の関係を示す。 図 10は、 酸化コバルト担持アルミノシリケ一ト触媒を用い、 反応温 度 300°Cにおけるプロピレン (〇) 、 ベンゼン (翻) 、 トルエン (▲ ) の各反応ガスの分解率、 比表面積 (♦) 及び C oZC a比の関係を示 す。
図 1 1は、 (C a2.9 C ) A 12 (S i〇4 ) 。.8 (OH) 8.
8 を触媒に用い、 反応温度を変えてプロピレンの酸化分解を行った結果 を示す。
図 12は、 酸化触媒性能を調べる測定装置の概略図を示す。
図 1 3は、 反応管の形状の概略図を示す。
図 14は、 (C a2.9 C ) A 12 (S i〇4 ) 。,8 (〇H) 8.
8 を触媒に用い、 反応温度を変えてベンゼンの酸化分解を行った結果を 示す。
図 1 5は、 (C a2.9 C。 ) A 12 (S i 04 ) 。.8 (OH) 8. 8 を触媒に用い、 反応温度を変えてトルエンの酸化分解を行った結果を 示す。 符号の説明
(図 5の符号)
1 ガス供給部
2 加熱部
3 ガス分析部
(図 6の符号)
4 粉末、 ペレット状及び顆粒状試料
5 シリカガラス製反応管
6 ロックウール
7 平板状試料
8 シリカガラス管
(図 1 2の符号)
1 ガス供給部
2 加熱部
3 ガス分析部
(図 1 3の符号)
4 粉末、 ペレツ卜状及び顆粒状試料
5 シリカガラス製反応管
6 ロックウール
7 平板状試料
8 シリカガラス管 発明を実施するための最良の形態
次に、 実施例により本発明の第 1の態様を具体的に説明するが、 本発 明は以下の実施例により何ら限定されるものではない。
実施例 1 力ルシア源として消石灰 0. 7 7 g、 アルミナ源としてアルミナゾル (A 123 としての含有量 ; 20 ) 1. 8 g、 シリカ源として非晶 質シリカ 0. 2 1 gを秤量し、 全容積が 14. 6m lになるように水を 添加して混合物 (懸濁液) を調製した。 懸濁液を容量 2 5m 1のオート クレープに入れ、 2 5 r pmで攪拌しながら 2 0 0 °C、 1 5時間加熱し た。 その後、 室温まで放冷し、 ろ過、 乾燥することにより C a3 A 12
(S i〇4 ) (OH) 8.s の組成式で表されるハイドロガ一ネット を合成した。 本ハイドロガーネットを空気雰囲気下の電気炉で 700°C 、 5時間加熱することにより新規活性酸素発現物質である C a12A 110 S i 4 035を合成した。 本製造法による C aI2A 110S i 435の室温 における E S R及びラマン分光測定の結果を図 1及び図 2に示す。 前述 したように、 C a12A l 1()S i 4 035は、 活性酸素を構造中に包含又は 吸蔵していることが確認された。 実施例 2
粒径 300〜 5 00 mのペレツ卜に成形した C a12A 110S i 435の 1. 0 gを電気炉に設置された石英ガラス製反応管に充填し、 反応 管温度を 200〜900°Cの希望する温度にした。 空気とプロピレンの 混合ガスを流量 1 0 0m 1 Zm i nで反応管に導入した。 なお、 プロピ レン濃度は 1 00 0 p pmとした。 反応管の出口ガスをガスクロマトグ ラフィ一に導入し、 ガス分析を行った。 200〜3 7 5 °Cではプロピレ ンの分解は確認されず、 400°Cで 2 %の分解率が認められ、 分解率は 、 反応温度が高くなると共に上昇し、 500°Cで 50 %、 5 50°Cで 9 5 %、 600 °C以上で 1 00 %であった。 プロピレンが分解して生成す るガスは、 C〇2 及び H2 Oのみであり、 プロピレンの酸化分解反応が 起きていることが示された。 実施例 3
粒径 300〜 5 0 0 mのペレツトに成形した C a12A 110S i 435の 1. 0 gを電気炉に設置された石英ガラス製反応管に充填し、 反応 管温度を 200〜9 00 の希望する温度にした。 空気とベンゼンの混 合ガスを流量 1 0 0m 1 /m i nで反応管に導入した。 なお、 ベンゼン 濃度は 1000 p pmとした。 反応管の出口ガスをガスクロマトグラフ ィ一に導入し、 ガス分析を行った。 200〜40 0°Cでベンゼンの分解 は確認されず、 42 5°Cで 3 %の分解率が認められ、 分解率は、 反応温 度が高くなると共に上昇し、 450 で 1 0 %、 5 00°Cで 37%、 5 50°Cで 86 %、 600°Cで 98 %、 625 °C以上で 1 00 %であった 。 ベンゼンが分解して生成するガスは、 C〇2 、 CO及び H2 Oのみで あり、 ベンゼンの'酸化分解反応が起きていることが示された。 実施例 4
