WO2004014523A1 - 目的ガス分離方法 - Google Patents

目的ガス分離方法 Download PDF

Info

Publication number
WO2004014523A1
WO2004014523A1 PCT/JP2003/010036 JP0310036W WO2004014523A1 WO 2004014523 A1 WO2004014523 A1 WO 2004014523A1 JP 0310036 W JP0310036 W JP 0310036W WO 2004014523 A1 WO2004014523 A1 WO 2004014523A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption tower
pressure
adsorption
cleaning
Prior art date
Application number
PCT/JP2003/010036
Other languages
English (en)
French (fr)
Inventor
Toshihiko Sumida
Hiroaki Sasano
Masanori Miyake
Original Assignee
Sumitomo Seika Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co., Ltd. filed Critical Sumitomo Seika Chemicals Co., Ltd.
Priority to US10/523,506 priority Critical patent/US20050268780A1/en
Priority to EP03784559A priority patent/EP1552873A1/en
Priority to CA002493994A priority patent/CA2493994A1/en
Priority to AU2003254839A priority patent/AU2003254839A1/en
Publication of WO2004014523A1 publication Critical patent/WO2004014523A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40024Production with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/4002Production
    • B01D2259/40026Production with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/40032Depressurization with three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/40045Purging with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40071Nine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for separating a target gas (for example, hydrogen gas) from a mixed gas by a pressure swing adsorption method (PSA method).
  • a target gas for example, hydrogen gas
  • PSA method pressure swing adsorption method
  • the PSA method is known as one of the techniques for separating a target gas such as hydrogen gas from a mixed gas.
  • a target gas such as hydrogen gas from a mixed gas.
  • an apparatus having two to four adsorption towers filled with P and a binder is used.In each adsorption tower, one cycle including an adsorption step, a depressurization step, a desorption step, a washing step, a pressure increase step, and the like is performed. Repeated.
  • JP-A-58-410126, JP-A-1-63019 and JP-A-8-10551 the PSA method is disclosed.
  • Various technologies have been developed to improve the purity and recovery rate of the target gas obtained.
  • a technique in which a product gas derived from an adsorption tower in an adsorption step is supplied as a cleaning gas to another adsorption tower after the desorption step to wash the other adsorption tower.
  • the pressure in the adsorption tower after the adsorption step can be reduced.
  • a technique for simultaneously increasing the pressure of another adsorption tower after the washing step is known! / ⁇
  • FIG. 11A to FIG. 11C, FIG. 12A to FIG. 12C, and FIG. 13A to FIG. 13C represent a series of steps in the conventional PSA method including these two technologies.
  • an apparatus including three adsorption towers A, B, and C filled with a predetermined adsorbent is used, and one cycle consisting of steps I to IX is repeated.
  • FIG. 11A represents step I.
  • Step I the adsorption step, the first pressure increase step, and the pressure reduction step are performed in the adsorption towers A, B, and C, respectively.
  • the mixed gas G 1 ′ containing the target gas is introduced into the adsorption tower A, and unnecessary components in the mixed gas G l, are adsorbed in the tower.
  • the product gas G 2 ′ adsorbed by the agent and enriched with the target gas is led out of the tower.
  • the adsorption towers B and C are pressure-equalized.
  • a gas G 3 ′ having a relatively high target gas concentration is derived from the adsorption tower C which is in a high pressure state after the adsorption step or the subsequent step IX, and the gas G 3 ′ cleaning step or After the step IX described below, it is introduced into the adsorption tower B in a low pressure state. Thereby, the internal pressure of the adsorption tower C decreases and the internal pressure of the adsorption tower B increases.
  • FIG. 11B represents step II.
  • step II the adsorption step is performed in the adsorption tower A following the step I, and the adsorption step B and the C step are respectively performed in the second pressurization step and the desorption step.
  • P and B a part of the product gas G2, derived from adsorption tower A, is introduced into the tower, and the internal pressure further increases.
  • the adsorption tower C the gas remaining in the tower is discharged out of the tower as an exhaust gas G 4 ′, and unnecessary components are desorbed from the adsorbent due to the decompression due to the discharge. G4, discharged outside the tower.
  • FIG. 11C represents step III.
  • Step III the adsorption step is performed in the adsorption tower A following the step II, the second pressure increasing step is performed in the adsorption tower B after the step II, and the cleaning step is performed in the adsorption tower C.
  • the adsorption tower C a part of the product gas G2, derived from the adsorption tower A, is introduced into the tower, and the exhaust gas G4 'is discharged outside the tower, whereby the adsorbent is washed.
  • FIG. 12A to FIG. Represents steps IV to VI.
  • steps IV to VI the adsorption step is performed in adsorption tower B in the same manner as in adsorption tower A in steps I to ⁇ , and in adsorption steps ⁇ ⁇ ⁇ ⁇ in steps ⁇ to ⁇
  • the first pressure increase step and the second pressure increase step are sequentially performed, and in the same manner as in the adsorption tower C in steps I to III, the adsorption step is performed.
  • the pressure reduction step, the desorption step, and the washing step are sequentially performed.
  • FIG. 13A to FIG. 13C show Steps VII to X.
  • the adsorption step is performed in the adsorption tower C in the same manner as in the adsorption tower A in Steps I to EII.
  • the first pressure increasing step and the second pressure increasing step are sequentially performed.
  • decompression step, desorption step, And a washing step are sequentially performed.
  • the mixed gas G 1 ′ power is obtained continuously from the product gas G 2 ′ ⁇ steps ⁇ to ⁇ in which the undesired components are removed and the target gas is enriched.
  • the gas G 3 ′ (a gas having a high target gas concentration close to the product gas) existing in the adsorption tower after the P-adhesion step is used. Power is not being used effectively.
  • the gas G 3 ′ is introduced into the adsorption tower B from the adsorption tower C that has completed the P-adsorption process until both towers reach the same internal pressure.
  • the target gas contained in the gas G 3 ′ introduced into the adsorption tower B in Step I is finally recovered as the product gas G 2 ′
  • the gas G 4 ′ discharged from the adsorption tower C in Step II Target gas is lost without being recovered as product gas G 2 ′. Such loss of target gas also occurs in steps V and VIII.
  • the loss amount of the target gas tends to be relatively large, and as a result, a sufficient target gas recovery rate may not be achieved. Disclosure of the invention
  • the present invention has been conceived under such circumstances, and provides a target gas separation method capable of achieving a high target gas recovery rate in the PSA method. aimed to.
