WO2004016782A1 - 複数の蛋白質の間の相互作用を測定する方法 - Google Patents

複数の蛋白質の間の相互作用を測定する方法 Download PDF

Info

Publication number
WO2004016782A1
WO2004016782A1 PCT/JP2003/010386 JP0310386W WO2004016782A1 WO 2004016782 A1 WO2004016782 A1 WO 2004016782A1 JP 0310386 W JP0310386 W JP 0310386W WO 2004016782 A1 WO2004016782 A1 WO 2004016782A1
Authority
WO
WIPO (PCT)
Prior art keywords
fragment
protein
phage
host
vector
Prior art date
Application number
PCT/JP2003/010386
Other languages
English (en)
French (fr)
Inventor
Hiroshi Ueda
Teruyuki Nagamune
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to US10/524,564 priority Critical patent/US20060252028A1/en
Priority to AU2003266502A priority patent/AU2003266502A1/en
Priority to EP03788129A priority patent/EP1536005A4/en
Priority to JP2004528888A priority patent/JP4359682B2/ja
Publication of WO2004016782A1 publication Critical patent/WO2004016782A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1055Protein x Protein interaction, e.g. two hybrid selection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Definitions

  • the present invention relates to a method for measuring an interaction between proteins, particularly an interaction between a VH fragment and a VL fragment of an antibody variable region. Furthermore, the present invention relates to a vector constructed for use in the method.
  • the present inventors have developed an open sandwich ELISA method, which is a novel immunoassay method for indirectly measuring antigen concentration by measuring the interaction between VH / VL of an antibody. 7 8 4 3 6 A variety of immunoassays utilizing the specificity of antigen-antibody reactions can detect trace amounts of substances in a mixture with high sensitivity.However, this open sandwich ELISA method is more effective than the conventional sandwich ELISA method. It has the advantage that the operation is simple and the unit price antigen can be measured.
  • FIG. 1 is a schematic diagram showing the concepts of the sandwich ELISA method (A) and the open sandwich ELISA method (B) proposed by the present inventors.
  • sandwich ELISA method (A) a primary antibody against the antigen to be measured is immobilized on a solid phase, and a solution containing the antigen and an enzyme-labeled secondary antibody are sequentially added and washed.
  • the open sandwich ELISA method (B) the VL of the antibody against the target antigen is immobilized, and the antigen solution and the enzyme-labeled VH are simultaneously added and quantified by the enzyme activity.
  • the washing operation can be shortened by one time as compared with the sandwich ELISA method.
  • the antibody fragments VH and VL used in open sandwich ELISA require conditions such as i) high affinity for the antigen, and u) weak interaction between VH and VL in the absence of the antigen. is there. Therefore, prepare an antibody fragment that satisfies this condition for the antigen to be measured. Is necessary.
  • this method needs to be a system that can measure a wide range of antigens. Therefore, if it is possible to establish a system that can quickly and easily screen a large number of antibody libraries from those that satisfy the above conditions for all antigens, open sandwich ELISA is practical. It will be useful for '
  • phage display technology In phage display technology, the VH and VL fragments of the variable region of various antibodies are simultaneously displayed on the filamentous phage particles, and the antigen-binding ability of the antibody is evaluated based on the binding ability with the antigen. This is a technique for selecting an antibody with a high affinity.
  • the library is expressed and displayed as a fusion protein on the surface of pill or pVIII which is a coat protein of filamentous phage such as M13, fd.
  • Figure 2 shows the outline of the fuzzy display method using pills.
  • a phagemid vector having a random sequence introduced upstream of the genelll encoding the phage coat protein pill is constructed.
  • a phage displaying a protein containing a random sequence in the pill can be obtained. From the phage library thus prepared, target molecules can be screened to select those that specifically bind.
  • Phage with high binding activity can be selected by loading the library with the target molecule-immobilized system and performing binding, washing, and elution operations (banning, panning).
  • the recovered phage is infected with E. coli (E.coH), amplified, and injected into the next cycle.
  • E.coH E. coli
  • the ratio of binding phage in the library can be effectively increased. Can be raised.
  • the advantages of this selection system are that the phenotype and the genotype are linked, making it easier to sequence the selected protein, and efficiently enriching the target protein due to the amplification process during screening And the ability to separate proteins by changing the infected host.
  • the displayed proteins include a wide variety of proteins, such as random peptides with a few short residues, antibody fragments, proteases, human growth hormone, and nucleic acid binding proteins.
  • FIG. 3 shows a schematic diagram of the conventional method of presenting antibody fragments in a single-chain form (A) and the method of presenting the above VH ′ VL fragments separately (B).
  • a naive library made from V genes of non-immunized animals and a hypervariable region of a naive library are artificially created.
  • the main examples are a synthetic library into which a mutation has been introduced (Synthetic library) and an immunization library (Immunized library) prepared by using an animal immunized with the target antigen.
  • naive library uses the IgM antibody V gene before affinity maturation occurs due to antigen stimulation, in principle, antibodies against various antigens can be selected. Since no operation is required, there are advantages such as the construction of a library of humanized antibodies. On the other hand, it is indispensable to increase the size of the library in order to improve the affinity. There is a rit. Synthetic libraries are those in which mutations are introduced into the CDRs of a naive library by site-directed mutagenesis or PCR techniques to control diversity.
  • the immunization library has the advantage of obtaining a library with extremely high antigen specificity and binding activity because antibody genes are collected from mice previously immunized with the target antigen.
  • disadvantages such as a long period of time (1 to 3 months) for immunization, toxic molecules for which an immune response is impossible, difficulties in obtaining antibodies against self molecules, and difficulty in preparing human-type antibodies. .
  • the VH and VL fragments of the variable regions of various antibodies have been simultaneously displayed on the particles of M-like phage, and the fibrous phage displaying the antibody fragments and the antigen .
  • a fuzzy presentation technique For selecting an antibody having a high binding ability by evaluating the antigen-binding ability of the antibody based on the binding ability (a fuzzy presentation technique) have been proposed.
  • the antigen binding ability of the entire antibody variable region including both the VH fragment and the VL fragment can be evaluated, but the interaction between VH / VL cannot be evaluated.
  • the present invention provides the following: (1) a DNA sequence encoding one protein or a fragment thereof; (2) displaying the one protein or a fragment thereof on a phage. (3) a DNA sequence encoding another protein or a fragment thereof, (4) a stop codon enabling display switching by the host, and (5) the other protein ⁇ At least the above five DNA sequences of the DNA sequence encoding the protein for displaying the fragment on the phage are subjected to (1), (2), (3), (4) ( (5) or (3) (4) (5) (1) (1) (2) If the host has a stop codon that enables the presentation to be switched by the host, When-is introduced into a sublesser mutant host, a two-protein display type phage that displays both the one protein or its fragment and the other protein or its fragment on it is provided.
  • the protein-presenting fuzzer which presents only the one protein or a fragment thereof thereon and the non-sublesser strain host A vector characterized by providing the other protein or a fragment thereof secreted into the culture supernatant.
  • the present invention also provides, as a second means for solving the above problems, a method for measuring an interaction between one protein or a fragment thereof and another protein or a fragment thereof, as described below.
  • Transformation of a non-sublesser strain host using the above-mentioned vector 1 results in a 1-protein display type phage in which only the one protein or a fragment thereof is displayed thereon; Obtaining a culture supernatant containing the other protein or a fragment thereof secreted from the non-sublesser one strain host,
  • the present invention also provides, as a third means for solving the above-mentioned problems, the following method for obtaining an antibody variable region in which the interaction between a VH fragment and a VL fragment changes due to the presence of an antigen. hand,
  • VL fragment or the VH fragment in the culture supernatant is immobilized on a suitable carrier
  • the binding capacity between the VH fragment and the VL fragment is evaluated by measuring the solidification amount of the phage by an immunoassay using a labeled anti-phage antibody;
  • the antigen If the binding ability between the VH fragment and the VL fragment in the presence of the antigen is at least twice the binding ability between the VH fragment and the VL fragment in the absence of the antigen, the antigen The method of determining that an antibody variable region in which the interaction between the VH fragment and the VL fragment changes due to the presence of the antibody variable region is obtained.
  • FIG. 1 is a schematic diagram showing the principle of sandwich ELISA and open sandwich ELISA.
  • FIG. 2 is a schematic diagram showing the principle of the phage display method.
  • FIG. 3 is a schematic diagram showing the principle of a method of presenting an antibody fragment in a single-chain form and a method of presenting VH ′ VL fragments separately.
  • FIG. 4 is a schematic diagram showing the sequence of the phagemid vector pKS.
  • FIG. 5 is a graph showing the results of examination of antibody presentation by ELISA.
  • FIG. 6 is a graph showing the results of examining the antigen binding activity by ELISA.
  • Figure 7 shows the results of the scFv-type and spilitFv-type phages displaying HyHELlO.
  • FIG. 4 is a graph showing the results of examining HEL binding activity by ELISA at a phage concentration of I 0 cfu / ml.
  • Figure 8 shows that scFv-type and spilitF-type phage displaying HyHELlO
  • FIG. 9 is a graph showing the results of examining the HEL binding activity by ELISA at a phage concentration of 9 cfu / ml.
  • FIG. 9 is a graph showing the results of performing an open sandwich ELISA on pKSl (HyHEL10) / sup +.
  • FIG. 10 is a schematic diagram showing the presentation switching mechanism in this experimental system.
  • FIG. 11 is a graph showing the results of an open sandwich ELISA using HyHEL10 and D1.3.
  • FIG. 12 is a graph showing the ratio of positive clones when performing the baning.
  • FIG. 13 is a schematic diagram showing the process of preparing a HyHEL-10 type or D1.3 type split Fv fragment.
  • FIG. 14 is a schematic diagram showing the process from preparation of a phage library to selection of a clone having high HEL binding ability.
  • FIG. 15 shows the relationship between the binding ability to HEL and the suitability for open sandwich.
  • FIG. 16 is a diagram showing the relationship between the binding ability to HEL and the VH Vl interaction. Detailed description of preferred embodiments "
  • the present invention is a novel method that enables the measurement of the interaction between VH / VL in a cub.
  • the method of the present invention enables selection of an antibody more suitable for the purpose used in the open sandwich ELISA method.
  • the present invention relates to a phagemid vector for incorporating an antibody cDNA fragment, a suppressor Escherichia coli or a non-subpressor Escherichia coli transformed by the vector, and a culture comprising a phage prepared by infecting the phage and a soluble antibody fragment. Consist of supernatant.
  • a phagemid vector containing the antibody variable region cDNA capable of binding to the target substance (antigen) and the VH and VL fragments is prepared.
  • an antibody fragment whose phage binding amount changes significantly due to the presence of the antigen.
  • Such an antibody fragment is considered to greatly change the interaction between VH7VL due to antigen binding, and is suitable for performing an open sandwich ELISA. If the interaction between the VH and VL fragments of the antibody variable region changes by a factor of two or more due to the presence of the antigen, such an antibody fragment can be used for this purpose (Suzuki et al. al., Anal. Biochem., 286, 238-246 (2000)).
  • the phagemid vector is a plasmid prepared so as to contain a part of the filamentous phage genome, it is necessary to transform Escherichia coli using the phagemid vector and then infect the phagemid phage. As a result, a coat protein for particle formation is supplied, and a phage in which helper phage particles and phagemid particles are mixed is obtained.
  • the helper phage used in this case is particularly preferably, but not limited to, the M13KO7 helper phage used in the examples described below.
  • the term “display switching” means that when introduced into a sublesser mutant host, both the “one protein” and the “other protein” are displayed on a phage, When introduced into the host, one protein Presented above, it refers to the phenomenon of switching to secreting another protein.
  • a phage displaying both proteins is referred to as a “two-protein display type phage”
  • a phage displaying one protein on a phage is referred to as a “one-protein display type phage”.
  • the “1 protein display type phage” is obtained, the “one protein” is displayed on the “1 protein display type phage” and encodes the “other protein”.
  • the gene is expressed in E. coli and secreted out of the cells.
  • VH VL display type phage a phage displaying both a VH fragment and a VL fragment
  • the VH fragment is displayed on the phage and the VL fragment is secreted into the culture supernatant from E. coli.
  • VL-presentation type culture supernatant The case where VH fragments are secreted into the culture supernatant is referred to as “VL-presentation type culture supernatant”, respectively.
  • the above presentation switching is made possible by the presence of a stop codon that enables presentation switching.
  • the amber codon used in the examples below is particularly preferred.
  • Amber codon is a TAG codon which is one of the protein synthesis termination codons.
  • the stop codon used in the present invention is not limited thereto, and other stop codons such as opal codon (TGA) and oka codon (TAA) can also be used for the same purpose.
  • Opal The presentation can be switched by introducing codons into a sublesser mutant host that causes opal subduction, or by introducing ocher codons into a sublesser mutant host that causes occlusion. It is.
  • a bacterium having sup E or glaV can be used as a sublesser mutant host, such as E. coli TGI, XLl-Blue, DH5a, JM109, and NM522.
  • examples of the non-suppressor host include Escherichia coli JM105, NV1184, and HB2151.
  • the sublesser mutant host and the non-suppressor host used in the present invention need to carry the F 'plasmid capable of infecting the filamentous phage, but are limited to those described above. Rather, it can be changed to another host with an equivalent function.
  • the vector used in the method of the present invention includes (1) a DNA sequence encoding one protein or a fragment thereof, and (2) a protein for displaying the one protein or a fragment thereof on a phage.
  • the vector may have (1) (2) (3) (4) (5) in that order or (3) (4) (5) (1) (2).
  • a vector having such a configuration presents the above-mentioned "one protein” on a fuzz.
  • a stop codon that enables display switching exists between "a DNA sequence encoding another protein or a fragment thereof” and "a DNA sequence for displaying the other protein or a fragment thereof on a phage". Therefore, when introduced into a non-sublesser one strain host, the “other protein” is not expressed on the phage as a fusion protein, but is secreted into the culture supernatant by switching the display.
  • the DNA sequence that can be used as the “DNA sequence encoding a protein for displaying a protein or a fragment thereof on a phage” is preferably a fibrous DNA sequence that encodes the surface protein of the virus.
  • examples thereof include DNA sequences encoding pVII protein, pIX protein, pill and pVIII, which are DNA sequences encoding fibrous phage surface proteins, and particularly preferred are the following. It is a DNA sequence encoding the pVII protein or pIX protein of the filamentous phage used in Examples.
  • the present invention is not limited thereto, and a DNA sequence encoding another phage surface protein can also produce a fusion protein with the target protein of the DNA sequence, and the object of the present invention is not limited to this. As long as it encodes a protein that can be used for this purpose, it can be appropriately selected and used.
  • the method of the present invention is particularly advantageous for measuring the interaction between the VH and VL fragments of an antibody.
  • the dimer is formed by presenting the multimeric protein on a fibrous phage. It can be used to evaluate the interaction between the monomers in question.
  • measuring the interaction between a specific monomer “one protein” and a different monomer “other protein” is important not only for basic research but also for clinical diagnostic purposes. It is also important.
  • “one protein” and “other protein” are not to be understood as being limited, and the method of the present invention makes it possible to measure the interaction between proteins. It provides a new technology.