粒径 300〜 5 0 0 のペレツトに成形した C a12A 110S i 4 O 35の 1. 0 gを電気炉に設置された石英ガラス製反応管に充填し、 反応 管温度を 600°Cとした。 窒素とプロピレンの混合ガスを流量 50m l Zm i nで反応管に導入した。 なお、 プロピレン濃度は 1 0 0 p pmと した。 反応管の出口ガスをガスクロマトグラフィーに導入し、 ガス分析 を行った。 プロピレン分解率と反応時間の関係を測定した。 その結果を 図 4に示す。 初期における分解率は、 80 %が得られたが、 時間と共に 減少し、 1 20分後には 0 %となり、 それ以降はプロピレンの酸化分解 は起こらなかった。 図 7は、 各反応時間における窒素雰囲気中のプロピ レン分解後に得られた C a12A 11QS i 435中の活性酸素のラマン分 光結果を示す。 プロピレンの燃焼に伴って構造中の活性酸素が減少する 。 更に、 活性酸素を失った C a 12A 1 10 S i 4 035を、 4 0 0 以上で 空気に曝すことにより構造中に活性酸素が再生されることが確認された 。 酸化反応によって消費された格子中の活性酸素は、 再度、 空気中の酸 素を取り込み、 活性酸素として再生され、 プロピレンを燃焼し続けられ ることが示された。 実施例 5
直径 1 0 mm、 厚み 2 . 0 mmの平板状多孔質板に成形した C a 12A 1 10 S i 4 035を直径 1 0 mmの石英ガラス製反応管に挟み、 電気炉に 設置した後、 試料温度を 2 0 0〜7 0 0 °Cの希望する温度にした。 空気 とプロピレンの混合ガスを流量 3 O m 1 Zm i nで反応管に導入した。 なお、 プロピレン濃度は 5 0 0 p p mとした。 反応管の出口ガスをガス クロマトグラフィーに導入し、 ガス分析を行った。 2 0 0〜 3 7 5 °Cで はプロピレンの分解は確認されず、 4 0 0 °Cで 3 %の分解率が認められ 、 分解率は、 反応温度が高くなると共に上昇し、 5 0 0 で 6 0 %、 6 0 0 以上で 1 0 0 %であった。 プロピレンが分解して生成するガスは 、 C〇2 及び H2 0のみであり、 成形体においてもプロピレンの酸化分 解反応が起きていることが示された。 実施例 6
実施例 5と同じ測定条件で、 ガス種をメタンに替えて測定した。 反応 温度が 4 5 0 °Cから分解が始まり、 その後、 反応温度とメタン分解率の 関係は 5 0 0 °Cで 5 %、 6 0 0 °Cで 4 5 %、 7 0 0 °Cで 1 0 0 %であつ た。 実施例 7 C aI2A 110S i 4 035の 70重量部に導電材としてケツチエンプラ ックを 2 5重量部、 結着剤としてテフロン (登録商標) を 5重量部混合 し、 合材を調製した。 合材を厚さ 22 mのアルミニウム箔集電体の表 面に加圧成形し、 厚さが 5 0 /zmとなるシートを作製し、 次いで、 この シートを直径 1 5 mmに打ち抜いた円盤型の電極を作製した。 この電極 に、 厚さ 0. lmm、 直径 1 5 mmのリチウム金属を対向させ、 電極と リチウム金属の間に厚さ 1 00 mの不織布をセパレーターとして設置 した。 電解液には、 1モルの L i P F6 をエチレン力一ポネイトとジェ チルカーボネートを体積比で 3 : 7で混合した溶媒に溶解したものを用 いた。 これらをテフロン (登録商標) 板に挟んだセルを作製し、 4. 5 Vまで 0. 1mA/ cm2 で電流を流した後、 電極を回収した。 ジェチ ルカ一ポネートで洗浄した電極材の組成分析を行った結果、 L i 3。C a 12 (A 1 _xS i x ) O33+0.5X であった。 次に、 実施例により本発明の第 2の態様を具体的に説明するが、 本発 明は、 以下の実施例により何ら限定されるものではない。
実施例 8