  • a method for separating a target gas from a mixed gas using a plurality of adsorption towers filled with an adsorbent In this method, a mixed gas is introduced into one selected adsorption tower, unnecessary components contained in the mixed gas are adsorbed by an adsorbent, and a product gas enriched in a target gas is derived from the adsorption tower.
  • Each cycle includes a washing step for discharging the exhaust gas from the adsorption tower, and a pressure increasing step for increasing the internal pressure of the adsorption tower by introducing a pressurized gas into the adsorption tower. It is repeated.
  • the first derived gas derived from the adsorption tower during the first depressurization step is introduced as a cleaning gas into the adsorption tower during the cleaning step, and the second derived gas derived from the adsorption tower during the second decompression step is pressurized. It is introduced into the adsorption tower during the process as pressurized gas.
  • the product gas is used as the cleaning gas for cleaning the adsorption tower or the adsorbent during the cleaning process. Focusing only on the regeneration efficiency (cleaning efficiency) of the adsorbent, the product gas with a lower concentration of undesired components is more likely to be the quasi-product gas remaining in the adsorption tower after the adsorption process (the target gas concentration than the product gas). It is considered to be more suitable as a cleaning gas than a low gas. However, since a considerable amount of cleaning gas is required to clean the adsorption tower, supplying the cleaning gas with only the product gas will increase the loss of the target gas.
  • the depressurization step of the other adsorption tower is completed at a predetermined relatively high pressure, and a considerable amount of the target gas together with unnecessary components is not contained in the other adsorption tower after the depressurization step. Despite the presence, the residual target gas is released to the atmosphere in the desorption step after the pressure reduction step.
  • the depressurization step is a predetermined comparison.
  • the process is terminated at a high level and pressure, and gas containing a considerable amount of the target gas is discharged outside the tower in the subsequent desorption process.
  • gas containing a considerable amount of the target gas is discharged outside the tower in the subsequent desorption process.
  • it is necessary to perform further cleaning using a considerable amount of product gas as the cleaning gas.
  • the loss of a considerable amount of target gas in the desorption process and the use of a considerable amount of product gas as a cleaning gas are not preferable in achieving high target gas recovery.
  • the concentration of unnecessary components of the gas derived from the adsorption tower tends to be kept relatively low.
  • the present inventors have obtained the following knowledge. Specifically, even if the unnecessary components are once desorbed from the adsorbent due to the pressure drop in the adsorption tower during the depressurization step, the adsorbent in the tower still has enough room to adsorb the unnecessary components.
  • the pressure of the adsorption tower to be depressurized exceeds the pressure assumed at the end of the depressurization process conventionally assumed.
  • the concentration of unnecessary components of the gas led out from the adsorption tower can be kept relatively low.
  • the product gas from the adsorption tower in the first decompression step is close to the product gas!
  • one cycle of the method comprises the following steps: Including an additional pressure step to further increase the internal pressure of the adsorption tower by introducing the gas, a part of the product gas derived from the adsorption tower during the adsorption step is added to the adsorption tower during the additional pressure step Introduced as pressurized gas.
  • Such a configuration is particularly useful when the internal pressure of the adsorption tower during the pressure raising step is increased by utilizing pressure equalization between the adsorption tower during the pressure raising step and the adsorption tower during the second pressure reduction step. There is. According to this configuration, a pressure increase, which cannot be achieved only by equalization, can be achieved by introducing a high-pressure product gas having a high target gas concentration.
  • one cycle of the method includes, after the cleaning step, an additional cleaning step for introducing additional cleaning gas into the adsorption tower and discharging exhaust gas from the adsorption tower, Some of the derived product gas is introduced as additional cleaning gas into the adsorption tower during the additional cleaning process.
  • Cleaning with product gas in addition to cleaning with semi-product gas, is suitable for improving the efficiency of adsorbent regeneration.
  • the first intermediate pressure is preferably 35 to 80%, more preferably It is in the range of 35-65%.
  • the second intermediate pressure is preferably in the range 15% to 50%, more preferably in the range 15% to 40%.
  • the present invention by appropriately changing the value of the first intermediate pressure or the amount of the first derived gas in the first pressure reducing step and the value of the second intermediate pressure or the amount of the second derived gas in the second pressure reducing step, It is possible to control the recovery rate of the target gas within a certain range.
  • the first depressurization step (the washing step for the adsorption tower in the washing step) is performed until the first intermediate pressure of the adsorption tower becomes about half of the maximum pressure of the adsorption step, and the second intermediate pressure of the adsorption tower becomes the first intermediate pressure.
  • the mixed gas contains hydrogen gas as a target gas and carbon dioxide gas as an unnecessary component.
  • the mixed gas to which the present invention is applied is not particularly limited, but the present invention is suitably applied when the mixed gas contains hydrogen gas as a target gas and carbon dioxide gas as an unnecessary component. I know I can.
  • the maximum pressure of the adsorption step is, for example, 0.5 to :! OMPa (gauge pressure) is set within the range, and the desorption minimum pressure in the desorption process is, for example, 0 to 500 kPa (gauge pressure). Pressure).
  • FIG. 1 shows a schematic configuration of a PSA separation apparatus for performing a target gas separation method according to the present invention.
  • FIG. 2 shows, for each step of the target gas separation method according to the first embodiment, the steps performed in each adsorption tower and the open / closed state of each automatic valve of the PSA separation device shown in FIG.
  • 3A to 3C show the gas flow states in steps S1 to S3 in the target gas separation method according to the first embodiment.
  • 4A to 4C show the gas flow states of steps S4 to S6 following step S3.
  • 5A to 5C show the gas flow states in steps S7 to S9 following step S6.
  • FIG. 6 shows, for each step of the target gas separation method according to the second embodiment, the steps performed in each adsorption tower and the open / closed state of each automatic valve of the PSA separation device shown in FIG.
  • FIG. 7 shows a gas flow state in step S 1 ′ in the target gas separation method according to the second embodiment.
  • FIG. 8 shows a gas flow state of step S4 in the target gas separation method according to the second embodiment.
  • FIG. 9 shows a gas flow state of step S7 in the target gas separation method according to the second embodiment.
  • FIG. 10 shows an embodiment:! 4 shows the pressure in the decompression process of Comparative Examples 4 and 4, and the purity and recovery rate of the obtained hydrogen gas.
  • FIGS. 11A to 11C show the gas flow states in steps I to ⁇ in the conventional target gas separation method.
  • FIGS. 12A to 12C show the gas flow states of Steps IV to VI that follow Step ⁇ .
  • FIG. 13 to FIG. 13C show the gas flow states in steps VII to IX following step VI.
  • FIG. 1 shows a PSA separation apparatus X for performing a target gas separation method according to a first embodiment of the present invention.