  • the following measurement kit is prepared. It is possible.
  • VL fragment Immobilize the VL fragment in a tube or microplate using the biotin-avidin interaction or physical adsorption.
  • a fusion protein of a VH fragment and a repo overnight enzyme (eg, alfa phosphatase) is prepared, and this is brought into contact with a sample for a certain period of time with a solid phase on which VL is immobilized. 3) After washing, measure the immobilized enzyme activity and use it as an indicator of the antigen concentration in the sample.
  • a repo overnight enzyme eg, alfa phosphatase
  • VH fragment and the VL fragment are expressed in Escherichia coli as fusion proteins with two enzyme fragments (eg, LacZAa and LacZAco), each of which has no activity by itself or low activity, but whose activity increases when placed in close proximity. Keep it.
  • two enzyme fragments eg, LacZAa and LacZAco
  • the target to be measured by the method of the present invention may be, firstly, specific proteins, peptides, various hormones, narcotics or therapeutic drugs in serum in clinical tests.
  • chemical substances and pesticides which are suspected to be toxic, such as dioxin, bisphenol-8, nonylphenol, etc., in environmental water are also measured by the present invention.
  • a screening model system was constructed using the anti-HEL (Hen Egg-White Lysozyme) antibody, HyHEL-10, to demonstrate experimentally that the proposed system works.
  • the high avidity phage obtained above is infected with a non-suppressor strain, such as E. coli HB2151, and rescue by helper phage, VH-displayed phage and free VL
  • the fragments are obtained in the culture supernatant.
  • the amber codon is correctly recognized as a stop codon, and the resulting phage presents only VH.
  • An omp A sequence which is a secretion signal, is located upstream of VL, and is secreted out of the cells in the same manner as phage particles.
  • the necessary fragments were prepared by polymerase chain amplification (PCR) and ligated together to prepare the target phagemid vector.
  • the PCH conditions are summarized in Table 1 below.
  • the reaction conditions were 5 min.xl at 94 ° C, (94 ° C 30 sec, 55 ° C 30 sec, -72 ° C lmin.) ⁇ 35,72 ° C 8min.xl, and all DNA polymerases are 2.5 units / 100 ⁇ KOD polymerase (Toyobo, Osaka).
  • VH-linker-VL M13RV Reverse SEQ VH-linker, linker-VL
  • Plasmid pFLAG-ATS (Sigma-Aldiicli) was used as type II, and the E. coli ompA secretion signal sequence and the: FLAG analog sequence located at the N-terminus of VL were amplified by PCR.
  • the primer sequence was designed such that restriction enzyme sites XbaI and SalI were introduced on the 5 'and 3' sides of the amplified fragment, respectively.
  • the amplified gene VII fragment was cut with EcoRI and Kpnl to cut into pBlueScript II KS + (Ibyobo), and the gene IX fragment was cut with Xhol and Xbal and cloned into pHSG397 / ompA-FLAG to confirm the sequence. (Hereinafter pBS_g7 and pHSG397 / ompA-g9).
  • VH-linker and linker-VL were amplified by overlap-extension; PCR. Further, a VH-linker-VL fragment was obtained by one-overlap-extension PCR of VH-linker and linker-VL. This fragment was digested with NcoI and NotI at both ends.
  • the phagemid vector pKSl was constructed on pScfV3 modified from pKl (Kristensen, P., and Winter, G. (1998) Folding & Design 3, 321-328). First PCR method by anti ⁇ Shi serum albumin (BSA) -. Phage Midobekuta one p iT that this chain antibody (scFv) co one de (l3CG2) (de Wildt, ⁇ ⁇ ⁇ , Mundy, C.
  • Escherichia coli transformed with the constructed phagemid pKSl (ampicillin resistance) was cultured at 37 ° C in 100 mL of 2TYAG medium (2TY + ampicillin: 100 g / pL, glucose: 2%) at 37 ° C until the logarithmic growth phase was reached.
  • 20 equivalents of the helper phage M13K07 was added to 10 mL of the culture solution with respect to the cell mass.
  • the cells were resuspended in TE (10 mM Tris-HCl, ImM EDTA, pH 8.0). After centrifugation again, the supernatant was recovered to obtain a phage solution. The titer of the obtained phage was measured (later, the concentration of the phage particles was determined by the colony forming ability (cfu, colony forming unit / mL).
  • Escherichia coli Amber Sublessa strain TG-1 and XL-lBlue were transformed with the plasmid pKSl to obtain both VH and VL display types in which VH was displayed in IX and VL was displayed in pVII.
  • Escherichia coli non-sublesser strain HB2151 was transformed with pKSl to obtain a phage showing VH in pIX and not showing VL, and a phage solution containing a free VL fragment.
  • phage The step of precipitation with PEG NaCl was omitted and the culture supernatant was used as is. Phage titer measurement
  • phage solution 1 obtained by diluting the stock solution 1000 times with PBS was added to 100 L to 1 mL of Escherichia coli TGI cultured in 2 ⁇ medium until the logarithmic growth phase, and the mixture was allowed to stand at 37 ° C for 30 min. For infection. After dilution with 2TY medium, lTYiL from each dilution was spotted on a 2TYAG plate. After standing overnight, the number of colonies formed in each spot was counted, and the number of colonies formed from 1 mL of the phage stock solution was calculated and used as an index of phage concentration. Phage ELISA
  • Microplate was washed 3 times with PBST, the reaction was initiated by addition previously prepared enzyme reaction solution (5 OmL lOOmM sodium acetate pH6.0, TMBZ (in DMSO) 500pL , H 2 0 2 10pL) to each well . After reacting in the dark for 10 to 30 min., The reaction was stopped by adding 50 ⁇ L of 3.2 NH 2 S04, and the absorbance was measured with a plate reader (450 nm, control: 650 nm).
  • enzyme reaction solution 5 OmL lOOmM sodium acetate pH6.0, TMBZ (in DMSO) 500pL , H 2 0 2 10pL
  • the basic operation was performed in the same manner as in the above-mentioned phage ELISA.
  • a primary antibody (aFLAG-M2 or amyc 9E10) that immobilizes tagged VL is immobilized on a microplate and blocked, and a known concentration of antigen (HEL, 0.6 to 10 iig / mL) is prepared in advance.
  • 100 mixed phage solutions (in 1% MPBS) were added and left at 37 ° C for lh. Thereafter, the enzyme activity of the HRP-labeled anti-phage antibody was measured by absorbance in the same manner as in the phage ELISA.
  • Myc tag is incorporated at the N-terminus of VL displayed on the phage and FLAG tag is incorporated at the C-terminus, and phage ELISA was performed using antibodies against these tags to confirm the display of antibody fragments. . As a result, it was suggested that at least the VL fragment was sufficiently displayed.
  • Figure 5 shows the results of the confirmation of the presentation.
  • FIG. 7 shows the result at 10 10 cfu / ml
  • FIG. 8 shows the result at 10 9 cfu / ml.
  • the constructed vector pKSl was transformed into E. coli HB2151, which is a non-subpressor strain, and rescued with M13KO7 helper phage to produce phage.
  • the resulting phage displays only VH, and VL is secreted together with the phage into the culture supernatant.
  • the titer was measured and used for the subsequent experiments. Confirmation of change of presentation by non-sublesser stock
  • Open sandwich ELISA was performed using the culture supernatant directly in the antigen (HEL) concentration range of 0 to 10 ⁇ / mL to confirm whether the presentation by amber was sufficiently switched by the non-sublesser strain.
  • HEL antigen
  • a concentration-dependent increase in HEL-specific signal was observed, indicating that the switching was sufficiently occurring. It was also suggested that sufficient secretion of VL was performed.
  • FIG. Fig. 10 is a schematic diagram showing the presentation switching mechanism in this experimental system.
  • phage are prepared by culturing each clone showing a strong binding to an antigen selected from the VH / VL-displaying phage library in a 96-well plate.
  • the phage concentration of the culture supernatant in the mouse was not so different at any position of the well and was of the order of 10 2 , suggesting that screening could be performed directly by the open sandwich ELISA.
  • the disadvantage of the pKSl prepared in the previous section is that it does not have a 6-base recognition Ncol site recorder upstream of VH as a restriction enzyme site for antibody cloning, and it is difficult to insert a gene fragment having an Ncol cleavage site inside. was there.
  • pKS2 a vector that can be used for cloning with 8-col recognition Sfil in addition to Ncol, was prepared.
  • PKSl HyHEL-10 was digested with Ncol and EcoRE, and the 0.8 k insert fragment was ligated into a phagemid vector pCantab5E (Amersham Bioscience) digested with Ncol and EcoRL and incorporated.
  • the phagemid vector pKS2 was cleaved at the Sapl site upstream of the Lac promoter, and the following four oligonucleotides were phosphorylated and annealed, and the evening-mine-yuichi gene was inserted.
  • pKS2T was cut at the EcoRI site downstream of the fusion gene, and the following two primers and a terminator gene created by annealing tHP2 and tHP3 were inserted.
  • D1.3 Fv gene as template As above: Split Fv gene was prepared by PCR and incorporated into pKST2 '. HB2151, a non-subpressor strain, was transformed, and a culture supernatant containing VH-displaying phage and secreted VL was prepared using helper phage M13K07.
  • a phage with the desired specificity was prepared from a mixture of two phage antibodies with different specificities. An attempt was made to concentrate the antibody by the Banning method.
  • pKST2 -H10 H 10
  • pKST2_31IJ3 capable of presenting anti-fluorescein split Fv
  • phages were prepared in the same manner. Banning was performed using a microplate on which L was fixed. Then, monoclonal phages were prepared from 48 clones, and the binding ability to HEL was measured by ELISA for each.
  • HyHEL-10 is suitable for the open sandwich method for antibodies against the same HEL, but D1.3, which has a strong VH / VL interaction, is not. If the residues involved in the VH VL interaction can be identified, the open sandwich method can be applied to more antibodies by substituting those residues with amino acids of the antibody to which the open sandwich method can be applied. Is expected to be possible. In addition, there has been no example in which the relationship between the VH / VL interaction and antigen-binding ability and the sequence of the antibody framework region has been systematically examined.
  • PCR was performed by the following method.
  • Phagemid (pKST2 HyHEL-10A) having a split Fv fragment of HyHEL-10 in which the FLAG tag of pKST2 was moved from the N-terminus of VL to the C-terminus of VH was used as the type II of the PCR reaction.
  • a linker for converting these two DNA fragments into a split Fv fragment was also amplified.
  • using pKST2 HyHEL-10A as a template from the 49th Gly (H49) located in the CDR2 region of VH to the C-terminal of VH, 37th Gin (Frag, gK, OmpA, 37th Gin ( DNA fragments up to L39) (below: linker
  • FR2 H101inkRV was used for the reverse primer
  • HlOlinkFR was used for the forward primer
  • the reaction was started at 94 ° C for 5 minutes using Ex T ⁇ (Takara Bio) as the DNA polymerase, and 35 cycles of 94 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 35 minutes. After reaction at 72 ° C for 5 minutes, the reaction was terminated at 4 ° C.
  • VH FR2, VLFR2, and linker (FR2) were assembled into one DNA fragment by overlap extension PCR.
  • the split Fv fragment thus amplified was treated with NcoI and Notl, incorporated into vector pKST2 treated with NcoI and Notl, and transformed into E. coli TG-lsup + .
  • the reaction solution was applied to a YTAG plate (Ap: 100 / mL, Glucose: 1%), and cultured at 30 ° C. Colony PCR was performed from the resulting colonies.
  • a clone in which insertion of the split Fv fragment was confirmed was inoculated from a replica plate, and cultured at 37 ° C overnight with shaking. Plasmid purification was performed from the obtained bacterial cell solution by the alkaline SDS method.
  • FIG. 13 is a schematic diagram showing the preparation of a split Fv fragment in which each residue of the FR2 region of HyHEL-10 is HyHEL-10 type or D1.3 type.
  • the above split Fv fragment was prepared in large quantities. Then, 2.13 pmol of vector-1 (pKST2) and 21.3 pmol of the imported DNA fragment (split Fv fragment with mutation introduced into the FR2 region of HyHEL-10) were mixed, and the whole amount of l / 2vol. Ligation High (Toyobo) was added, and the mixture was allowed to stand at 16 ° C. for 2 hours, and subjected to ligating. Next, the transformation was performed by the electoral-portion method. Before the exchange, desalting was performed by ethanol precipitation. Specifically, ⁇ / lOvol. Of 3M sodium acetate, 2 L of Pellet Paint Co-Precipitant (Merck, Tokyo) and 2 vol.
  • the desalted DNA solution lO ⁇ L and E. coli 100 L were mixed, transferred to a cuvette, and a voltage was applied using Easyject (EquiBio). Thereafter, 900 L of 2YT liquid medium was added to the cuvette, suspended, transferred to a microtube, and cultured at 37 ° C for 30 minutes. The same operation was performed on the remaining 10 L of the desalted DNA solution. After the culturing, 1 L of the culture solution was diluted with 99 XL of 2YT liquid medium, and 10 L of this was diluted 10-fold with 90 L of 2YT liquid medium, and this operation was repeated twice.
  • Biobanning was performed once or twice for the antigen HEL.
  • Monoclonal monophasic ELISA was performed to obtain a clone specifically binding to HEL from a phage population having a high ability to bind to HEL obtained by biopanning.
  • ELISA was performed using the phage culture supernatant from a total of 1536 clones, and 72 clones in which the absorbance of the HEL-immobilized well was 0.3 or more and the absorbance was 5 times or more the absorbance of the blank, and HEL We decided to further investigate whether the binding to is specific.
  • Plasmid purification was performed from the obtained bacterial cell solution by the alkali-SDS method. The sequence was confirmed using ABI PRISM 3100 Genetic Analyzer and BigDye Terminator Cycle Sequencing Kit. As primers, M13RV and OmpARV were used.
  • FIG. 14 shows the flow from the preparation of a phage library to the selection of a clone having a high binding ability to HEL.
  • the titer of the phage was adjusted to 2.5 ⁇ 10 8 , 1 ⁇ 10 9 , 4 ⁇ 10 9 (cfu / ml), and HEL and ELISA were performed on the blanks. It specifically bound, and its binding ability varied from weak to equivalent and strong compared to WT. Use the value obtained by subtracting the absorbance of the blank from the absorbance of the HEL-fixed well when ELISA was performed at lX10 9 cfu / ml and dividing by the WT value as an indicator of the binding ability to HEL. It was to be.
  • the value obtained by subtracting the absorbance of the blank from the absorbance of the 9E10-fixed well was used as an indicator of the strength of the VH / VL interaction.
  • the clones were sorted in ascending order of this value and compared with the amino acid sequence in the FR2 region. . If this value is 0.5 or more, Those with a strong effect and less than 0.5 were classified as having a weak VH / VL interaction. Even in this case, the amino acid sequence of H39 had a significant effect, and H39 was a D1.3 type Q in 17 of the 19 clones determined to have a strong VH / VL interaction. Of the 17 clones determined to have weak VL interaction, 13 clones were HyHEL-10 type K. That is, this experiment suggested that the amino acid residue at position VH39 (H39) is deeply involved in the determination of the open sandwich method and for determining the strength of VH / VL interaction.
  • Figure 15 shows the relationship between HEL binding ability and open sandwich suitability.
  • Figure 16 shows the relationship between HEL binding ability and VH / VL interaction.
  • the black circles show the results of HyHEL-10 type (K) for H39, the white squares show the type after D1.3 (Q), and the black triangles show the wild type.
  • the 39th VH is also strongly involved in the strength of the VH / VL interaction and its suitability for measurement by the open sandwich method, and the KH of HyHEL-10 type has a weak VH / VLV interaction. It is suitable for measurement by the open sandwich method, and the D1.3 type Q has a strong VH / VL interaction, indicating that it tends to be unsuitable for measurement by the open sandwich method. This is thought to be mainly due to the ability to form hydrogen bonds with the 38th (L38) Q of VL.
  • a randomized antibody Fv library is selected using the split Fv system, and a large number of clones, including those with higher antigen affinity than the wild type and those more suitable for the open sandwich method, can be obtained. It was shown. The results also revealed the characteristics of antibodies suitable for the open sandwich method.
  • the present invention has provided a novel method for measuring the interaction between VH and VL fragments of an antibody variable region.
  • the method of the present invention can be widely used for detecting an interaction between proteins.
  • a phagemid is prepared by transforming E. coli sublesser strain E. coli with a phagemid vector having an amber codon
  • both the VH and VL fragments are displayed on the phage particles.
  • phage was prepared by transforming Escherichia coli non-amber repressor strain, only the VH fragment was displayed on the phage particles due to the presence of the amber codon.
  • a presentation switch occurs during secretion in Qing.
  • the VL fragment secreted into the culture supernatant is immobilized on a solid phase, and the interaction between the VH fragment and the VL fragment is quantified, whereby the interaction between the VH fragment and the VL fragment is determined. Can be measured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明により、抗体可変領域のVH断片とVL断片の間の相互作用を測定するための新規な方法が与えられた。本発明の方法は蛋白質の間の相互作用を検出する目的で、広く使用することが可能である。本発明の方法に従って、アンバーコドンを有するファージミドベクターによってアンバーサプレッサー株大腸菌を形質転換してファージを調製すると、VH・VL断片の両者がファージ粒子上に提示される。一方非アンバーサプレッサー株大腸菌を形質転換してファージを調製した際には、アンバーコドンが存在するために、VH断片のみがファージ粒子上に提示されてVL断片は培養上清中に分泌されるという提示切り替えが起こる。培養上清中に分泌されたVL断片を固相に固定化し、ファージ上に提示されたVH断片との相互作用を定量化することにより、VH断片とVL断片の間の相互作用を測定することが可能である。