力ルシア源として消石灰 0. 7 7 g、 コバルト源として水酸化コバル ト (C o (OH) 2 ) 0. 033 g、 アルミナ源としてアルミナゾル ( A 12 03 としての含有量; 20 %) 1. 8 g、 シリカ源として非晶質 シリカ 0. 2 1 gを抨量し、 全容積が 14. 6m lになるように水を添 加して混合物 (懸濁液) を調製した。 懸濁液を容量 2 5m 1のオートク レーブに入れ、 25 r pmで攪拌しながら 200°C、 1 5時間加熱した 。 その後、 室温まで放冷し、 ろ過、 乾燥することにより (C a2.g C o o. , ) A 12 (S i 04 ) 0.3 (OH) 8.8 の組成式で表されるコバル ト含有ハイド口ガーネットを合成した。 次いで、 上記 (C a2.9 C o0. , ) A 12 (S i〇4 ) Q.8 (〇H) uの組成式のコバルト含有ハイ ドロガーネットを 400°C、 5時間加熱し、 酸化コバルト担持アルミノ シリケ一ト触媒を合成した。
次に、 酸化コバルト担持アルミノシリゲート触媒を用い、 反応温度を 変えてプロピレンの酸化分解を行った結果を図 1 1に示す。 触媒反応実 験は、 以下の内容で行った。 反応装置としては、 常圧小型固定床流通式 反応装置を使用し、 触媒粒子径 = 300〜500 ^m、 反応温度 =室温 〜 500°C、 反応ガス濃度 = 1 000 p pm、 流通ガス =空気、 ガス流 量 = 1 00m l /m i n、 空間速度 = 1 00 00 h' ガス分析 =ガス クロマトグラフィー (充填剤: P o r a p a k P、 5A mo l s i e v e、 活性炭、 カラム : 2mX 3) で行った。 結果は、 反応温度が 2 00°Cで 2 %の分解率を示し、 分解率は温度の上昇と共に向上し、 32 5 で 1 0 0 %に達した。 分解後の生成物は、 C〇2 のみであった。 な お、 H2 〇は生成するものの分析をしていない。 実施例 9
実施例 8に記載の方法で合成した酸化コバルト担持アルミノシリケー ト触媒を用い、 実施例 8に記載の方法で触媒実験を行った。 反応温度を 変えてベンゼンの酸化分解を行った結果を図 14に示す。 反応温度が 2 00 °Cで 0 %、 225°Cで 1 3 %の分解率を示し、 分解率は温度の上昇 と共に向上し、 300 で 1 00 %に達した。 分解後の生成物は、 CO 2 のみであった。 なお、 H2 Oは生成するものの分析をしていない。 実施例 1 0
実施例 8に記載の方法で合成した酸化コバルト担持アルミノシリケ一 ト触媒を用い、 実施例 8に記載の方法で触媒実験を行った。 反応温度を 変えてトルエンの酸化分解を行った結果を図 1 5に示す。 反応温度が 2 2 5 °〇で0 %、 2 5 0 °Cで 2 5 %の分解率を示し、 分解率は温度の上昇 と共に向上し、 3 2 5 °Cで 1 0 0 %に達した。 分解後の生成物は、 C O 2 及びベンゼンであった。 なお、 H2 Oは生成するものの分析をしてい ない。 産業上の利用可能性
以上詳述したように、 本発明は、 活性酸素 (スーパーォキサイド : O 2 - 、 パ一ォキサイド: 02 2_ ) をカプセル化したゼォライト様構造を 有するアルミノシリケ一ト、 即ち、 新規活性酸素発現物質及びその成形 体に係るものであり、 構造中に包含あるいは吸蔵された活性酸素により 炭化水素酸化反応 (例えば、 エポキシ化、 完全酸化、 部分酸化、 カップ リング) が生じ、 本発明の新規活性酸素発現物質は、 環境、 エネルギー 、 化学工業 (製造プロセス) 等、 広い分野で利用される。 また、 本発明 の無機化合物の成形体は、 例えば、 二輪車の排ガス浄化用触媒、 二次電 池の固体電解質、 及び酸素吸蔵担体などとして有用である。
更に、 本発明は、 酸化コバルト担持アルミノシリケート触媒及びその 製造法に係り、 本発明により、 従来の酸化あるいは燃焼触媒に比べて更 に高活性な触媒を提供することができる。 アルミノシリケートの構造中 に包含又は吸蔵される活性酸素の作用により、 従来の触媒に比べて低い 温度で更に高い酸化能力を発揮できる。 3 0 0 以上、 1 0 0 0 °C以下 の低い温度条件で、 簡便なプロセスで酸化コバルト担持アルミノシリケ ート触媒を製造することができる。 揮発性有機化合物等を酸化分解する 方法として有用である。