  • the separation equipment consists of three adsorption towers A, B, and C, a pipe 11 for mixed gas, a pipe 12 for product gas, a pipe 13 for depressurization, and a pipe 14 for gas introduction.
  • a pipe 15 and 16 for backflow of product gas and a pipe 17 for gas discharge are provided.
  • the PSA separation device X is configured so as to be able to separate the hydrogen gas by removing unnecessary components from the mixed gas containing the hydrogen gas by the PSA method.
  • Each adsorption tower A, B, C is filled with P and a binder.
  • adsorbent for example, when carbon dioxide-methane gas is removed as an unnecessary component, a carbon-based adsorbent is used. When removing carbon monoxide gas and nitrogen gas as unnecessary components, for example, a zeolite-based adsorbent is employed. When removing steam as an unnecessary component, for example, an alumina adsorbent is employed.
  • a single adsorption tower may be filled with one kind of adsorbent IJ or a plurality of kinds of adsorbents.
  • Each of the pipes 11 to 17 is provided with an automatic valve 2a to 2r.
  • the pipes 13, 14, and 16 are provided with flow control valves 3a to 3c.
  • FIG. 2 also shows the open / closed state of each of the automatic valves 2a to 2r in each of steps S1 to S9.
  • 3A to 3C, FIGS. 4A to 4C, and FIGS. 5A to 5C show the gas flow states in the PSA separation apparatus X in steps S1 to S9. In these figures, the gas flow is represented by a thick arrow.
  • step S1 the open / close state of each of the automatic valves 2a to 2r is selected as shown in FIG. 2, and the gas flow state as shown in FIG. 3A is achieved.
  • step C an adsorption step, a washing step, and a first decompression step are performed, respectively.
  • step S1 the mixed gas G1 containing hydrogen gas is supplied to the adsorption tower via the pipe 11 and the automatic valve 2a. Introduced in A. In the adsorption tower A, unnecessary components contained in the mixed gas G1 are adsorbed and removed by the adsorbent, and a gas having a high hydrogen concentration is led out of the tower as a product gas G2. This product gas G 2 is collected in a tank (not shown) via the automatic valve 2 i and the pipe 12.
  • a quasi-product gas G3 having a relatively high hydrogen gas concentration is derived from the adsorption tower which is in a high-pressure state after the adsorption step or the subsequent step S9, and this quasi-product gas G3 is , Automatic valve 2 n, piping 13, flow control valve 3 a, automatic valve 2 p, piping 14, and automatic valve 2 j, after completion of the desorption process or the following step S 9, low pressure state It is introduced into a certain adsorption tower B as a cleaning gas.
  • the internal pressure of the adsorption tower C drops to the first intermediate pressure, and the exhaust gas G 4 is discharged from the adsorption tower B.
  • the output gas G4 is discharged to, for example, the atmosphere through the automatic valve 2d and the pipe 17.
  • step S2 the open / close state of each of the automatic valves 2a to 2r is selected as shown in FIG. 2, and the gas flow state as shown in FIG. 3B is achieved. Subsequently, the adsorption step is performed, and the first pressure increasing step and the second pressure reducing step are performed in the adsorption towers B and C, respectively.
  • step S2 equalization of the adsorption towers B and C is achieved. Specifically, from P and the landing tower C, a quasi-product gas G3 still having a relatively high hydrogen gas concentration is continuously derived from Step S1, and this quasi-product gas G3 is supplied by the automatic valve 2 n , Piping 13, flow control valve 3 a, automatic valve The gas is introduced into the adsorption tower B as a pressurized gas via 2p, the piping 14 and the automatic valve 2j. As a result, the internal pressure of the adsorption tower C decreases to the second intermediate pressure, and the internal pressure of the P and the adsorption tower B increases.
  • step S3 the open / close state of each of the automatic valves 2a to 2r is selected as shown in FIG. 2, and a gas flow state as shown in FIG. 3C is achieved.
  • the adsorption step is performed subsequently to step 1, and the second pressurization step and the desorption step are performed in the adsorption towers B and C, respectively.
  • step S 3 a part of the product gas G 2 from P and the landing tower A is connected to the pipe 12, the pipe 15, and the automatic valve 2. q, introduced into adsorption tower B via flow control valve 3b, piping 14 and automatic valve 2j. Thereby, the internal pressure of the adsorption tower B further increases.
  • the exhaust gas G4 mainly containing the unnecessary components is discharged from the adsorption tower C to the automatic valve 2f and the automatic valve 2f. It is discharged out of the device via piping 17.
  • steps S4 to S6 show steps S4 to S6.
  • steps S4 to S6 the adsorption process is performed in the adsorption tower B in the same manner as in the adsorption tower A in steps S1 to S3.
  • the washing step, the first pressure increase step, and the second pressure increase step are sequentially performed in the adsorption tower C, and in steps S1 to S3.
  • the first pressure reduction step, the second pressure reduction step, and the desorption step are sequentially performed in the P and adsorption tower A.
  • steps S7 to S9 show steps S7 to S9.
  • steps S7 to S9 the adsorption process is performed in adsorption tower C in the same manner as in adsorption tower A in steps S :! to S3, and in steps S1 to S3.
  • the washing step, the first pressure increasing step, and the second pressure increasing step are sequentially performed in the adsorption tower A, and in the adsorption tower C in steps S1 to S3.
  • the first decompression step, the second decompression step, and the desorption step are sequentially performed in the adsorption tower B.
  • the first intermediate The pressure is preferably in the range of 35-80%, more preferably in the range of 35-65%
  • the second intermediate pressure is preferably set in the range of 15 to 50%, more preferably in the range of 15 to 40%.
  • the product gas G2 in which unnecessary components are removed from the mixed gas G1 and the target gas is enriched can be continuously obtained over steps S1 to S9.
  • the quasi-product gas G3 having a target gas concentration close to the product gas from the adsorption tower in the first decompression step is supplied to the adsorption tower to be cleaned.
  • the pipe 16, the flow control valve 3c, and the automatic valve 2r in the PSA separation device X are used in the following embodiment, but are not used in the method according to this embodiment. Therefore, in carrying out the method according to the present embodiment, it is possible to use an apparatus having a configuration excluding these from the PSA separation apparatus.
  • FIG. 6 shows, in each step of the target gas separation method according to the second embodiment, which is performed using the PSA separation apparatus X, the process performed in each adsorption tower, and the automatic operation of the PSA separation apparatus X.
  • This shows the open / closed state of the valves 2a to 2r.