Description

明 細 書
複数の蛋白質の間の相互作用を測定する方法
発明の背景
1. 本発明の分野
本発明は、 蛋白質の間の相互作用、 特に抗体可変領域の VH断片と VL断片の 間の相互作用を測定するための方法に関する。 更に本発明は本方法に使用するた めに構築されたベクターに関する。
2. 背景技術
本発明者らは、 抗体の VH/VL間の相互作用を測定することで間接的に抗原濃 度を測定する新規免疫測定法である、オープンサンドィツチ ELISA法を開発し、 特開平 1 0— 7 8 4 3 6において開示した。 抗原 ·抗体反応の特異性を利用した 様々な免疫測定法によって、 混合物中の微量の物質を高感度で検出することがで きるが、 このオープンサンドィツチ ELISA法は、 従来のサンドィツチ ELISA 法に比べて操作が簡便であり、 また単価抗原の測定が可能であるといったメリッ 卜を有する。
図 1にサンドイッチ ELISA法 (A) と、 本発明者が提案したオープンサンド ィツチ ELISA法(B)の概念を示す模式図を示す。サンドィツチ ELISA法(A) においては、 測定対象の抗原に対する 1次抗体を固相上に固定し、 抗原を含む溶 液と酵素標識した 2次抗体を順次添加して洗浄し、 酵素活性により抗原濃度を定 量する。 一方、 オープンサンドイッチ ELISA法 (B) においては、 対象の抗原 に対する抗体の VLを固定化し、 抗原溶液と酵素標識した VHを同時に添加して 酵素活性により定量する。 本方法においてはサンドィツチ ELISA法と比較して 洗浄操作が一回短縮できる。
ォ一プンサンドイッチ ELISAに用いる抗体断片 VH,VL には、 i)抗原に対して 高い親和性を持つ、 u)抗原非存在下で VH,VLは相互作用が弱い、等の条件が必 須である。 よって、 測定対象の抗原に対してこの条件を満たす抗体断片を調製す ることが必要となる。 将来的にオープンサンドィツチ ELISAを測定法 ·検出系 として確立するには、 本方法は広範囲の抗原にわたって測定可能な系である必要 がある。 よって、 あらゆる抗原に対して上に述べた条件を満たすものを、 膨大な 抗体ライブラリ一から迅速 ·簡便にスクリ一ニングすることができる系を確立す ることができるならば、 オープンサンドイッチ ELISAを実用化するために役に 立つと思われる。 '
即ち、オープンサンドイッチ ELISAの実用化にあたり、抗体の抗原結合能と、 抗原の存在下、 非存在下での VH VL相互作用を迅速に測定できる系を利用する ことが極めて望ましく、 本発明はこれを可能とする。 本発明はまた、 ライブラリ —中から応答性のより高い抗体の選択を可能にすることも目的としている。 一方、 ファージ提示技術がこれまでに複数提案されている。 ファージ提示技術 は、 各種抗体の可変領域の VH断片と VL断片を繊維状ファージの粒子上に同時 に提示し、 これと抗原との結合能をもって抗体の抗原結合能を評価し、 さらに結 合能の高い抗体を選択する技術である。 ファージディスプレイ法において多くの 場合には、 M13, fdなどの繊維状ファージのコートタンパク質である pillあるい は pVIII の表面にライブラリ一を、 融合タンパク質として発現 ·提示させる。 pillを用いたファ一ジディスプレイ法の概略を図 2に示す。 ファージのコート 蛋白質 pillをコードする genelll上流にランダムな配列を導入したファ一ジミ ドベクタ—を構築する。 大腸菌を形質転換してヘルパーファージでレスキューす ることにより、 pillにランダムな配列を含む蛋白質を提示したファ一ジが得られ る。 この様に作製したファージライブラリーから標的分子のスクリーニングを行 い、 特異的に結合するものを選択することができる。 標的分子を固定化した系に ついてライブラリ一を投入し、 結合、 洗浄、 溶出の操作(バニング, panning)を 行うことで高い結合活性を持つファージを選択できる。 回収したファージについ ては大腸菌 (E.coH) に感染させ増幅して次のサイクルに投入する。 スクリ一二 ングを繰り返すことにより、 ライブラリー中の結合性ファージの比率を効果的に 高めていくことができる。
この選択系のメリットとしては、 表現型と遺伝子型がリンクしているために、 選択したタンパク質の配列決定が容易であること、 スクリーニング中に増幅の過 程が入るため効率的に目的タンパク質を濃縮できること、 感染宿主を替えること によってタンパク質の切り離しが可能であることなどが挙げられる。 また提示さ れるタンパク質としては、 短い数残基のランダムペプチド、 抗体断片、 プロテア —ゼ、 ヒト成長ホルモン、 核酸結合性タンパク質など多種多様なものが挙げられ る。
一般的には、ファージディスプレイにおいて抗体断片を提示する場合には、 VH、 VLをリンカ一で繋げた scFv (—本鎖 Fv:single chain Fv) の形を用いる。 ところ が近年新たなファ一ジ提示提示技術として、 VHに gVII proteinを、 VLに glX protein を提示させることにより、 VH断片と VL断片を別々に提示させる新規 な方法が報告された (Kim D. Jandaら、 WO 00/71694 Al)。 図 3に従来の抗体 断片を一本鎖の形で提示させる方法(A) と、 上記の VH ' VL断片を別々に提示 させる方法 (B ) の模式図を示す。
ファ一ジディスプレイに用いられる抗体のライブラリ一として、 免疫をしてい ない動物の V遺伝子から作製したナイーブ ·ライブラリ一 (Naive library)、 ナ ィ一ブ ·ライブラリ一の超可変部領域に人工的に変異を導入した合成ライブラリ 一 (Synthetic library) 、 そして目的の抗原で免疫した動物を用いて作製した免疫 ラィブラリ一(Immunized library) が主に挙げられる。
ナイーブ ·ライブラリ一は抗原刺激によつて親和成熟 (affinity maturation) が起こる以前の IgM抗体の V遺伝子を用いているために、 原理的には様々な抗 原に対する抗体が選択可能であること、 免疫操作を必要としないためヒト型抗体 のライブラリ一の構築が可能であること、 などのメリットがある。 一方、 ァフィ 二ティーを向上させるためにライブラリーのサイズを大きくすることが必要不可 欠であるために、 作製に手間がかかることや、 不要な要素を多く含むなどのデメ リツトがある。 合成ライブラリ一はナイーブ ·ライブラリーの CDR に部位特異 的変異導入や PCRの手法により変異を導入したもので、 これにより多様性を制 御することができる。
免疫ライブラリ一はあらかじめ目的の抗原で免疫したマウスから抗体遺伝子を 採取するため、 非常に抗原特異性 ·結合活性の高いライブラリーが得られるメリ ットがある。 しかし免疫に長い期間 (1〜3 ヶ月) を要する、 免疫応答が不可能な 毒性分子 ·自己分子に対する抗体の取得が困難である、 ヒト型の抗体が調製しに くいなどのデメリッ卜も挙げられる。
上記で述べたように、 これまでに、 M状ファージの粒子上に各種抗体の可変 領域の VH断片と VL断片を同時に提示させ、 抗体断片を提示させた繊維状ファ —ジと抗原の間の結合能によって抗体の抗原結合能を評価することにより、 結合 能の高い抗体を選択する技術 (ファ一ジ提示技術) が複数提案されている。 しか しこれらの提示法では、 VH断片と VL断片の両者を含む抗体可変領域全体の抗 原結合能は評価できるが、 VH/VL間の相互作用を評価することはできなかった。 また、 前記のオープンサンドイッチ ELISAに適した抗体断片を取得するために は、抗原非存在下で相互作用の弱い VH' VLのペアを選択することが必要である。 発明の概要
本発明は上記の課題を解決するための第 1の手段として下記の、 (1)一の蛋白 質又はその断片をコードする DNA配列、 (2) 当該一の蛋白質又はその断片を ファージ上に提示するための蛋白質をコードする DNA配列、 (3) 他の蛋白質 又はその断片をコードする DNA配列、 (4) ホストによる提示切り替えを可能 とする終止コドン、 及び (5) 当該他の蛋白質义はその断片をファージ上に提示 するための蛋白質をコードする DNA配列、 の少なくとも上記 5つの DNA配列 を、 当該ベクターの 5'方向から 3'方向にかけて、 (1) (2) (3) (4) (5) の 順番に又は (3) (4) (5) (1) (2) の順番に備える構造を有し、 当該ホスト による提示切り替えを可能とする終止コドンが存在することにより、 当該べクタ —をサブレッサー変異体宿主に導入した際には、 当該一の蛋白質又はその断片と 当該他の蛋白質又はその断片の両者をその上に提示する 2蛋白質提示型のファー ジを提供し、 力つ、 当該べクタ一を非サブレッサ一株宿主に導入した際には、 当 該一の蛋白質又はその断片のみをその上に提示する 1蛋白質提示型のファ一ジ及 び当該非サブレッサー株宿主から培養上清中に分泌された当該他の蛋白質又はそ の断片を提供することを特徴とするベクターを提供する。
また本発明は上記の課題を解決するための第 2の手段として下記の、 一の蛋白 質又はその断片と他の蛋白質又はその断片との間の相互作用を測定する方法であ つて、
( 1 ) 上記のベクタ一を用いて非サブレッサー株宿主の形質転換を行うことによ り、 当該一の蛋白質又はその断片のみをその上に提示した 1蛋白質提示型のファ ージと、 当該非サブレッサ一株宿主から分泌された当該他の蛋白質又はその断片 を含む培養上清を取得し、
( 2 ) 培養上清中の当該他の蛋白質又はその断片を適切な担体に固定化し、
( 3 ) 固定化された当該他の蛋白質又はその断片と、 当該 1蛋白質提示型のファ ージ上に提示された当該一の蛋白質又はその断片とを反応させて、 当該一の蛋白 質又はその断片と当該他の蛋白質又はその断片とを結合させ、
( 4 ) 標識された抗ファ一ジ抗体を用いた免疫測定法により、 ファージの固体化 量を測定することにより、 当該一の蛋白質又はその断片と当該他の蛋白質又はそ の断片との結合能を評価する;
上記の過程よりなる、 一の蛋白質又はその断片と他の蛋白質又はその断片との間 の相互作用を測定する方法を提供する。
また本発明は上記の課題を解決するための第 3の手段として下記の、 抗原が存 在することにより VH断片と VL断片の間の相互作用が変化する抗体可変領域を 得るための方法であって、
( 1 ) 抗体可変領域の VH断片及び VL断片をコードする DNA配列を含む上記 のベクターを用いてサブレッサー変異体宿主の形質転換を行うことにより、 当該 ベクタ一をサブレッサー変異体宿主に尊入した際には VH断片と VL断片の両者 をそのファージ上に提示する、 VH VL提示型のファージを取得し、
( 2 ) 上記 (1 ) において取得された当該 VH/VL提示型のファージと抗原との 結合能を確認し、
( 3 ) 上記 (2 ) において VH/VL提示型のファージを提供することが確認され た上記のベクターを用いて非サブレッサー株宿主の形質転換を行うことにより、 あるいは上記 (1 ) において取得された VH/VL提示型のファージを用いて非サ プレッサ一株宿主の形質導入を行うことにより、 当該 VH断片のみをその上に提 示した VH提示型のファージと当該非サブレッサー株宿主から培養上清中に分泌 された当該 VL断片を含む培養上清、 あるいは当該 VL断片のみをその上に提示 した VL提示型のファージと当該非サブレッサ一株宿主から培養上清中に分泌さ れた当該 VH断片を含む培養上清、 のいずれかを取得し、
( 4 ) 培養上清中の当該 VL断片又は当該 VH断片を適切な担体に固定化し、
( 5 ) 抗原の存在下及び非存在下で、 固定ィ匕された当該 VL断片とファージ上に 提示された当該 VH断片、 又は固定化された当該 VHとファ一ジ上に提示された 当該 VL断片を反応させ、
( 6 ) 標識された抗ファージ抗体を用いた免疫測定法により、 ファージの固体化 量を測定することにより、 当該 VH断片と当該 VL断片の間の結合能を評価し;
( 7 ) 抗原の存在下における当該 VH断片と当該 VL断片の間の結合能が、 抗原 の非存在下における当該 VH断片と当該 VL断片の間の結合能の 2倍以上である 場合に、 抗原が存在することにより VH断片と VL断片の間の相互作用が変化す る抗体可変領域が得られたと判定する過程よりなる、 上記方法を提供する。 以下の記載と図面を用いて本発明を更に詳細に説明するが、 いかなる意味でも 本発明の範囲を限定するものではない。
図面の簡単な説明 図 1は、 サンドィツチ ELISAと、 オープンサンドィツチ ELISAの原理を示 す模式図である。
図 2は、 ファージディスプレイ法の原理を示す模式図である。
図 3は、 抗体断片を一本鎖の形で提示させる方法と、 VH ' VL断片を別々に提 示させる方法の原理を示す模式図である。
図 4は、 ファージミドベクター pKS の配列を示す模式図である。
図 5は、 ELISA により抗体提示の検討を行った結果を示すグラフである。 図 6は、 ELISAにより抗原結合活性の検討を行った結果を示すグラフである。 図 7は、 HyHELlO を提示した scFv型と spilitFv型のファ一ジにおいて、 10
I0 cfu/mlのファージ濃度で、 ELISAにより HEL結合活性の検討を行つた結果 を示すグラフである。
図 8は、 HyHELlO を提示した scFv型と spilitF 型のファージにおいて、 10
9 cfu/mlのファ一ジ濃度で、 ELISAにより HEL結合活性の検討を行った結果 を示すグラフである。
図 9は、 pKSl(HyHEL10)/sup+について、オープンサンドイッチ ELISAを行 つた結果を示すグラフである。
図 1 0は、 この実験系における提示切り替えのしくみを示す模式図である。 図 1 1は、 HyHELlO と D1.3を用いたオープンサンドイッチ ELISAの結果 を示すグラフである。