Claims

請求の範囲
1. 活性酸素発現機構を有する、 活性酸素を包含あるいは吸蔵 した無機化合物であって、 ス一パーオキサイドァニオン (〇2 - ) 及び パーオキサイドァニオン (02 2— ) の両者を包含あるいは吸蔵している ことを特徴とする無機化合物。
2. 上記無機化合物が、 ハイド口ガーネットを熱分解して得ら れるアルミノシリゲートであることを特徴とする請求項 1に記載の無機 化合物。
3. 上記アルミノシリケ一トの組成式が、 C a12 (A l 14_xS i x ) O33+0.5x であり、 X値が 0 <X≤ 4の範囲であることを特徴と する請求項 2に記載の無機化合物。
4. 請求項 1記載の無機化合物を製造する方法であって、 ハイ ドロガ一ネットを 700°C以上 1 200 °C以下で加熱することにより活 性酸素発現機構を有するアルミノシリケ一トを製造することを特徴とす る無機化合物の製造方法。
5. 上記ハイドロガ一ネットの組成式が、 C a3 A l 2 (S i 04 ) 3-γ (OH) であり、 Υ値が 0≤Υ<3の範囲であることを特 徴とする請求項 4に記載の方法。
6. 請求項 1に記載の無機化合物又はその成形体からなること を特徴とする酸化触媒。 '
7. 請求項 1に記載の無機化合物の成形体からなることを特徴 とする部材。
8. 部材が、 排ガス浄化用触媒である請求項 7に記載の部材。
9. 部材が、 固体電解質である請求項 7に記載の部材。
10. 部材が、 酸素吸蔵担体である請求項 7に記載の部材。
1 1. 活性酸素を構造中に包含又は吸蔵するアルミノシリケ一 トを構成成分として含む酸化ないし燃焼触媒であって、 酸化コバルトを アルミノシリケ一ト表面に担持させたことを特徴とする酸化コバルト担
'―卜触媒。
12. 上記アルミノシリケ一トが、 C a12 (A 114_XS i x ) O33+0,gx の組成式 (X値が 0≤X≤4の範囲である) を有する、 請求 項 1 1に記載の酸化コバルト担持アルミノシリケート触媒。
13. 請求項 1 1に記載の酸化コバルト担持アルミノシリケ一 ト触媒を製造する方法であって、 コバルト含有ハイドロガーネットを加 熱分解することを特徴とする酸化コバルト担持アルミノシリケ一ト触媒 の製造方法。
14. コバルト含有ハイド口ガーネットが、 (C a3Y C oY ) A 12 (S i〇4) 3z (OH) 4Zの組成式 (Y値が 0く Y≤0. 1 0、 Z値が 0≤Z≤ 2. 2の範囲である) を有する、 請求項 1 3に記載 の酸化コバルト担持アルミノシリケ一ト触媒の製造方法。
1 5. 上記コバルト含有ハイドロガーネットを 30 0°C以上、 1 000 °C以下で加熱する、 請求項 1 3に記載の酸化コバルト担持アル ミノシリケ一ト触媒の製造方法。
16. 請求項 1 1又は 1 2に記載の酸化コバルト担持アルミノ シリケ一ト触媒、 又はその成形体を用いて、 揮発性有機化合物に代表さ れる被処理物を酸化分解することを特徴とする酸化分解方法。
1 7. 請求項 1 1又は 1 2に記載の酸化コバルトアルミノシリ ケ一ト触媒の成形体からなることを特徴とする部材。
1 8. 部材が、 二輪車の排ガス浄化用触媒である、 請求項 1 7 に記載の部材。
1 9. 部材が、 燃焼排ガス浄化用触媒である、 請求項 17に記 載の部材。
20. 部材が、 酸素吸蔵部材である、 請求項 1 7に記載の部材
PCT/JP2003/010497 2002-08-21 2003-08-20 活性酸素を包含した無機化合物及びその製造法 WO2004018361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03792734A EP1544169A4 (en) 2002-08-21 2003-08-20 ACTIVE OXYGEN CONTAINING INORGANIC COMPOUND AND MANUFACTURING METHOD DAF R
US10/524,833 US7514384B2 (en) 2002-08-21 2003-08-20 Inorganic compound containing active oxygen and process for producing the same
AU2003257608A AU2003257608A1 (en) 2002-08-21 2003-08-20 Inorganic compound containing active oxygen and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-240374 2002-08-21
JP2002240374 2002-08-21
JP2002-246318 2002-08-27
JP2002246318 2002-08-27