  • the open / close state of each of the automatic valves 2a to 2r is switched as shown in FIG. 6, so that the adsorption towers A, B, and C and the pipes 11 to 1 are switched.
  • the gas flow state in 7 is determined, and one cycle consisting of steps S1 to S9 shown in FIG. 6 is repeated.
  • the adsorption step, the first decompression step, the second decompression step, the desorption step, the first cleaning step, the second cleaning step, the first pressure step, and the second pressure step are performed. It is performed sequentially.
  • the method according to the present embodiment is, in effect, a step S1 between steps SI and S2, a step S4 between force steps S4 and S5, and a step between force steps S7 and S8.
  • the difference from the method according to the first embodiment is that S7, is added.
  • step S 1 ′ the open / close state of each of the automatic valves 2 a to 2 r is selected as shown in FIG. 6, and the gas flow state as shown in FIG. 7 is achieved.
  • the adsorption step is performed in P and adsorption tower A, following step S1.
  • a further cleaning step is performed in the adsorption tower B that has completed the cleaning step (first cleaning step) in step S1.
  • a further cleaning step is performed in the adsorption tower B that has completed the cleaning step (first cleaning step) in step S1.
  • a part of the product gas G2 from the P and the landing tower A is partially replaced by the automatic valve 2i, the pipe 12 and the pipe 15 , Automatic valve 2r, flow control valve 3c, pipe 16, pipe 13 and flow control valve 3a, automatic valve 2p, pipe 14 and automatic valve 2j are introduced into adsorption tower B. .
  • the exhaust gas G 4 is discharged from the adsorption tower B.
  • This exhaust gas G4 is discharged out of the device via the automatic valve 2d and the pipe 17.
  • the adsorption tower C is in a standby state without gas flow, and prepares for the second pressure reduction step in the next step S2.
  • the cleaning is performed following the first cleaning step in the step S1, in which the semi-product gas G3 supplied from the adsorption tower C in the first decompression step is used as the cleaning gas.
  • a second cleaning step is performed in which the product gas G2 is used as the gas. Therefore, the regeneration of the adsorbent in the adsorption tower B is promoted.
  • the flow rate of the product gas G2 used in the second cleaning step is adjusted by the flow rate control valve 3c in consideration of the filling volume of the adsorbent in the adsorption tower B and the like.
  • step S4 ' the open / close state of each of the automatic valves 2a to 2r is selected as shown in FIG. 6, and the gas flow state as shown in FIG. 8 is achieved.
  • step S4 in the adsorption tower B, the adsorption step is performed subsequently to step S4.
  • a further cleaning step (second cleaning step) is performed.
  • a part of the product gas G2 from the adsorption tower B is supplied by the automatic valve 21, the pipe 12, the pipe 15, and the automatic valve 21.
  • valve 2r flow control valve 3c, pipe 16 and pipe 13
  • flow control valve 3a flow control valve 3a, automatic valve 2P , pipe 14 and automatic valve 2m.
  • the exhaust gas G 4 is discharged from the adsorption tower.
  • This exhaust gas G 4 is provided by the automatic valve 2 f and the piping 1 7 It is discharged out of the device via 6.
  • the adsorption tower A is in a standby state without gas flow, and prepares for the second pressure reduction step in the next step S5.
  • the semi-finished product gas G3 supplied from the adsorption tower A in the first depressurization step is used as the cleaning gas, following the first cleaning step in step S4 in which the gas is used as the cleaning gas.
  • a second cleaning step using product gas G2 is performed. Therefore, washing and regeneration of the adsorbent in the adsorption tower C is promoted.
  • the flow rate of the product gas G2 used in the second cleaning step is adjusted by the flow rate control valve 3c in consideration of the filling volume of the adsorbent in the adsorption tower C and the like.
  • step S7 ' the open / close state of each of the automatic valves 2a to 2r is selected as shown in FIG. 6, and the gas flow state as shown in FIG. 9 is achieved.
  • step S7 in the adsorption tower C, the adsorption step is performed following step S7.
  • a further washing step (second washing step) is performed.
  • a part of the product gas G2 from the P and the landing tower C is changed to the automatic valve 2o, the pipe 12 and the pipe 15 , Automatic valve 2 r, flow control valve 3 c, piping 16, piping 13, flow control valve 3 a, automatic valve 2 P , piping 14, and introduced into adsorption tower A via automatic valve 2 g .
  • the exhaust gas G 4 is discharged from the adsorption tower A.
  • This output gas G4 is discharged out of the device via the automatic valve 2b and the pipe 17.
  • the adsorption tower B is in a standby state without gas flow, and prepares for the second pressure reduction step in the next step S8.
  • the quasi-product gas G3 supplied from the adsorption tower B in the first depressurization step is used as the cleaning gas.
  • a second cleaning step is performed in which the product gas G2 is used as the gas. Therefore, washing and regeneration of the adsorbent in the adsorption tower A is promoted.
  • the flow rate of the product gas G2 used in the second cleaning step is adjusted by the flow rate control valve 3c in consideration of the filling volume of the adsorbent in the adsorption tower A and the like.
  • the first intermediate The pressure is preferably in the range of 35-80%, more preferably in the range of 35-65%
  • the second intermediate pressure is preferably set in the range of 15 to 50%, more preferably 15 to 40%.
  • the product gas G2 in which the undesired components are removed from the mixed gas G1 and the target gas is enriched can be continuously obtained over steps S1 to S9.
  • the near-product gas having a high target gas concentration from the adsorption tower during the first decompression step, the gas having a high target gas concentration, and the adsorption tower to be cleaned are removed.
  • the quasi-product gas G3, which is introduced as a cleaning gas and has a high target gas concentration still close to the product gas from the adsorption tower in the second depressurization step following the first depressurization step, is supplied to the adsorption tower to be pressurized. On the other hand, it is introduced as a pressurized gas.
  • a high target gas recovery rate can be achieved.
  • the adsorption towers A, B, and C are washed with the quasi-product gas G3 and then washed with the product gas G2.
  • Adsorbent regeneration efficiency tends to be high.
  • each adsorption tower has a cylindrical shape with a diameter of 50 mm.
  • Each of the adsorption towers was filled with 2.935 liters of a mixture containing a zeolite molecular sieve (Ca5A type) and a carbon molecular sieve in a volume ratio of 1: 1.3.
  • a mixed gas containing 77.77 vol% of hydrogen gas, 19.62 vol% of carbon dioxide gas, 1 vol% of carbon monoxide gas, and 1.61 vol% of methane gas was used.
  • the mixed gas was supplied to the PSA separation device X at a rate of 85 INL / hr.