図 1 2は、 バニングを行った際の陽性クローンの割合を示すグラフである。 図 1 3は、 HyHEL-10型又は D1.3型の split Fv断片の作製の過程を示す模式図 である。
図 1 4は、 ファージライブラリーの作製から HEL結合能の高いクローンの選 択までの過程を示す模式図である。
図 1 5は、 HELに対する結合能とオープンサンドィツチへの適性の関係を示す 図である。 図 1 6は、 HELに対する結合能と VH Vl相互作用の関係を示す図である。 好適形態の詳細な説明 "
本発明は、 坊体の VH/VL間の相互作用を測定することを可能とする新規な方 法である。 本発 の方法は、 オープンサンドイッチ ELISA法に用いる目的によ り適した抗体の選択を可能とする。本発明は、抗体 cDNA断片を組み込むための ファージミドベクタ一、 当該べクタ一によって形質転換したサプレッサー大腸菌 あるいは非サブレツサー大腸菌、 これにへルパ一ファージを感染させて作製した ファージおよび可溶性抗体断片を含む培養上清から構成される。
目的物質 (抗原) との結合能を有する抗体可変領域 cDNAと VH、 VL断片を 組み込んだファージミドベクターを作製し、 当該ファ一ジミドベクターをアンバ
—サブレッサ一大腸菌に形質転換し、 ヘルパーファージで感染させることにより 常法でファ一ジを作製する。 このファ一ジはその粒子上に VH、 VLの両者を提示 しており、 可変領域 (VH + VL ) の抗原結合能を確認することができる。 同じ ファージを非アンパ—サブレッサー大腸菌に形質転換してファ—ジを調製すると、 下記において詳細に述べる提示切り替えによって VL断片は培養上清に分泌され、 VH断片のみがファ一ジ上に提示された形で同様に培養上清に得られる。
菌体培養液を遠心し、培養上清を VL断片結合性を持つプロティン L をコート したマイクロプレートに注ぐ。 このとき、 VL断片は固相化されるので VH/VL 断片相互作用の強弱に応じて、 ファージのマイクロプレートへの固定ィヒ量が変ィ匕 する。 これをペルォキシダーゼ標識抗ファージ抗体を用いた酵素免疫測定法 (E LISA ) で測定すれば、 簡単に VH VL断片間の相互作用を測定することができ る。 よって本方法により、 従来より飛躍的に簡便に抗体 VH/VL相互作用を評価 することが可能となる。 また本発明の方法によって抗原結合性の高い抗体断片を 選択することができる。
また測定の際に抗原を共存させることによって、 抗原によって VH VL間の相 互作用が大きく変化するク口一ンを迅速にスクリ一ニングすることができる。 V H/VL間の相互作用が弱い抗体断片においては、 担体上に固定化された VL断片 とファージ上に提示された VH断片が直接に結合することは少なく、 そのために 担体上ファージが結合することはほとんどない。 しかし、 一部の抗体では抗原が 存在する場合には VH断片と VL断片が共に抗原と結合し、 複合体が安定化する ために、 抗原を介してファージが担体に結合することができる。 よって、 担体に 結合しているファージの量を、 例えば抗ファージ抗体を用いて定量することによ り、 抗原の存在によりファージ結合量が大きく変化する抗体断片を選択すること ができる。 その様な抗体断片は VH7VL間の相互作用が抗原の結合により大きく 変化すると考えられ、 オープンサンドィツチ ELISAを行うのに際して好適であ る。 なお、 抗原の存在により抗体可変領域の VH断片と VL断片の間の相互作用 が 2倍以上変化するならば、 そのような抗体断片は本目的のために使用すること が可能である (Suzuki et al.,Anal. Biochem.,286,238-246 (2000) )。
なお本方法を実施するにあたり、 ファージミドベクタ一を使用することは好適 である。 ファ一ジミドベクターは繊維状ファ一ジゲノムの一部を含むようにして 作製されたプラスミドであるために、 ファージミドベクターを用いて大腸菌を形 質転換した後、 更にへルパ一ファージに感染させる必要がある。 これによつて粒 子形成のためのコート蛋白質が供給されて、 ヘルパーファージ粒子とファージミ ド粒子が混合したファージが得られる。 この際に使用するへルパ一ファージは下 記の実施例において使用している M13KO7ヘルパーファ一ジは特に好ましいが、 それに限定されるものではない。 またより簡便な方法として、 必要な; DNA配列 を含むファージベクタ一を利用することもまた可能である。 ファ一ジベクタ一の 場合には、 当該ファージベクタ一を大腸菌に感染させることによって直接ファ一 ジを得ることが可能であり、 ヘルパーファージを使用する必要はない。
本願明細書において 「提示切り替え」 とは、 サブレッサー変異体宿主に導入さ れた時には前記 「一の蛋白質」 と前記 「他の蛋白質」 の両蛋白質をファージ上に 提示するが、 非サブレッサー株宿主に導入された時には一つの蛋白質をファージ 上に提示し、他のもう一つの蛋白質を分泌するという切り替えの現象を意味する。 なお本願明細書中において、 両蛋白質を提示しているファージを 「2蛋白質提示 型のファ一ジ」 と、 一つの蛋白質をファージ上に提示するファージを 「1蛋白質 提示型のファージ」 と称する。 「1蛋白質提示型のファージ」が取得された場合に は、「 1蛋白質提示型のファ一ジ」の上に上記「一の蛋白質」が提示されると共に、 上記 「他の蛋白質」 をコードする遺伝子が大腸菌内で発現して菌体外へ分泌され る。
なお上記の蛋白質が抗体可変領域断片である場合には特に、 VH断片と VL断 片の両者を提示しているファ一ジを 「VH VL提示型のファ一ジ」 と称する。 ま た、 VH断片をファージ上に提示して VL断片は大腸菌より培養上清中に分泌す る塲合を 「VH提示型の培養上清」 と、 VL断片をファ一ジ上に提示して VH断 片を培養上清中に分泌する場合を「VL提示型の培養上清」 と、それぞれ称する。 上記の提示切り替えは、 提示切り換えを可能とする終止コドンが存在すること によって可能となる。 提示切り換えを可能とする終止コドンとして、 下記の実施 例で使用しているアンバ一コドンは特に好ましい。 なおアンバーコドンは、 タン パク質合成終止コドンの一つである TAGのコドンである。 しかし本発明で使用 される終止コドンはそれに限定される訳ではなく、 それ以外の終止コドンである オパールコドン (TGA )やオーカ一コドン (TAA ) もまた同じ目的において使 用することができる。
ァンバ一コドンを有しているべクタ一が大腸菌のァンパ、一サプレツサ一株に導 入された時には、 当該終止コドンの読み違い (アンバーサブレッシヨン) が一定 の割合で起こって菌体内で融合蛋白質が発現するために、 上記の 2蛋白質提示型 のファージを得ることができる。 一方非サブレッサー株宿主に導入された場合に はアンパ一サブレッションを起こさないので、 アンバーコドンは正確に終止コド ンとして認識されて融合蛋白質は発現せず、 アンバーコドンの下流に存在する遺 伝子がコ一ドするタンパク質は分泌されて提示切り換えが起こる。 なおオパール コドンをオパールサブレッションを起こすサブレッサ一変異体宿主に導入するこ とにより、 またオーカーコドンをオーカ一サブレッションを起こすサブレッサー 変異体宿主に導入することによつても、提示切り換えを起こすことが可能である。 本発明の目的でサブレッサー変異体宿主として使用することができるのは sup Eあるいは glaVを持つ菌であり、その例としては大腸菌 TGI株、 XLl-Blue株、 DH5a株、 JM109株および NM522株などを挙げることができる。 なお、 非サ プレッサ一宿主としては大腸菌 JM105株、 NV1184株や HB2151株などを挙げ ることができる。 しかし本発明において使用するサブレッサー変異体宿主と非サ プレッサ一宿主は、繊維状ファージが感染可能な F'プラスミドを保持している必 要はあるが、 上記に述べたものに限定されるものではなく、 同等に機能を有する 他の宿主に変更することができる。
本発明の方法において使用するベクターは、 (1)一の蛋白質又はその断片をコ —ドする DNA配列、 (2) 当該一の蛋白質又はその断片をファ一ジ上に提示す るための蛋白質をコードする DNA配列、 (3) 他の蛋白質又はその断片をコー ドする DNA配列、 (4) ホストによる提示切り替えを可能とする終止コドン、 及び (5) 当該他の蛋白質又はその断片をファージ上に提示するための蛋白質を コードする DNA配列からなる。 当該べクタ一は (1) (2) (3) (4) (5) を その順番に、 又は (3) (4) (5) (1) (2) の順番に備えることができる。
この様な構成を有するベクタ一は、 上記 「一の蛋白質」 をファ一ジ上に提示す る。 一方、 「他の蛋白質又はその断片をコードする DNA配列」 と 「当該他の蛋 白質又はその断片をファージ上に提示するための DNA配列」 の間に提示切り替 えを可能とする終止コドンが存在するために、 非サブレッサ一株宿主に導入した 際には 「他の蛋白質」 は融合蛋白質としてファージ上に発現せず、 提示切り替え によつて培養上清中に分泌される。
上記の 「蛋白質又はその断片をファージ上に提示するための蛋白質をコードす る DNA配列」 として使用することが可能な DNA配列は、 好ましくは繊維状フ ァージの表面蛋白質をコードする DNA配列である。 その例として維锥状ファ一 ジの表面蛋白質をコードする DNA配列である pVII蛋白質、 pIX蛋白質、 pill および pVIIIをコードしている DNA配列を挙げることができるが、特に好まし いのは下記の実施例で使用している繊維状ファージの pVII蛋白質あるいは pIX 蛋白質をコードしている DNA配列である。 しかしそれらに限定されるものでは なく、 他のファージ表面蛋白質をコ一ドする DNA配列も、 当該 DNA配列が目 的とする蛋白質と融合蛋白質を作製することが可能であって本発明の目的のため に使用できる蛋白質をコードする限り、 適宜選択して使用することができる。 本発明の方法は、 抗体の VH断片と VL断片の間の相互作用を測定する目的に おいて特に優れている。 しかし本発明の方法は理論的には、 抗体の可変領域断片 以外の、 ヘテロダイマーとして存在している多量体蛋白質において、 当該多量体 蛋白質を繊維状ファ一ジの上に提示してダイマーを構成しているモノマ一間の相 互作用を評価する目的で使用することが可能である。 例えばある特定のモノマ一 である 「一の蛋白質」 と、 それとは異なるモノマ一である 「他の蛋白質」 の相互 作用を測定することは基礎研究の現場のみならず、 臨床的な診断の目的において も重要である。 本発明において 「一の蛋白質」 と 「他の蛋白質」 は限定されるも のであるとは解されるべきではなく、 本発明の方法は、 蛋白質相互間の相互作用 を測定することを可能とする新規な技術を提供するものである。
本発明の方法によって得られた、 抗原非存在下で VH/VL相互作用が弱く、 か つ抗原存在下で VH VL相互作用が強い抗体を用いて、 例えば以下のような測定 キッ卜を作製することが可能である。
1 ) VL断片をピオチン 'ァビジン相互作用を利用して、または物理的吸着を利用 してチューブあるいはマイクロプレ一トに固定化する。
2 ) VH断片とレポ一夕一酵素 (例えばアル力リフォスファタ一ゼ) との融合蛋 白質を作製しておき、 これをサンプルと共に VLを固定ィ匕した固相と一定時間接 触させる。 3 ) 洗浄後、 固相化された酵素活性を測定し、 サンプル中の抗原濃度の指標とす る。
また、 以下の測定キットを作製することがもまた可能である。
1 ) VH断片と VL断片を互いに吸収 ·蛍光スぺクトル重なる二種類の蛍光色素 (例えばフルォレセインとローダミン) で標識しておく。
2 ) これらをサンプルと混合し、 5分程度おいて短波長側の蛍光色素のみを励起 光で励起する。 二種類の蛍光色素由来の蛍光強度を測定することで、 VH/VLの 会合による蛍光エネルギー移動現象を検出することができる。 二つの蛍光強度の 比をサンプル中の抗原濃度の指標とする。 この方法では前の方法に比べて、 短時 間で洗浄操作なしに抗原濃度が測定できる。
また、 以下の測定キッ卜を作製することもまた可能である。
1 ) VH断片と VL断片を、 それぞれ単体では活性がないか、 低いが近接させる と活性の増大する二種類の酵素断片 (例えば LacZA aおよび LacZAco) との融 合蛋白質として大腸菌で発現させ、 精製しておく。
2 ) 二種類の融合蛋白質とサンプルを混合し、 一定時間おいたのち基質 (例えば 発光基質 Galacton Plus )と混合し、融合蛋白質複合体の活性を測定することで サンプル中の抗原濃度の指標とする。 この方法では、 前の 2つの方法に比べては るかに高感度に抗原濃度を測定することが可能であり、 また洗浄操作を含まない (YokozeH et al.,Anal.Chem.74 (11), 2500-2504, 2002)。
本発明方法によって測定する対象としては、 第一に臨床検査における血清中の 特定蛋白質、ペプチド、各種ホルモン、麻薬あるいは治療用薬物等が考えられる。 また、 環境水中のダイォキシン、 ビスフエノ一ル八、 ノニルフエノ一ル等の毒性 が疑われる化学物資や農薬類もまた本発明によって測定される対象となる。 下記の実施例において、 提案した非サブレッサ一株による VL提示切り替えが 適切に行われているかどうかについて検討を行った。 より具体的には、 本発明者 らによってオープンサンドィツチ ELISAが可能であることが既に示されている 抗 HEL (Hen Egg- White Lysozyme,ニヮトリ卵白リゾチーム)抗体の HyHEL- 10を用いてスクリーニングのモデル系を構築し、提案した系が機能することを実 験的に証明した。 構築した glX protein に VH、 gVII proteinに VLを別々に提 示 (split PV)させるファージミドベクター pKSlについて、 ホス卜の E.coliの代 替による VL提示の切り替えをオープンサンドイッチ ELISAにより確認した。 下記の実施例の選択の第 1段階において、 VH- VL提示型のファ一ジを用いた。 作製したベクターにより E.coli TGI, XLl-Blueなどのアンバ一サブレッサ一株 を形質転換した場合には、 アンバーコドンは一定の割合で読み違いが起こりダル 夕ミン酸に置換される。 菌体内では pIX_VH、 pVII-VLの融合タンパク質が発現 し、ヘルパ一ファージの感染によって VH ' VL提示型のファ一ジを得ることがで さる。