Publications (1)

Publication Number Publication Date
WO2004018361A1 true WO2004018361A1 (ja) 2004-03-04

Family

ID=31949550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010497 WO2004018361A1 (ja) 2002-08-21 2003-08-20 活性酸素を包含した無機化合物及びその製造法

Country Status (4)

Country Link
US (1) US7514384B2 (ja)
EP (1) EP1544169A4 (ja)
AU (1) AU2003257608A1 (ja)
WO (1) WO2004018361A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083126A (ja) * 2005-09-20 2007-04-05 Hirosaki Univ 酸素貯蔵物質および自動車排ガス浄化用三元触媒における酸素貯蔵方法
CN103118972A (zh) * 2010-06-16 2013-05-22 原子能和替代能源委员会 纳米粒子在过氧自由基的长期“干燥”储存中的应用
JP2020176025A (ja) * 2019-04-17 2020-10-29 デンカ株式会社 カルシウムアルミノシリケート、及び、水硬性組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056328A1 (en) * 2006-08-21 2009-05-06 Asahi Glass Company, Limited Plasma display panel and method for fabricating the same
JP2012243473A (ja) * 2011-05-17 2012-12-10 Toyota Motor Corp 電極の製造方法
JP5655769B2 (ja) 2011-12-09 2015-01-21 トヨタ自動車株式会社 電極の製造方法
KR102574042B1 (ko) * 2021-09-30 2023-09-07 한국전력공사 산소전달입자 제조용 원료 조성물, 이를 이용하여 제조된 산소전달입자 및 산소전달입자 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058814A (ja) * 1999-08-24 2001-03-06 Koon Sansei Gas Koteika Gijutsu Kenkyu Kumiai ハイドロガーネットの製造法及びハイドロガーネットによる高温酸性排ガスの除去法
JP2002200190A (ja) * 2000-12-28 2002-07-16 National Institute Of Advanced Industrial & Technology 炭化水素及びハロゲン含有有機物燃焼分解除去剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531868B2 (ja) 2000-04-18 2004-05-31 独立行政法人 科学技術振興機構 活性酸素種を包接する12CaO・7Al2O3化合物およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058814A (ja) * 1999-08-24 2001-03-06 Koon Sansei Gas Koteika Gijutsu Kenkyu Kumiai ハイドロガーネットの製造法及びハイドロガーネットによる高温酸性排ガスの除去法
JP2002200190A (ja) * 2000-12-28 2002-07-16 National Institute Of Advanced Industrial & Technology 炭化水素及びハロゲン含有有機物燃焼分解除去剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SATORU FUJITA: "Hydrogarnet ni yoru VOC gas bunkai kassei", DAI 31 KAI SEKIYU-SEKIYU KAGAKU TORONKAI KOEN YOSHI, 2001, pages 231, XP002975113 *
SATORU FUJITA: "Hydrogrossular o mochiita VOC bunkai kassei (second report)", DAI 88 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, 2001, pages 83, XP002975114 *
See also references of EP1544169A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083126A (ja) * 2005-09-20 2007-04-05 Hirosaki Univ 酸素貯蔵物質および自動車排ガス浄化用三元触媒における酸素貯蔵方法
CN103118972A (zh) * 2010-06-16 2013-05-22 原子能和替代能源委员会 纳米粒子在过氧自由基的长期“干燥”储存中的应用
JP2020176025A (ja) * 2019-04-17 2020-10-29 デンカ株式会社 カルシウムアルミノシリケート、及び、水硬性組成物
JP7141361B2 (ja) 2019-04-17 2022-09-22 デンカ株式会社 カルシウムアルミノシリケート、及び、水硬性組成物