  • the maximum pressure in the adsorption tower during the adsorption step was 850 kPa (gauge pressure)
  • the final pressure in the adsorption tower during the first depressurization step was 650 kPa (gauge pressure)
  • the pressure during the second depressurization step was The final pressure in the adsorption tower is 325 kPa (gauge pressure)
  • the maximum pressure in the adsorption tower during the desorption process is The low pressure was 6 kPa (gauge pressure).
  • the final pressure of the Ham pressure process is set to be 52 kPa (gauge pressure) instead of 65 kPa, and the final pressure of the second decompression process is set to 260 kPa instead of 32 kPa.
  • Hydrogen gas was separated from the mixed gas in the same manner as in Example 1 except that kPa (gauge pressure) was used.
  • the final pressure in the first depressurization step is set to 450 kPa (gauge pressure) instead of 65 kPa, and the final pressure in the second depressurization step is set to 325 kPa.
  • the hydrogen gas was separated from the mixed gas in the same manner as in Example 1 except that the pressure was changed to 22 kPa (gauge pressure).
  • the final pressure in the first depressurizing step is replaced with 365 kPa (gauge pressure) instead of 65 kPa, and the final pressure in the second depressurizing step is replaced with 32 kPa.
  • Hydrogen gas was separated from the mixed gas in the same manner as in Example 1 except that the pressure was changed to 185 kPa (gauge pressure).
  • one cycle consisting of the steps shown in Figs. 11A to 13C was repeated to separate hydrogen gas from the hydrogen-containing mixed gas.
  • the pressure reduction step performed on a single P and landing tower in one cycle was once, and the final pressure in the pressure reduction step was set at 425 kPa (gauge pressure).
  • a cleaning gas for washing the adsorption tower a product gas from the adsorption tower during the P deposition step was used, and a gas from the adsorption tower during the pressure reduction step was not used.
  • Other conditions were the same as in the first row.
  • two stages of pressure reduction steps are performed in one cycle, and the pre-product gas derived from the adsorption tower is washed in the first pressure reduction step.
  • the other adsorption tower is washed as a gas by introducing it into the other adsorption tower, and the semi-product gas derived from the adsorption tower in the second pressure reduction step is introduced into the other adsorption tower as a pressurized gas.
  • the pressure increase step of the other adsorption tower is performed, only one pressure reduction step is performed per cycle, and all of the cleaning gas is covered by the product gas.
  • the hydrogen gas recovery is significantly improved as compared with the method according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

明細書 目的ガス分離方法 技術分野
本発明は、圧力スィング吸着法(P S A法)により、混合ガスから目的ガス (例 えば水素ガス) を分離する方法に関する。 背景技術