選択の第 2段階において、 上記において得られた結合活性の高いファ一ジを、 E.coli HB2151 のような非サプレッサ一株に感染させ、ヘルパーファージによる レスキューで、 VH提示のファージと遊離の VL断片を培養上清に得る。 この場 合はアンバーコドンが正確に終止コドンとして認識されるため、 得られるファー ジはいずれも VHのみを提示している。 VLの上流には分泌シグナルである omp A配列を配置しており、 ファージ粒子と同様に菌体外へ分泌される。
実施例 '
以下において実施例を示し、 さらに詳しくこの発明の実施の形態について説明 する。
実施例 1
( a )抗リゾチ一ム抗体 HyHEL-10遺伝子を g7g9上に提示するファ一ジミドべ クタ一の構築
ポリメラーゼ連鎖増幅 (PCR) 法により必要となる断片を作製し, これらを連結 させて目的ファージミドベクターを作製した. PCHの条件は下の表 1にまとめ た。なお、表 1において反応条件はいずれも 94°Cで 5min.xl,(94°C 30sec, 55°C 30sec, -72°C lmin. )x35,72°C 8min.xlであり、 DNAポリメラ一ゼはいずれも 2.5unit/100 μΐ KOD ポリメラーゼ (Toyobo, Osaka)である。
back primer forward orimer template
VH M13RV VHlfor2X pCA TAB-5E/ HyHEL-10 VL VK2Back Reverse SEQ pCANTAB-5E/ HyHEL 0 g9-ompA(linker) LinkBack LinkFor pHSG397/ g9-ompA
VH-linker M13RV LinkFor VH, linker
linker-VL LinkBack Reverse SEQ linker, VL
VH-linker-VL M13RV Reverse SEQ VH-linker, linker-VL
OmpA-FLAG のクロ一ニング
プラスミド pFLAG- ATS (Sigma-Aldiicli) を铸型とし、 VLの N末端に配置 する大腸菌 ompA分泌シグナル配列および: FLAG夕グ配列を PCR法により増幅 した。 プライマー配列には増幅断片 5 '側および、 3 '側にそれぞれ制限酵素部位 Xba I 、 Sal Iが導入されるよう設計した。 クロ一ニングベクター pHSG397(Ta kaxaBio, Otsu, Japan)へクロ一ニングした後、 蛍光 DNAシーケンサ一 SQ-55 00 (Hitachi, Tokyo) 、 Thermosequenase sequencing kit (Amersham Biosci ence, Tokyo)を用いてシーケンスを確認した(以下 pHSG397/ ompA-FLAG)。 Back: ompXbailV
5 '-CGGGGTCGACTGTGCACTTTTGTCATCGTCGTCCTTGTAG-3 ' Forward: ompApaSalFR
5 '-CGGGGTCGACTGTGGACTTTTGTCATCGTCGTCCTTGTAG-3 ' gene IX, gene VIIのクローニング
ヘルパ一ファ一ジ M13K07(Takai'aBio)から一本鎖 DNAを調製し、これを铸 型にして PCR法により gene VII ,gene IXの配列を増幅した。 それぞれの 5, および 3 '側に、 制限酵素切断部位として gene VIIでは Kpn Iおよび EcoRI 、 gene IXでは Xho Iおよび Xba Iを導入するため以下のプライマーを用いた。 Back: g7KpnRV
5 '-CGGGGGTACCGCAGGTCGCGGATTTCGAC-3'
Forward: g7EcoFR
5 '-CGGGGAATTCTCATCTTTGACCCCCAGCG-3'
Back: g9XhoRV
5 '-CGGGCTCGAGCGGTGGAGGCGGTTCAATGAGTGTTTTAGTGTATTCT TTC-3 '
Forward: g9XbaFR
5 '-CGGGTCTAGATCATGAGGAAGTTTCCATTAAAC-3'
増幅された gene VII断片は EcoRIおよび Kpnlで切断して pBlueScript II KS+ (Ibyobo) へ、 gene IX断片は Xholおよび Xbalで切断して pHSG397/ o mpA-FLAGへクロ一ニングし、そのシーケンスを確認した(以下 pBS_g7および pHSG397/ ompA-g9) 。
リンカ一の作製
オーバ一ラッブーイクステンジョン (Overlap-extension ) PGRによる VH-li nker-VL (HyHEL-Ιθ) の作製
VH, VL, Linkerを以下のプライマ一を用いてそれぞれ; PCR増幅した後、 VH -linker , linker-VLの各断片をオーバ一ラップ一イクステンジョン; PCR により 増幅した。さらに VH-linker、 linker-VLのォ一パーラップ一イクステンジョン PCRにより VH-linker-VLの断片を得た。 この断片を両端の Nco I、 Not Iで 制限酵素切断した。
Linker <Ό PCR :
Back: LinkBackX 5 '-GGGACCACGGTCACCGTCTCGAGCGGTGGAGGCGGTTCAATG-3 ' Forward^ LinkFor
5 '-AGACTGGGTGAGCTCAATGTCCGTCGACTGTGCACTTTTGTC-3 , VH(HyHEL-10)の: PCR :
Back: M13RV
5 '-CAGGAAACAGCTATGAC-3'
Forward: VHlFor2X
5 '-GACGGTGACCGTGGTCCCTTGGCCCC-3,
VL(HyHEL-10)の PCR :
Figure imgf000018_0001
5 '-GACATTGAGCTCACCCAGTCTCCA-3 ,
Forward: ReverseSEQ
参考 5 '-GTAAAACGACGGCCAGT-3'
ファージミドベクター pKSl の構築
ファ一ジミドベクタ一 pKSlは pKl (Kristensen, P., and Winter, G. (1998) Folding & Design 3, 321-328) を改変した pScfV3上に構築した。 まず PCR 法により抗ゥシ血清アルブミン (BSA)—本鎖抗体 (scFv)をコ一ドするファージ ミドベクタ一 piT(l3CG2) (de Wildt, Ε. Μ·, Mundy, C. R" Goiick, B. D" a nd TomHnson, I. M. (2000) Nat Biotechnol 18, 989-994) をテンプレートと し, プライマ一 M13EVおよび MycAKpnFor(5'-CCGGGTACCTATGCGGCCC CATTCAGATC-3')で抗 BSA scFvおよび His-Mycタグをコードする DNA断 片を増やし,これを Sfi Iで切断後 T4 DNAポリメラーゼを用いて平滑化したの ち Kpn I で処理し精製した。
次にこれをファージミドベクター pKl を gill遺伝子 5 '近傍の: Pst Iで処理し た後 T4 DNAポリメラーゼで平滑化し Kpn Iで処理した断片とライゲーシヨン させた。 この, 抗 BSA scFv遺伝子- His-Myc夕グを持つベクター pScPV3を Kp nl、 EcoRIで処理し, これに Kpnl、 EcoRIで処理した pBS-g7から得た gene VII断片を揷入した (pScFv/ g7)。 続いて Nco I, Not Iで処理した VH_linker- VLを pScPV/ g7へ揷入し、 pKSlを得た。 ファージミドベクタ一 pKSlの配列 を図 4に示す。
ファージの作製 (VH' VL提示型、 VH提示型)
構築したファージミド pKSl (アンピシリン耐性) により形質転換した大腸菌 を対数増殖期に達するまで 37°Cで 2 TYAG培地( 2TY+ァンピシリン: 100 g/pL, グルコース: 2%)100mLで培養し、 O.D.600=0.5 の時点で培養液中の 10 mLへ、 菌体量に対し 20当量のへルパ一ファージ M13K07を加えた。 37°Cで 30 min. 静置した後、 グルコースを含む培養上清を除去し、 lOOmLの 2TYAK培地( 2T Y+アンピシリン: 100 g/mL, Km:25 pg/mL)で再懸濁し 30°Cで終夜培養した。 次に培養液を 4000g,15mi 遠心し、 上清を回収して 20% PEG6000 - 2.5M Na C1を 1/5 vol.加え氷上で 1 h静置し、 4000g,15min遠心して沈殿物を 2mlの T E(l0mM Tris-HCl, ImM EDTA, pH8.0)で再懸濁した。 再び遠心して上清を回 収し、 ファージ溶液を得た。得られたファージについてはタイターを測定(後 し、 ファ一ジ粒子の濃度をコロニー形成能(夕イタ一, cfu, colony forming un it/ mL) により決定した。
i) サブレッサ一株
プラスミド pKSlにより大腸菌アンバーサブレッサ一株 TG-1及び XL-lBlue を形質転換し、 IX に VH、 pVIIに VLを提示した VH,VL両者提示型のファー ジを得た。
ϋ) 非サブレッサー株
pKSlにより大腸菌非サブレッサ一株 HB2151を形質転換し、 pIXに VHを提 示し VLを提示していないファ一ジ、 及び遊離の VL断片を含むファ一ジ溶液を 得た。 このファージについては: PEG NaClによる沈殿の過程を省き、 培養上清 をそのまま用いた。 ファージタイターの測定
ファージの濃度の目安としてタイターを測定した。 対数増殖期まで 2ΊΎ培地 で培養した大腸菌 TGI 100 L ~1 mLに、 原液を PBSで 1000倍希釈したフ ァ一ジ溶液 1 を入れ、 37°Cで 30 min.静置して感染させた。 その後 2TY 培地で希釈し、各希釈溶液から l¾iL を 2TYAG プレート上にスポッティングし た。終夜放置後に各スポットで形成されたコロニ一数を数えて、 ファージ原液 1 mLから何個のコロニーが形成されたかを計算しファ一ジ濃度の指標とした。 ファージ ELISA
ポリスチレン製 96穴マイクロプレートの各ゥエルに l~10pg/mLの一次抗体ま たは抗原の溶液を 100 入れ、 4 °Cで一晩固定化した。次にゥエルの水分を除 去した後、 各 wellに 200 の 1 %スキムミルクを含む PBS (MPBS)を入れ、 2 室温で静置しブロッキングした。続いてプレートを 0.1% Tween20を含む P BS(PBST)で 3 回洗浄し、 lOu lO cfti/mLのファージ溶液 (MPBS 中) を 100 入れて 37°Cで lh.静置した。 マイクロプレー卜を 3回洗浄し、 MPBSで 50 00倍希釈した HHP標識抗ファージ抗体 (マウス抗 -M13 HRP,アマシャムバイ ォサイエンス) を各ゥエルへ 100 PLずつ添加し室温で lh. 静置した。
マイクロプレートを PBSTで 3 回洗浄し、あらかじめ調製した酵素反応溶液 (5 OmL lOOmM酢酸ナトリウム pH6.0, TMBZ(in DMSO)500pL, H202 10pL)を 各 wellへ添加して反応を開始した。 暗所で 10~30 min.反応させた後 3.2N H2S 04を 50pLずつ添加して反応を止め、 プレー卜リーダ一で吸光度を測定した (45 0 nm,対照は 650 nm) 。
オープンサンドィツチ ELISA
基本的な操作は上述のファ一ジ ELISAと同様に行った。 タグを付加した VL を固定化する一次抗体( aFLAG-M2または amyc 9E10)をマイクロプレ一ト上 に固定化しブロッキングした後、濃度既知の抗原 (HEL, 0.6~10iig/mL) をあらか じめ混ぜたファージ溶液 (1%MPBS中) を 100 入れ 37°Cで lh.静置した。 以降ファージ ELISAと同様に HRP標識抗ファージ抗体の酵素活性を吸光度に より測定した。
VL断片提示の確認
ファージに提示された VLの N末端には myc tagが、 C末端には FLAG ta gが組み込まれており、 抗体断片の提示を確認するためにこれらの tag に対する 抗体を用いてファージ ELISAを行った。 この結果、 少なくとも VL断片は充分 に提示が行われていることが示唆された。 提示の確認の結果を図 5に示す。
抗原結合活性の確認
抗体断片 VH- VLがファージに充分提示されているカゝ、またファージに提示さ れた VH · VLが充分な結合活性、抗原特異性を保持しているかどうかを確認する ため、 HELを固定化したマイクロプレートを用いてファ一ジ ELISAを行った。 この結果、 ファージ濃度 109(cfu/mL)以上において抗原に対する特異的な結合が 確認でき、このことから VHの提示も充分に行われていることが明らかになつた。 抗原結合活性の確認の結果を図 6に示す。
scFvと splitFv の比較
HyHEL-10 を scFv型及び splitFv型で提示した各ファージについて、抗原 (Η ' EL) を固定化した ELISAを行い抗原結合活性を比較した。 SplitFv型において も scFvと同様に充分な結合活性を示していることから、 従来と同様の選択条件 により結合性ファージのスクリ一二ングが可能なことが示された。 なお図 7は 1 010cfu/mlにおける結果であり、 図 8は 109 cfu/mlにおける結果である。