Also Published As

Publication number Publication date
EP1544169A4 (en) 2010-02-24
EP1544169A1 (en) 2005-06-22
US7514384B2 (en) 2009-04-07
US20060045834A1 (en) 2006-03-02
AU2003257608A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US6338830B1 (en) Absorbent and/or catalyst and binder system and method of making and using therefor
JP5469169B2 (ja) 吸着材料、及び炭化水素ガスの脱硫方法
JP4635197B2 (ja) 排ガス浄化用酸化触媒及びその製造方法
KR100836907B1 (ko) 디젤엔진 배기가스 중 질소산화물의 흡장-환원 제거용전이금속 치환 하이드로탈사이트 촉매
Levasseur et al. Interactions of NO2 at ambient temperature with cerium–zirconium mixed oxides supported on SBA-15
Feng et al. Urea-modified Cu-based materials: Highly efficient and support-free adsorbents for removal of H2S in an anaerobic and dry environment
JP4210750B2 (ja) 活性酸素を包含した無機化合物及びその製造法
WO2004018361A1 (ja) 活性酸素を包含した無機化合物及びその製造法
Zhang et al. Investigation of defect-rich CeO2 catalysts for super low-temperature catalytic oxidation and durable styrene removal
JP2012512018A (ja) 水を含有するガス流から夾雑物を除去する方法
Boycheva et al. Advanced high-iron coal fly ash zeolites for low-carbon emission catalytic combustion of VOCs
Yang et al. Removal of elementary mercury by solid sorbents at different temperatures: Variation of the desorption activation energy through thermal desorption analysis
Feng et al. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane
Wang et al. Highly efficient catalytic adsorbents designed by an “adaption” strategy for removal of elemental mercury
Ma et al. Influence of preparation method on the adsorptive performance of silica sulfuric acid for the removal of gaseous o-xylene
KR100771230B1 (ko) 이산화탄소 흡착제와 촉매를 함유하는 세라믹 화이버지지체 및 이의 제조방법
JP2006083009A (ja) 活性酸素を包含あるいは吸蔵した無機化合物材料及びその製造方法
EP2158965B1 (en) Method for photooxidation of carbon monoxide in gas phase into carbon dioxide
JP4281061B2 (ja) 活性酸素吸蔵物質及びその製造方法
Wang et al. High-efficiency palladium/halloysite nanotubes catalyst for toluene catalytic oxidation: Characterization, performance and reaction mechanism
Yi et al. High efficient removal of HCN over porous CuO/CeO2 micro-nano spheres at lower temperature range
JP4217784B2 (ja) 酸化コバルト担持アルミノシリケート触媒及びその製造法
Soltan et al. Modification of Fe on hydrophobic ZSM-5 zeolite: Optimization of adsorption and catalytic performance for decomposition of VOCs at low-temperature
JP3475204B2 (ja) 炭化水素及びハロゲン含有有機物燃焼分解除去剤
JPH11104491A (ja) COおよびNOxの酸化触媒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003792734

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003792734

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006045834

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524833

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10524833

Country of ref document: US