混合ガスから水素ガスなどの目的ガスを分離するための手法の一つとして、 P S A法が知られている。 P S A法では、 P及着剤を充填した吸着塔を例えば 2〜 4 塔備える装置が使用され、 各吸着塔において、 吸着工程、 減圧工程、 脱着工程、 洗浄工程、 昇圧工程などからなる 1サイクルが繰り返される。 例えば特開昭 5 8 - 4 0 1 2 6号公報、 特開平 1— 6 3 0 1 9号公報、 特開平 8 - 1 0 5 5 1号公 報などに開示されているように、 P S A法については、 取得される目的ガスの純 度や回収率の向上を図るという観点から、 種々の技術が開発されている。
例えば、 吸着工程中の吸着塔から導出される製品ガスを、 脱着工程を終えた他 の吸着塔に洗浄ガスとして供給することにより、 当該他の吸着塔を洗浄する技術 が知られている。 また、 吸着工程を終えて高圧下にある吸着塔と、 洗浄工程を終 えて低圧下にある他の吸着塔との間で、 均圧化を図ることにより、 吸着工程後の 吸着塔の減圧と洗浄工程後の他の吸着塔の昇圧とを同時に行う技術が知られて!/ヽ る。
図 1 1 A〜図 1 1 C、 図 1 2 A〜図 1 2 C、 および図 1 3 A〜図 1 3 Cは、 こ れら 2つの技術を含む従来の P S A法における一連の工程を表す。この方法では、 所定の吸着剤が充填された 3つの吸着塔 A, B , Cを備える装置が使用され、 ス テツプ I〜IXからなる 1サイクルが繰り返される。
図 1 1 Aはステップ Iを表す。 ステップ Iでは、 吸着塔 A, B, Cにて、各々、 吸着工程、 第 1昇圧工程、 および減圧工程が行われる。 吸着塔 Aには目的ガスを 含有する混合ガス G 1 ' が導入され、 混合ガス G l, 中の不要成分が塔内の吸着 剤に吸着され、 目的ガスが富ィ匕された製品ガス G 2 ' が塔外へ導出される。 吸着 塔 B, Cは均圧ィ匕される。具体的には、吸着工程ないし後出のステップ IXを終え て高圧状態にある吸着塔 Cから、 目的ガス濃度の比較的高いガス G 3 ' が導出さ れ、 このガス G 3 '力 洗浄工程ないし後出のステップ IXを終えて低圧状態にあ る吸着塔 Bに導入される。これにより、吸着塔 Cの内部圧力が降下するとともに、 吸着塔 Bの内部圧力が上昇する。
図 1 1 Bはステップ IIを表す。 ステップ IIでは、 吸着塔 Aにて、 ステップ I に引き続いて吸着工程が行われ、 吸着塔 B , Cにて、 各々、 第 2昇圧工程おょぴ 脱着工程が行われる。 P及着塔 Bでは、 吸着塔 Aから導出される製品ガス G 2, の 一部が塔内に導入されることにより、 内部圧力が更に上昇する。 吸着塔 Cでは、 塔内に残留するガスが排出ガス G 4 ' として塔外に排出され、 且つ、 当該排出に 伴う減圧に起因して吸着剤から不要成分が脱着し、当該脱着ガスも排出ガス G 4, として塔外に排出される。
図 1 1 Cはステップ IIIを表す。 ステップ IIIでは、 吸着塔 Aにて、 ステップ IIに引き続いて吸着工程が行われ、 吸着塔 Bにて、 ステップ IIに引き続いて第 2昇圧工程が行われ、 吸着塔 Cにて洗浄工程が行われる。 吸着塔 Cでは、 吸着塔 Aから導出される製品ガス G 2, の一部が塔内に導入され且つ排出ガス G 4 ' が 塔外に排出され、 これにより吸着剤が洗浄される。
図 1 2 A〜図 1 2。は、 ステップ IV〜VIを表す。 ステップ IV〜VIでは、 ステ ップ I〜: ΕΠにおいて吸着塔 Aにて行われたのと同様に、吸着塔 Bにて吸着工程が 通して行われ、ステップ Ι〜ΙΠにおいて吸着塔 Βにて行われたのと同様に、吸着 塔 Cにて、第 1昇圧工程および第 2昇圧工程が順次行われ、ステップ I〜: IIIにお いて吸着塔 Cにて行われたのと同様に、 吸着塔 Αにて、 減圧工程、 脱着工程、 お よび洗浄工程が順次行われる。
図 1 3 A〜図 1 3 Cは、 ステップ VII〜; [Xを表す。 ステップ VII:〜 IXでは、 ス テップ I〜: EIIにおいて吸着塔 Aにて行われたのと同様に、吸着塔 Cにて吸着工程 が通して行われ、ステップ Ι〜ΠΙにおいて吸着塔 Βにて行われたのと同様に、吸 着塔 Αにて、 第 1昇圧工程および第 2昇圧工程が順次行われ、 ステップ]:〜 III において吸着塔 Cにて行われたのと同様に、吸着塔 Bにて、減圧工程、脱着工程、 および洗浄工程が順次行われる。
このような従来の方法によると、 混合ガス G 1 ' 力 ^不要成分が除去されて目 的ガスが富化された製品ガス G 2 ' ί ステップ Ι〜Κにわたつて連続的に得ら れる。
しかしながら、 図 1 1 Α〜図 1 3 Cに示す従来の目的ガス分離方法では、 P及着 工程を終えた吸着塔に存在するガス G 3 ' (製品ガスに近い高い目的ガス濃度を 有するガス) 力 有効に利用されていない。 例えばステップ Iでは、 P及着工程を 終えた吸着塔 Cから吸着塔 Bにガス G 3 ' が導入されるのは、 両塔が同一の内部 圧力に達するまでであり、その後のステップ IIでは、 P及着塔 Cに残存する相当量 のガス G 3, (目的ガス濃度の依然比較的高いガス) は、 ガス G 4, の一部とし て装置外に排出される。 ステップ Iにおいて吸着塔 Bに導入されるガス G 3 ' に 含まれる目的ガスは最終的には製品ガス G 2 ' として回収される力 ステップ II において吸着塔 Cから排出されるガス G 4 ' に含まれる目的ガスは、 製品ガス G 2 ' として回収されずに、 失われる。 このような目的ガスの損失は、 ステップ V, VIIIにおいても生ずる。
更に、 図 1 1 A〜 1 3 Cに示す従来の目的ガス分離方法では、 脱着工程を終 えた吸着塔を洗浄するための洗浄ガスとして製品ガス G 2 ' のみが浪費される。 吸着塔の洗浄には、 相当量の洗浄ガスが必要とされるので、 製品ガス G 2 ' のみ で洗浄ガスを賄うことは、 目的ガス損失量の増大の原因となる。 例えば吸着塔 C の洗浄には、 ステップ IIIにおいて吸着工程中の吸着塔 Aから導出される製品ガ ス G 2 'のうちの比較的多量な一部が浪費される。このような目的ガスの損失は、 ステップ VIにおける吸着塔 Aの洗浄、 および、 ステップ Kにおける吸着塔 Bの 洗浄においても生ずる。
従来の目的ガス分離方法では、 このように、 目的ガスの損失量が比較的大きく なる傾向にあり、 その結果、 充分な目的ガス回収率を達成できない場合がある。 発明の開示
本発明は、 このような事情のもとで考え出されたものであって、 P S A法にお いて高い目的ガス回収率を達成することのできる目的ガス分離方法を提供するこ とを、 目的とする。