VH提示型ファージの作製
大腸菌 HB2151 :非サブレッサー株の形質転換
構築したベクタ一 pKSl について、 非サブレッサー株である大腸菌 HB2151 の形質転換を行い、 M13KO7ヘルパーファージでレスキューしてファージを作製 した。 得られたファ一ジには VHのみが提示され、 VLはファージと共に培養上 清に分泌される。 同様にタイタ一を測定し以降の実験に用いた。 非サブレッサー株による提示切り替えの確認
非サブレッサー株によって、 アンバーによる提示の切り替えが充分に行われて いるかどうかを確認するため、 培養上清を直接用いて抗原 (HEL)濃度 0~10μ§/ mLの範囲においてオープンサンドイッチ ELISAを行った。 ファージ濃度 1 x 10u(cfu/mL)において HELに特異的な濃度依存的なシグナルの上昇が見られた ことから、 切り替えは充分に起こっていると考えられた。 また VLの分泌につい ても充分量行われていることが示唆された。 結果を図 9に示す。 また、 この実験 系における提示切り替えのしくみを示す模式図を図 1 0に示す。
また実際にスクリーニングを行う時には、 VH/VL提示型のファージライブラ リ一から選択した抗原に強い結合を示す各クローンについて 96穴プレ一トで培 養を行いファージを作製するが、 96穴プレ一卜における培養上清のファージ夕ィ 夕一はゥエルのどの位置においてもそれほど差異はなくおよそ 10 2のオーダ一 であることから、 直接オープンサンドィツチ ELISAによりスクリーニングが行 えることが示唆された。
ファージミドベクタ一 pKS2の作製
前項で作製した pKSlは, 抗体クロ一ニングのための制限酵素部位として VH 上流に 6塩基認識 Ncolサイトレカゝ持って居らず,内部に Ncol切断部位をもつ遺 伝子断片の揷入は難しいという欠点があった。 これを改良するため, Ncolに加え て 8塩基認識 Sfilをクローニングに用いることのできるベクタ一 pKS2を作製し た。
具体的には PKSl(HyHEL-10)を Ncolおよび EcoREで切断し, 0.8 k の揷 入断片を Ncolおよび EcoRLで切断したファ一ジミドベクタ一 pCantab5E (アマ シャムバイオサイエンス) にライゲ一ションさせ組み込んだ。
夕一ミネ一夕一を組み込んだファージミドベクタ一の作製
揷入する抗体遺伝子によっては発現誘導前の融合蛋白質発現が大腸菌の生育に 有害となり, 揷入した遺伝子が高率で欠損する現象が見受けられた。 これを防ぐ ため, 転写開始信号の前と, 融合遺伝子下流にグルタミンパーメァ一ゼ (gluta mine permease) オペロン由来の転写終結配列(ターミネータ一 tHP, Nohno,
T.et al., Mol. Gen. Genet. (1986) 205:260-269 ) を揷入した。 これにより, 非 誘導時にファージミドベクタ一中に存在するプロモータ一様配列から転写開始さ れる mRNAからの融合蛋白質発現を減少させることが出来ると期待された。 ファ一ジミドベクター pKS2を Lacプロモーター上流の Sapl部位で切断し, ここに以下の 4種のオリゴヌクレオチドをリン酸化後ァニールさせて作製した夕 —ミネ—夕一遺伝子を挿入した。 tHPl 5 '-AGC GGT ACC CGA TAA AAG CGG CTT CCT GAC-3' tHP2 5 '-AGG AGG CCG TTT TGT TTT GCA GCC CAC CTC-3' tHP3 5 '-GCT GAG GTG GGC TGC AAA ACA AAA CGG CCT-3' tHP4 5,- CCT GTC AGG AAG CCG CTT TTA TCG GGT ACC-3' 組み換えたファージミドは, そのシーケンスを決定し設計通りの配列となってい ることを確認した (pKS2T)。
次に, pKS2T を融合遺伝子下流にある EcoRI部位で切断し, 以下の 2つのプ ライマーおよび tHP2, tHP3をァニールさせて作製したターミネータ一遺伝子を 挿入した。
置 7 5 '-AAT TGG TAG CCG ATA AAA GCG GCT TCC TGA C-3' tHP8 5 '-AAT TGA GGT GGG CTG CAA AAC AAA ACG GCC T-3, 遺伝子の揷入されたファージミドのシーケンスを決定したところ, EcoRI部位に ターミネ—夕遺伝子が 2個タンデムに挿入されていた。 これを pKST2 とした。 オープンサンドィツチ法に適した抗体の判別
このシステムを用いてある抗体がオープンサンドイッチ法に適しているかどう かを判別可能かどうか検討した。 抗体遺伝子として, 抗ニヮトリ卵白リゾチーム 抗体 HyHEL-10および D1.3を用いた。 D1.3は VH-VL相互作用が抗原結合の 有無にかかわらず強い事が知られている。 D1.3 Fv遺伝子をテンプレートとし, 上記と同様に: PCRで split Fv遺伝子を作製し, pKST2'に組み込んだ。 非サブ レッサ一株である HB2151を形質転換し, ヘルパーファ一ジ M13K07を用いて VH提示ファージおよび分泌型 VLを含む培養上清を調製した。
この上清および抗原を抗 FLAG夕グ抗体を固定化したマイクロプレートに注 ぎ, ファージ結合の抗原濃度依存性を調べた結果, D1.3を用いた場合, サンプル 中のリゾチーム濃度を変えても VL断片を介して固相化されるファージの量は殆 ど変化しなかった。 これに対し, HyHEL-10を用いた場合, サンプル中のリゾチ ーム濃度に応じて L断片を介して固相化されるファ一ジ量が顕著に増加した。 このことから, この系がオープンサンドィツチ法に適した抗体の簡便なスクリ一 ニング法として機能することが確かめられた. 結果を図 1 1に示す。
モデルパニング
このシステムを用いて特異的結合抗体を提示するファ一ジの選択が可能である ことを証明するため, 二種の特異性の異なるファ一ジ抗体の混合液から目的の特 異性を持ったファージ抗体をバニング法で濃縮することを試みた。
ファ一ジミドとして, HyHEL-10をコードする split Fvを提示可能な pKST2 -H10 (H 1 0 ) および抗フルォレセィン split Fvを提示可能な pKST2_31IJ3
( I J 3 ) を用いた。 これらを形質転換した大腸菌 TG-1にヘルパーファージ M 13K07を感染させ, split Fv提示ファージを作製した. これらを MPBS 100 μΐ 中の titerが ΗΙΟΊ ^Ο^ΙΟ11あるいは 109:10Uとなる様に混合したファー ジ液を調製し, ニヮトリ卵白リゾチーム HELを固定化したマイクロプレートに 注いで 3 7 °C 1時間置き, PBS-Tで 2回, PBS で 2回洗浄し 100 の 0 . 2 MGlycine-HCl (pH 2.2), 1 mg/ml ゥシ血清アルブミンを注ぎ溶出されたファ —ジを 6 μΐの 2M risで中和し対数増殖期の大腸菌 TG-1に感染させた (一回 目のパニング)。 これを Y TA Gプレートにまいて 3 7 °C—晚おき, コロニーを 4 8個回収してそれぞれを培養し,ファージを調製した(モノクロ一ナルファ一ジ)。 これと共に残りのコロニ一を集めてこれから同様にファージを調製し, 再度 HE L を固定ィ匕したマイクロプレートを用いたバニングを行った。そして 4 8クロ一 ンからモノクロ一ナルファージを調製し, それぞれについて, HELへの結合能 を ELISA法で測定した。
この結果, 1:106および 1:102のどちらの混合比でも 1回目のパニングで顕著 な HEL結合クローンの濃縮が見られ, 全クローン中結合クローンの割合はそれ ぞれ 37.5%および 50%となった。 また 2回目のバニングにより, どちらの混合 比の場合も 80% 以上が陽性クローンとなることがわかった (図 1 2 )。
実施例 2
同じ HELに対する抗体でも HyHEL-10はオープンサンドィッチ法に適するが、 VH/VL相互作用の強い D1.3は適していない。 VH VL相互作用に関与する残基 を特定することができれば、 その残基をオープンサンドィツチ法が適用可能な抗 体のアミノ酸に置換することにより、 ォープンサンドイッチ法をより多くの抗体 に適用することが可能となると期待される。 また、 これまでに、 VH/VL相互作用 および抗原結合能と抗体フレームワーク領域の配列との関係が系統的に調べられ た例はない。そこで、 VH/VL界面に存在する 2番目のフレームワーク領域 (FR2) に着目し、 HyHEL-10の VHおよび VLの FR2領域の各残基を D1.3型のものにし たとき、 オープンサンドイッチ法による測定が可能であるか、 また、 VH/VL相互 作用がそれぞれの野生型 (WT) と比較してどのように変化する力 検討した。 またそれにより、 オープンサンドィツチ法が適用可能なクローンの割合を調べ、 オープンサンドィツチ法の適用に必要な 2つの条件を満たすには、 どの残基が重 要なのか検討した。
split Fv断片の作製
HyHEL-10を铸型とし、 以下の方法で PCRを行った。 プライマーに混合塩基を 入れることで FR2領域を HyHEL-10型か、 D1.3型にした、 VHの N末端から VL の CDR2領域に位置する 55番目の Gly (H55) までの DNA断片 (以下: VH FR2 と称し、 リバ一スプライマーに MH2BackSfi、 フォワードプライマ一に H10VHframe2を使用)、 VLの CDRl領域に位置する 30番目の Gly (L30) から VLの N末端、 gVI [までの DNA断片 (以下: VL FR2) (リバ一スプライマ一に H10VLframe2、 フォワードプライマーに g7EcoFRを使用) を増幅した。
PCR反応の鎵型には、 pKST2の FLAG tagを VLの N末端から VHの C末端に 移動させた HyHEL-10の split Fv断片を持つファ一ジミド (pKST2 HyHEL-10 A) を用いた。 また、 同様にこの 2つの DNA断片を split Fv断片にするためのリンカ 一も増幅した。この場合も pKST2 HyHEL-10 Aをテンプレートにし、 VHの CDR2 領域に位置する 49番目の Gly (H49) から VHの C末端、 FLAG、 gK、 OmpA、 VLの CDRl領域に位置する 37番目の Gin (L39) までの DNA断片(以下: linker
(FR2)) (リバースプライマーに H101inkRV、フォワードプライマーに HlOlinkFR を使用) を増幅した。 いずれの場合も、 DNAポリメラーゼとして Ex T^ (宝バイ ォ) を用い、 反応は 94°C、 5分間で開始し、 94°C30秒間、 55°C30秒間、 72°Cl分 間を 35サイクル行い、 72°C5分間反応させた後、 4°Cで終了した。
次に、 VH FR2、 VLFR2、 リンカ一 (FR2) をオーバーラップェクステンジョン PCRにより 1つの DNA断片にアセンブリ一させた。まず、プライマーを加えず、 VH FR2、 VL FR2、 リンカ一 (FR2) を PCR反応液に入れ、 94° (:、 5分間で開始 し、 94°C30秒間、 55°C30秒間、 72°Cl分間をフサイクル行い、 4°Cで反応を終了 させた。 次に、 MH2BackSfiをリバ一スプライマ一、 g7EcoFRをフォヮ一ドプラ イマ一として加え、 94°C30秒間、 55°C30秒間、 72°Cl分間を 30サイクル行い、 4°C で反応を終了させた。 ポリメラ一ゼは、 ¾3を用いた。
H10VHframe2:
5'-ACCACTGTAGCTTACGTACCCCAWSYACTCCAGACSKTIACCTGGARR rKACGAAYCC AGCTCCAAIAATCACTGGT-3 '
H10VLframe2:
5'-GGCAACA^
AKT rGCTTCCCAGTCCATCTCT-3 , HlOliokRV:
5 ' -GGGTACGTAAGCIACAGTG-3 '
HlOlinKFR:
5'-GATACCAGTGTAGGTTG-3'
(K=G or T, M=A or C, R=A or G, Y=C or T, S=C or G, W=A or Ί) FR2領域のランダム化の確認
このようにして増幅した split Fv断片を Nco I、 Not lで処理し、 Nco I、 Not l で処理されたべクタ一 pKST2に組み込み、 大腸菌 TG-lsup+に形質転換した。 反応 溶液を YTAGプレート (Ap: 100 /mL、 Glucose: 1%) に塗布し、 30°Cでー晚培 養した。生じたコロニーからコロニ一 PCRを行つた。 split Fv断片の挿入が確認さ れたクローンをレプリカプレートから植菌し、 37°Cで一晩振盪培養した。 得られ た菌体溶液からアルカリ一 SDS法でプラスミド精製を行った。 ABI PRISM 3100 Genetic Analyzer (Applied Biosvstems)、 BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) で配列の確認を行った。 プライマ一は、 M13RV、 OmpARV (OmpA signal配列の一部に相補的なリバ一スプライマ一) を用いた。 また、 フ ァージディスプレイ、 続いて抗原の HEL、 blank, VH、 および、 VLの提示を確認 するため、 それぞれ、 anti FLAG M2, 9E10を固定化し、 ファージ ELISAを行つ た。 なお、 HyHEL-10の FR2領域の各残基を HyHEL-10型か、 D1.3型にした split Fv断片の作製を示す模式図を図 1 3に示す。
OmpARV:
5'-ACAGCTA CGCGAITGCAGTG-3'