本発明によると、 吸着剤が充填された複数の吸着塔を用いて混合ガスから目的 ガスを分離するための方法が提供される。 この方法では、 選択された 1つの吸着 塔に混合ガスを導入し、 当該混合ガスに含まれる不要成分を吸着剤に吸着させ、 目的ガスが富化された製品ガスを当該吸着塔から導出するための吸着工程と、 第 1導出ガスを導出することによって吸着塔の内部圧力を第 1中間圧力まで降下さ せるための第 1減圧工程と、 第 2導出ガスを導出することによつて吸着塔の内部 圧力を第 2中間圧力まで更に降下させるための第 2減圧工程と、 P及着剤から不要 成分を脱着させて排出するための脱着工程と、 P及着塔に洗浄ガスを導入するとと もに当該吸着塔から排出ガスを排出するための洗浄工程と、 吸着塔に昇圧ガスを 導入することによって当該吸着塔の内部圧力を上昇させるための昇圧工程と、 を 含む 1サイクルが各吸着塔において繰り返し行われる。 第 1減圧工程中の吸着塔 から導出される第 1導出ガスは、洗浄工程中の吸着塔に洗浄ガスとして導入され、 第 2減圧工程中の吸着塔から導出される第 2導出ガスは、 昇圧工程中の吸着塔に 昇圧ガスとして導入される。
多塔式 P S A法に基づく目的ガス分離方法に係る従来の技術おいては、 洗浄ェ 程中の吸着塔ないし吸着剤の洗浄には、 洗浄ガスとして製品ガスのみが使用され る場合が多い。 吸着剤の再生効率 (洗浄効率) のみに着目すると、 不要成分濃度 のより低レヽ製品ガスの方が、吸着工程を終えた吸着塔内に残存する準製品ガス (製 品ガスより目的ガス濃度の低いガス) よりも、 洗浄ガスとしては適していると考 えられているからである。 しかしながら、 吸着塔の洗浄には相当量の洗浄ガスが 必要とされるので、 製品ガスのみで洗浄ガスを賄うことは、 目的ガス損失量の増 大の原因となる。
従来の技術においては、 洗浄工程中の吸着塔のための洗浄ガスとして、 吸着工 程後の減圧工程にある他の吸着塔から導出される準製品ガスが、 製品ガスに代え て使用される場合がある。 しかしながら、 当該従来方法では、 当該他の吸着塔の 減圧工程は所定の比較的高レヽ圧力にて終了され、 減圧工程を終えた当該他の吸着 塔内に相当量の目的ガスが不要成分と共にではあるが残存するのにもかかわらず、 当該残存目的ガスは、 減圧工程後の脱着工程にて大気等に放出されてしまう。 吸着工程後に減圧される吸着塔では、 P及着工程にて吸着剤に吸着した不要成分 力 S当該吸着剤から脱着する量が降圧に伴って次第に増カ卩し、 従来の技術において は、 不要成分の脱着量は比較的高い圧力にて過大になると考えられていた。 不要 成分濃度の過大なガスを他の吸着塔の洗浄に使用すると、 その吸着塔内の吸着剤 を充分に再生ないし洗浄することができない。そのため、従来の技術においては、 減圧工程中の吸着塔から導出される準製品ガスが他の吸着塔のための洗浄ガスと して使用される場合であっても、 当該減圧工程は所定の比較的高レ、圧力にて終了 され、 その後の脱着工程にて、 相当量の目的ガスを含むガスが塔外に排出されて しまう。 加えて、 洗浄対象の吸着塔については、 洗浄ガスとして相当量の製品ガ スを使用して、 更なる洗浄を行う必要がある。 脱着工程における相当量の目的ガ スの損失、 および、 洗浄ガスとしての相当量の製品ガスの使用は、 高い目的ガス 回収率を達成するうえで好ましくない。
しかしながら、 吸着工程後に減圧される吸着塔について、 従来想定されていた 減圧工程終了圧力を越えて降圧しても、 当該吸着塔から導出されるガスの不要成 分濃度は比較的低く維持される傾向にある、 という知見を、 本発明者らは得た。 具体的には、 減圧工程中の吸着塔内の降圧により不要成分が吸着剤から一旦脱着 しても、 塔内の吸着剤には不要成分を吸着できる余裕が充分に残っているので、 脱着ガスの少なくとも一部は、 同一吸着塔内の吸着剤における別の箇所に再度吸 着される傾向にあり、 従って、 減圧対象の吸着塔について従来想定されていた減 圧工程終了圧力を越えて降圧しても、 所定の圧力までは、 当該吸着塔から導出さ れるガスの不要成分濃度は比較的低く維持され得る、 という知見が得られた。 本発明では、 このような知見に基づき、 第 1減圧工程中の吸着塔からの、 製品 ガスに近!/、高!/ヽ目的ガス濃度を有する準製品ガスを洗浄対象の吸着塔に対して洗 浄ガスとして導入するとともに、 第 1減圧工程に続く第 2減圧工程中の吸着塔か らの、 依然として製品ガスに近い高い目的ガス濃度を有する準製品ガスを昇圧対 象の吸着塔に対して昇圧ガスとして導入する。 このようにして、 第 1およぴ第 2 減圧工程にて吸着塔から導出されるガスに含まれる目的ガスを有効活用すること により、 高い目的ガス回収率を達成することが可能となる。
好ましくは、 本方法の 1サイクルは、 昇圧工程の後に、 吸着塔に追加昇圧ガス を導入することによって当該吸着塔の内部圧力を更に上昇させるための追加昇圧 工程を含み、 吸着工程中の吸着塔から導出される製品ガスの一部は、 追加昇圧ェ 程中の吸着塔に追加昇圧ガスとして導入される。 このような構成は、 昇圧工程中 の吸着塔と第 2減圧工程中の吸着塔との間の均圧化を利用して昇圧工程中の吸着 塔の内部圧力を上昇させた場合に、 特に実益がある。 本構成によると、 均圧化の みによつては達成できな 、圧力上昇を、 目的ガス濃度が高く且つ高圧力の製品ガ スの導入により達成することができる。
好ましくは、 本方法の 1サイクルは、 洗浄工程の後に、 吸着塔に追加洗浄ガス を導入するとともに当該吸着塔から排出ガスを排出するための追加洗浄工程を含 み、 吸着工程中の吸着塔から導出される製品ガスの一部は、 追加洗浄工程中の吸 着塔に追加洗浄ガスとして導入される。 準製品ガスによる洗浄に加えて、 製品ガ スによる洗浄を行うことは、 吸着剤の再生効率を高めるうえで好適である。 脱着工程における吸着塔内の最低圧力を 0 %とし、 吸着工程における吸着塔内 の最高圧力を 1 0 0 %とする場合、 第 1中間圧力は、 好ましくは 3 5〜 8 0 %、 より好ましくは 3 5〜6 5 %の範囲内にある。 この場合、 第 2中間圧力は、 好ま しくは 1 5〜5 0 %、 より好ましくは 1 5〜4 0 %の範囲内にある。
本発明によると、 第 1減圧工程における第 1中間圧力の値または第 1導出ガス の量、 および、 第 2減圧工程における第 2中間圧力の値または第 2導出ガスの量 を適宜変更することにより、 目的ガスの回収率を一定の範囲で制御することが可 能である。 例えば、 吸着塔の第 1中間圧力が吸着工程最高圧力の約半分になるま で第 1減圧工程 (洗浄工程にある吸着塔については洗浄工程) を行い、 吸着塔の 第 2中間圧力が第 1中間圧力の約半分になるまで第 2減圧工程 (昇圧工程にある 吸着塔については昇圧工程) を行う場合、 最大の回収率が得られる傾向にある。 好ましくは、 混合ガスは、 目的ガスとしての水素ガス、 および、 不要成分とし ての二酸化炭素ガスを含む。 本発明が適用される混合ガスは特に限定されるもの ではないが、 混合ガスが、 目的ガスとしての水素ガスと不要成分としての二酸化 炭素ガスとを含んでいる場合に、 本発明が好適に適用できることが判っている。 この場合、 吸着工程最高圧力は例えば 0 . 5〜:! O MP a (ゲージ圧) の範囲内 に設定され、 脱着工程における脱着最低圧力は例えば 0〜5 0 0 k P a (ゲージ 圧) に設定される。 図面の簡単な説明
図 1は、 本発明に係る目的ガス分離方法を実施するための P S A分離装置の概 略構成を表す。