—の作製
まず上記の split Fv断片を大量に調製した。その後、ベクタ一(pKST2) 2.13 pmol と揷入 DNA断片 (HyHEL-10の FR2領域に変異を導入した split Fv断片) 21.3 pmol を混合し、 そこへ全量の l/2vol.の Ligation High (Toyobo)を加え、 16°Cで 2時間静 置し、 ライゲ一シヨンを行った。 次に、 エレクト口ポレーシヨン法により形質転 換を行う前に、 エタノール沈殿により脱塩を行った。 具体的には、 ライゲ一ショ ン反応液の全量の Ι/lOvol.の 3M酢酸ナトリウム、 2 Lの Pellet Paint Co-Precipitant (メルク、 東京)、 2vol.の 100%エタノールを加え、 ポルテックスミキサーにより 混合し、 室温で 2分間静置した。 静置後、 15000rpm、 室温で 5分間遠心し、 上清 を除去した。 70%エタノール、 続いて 100%エタノールでリンスし、 15000rpm、 室温で 5分間遠心し、 上清を除去、 遠心乾燥した後、 沈殿を 20 Lの miUi-Q水 に溶解し、 2等分した。
脱塩を行った DNA溶液 lO^ Lと大腸菌 100 L (TG-lsup+) を混合し、 キュべ ットに移し、 Easyject (EquiBio) を用いて電圧を加えた。 その後、 2YT液体培地 900 Lをキュベットに加え、 懸濁し、 マイクロチューブに移し、 37°Cで 30分間 培養した。 残りの脱塩を行った DNA溶液 10 Lについても、 同様の操作を行つ た。培養を行った後に、 培養液 1 Lを 2YT液体培地 99 X Lで希釈し、 このうち 10 Lを 2YT液体培地 90 Lで 10倍希釈、 この操作を 2回繰り返した。 それぞ れの希釈液のうち 10 Lずつを YTAG (Ap: 100 H g/mL、 ダルコ一ス: 1%) プレー トにスポッティングし、 30°Cでー晚培養した。 それぞれのスポットに生じたコロ ニーの数を数え、 ライブラリのサイズを算出した。 残りの培養液は、 YTAG (Ap: lOO gmLx グルコース: 1%) プレート (バイオトレイ) (住友ベークライト) に 塗布し、 30°Cでー晚培養した。
ファージライブラリ一の調製
コロニーの生えたバイオトレイに 2YT液体培地 5mlを注ぎ、コンラ一ジ棒を用 いてコロニーを回収し、 l/2vol.の 50% グリセロールを加えグリセロールストック を作製し、 -80°Cで保存した。 回収した菌体溶液 50 Lを 2YT液体培地 (Ap: 100 g/mL、 グルコース: 1%) lOOmLに添加し、 37°Cで振盪培養した。 O.D.600=0.5 に達したとき、 培養液 10mLに菌体の 20当量のヘルパーファージ M13K07を加 え、 37°Cで 30分間静置した。その後、 2000ipm、 15分間遠心、培養上清を除去し、 2ΎΤ液体培地 (Ap: 100 g/mL、 Km: 50^ g/mL) 5mLで再懸濁した。 これを 2YT 液体培地(Ap: 100 g/mL、 Km: 50 g/mL) 45mLの入ったバッフル付三角フラス コに加え、 30°Cで 20時間、毎分 250回転で振盪培養した。培養後、培養液を 6500g、 10分間遠心し、培養上清を回収、そこへ 20% PEG6000、 2.5M NaClを l/5vol.加え、 氷上で 1時間静置した。 その後、 6500g 4°C、 30分間遠心し、 沈殿物として得ら れたファージを lmLの TE (10mM Tris、 lmM EDTA、 pH 8.0) で再懸濁し、 再度 15000rpm、 4°C> 20分間遠心し、 上清を回収、 ファージライブラリ一を得た。 バイォパニングとモノクローナルファ一ジ ELISA
抗原の HELに対してバイォバニングを 1回もしくは 2回行つた。パイォパニン グによって得られた HELに対する結合能の高いファージ集団から、 HELに特異 的に結合するクローンを取得するため、モノク口一ナルファ一ジ ELISAを行った。 合計 1536クローンにっき、 ファ一ジ培養上清を用いて ELISAを行い、 HELを固 定化したゥエルの吸光度が 0.3以上でかつ、 その吸光度がブランクの吸光度の 5 倍以上である 72クローンを、 HELへの結合が特異的であるか更に検討すること にした。
上記においてライブラリ一を作製する際に、 約 7X 107個のコロニーが生じた。 コロニ一 PCRによりインサートが挿入されていないもの、 また、 PCRの際、 遺伝 子の過不足が起こっているものの割合を差し引くと、 ライブラリーの多様性は約 5 X 107と推定される。 1回、 パイォパニングを行い、 得られた 1536クローンにつ き、 96穴プレートで調製したファ一ジ培養上清を用い、 ELISAを行った。 HEL を固定ィ匕したゥェルの吸光度が 0.3以上でかつ、 その吸光度がブランクの吸光度 の 5倍以上である 72クローンにっき、 5mLスケールでファージを再度調製し、 ELISAを行い、 HELへの結合が特異的であるカゝ、 VH、 VLが提示されているか、 検討を行った。
ファージクローンの HELに対する特異性
モノクロ一ナルファージ ELISAで HELへの結合能があると判断したクローン の特異性を確認するため、 それぞれのクロ一ンについて、 グリセロールストック から植菌し、 5mLスケールでファージディスプレイをし、ファージ ELISAを行つ た。 このとき、抗原の HEL、ブランク、 VH、および、 VLの提示を確認するため、 それぞれ、 anti FLAG M2, 9E10を固定化したゥエルを用意した。 VH、 VLの両方 が提示されていて、 HELに充分特異的に結合すると判断されるクロ一ンが得られ たので、 これらのクローンにっき、 グリセ口一ルストックから植菌し、 37°Cで一 晚振盪培養した。 得られた菌体溶液からアルカリ一 SDS法でプラスミド精製を行 つた。 ABI PRISM 3100 Genetic Analyzer、 BigDye Terminator Cycle Sequencing Kit で配列の確認を行った。 プライマーは、 M13RV、 OmpARVを用いた。
anti FLAG M2、 E10を固定化したゥエルで、充分に大きな吸光度が示され VH、 VL共に提示されていることが確認され、 かつ、 HELを固定化したゥエルの吸光 度がブランクの吸光度の 8倍以上で、充分特異的に結合していると判断される 64 クローンを得た。本来保存されているフレームワーク領域に変異を加えたために、 非特異的な結合を示すクローンが多くなつたと考えられる。 これらのクローンに つき、 提示されている VH、 および VLのアミノ酸配列を調べ、 アンパ一コドン に置換されているクローン、 VH、 VL両方とも WTと全く同じアミノ酸配列を持 っクローンを除いた 36クローンにっき、更に解析することにした。なお図 1 4に、 ファ一ジライブラリの作製から、 HELへの結合能の高レ クロ一ンの選択までの流 れを示す。
この 36クローンにっき、ファ一ジのタイターを 2.5X l08、l X109、4X 109(cfu/ml) にそろえ、 HEL、 ブランクに対し ELISAを行ったところ、 いずれのクロ一ンも HELに特異的に結合していて、 その結合能は WTと比較して、 弱いものから、 同等、 強いものまで多種多様であった。 HELへの結合能の指標に、 l X l09 cfu/ml で ELISAを行ったときの、 HELを固定したゥエルでの吸光度からブランクの吸 光度を引き、 WTのその値で割った値を用いることにした。
オープンサンドイッチ ELISAによる VH/VL相互作用の測定
HELに充分特異的に結合すると判断され、 つ、 アンバーコドンによる置換が 起こっていなかった 36クローンにっき、 ファージを HB2151sup-に感染させ、 VH のみが提示されたファージと可溶性 VL断片を含む上清を調製した。 VLに結合さ せた tagの myc tagに対する抗体 9E10を固定化したプレ一トに、 この培養上清を アプライし、 いくつかの抗原濃度で(HEL=0、 0.1、 1、 10U g/mL) , Open Sandwich ELISAを行った。 この際、 プレートへの非特異的吸着による吸光度上昇がどの程 度であるか検討するため、 ブランクのゥエルも用意した。 その他の操作は、 実施 例 1において述べたオープンサンドィツチ ELISAと同様の方法で行った。
KEL=10 Z g/mLでの吸光度を HEL=0 g mLでの吸光度で割った値をオープン サンドィツチ法による測定への適性の指標として用いた。 この値が 1.2未満のも のをオープンサンドイッチ法による測定が不可能である、 1.2以上のものをオーブ ンサンドイッチ法による測定が可能であると分類した。すると、 VHの 39番目の 残基である H39がオープンサンドィツチ法による測定が可能であった 14クロ一 ン中、 13クローンで Kであり、オープンサンドイッチ法による測定が不可能であ つた 22クローン中、 20クローンで Qであった。
次に HB2151sup—をホストとし調製した VHのみが提示されたファ一ジと可溶性 VL断片を含む上清を用い、 抗原非存在下での VH/VL相互作用の測定を行った。 VL側の tagの myc tagに対する抗体 9E10を 4°C、ー晚静置、固定化したプレート を 2% MPBS 200 Lを加え、 室温で 2時間静置した。 ブロッキング後、 プレート を PBS-Tween (0.1% Tween20) で 3回洗い、 この培養上清 10 Lと 1% MPBS 90 Lを混合した溶液 100 μ Lを加え、 37°Cで 1時間静置した。プレ一卜を PBS-Tween
(0.1% Tween20) で 3回洗い、 5000倍希釈したマウス由来 HRP標 ファージ 抗体 100 X Lを各ゥエルへ加え、 室温で 1時間静置した。 プレートを PBS-Tween
(0.1% Tween20) で 3回洗い酵素反応を行つた。
9E10を固定したゥエルの吸光度からブランクの吸光度を引いた値を VH/VL相 互作用の強弱の指標として用い、 この値の小さいクローンから順に並び替え、 そ の FR2領域のァミノ酸配列と比較した。 この値が 0.5以上のものを VH/VL相互 作用が強い、 0.5未満のものを VH/VL相互作用が弱いと分類した。この場合でも、 H39のアミノ酸配列が大きな影響を及ぼしていて、 H39が、 VH/VL相互作用が強 いと判断された 19クロ一ン中、 17クローンで D1.3型の Qであり、 VH/VL相互 作用が弱いと判断された 17クローン中、 13クロ一ンで HyHEL-10型の Kであつ た。 すなわちこの実験により、 VH39位のアミノ酸残基 (H39)がオープンサンドィ ツチ法による測定の可否、 および VH/VL相互作用の強弱決定に深く関与してい ることが示唆された。
HELへの結合能とオープンサンドイッチ法による測定への適性、 次に VH/VL 相互作用の強弱との関係をプロットした。 HELに対する結合能とオープンサンド イッチへの適性の関係を図 1 5に示す。 また、 HELに対する結合能と VH/VL相 互作用の関係を図 1 6に示す。 なお図 1 5と図 1 6において、 黒丸は H39が HyHEL-10型 (K) のものを、 白四角は D1.3型 (Q) のちのを、 黒三角は野生型
(WT) を、 それぞれ示す。 36クローンについてプロットを行い、 Η39が Qで 分類した。
この結果、 やはり VHの 39番目が VH/VL相互作用の強弱、 オープンサンドィ ツチ法による測定への適性に深く関与していて、 HyHEL-10型の Kでは、 VH/VLV 相互作用が弱く、 オープンサンドィツチ法による測定に適していて、 D1.3型の Q では、 VH/VL相互作用が強く、 オープンサンドイッチ法による測定に適さない傾 向があることが示された。 これは、 主に VLの 38番目 (L38) の Q との間に水素 結合を形成できるか否かによるものと考えられる。
実際に、 H39が Kの HyHEL-10、 H39が Qの D1.3について H39近傍の立体構 造を調べた。 すると、 HyHEL-10では、 H39の Kと L38の Qの間には、 水素結合 が形成されないが、 D1.3では、 H39の Qと L38の Qの間に 2本の水素結合が形 成されることがわかった。それゆえ、 H39が Kの場合、 L38の Qと水素結合を形 成することができないため、 VH/VL相互作用が弱く、 一方、 H39が Qの場合、 L38の Qと 2本の水素結合を形成するため、 VH/VL相互作用が強くなる傾向があ るものと考えられる。
以上のことから、 split Fvシステムを用いてランダム化した抗体 Fvライブラリ の選択を行い、 野生型より抗原親和性の高いもの、 オープンサンドイッチ法によ り適したものを含めた多数のクローンを得られることが示された。 また、 この結 果からオープンサンドイッチ法に適した抗体の特徴が明らかになった。
本発明により、 抗体可変領域の VH断片と VL断片の間の相互作用を測定する ための新規な方法が与えられた。 本発明の方法は蛋白質の間の相互作用を検出す る目的で、 広く使用することが可能である。 本発明の方法に従って、 アンバーコ ドンを有するファ一ジミドベクターによってァンバ一サブレッサー株大腸菌を形 質転換してファ一ジを調製すると、 VH · VL断片の両者がファ一ジ粒子上に提示 される。 一方非アンバーサブレッサ一株大腸菌を形質転換してファージを調製し た際には、 アンバ一コドンが存在するために、 VH断片のみがファ一ジ粒子上に 提示されて、 VL断片は培養上清中に分泌されるという提示切り替えが起こる。 培養上清中に分泌された VL断片を固相に固定ィ匕し、ファ一ジ上に提示された VH 断片との相互作用を定量化することにより、 VH断片と VL断片の間の相互作用 を測定することが可能である。

Claims

請 求 の 範 囲
1. ベクタ一であって、 (1)一の蛋白質又はその断片をコードする D NA配列、 (2) 当該一の蛋白質又はその断片をファージ上に提示する ための蛋白質をコードする DNA配列、 (3) 他の蛋白質又はその断片 をコードする DNA配列、 (4) ホストによる提示切り替えを可能とす る終止コドン、 及び (5) 当該他の蛋白質又はその断片をファ一ジ上に 提示するための蛋白質をコ一ドする DNA配列、 の少なくとも上記 5つ の DNA配列を、 当該べクタ一の 5'方向から 3'方向にかけて、 (1) (2) (3) (4) (5) の順番に又は (3) (4) (5) (1) (2) の順番に備 える構造を有し、 当該ホストによる提示切り替えを可能とする終止コド ンが存在することにより、 当該ベクターをサブレッサ一変異体宿主に導 入した際には、 当該一の蛋白質又はその断片と当該他の蛋白質又はその 断片の両者をその上に提示する 2蛋白質提示型のファ一ジを提供し、 か つ、 当該ベクターを非サブレッサー株宿主に導入した際には、 当該一の 蛋白質又はその断片のみをその上に提示する 1蛋白質提示型のファー ジ及び当該非サブレッサ一株宿主から培養上清中に分泌された当該他 の蛋白質又はその断片を提供することを特徴とする、 ベクタ一。
2. 前記一の蛋白質又はその断片が抗体可変領域の VH断片であって、 前記他の蛋白質又はその断片が抗体可変領域の VL断片である、 請求項 1記載のベクター。
3. 前記一の蛋白質又はその断片が抗体可変領域の VL断片であって、 前記他の蛋白質又はその断片が抗体可変領域の VH断片である、 請求項 1記載のベクター。
4. 前記ベクターが大腸菌のファ一ジベクター又はファージミドべク ターである、 請求項 1ないし請求項 3のいずれか 1つの請求項記載のベ クタ一。 +
5 . 前記一の蛋白質又はその断片をファージ上に提示するための蛋白 質をコ一ドする DNA配列が繊維状ファ一ジの pIX蛋白質をコードす る DNA配列であって、 前記他の蛋白質又はその断片をファージ上に提 示するための蛋白質をコードする DNA配列が繊維状ファ一ジの pVII 蛋白質をコードする DNA配列である、 請求項 1ないし請求項 4のいず れか 1つの請求項記載のベクタ一。
6 . 前記一の蛋白質又はその断片をファ一ジ上に提示するための蛋白 質をコードする DNA配列が繊維状ファ一ジの pVII蛋白質をコードす る DNA配列であって、 前記他の蛋白質又はその断片をファ一ジ上に提 示するための蛋白質をコードする DNA配列が繊維状ファージの pIX 蛋白質をコードする DNA配列である、 請求項 1ないし請求項 4のいず れか 1つの請求項記載のベクタ一。
7 . 前記ホストによる提示切り替えを可能とする終止コドンがアンパ —コドンである、 請求項 1ないし請求項 6のいずれか 1つの請求項記載 のベクター。
8. の蛋白質又はその断片と他の蛋白質又はその断片との間の相互 作用を測定する方法であって、
( 1 ) 請求項 1ないし請求項 7のいずれか 1つの請求項記載のベクター を用いて非サブレッサー株宿主の形質転換を行うことにより、 当該一の 蛋白質又はその断片のみをその上に提示した 1蛋白質提示型のファー ジと、 当該非サブレッサ一株宿主から分泌された当該他の蛋白質又はそ の断片を含む培養上清を取得し、
( 2 ) 培養上清中の当該他の蛋白質又はその断片を適切な担体に固定ィ匕 し、
( 3 ) 固定ィ匕された当該他の蛋白質又はその断片と、 当該 1蛋白質提示 型のファージ上に提示された当該一の蛋白質又はその断片とを反応さ せて、 当該一の蛋白質又はその断片と当該他の蛋白質又はその断片とを 結合させ、
( 4 ) 標識された抗ファージ钪体を用いた免疫測定法により、 ファージ の固体化量を測定することにより、 当該一の蛋白質又はその断片と当該 他の蛋白質又はその断片との結合能を評価する;
上記の過程よりなる、 一の蛋白質又はその断片と他の蛋白質又はその断 片との間の相互作用を測定する方法。
9 . 前記一の蛋白質又はその断片が抗体可変領域の VH断片であって、 前記他の蛋白質又はその断片が抗体可変領域の VL断片である、 請求項 8記載の方法。
1 0 . 前記一の蛋白質又はその断片が抗体可変領域の VL断片であつ て、 前記他の蛋白質又はその断片が抗体可変領域の VH断片である、 請 求項 8記載の方法。
1 1 . 前記ベクターが大腸菌のファージベクター又はファージミドべ クタ一である、 請求項 8ないし請求項 1 0のいずれか 1つの請求項記載 の方法。
1 2 . 前記一の蛋白質又はその断片をファージ上に提示するための蛋 白質をコードする DNA配列が繊維状ファ一ジの pIX蛋白質をコード する DNA配列であって、 前記他の蛋白質又はその断片をファ一ジ上に 提示するための蛋白質をコ一ドする DNA配列が繊維状ファ一ジの pVI I蛋白質をコードする DNA配列である、 請求項 8ないし請求項 1 1の いずれか 1つの請求項記載の方法。
1 3 . 前記一の蛋白質又はその断片をファージ上に提示するための蛋 白質をコ一ドする DNA配列が繊維状ファ一ジの pVII蛋白質をコード する DNA配列であって、 前記他の蛋白質又はその断片をファ一ジ上に 提示するための蛋白質をコ一ドする DNA配列が繊維状ファージの pIX 蛋白質をコードする DNA配列である、 請求項 8ないし請求項 1 1の いずれか 1つの請求項記載の方法。
1 4. 前記ホストによる提示切り替えを可能とする終止コドンがアン バーコドンである、 請求項 8ないし請求項 1 3のいずれか 1つの請求項 記載の方法。
1 5 . 前記サブレッサ一変異体宿主が、 大腸菌アンパーサブレッサ一 株である、 請求項 8ないし請求項 1 4のいずれか 1つの請求項記載の方 法。
1 6 . 前記大腸菌アンパ一サブレッサ一株が大腸菌 TG1株であり、 かつ前記非サブレッサー株宿主が大腸菌 HB2151株である、請求項 1 5 記載の方法。
1 7 . 抗原が存在することにより VH断片と VL断片の間の相互作用 が変化する抗体可変領域を得るための方法であって、
( 1 ) 請求項 2記載のベクタ一を用いてサブレツサ一変異体宿主の形質 転換を行うことにより、 当該ベクターをサブレッサー変異体宿主に導入 した際には VH断片と VL断片の両者をそのファージ上に提示する、 V H VL提示型のファージを取得し、
( 2 ) 上記 (1 ) において取得された当該 VH/VL提示型のファ一ジと 抗原との結合能を確認し、
( 3 ) 上記 (2 ) において VH/VL提示型のファージを提供することが 確認された請求項 2記載のベクターを用いて非サブレッサー株宿主の 形質転換を行うことにより、 あるいは上記 (1 ) において取得された V HATL提示型のファ一ジを用いて非サブレッサ一株宿主の形質導入を 行うことにより、 当該 VH断片のみをその上に提示する VH提示型のフ ァージと、 当該非サブレツサー株宿主から培養上清中に分泌された当該 VL断片を含む培養上清を取得し、
( 4 ) 培養上清中の当該 VL断片を適切な担体に固定化し、
( 5 ) 抗原の存在下及び非存在下で、 固定ィ匕された当該 VL断片とファ —ジ上に提示された当該 VH断片を反応させ、
' ( 6 ) 標識された坊ファ一ジ抗体を用い 免疫測定法により、 ファ一ジ の固体化量を測定することにより、 当該 VH断片と当該 VL断片の間の 結合能を評価し;
( 7 ) 抗原の存在下における当該 VH断片と当該 VL断片の間の結合能 が、 抗原の非存在下における当該 VH断片と当該 VL断片の間の結合能 の 2倍以上である場合に、 抗原が存在することにより VH断片と VL断 片の間の相互作用が変化する抗体可変領域が得られたと判定する過程 よりなる、 上記方法。
1 8 . 抗原が存在することによりか断片と VL断片の間の相互作用 が変化する抗体可変領域を得るための方法であつて、
( 1 ) 請求項 3のべクタ一を用いてサブレッサ一変異体宿主の形質転換 を行うことにより、 当該ベクターをサブレッサ一変異体宿主に導入した 際には VH断片と VL断片の両者をそのファ一ジ上に提示する、 VH/VL 提示型のファージを取得し、
( 2 ) 上記 (1 ) において取得された当該 VH/VL提示型のファージと 抗原との結合能を確認し、
( 3 ) 上記 (2 ) において VH/VL提示型のファージを提供することが 確認された請求項 3記載のベクターを用いて非サブレツサ一株宿主の 形質転換を行うことにより、 あるいは上記 ( 1 ) において取得された V H/VL提示型のファージを用いて非サブレッサー株宿主の形質導入を 行うことにより、 当該 VL断片のみをその上に提示する VL提示型のフ ァージと、 当該非サブレッサー株宿主から培養上清中に分泌された当該 VH断片を含む培養上清を取得し、
( 4 ) 培養上清中の当該 VH断片を適切な担体に固定ィ匕し、
( 5 ) 抗原の存在下及び非存在下で、 固定ィ匕された当該 VH断片とファ —ジ上に提示された当該 VL断片を反応させ、
( 6 ) 標識された抗ファージ抗体を用いた免疫測定法により、 ファージ の固体化量を測定することにより、 当該 VH断片と当該 VL断片の間の 結合能を評価し;
( 7 ) 抗原の存在下における当該 VH断片と当該 VL断片の間の結合會 i が、 抗原の非存在下における当該 VH断片と当該 VL断片の間の結合能 の 2倍以上である場合に、 抗原が存在することにより VH断片と VL断 片の間の相互作用が変化する抗体可変領域が得られたと判定する過程 よりなる、 上記方法。
1 9 . 抗体可変領域の VL断片を得る方法であって、
( 1 ) 請求項 2記載のベクタ一を用いて非サブレッサ一宿主の形質転換 を行う力、、 あるいは当該ベクターを有する VH/VL提示型のファージを 用いて非サブレッサー株宿主の形質導入を行い、
( 2 ) 当該非サブレッサ一株宿主から当該 VL断片を培養上清に分泌さ せ、
( 3 ) 当該培養上清から当該 VL断片を精製する、
上記過程よりなる、 抗体可変領域の VL断片を得る方法。
2 0 . 抗体可変領域の VH断片を得る方法であって、
( 1 ) 請求項 3記載のベクターを用いて非サブレッサ一宿主の形質転換 を行うか、 あるいは当該ベクターを有する VH/VL提示型のファージを 用いて非サブレッサー株宿主の形質導入を行い、
( 2 ) 当該非サブレッサ一株宿主から当該 VH断片を培養上清に分泌さ せ、 (3) 当該培養上清から当該 VH断片を精製する、 上記過程よりなる、 抗体可変領域の VH断片を得る方法。
PCT/JP2003/010386 2002-08-16 2003-08-15 複数の蛋白質の間の相互作用を測定する方法 WO2004016782A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/524,564 US20060252028A1 (en) 2002-08-16 2003-08-15 Method of assaying interaction between proteins
AU2003266502A AU2003266502A1 (en) 2002-08-16 2003-08-15 Method of assaying interaction between proteins
EP03788129A EP1536005A4 (en) 2002-08-16 2003-08-15 METHOD FOR ANALYZING INTERACTION BETWEEN PROTEINS
JP2004528888A JP4359682B2 (ja) 2002-08-16 2003-08-15 複数の蛋白質の間の相互作用を測定する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-237411 2002-08-16
JP2002237411 2002-08-16

Publications (1)

Publication Number Publication Date
WO2004016782A1 true WO2004016782A1 (ja) 2004-02-26

Family

ID=31884438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010386 WO2004016782A1 (ja) 2002-08-16 2003-08-15 複数の蛋白質の間の相互作用を測定する方法

Country Status (5)

Country Link
US (1) US20060252028A1 (ja)
EP (1) EP1536005A4 (ja)
JP (1) JP4359682B2 (ja)
AU (1) AU2003266502A1 (ja)
WO (1) WO2004016782A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130027A1 (ja) * 2007-04-18 2008-10-30 Kyokuto Pharmaceutical Industrial Co., Ltd. 改良バクテリアツーハイブリッド法
JP2009296907A (ja) * 2008-06-11 2009-12-24 Fujifilm Corp 抗体を選別するためのベクター
WO2010047419A1 (en) * 2008-10-24 2010-04-29 Fujifilm Corporation Immobilization substrate and method for producing the same
JP2010178649A (ja) * 2009-02-04 2010-08-19 Fujifilm Corp 抗チロキシン抗体及びそれを用いた免疫測定方法
JP2011507520A (ja) * 2007-12-19 2011-03-10 セントコア・オーソ・バイオテツク・インコーポレーテツド M13ファージのpIXとの融合によってヒト非抗体ペプチド又はタンパク質ファージライブラリを設計及び生成するための、操作されたハイブリッドファージベクター
WO2013104804A2 (en) 2012-01-13 2013-07-18 Julius-Maximilians-Universität Würzburg Dual antigen-induced bipartite functional complementation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168393A1 (en) * 2005-10-11 2010-07-01 Big Glucose Ltd. Antibody Polypeptide Libray Screening and Selected Antibody Polypeptides
JP2011030428A (ja) * 2008-02-14 2011-02-17 Fujifilm Corp 抗体を選別するためのベクター
EP2401373B1 (en) 2009-02-25 2013-09-11 Nextera AS Signal sequence-independent pix phage display
JP5851391B2 (ja) * 2010-02-16 2016-02-03 国立大学法人京都工芸繊維大学 抗体固定化担体、抗体固定化担体の製造方法および当該抗体固定化担体の利用
CN109825521A (zh) * 2019-01-29 2019-05-31 潍坊医学院 一种噬菌体呈示载体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071694A1 (en) * 1999-05-25 2000-11-30 The Scripps Research Institute METHODS FOR DISPLAY OF HETERODIMERIC PROTEINS ON FILAMENTOUS PHAGE USING pVII and pIX, COMPOSITIONS, VECTORS AND COMBINATORIAL LIBRARIES

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071694A1 (en) * 1999-05-25 2000-11-30 The Scripps Research Institute METHODS FOR DISPLAY OF HETERODIMERIC PROTEINS ON FILAMENTOUS PHAGE USING pVII and pIX, COMPOSITIONS, VECTORS AND COMBINATORIAL LIBRARIES

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROSHI UEDA ET AL.: "Arata na men'eki sokuteiho", GENE & MEDICINE, vol. 3, no. 1, 1999, pages 170 - 175, XP002975827 *
LUCIC M.R. ET AL.: "Secretion in escherichia coli and phagedisplay of recombinant insulin-like growth factor binding protein-2", J. BIOTECHMOL., vol. 61, no. 2, 1998, pages 95 - 108, XP004128054 *
See also references of EP1536005A4 *
SUZUKI C. ET AL.: "Open sandwich ELISA with V(H)-/V(L)-alkaline phosphatase fusion proteins", J. IMMUNOL. METHODS, vol. 224, no. 1-2, 1999, pages 171 - 184, XP004165520 *
TSUMOTO K. ET AL.: "Novel selection method for engineered antibodies using the mechanism of Fv fragment stabilization in the presence of antigen", PROTEIN ENG., vol. 10, no. 11, 1997, pages 1311 - 1318, XP002972197 *
UEDA H. ET AL.: "Open sandwich ELISA: a novel immunoassay based on the interchain interaction of antibody variable region", NAT. BIOTECHNOL., vol. 14, no. 13, 1996, pages 1714 - 1718, XP002085341 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130027A1 (ja) * 2007-04-18 2008-10-30 Kyokuto Pharmaceutical Industrial Co., Ltd. 改良バクテリアツーハイブリッド法
JPWO2008130027A1 (ja) * 2007-04-18 2010-07-22 極東製薬工業株式会社 改良バクテリアツーハイブリッド法
JP2011507520A (ja) * 2007-12-19 2011-03-10 セントコア・オーソ・バイオテツク・インコーポレーテツド M13ファージのpIXとの融合によってヒト非抗体ペプチド又はタンパク質ファージライブラリを設計及び生成するための、操作されたハイブリッドファージベクター
JP2009296907A (ja) * 2008-06-11 2009-12-24 Fujifilm Corp 抗体を選別するためのベクター
WO2010047419A1 (en) * 2008-10-24 2010-04-29 Fujifilm Corporation Immobilization substrate and method for producing the same
US9487592B2 (en) 2008-10-24 2016-11-08 Fujifilm Corporation Immobilization substrate and method for producing the same
JP2010178649A (ja) * 2009-02-04 2010-08-19 Fujifilm Corp 抗チロキシン抗体及びそれを用いた免疫測定方法
WO2013104804A2 (en) 2012-01-13 2013-07-18 Julius-Maximilians-Universität Würzburg Dual antigen-induced bipartite functional complementation
EP3333190A1 (en) 2012-01-13 2018-06-13 Julius-Maximilians-Universität Würzburg Dual antigen-induced bipartite functional complementation
EP3907241A1 (en) 2012-01-13 2021-11-10 Julius-Maximilians-Universität Würzburg Dual antigen-induced bipartite functional complementation
US11427644B2 (en) 2012-01-13 2022-08-30 Julius-Maxmillians-Universitat Wurzburg Dual antigen-induced bipartite functional complementation

Also Published As

Publication number Publication date
AU2003266502A1 (en) 2004-03-03
EP1536005A1 (en) 2005-06-01
JP4359682B2 (ja) 2009-11-04
EP1536005A4 (en) 2006-05-17
US20060252028A1 (en) 2006-11-09
JPWO2004016782A1 (ja) 2005-12-02

Similar Documents

Publication Publication Date Title
van den Beucken et al. Affinity maturation of Fab antibody fragments by fluorescent‐activated cell sorting of yeast‐displayed libraries
CA2086936C (en) Method for producing members of specific binding pairs
JP4493845B2 (ja) インターナライズする抗体を選択する方法
US6916605B1 (en) Methods for producing members of specific binding pairs
US6406863B1 (en) High throughput generation and screening of fully human antibody repertoire in yeast
de Wildt et al. Characterization of human variable domain antibody fragments against the U1 RNA‐associated A protein, selected from a synthetic and a patient‐derived combinatorial V gene library
WO2004016782A1 (ja) 複数の蛋白質の間の相互作用を測定する方法
WO2006013468A2 (en) Polypeptide
Malone et al. Analysis of antibody selection by phage display utilizing anti‐phenobarbital antibodies
US20140038842A1 (en) Cell surface display using pdz domains
JP4566911B2 (ja) コバラミン分析方法
CA2411515A1 (en) Generation of libraries of antibodies in yeast and uses thereof
CN112079928B (zh) 一种抗pd-l1的单克隆抗体
Bao et al. Isolating human antibody against human hepatocellular carcinoma by guided-selection
JP5610378B2 (ja) 抗体を選別するためのベクター
Eom Engineering pH-Dependent Antibody Interactions through Linked Protonation Events in Interdomain Interfaces
Cohen et al. Interaction of the octapeptide angiotensin II with a high-affinity single-chain Fv and with peptides derived from the antibody paratope
JP2011030428A (ja) 抗体を選別するためのベクター
WO2010055208A1 (en) Modified avidins binding to small ligands
CN116162158A (zh) 结合bp特异性抗原肽的人源抗体、制备方法及用途
GB2616707A (en) Methods
JP3923534B6 (ja) 分子の標識及び選択
CN117209600A (zh) Ss-b结合蛋白、制备方法和应用
Dillon Antibody-based biosensor assays for the detection of zilpaterol and markers for prostate cancer
JP2002335978A (ja) ヒトアルブミン結合活性を有する単鎖Fvポリペプチド及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004528888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003266502

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003788129

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003788129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006252028

Country of ref document: US

Ref document number: 10524564

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10524564

Country of ref document: US