図 2は、 第 1の実施形態に係る目的ガス分離方法の各ステップについて、 各吸 着塔で行われる工程と、 図 1に示す P S A分離装置の各自動弁の開閉状態とを示 す。
図 3 A〜図 3 Cは、 第 1の実施形態に係る目的ガス分離方法におけるステップ S 1〜 S 3のガス流れ状態を表す。
図 4 A〜図 4 Cは、 ステップ S 3の後に続くステップ S 4〜S 6のガス流れ状 態を表す。
図 5 A〜図 5 Cは、 ステップ S 6の後に続くステップ S 7〜S 9のガス流れ状 態を表す。
図 6は、 第 2の実施形態に係る目的ガス分離方法の各ステップについて、 各吸 着塔で行われる工程と、 図 1に示す P S A分離装置の各自動弁の開閉状態とを示 す。
図 7は、 第 2の実施形態に係る目的ガス分離方法におけるステップ S 1 ' のガ ス流れ状態を表す。
図 8は、 第 2の実施形態に係る目的ガス分離方法におけるステップ S 4, のガ ス流れ状態を表す。
図 9は、 第 2の実施形態に係る目的ガス分離方法におけるステップ S 7, のガ ス流れ状態を表す。
図 1 0は、 実施例:!〜 4および比較例の減圧工程に係る圧力、 並びに、 取得さ れた水素ガスの純度および回収率を示す。
図 1 1 A〜図 1 1 Cは、従来の目的ガス分離方法におけるステップ I〜: ΓΠのガ ス流れ状態を表す。
図 1 2 A〜図 1 2 Cは、ステップ ΠΙの後に続くステップ IV〜VIのガス流れ状 態を表す。 図 1 3 〜図1 3 Cは、ステップ VIの後に続くステップ VII〜IXのガス流れ状 態を表す。 発明を実施するための最良の形態
図 1は、 本発明の第 1の実施形態に係る目的ガス分離方法を実施するための P S A分離装置 Xを表す。 ?3 分離装置 は、 3つの吸着塔 A, B, Cと、 混合 ガス用の配管 1 1と、 製品ガス用の配管 1 2と、 減圧用の配管 1 3と、 ガス導入 用の配管 1 4と、 製品ガス逆流用の配管 1 5 , 1 6と、 ガス排出用の配管 1 7と を備える。 本実施形態では、 P S A分離装置 Xは、 P S A法により、 水素ガスを 含有する混合ガスから不要成分を除去して水素ガスを分離することができるよう に、 構成されている。
各吸着塔 A, B , Cには、 P及着剤が充填されている。 吸着剤としては、 二酸ィ匕 炭素ガスゃメタンガスを不要成分として除去する場合には、 例えばカーボン系吸 着剤が採用される。 一酸化炭素ガスや窒素ガスを不要成分として除去する場合に は、 例えばゼォライト系吸着剤が採用される。 水蒸気を不要成分として除去する 場合には、 例えばアルミナ吸着剤が採用される。 単一の吸着塔には、 一種類の吸 着斉 IJを充填してもよいし、 複数種類の吸着剤を充填してもよい。
各配管 1 1〜1 7には、 自動弁 2 a〜2 rが設けられている。 配管 1 3, 1 4 , 1 6には、 流量調節弁 3 a〜3 cが設けられている。
本実施形態では、 以上のような構成を有する P S A分離装置 Xを使用して、 P S A法により、水素含有混合ガスから不要成分を除去することができ、その結果、 水素が富ィヒされた製品ガス、 即ち水素富ィ匕ガスないし濃縮水素ガスが得られる。 P S A分離装置 Xの駆動時においては、 各自動弁 2 a〜2 rの開閉状態が適宜切 り替えられることにより、 吸着塔 A, B , Cおよび配管 1 1〜1 7におけるガス の流れ状態が決定され、 図 2に示すステツプ S 1〜S 9からなる 1サイクルが繰 り返される。 単一の吸着塔に着目すると、 1サイクルにおいて、 P及着工程、 第 1 減圧工程、 第 2減圧工程、 脱着工程、 洗浄工程、 第 1昇圧工程、 および第 2昇圧 工程が順次行われる。 図 2には、 各ステップ S 1〜S 9における各自動弁 2 a〜 2 rの開閉状態も示されている。 図 3 A〜図 3 C, 図 4 A〜図 4 C , および図 5 A〜図 5 Cは、 ステップ S l〜 S 9における P S A分離装置 Xでのガスの流れ状態を表す。これらの図において、 ガス流は太線矢印で表されてレ、る。
ステップ S 1では、 図 2に示すように各自動弁 2 a〜2 rの開閉状態が選択さ れて、図 3 Aに示すようなガス流れ状態が達成され、 P及着塔 A, B, Cにて、各々、 吸着工程、 洗浄工程、 およぴ第 1減圧工程が行われる。
図 1およぴ図 3 Aを併せて参照するとよく理解できるように、 ステップ S 1で は、 水素ガスを含有する混合ガス G 1が、 配管 1 1および自動弁 2 aを介して吸 着塔 Aに導入される。 吸着塔 Aでは、 混合ガス G 1に含まれる不要成分が吸着剤 により吸着除去され、 水素濃度の高いガスが製品ガス G 2として塔外へ導出され る。 この製品ガス G 2は、 自動弁 2 iおよび配管 1 2を介して図外の槽に回収さ れる。
これとともに、 本ステツプでは、 P及着塔。から P及着塔 Bに洗浄ガスが供給され る。 具体的には、 吸着工程ないし後出のステップ S 9を終えて高圧状態にある吸 着塔じから、 水素ガス濃度の比較的高い準製品ガス G 3が導出され、 この準製品 ガス G 3は、 自動弁 2 n、 配管 1 3、 流量調節弁 3 a、 自動弁 2 p、 配管 1 4、 および自動弁 2 jを介して、 脱着工程ないし後出のステップ S 9を終えて低圧状 態にある吸着塔 Bに、 洗浄ガスとして導入される。 これにより、 吸着塔 Cの内部 圧力は第 1中間圧力まで降下するとともに、 吸着塔 Bからは排出ガス G 4が排出 される。 この 出ガス G 4は、 自動弁 2 dおよび配管 1 7を介して例えば大気中 に排出される。
ステップ S 2では、 図 2に示すように各自動弁 2 a〜2 rの開閉状態が選択さ れて、 図 3 Bに示すようなガス流れ状態が達成され、 吸着塔 Aにて、 ステップ S 1から引き続いて吸着工程が行われ、 吸着塔 B, Cにて、 各々、 第 1昇圧工程お ょぴ第 2減圧工程が行われる。
図 1およぴ図 3 Bを併せて参照するとよく理解できるように、 ステップ S 2で は、 吸着塔 B , Cの均圧化が図られる。 具体的には、 P及着塔 Cからは、 依然とし て水素ガス濃度の比較的高い準製品ガス G 3がステップ S 1から引き続いて導出 され、 この準製品ガス G 3は、 自動弁 2 n、 配管 1 3、 流量調節弁 3 a、 自動弁 2 p、 配管 1 4、 および自動弁 2 jを介して、 吸着塔 Bに昇圧ガスとして導入さ れる。 これにより、 吸着塔 Cの内部圧力は第 2中間圧力まで降下し、 P及着塔 Bの 内部圧力は上昇する。
ステップ S 3では、 図 2に示すように各自動弁 2 a〜2 rの開閉状態が選択さ れて、 図 3 Cに示すようなガス流れ状態が達成され、 吸着塔 Aにて、 ステップ S 1から引き続いて吸着工程が行われ、 吸着塔 B , Cにて、 各々、 第 2昇圧工程お ょぴ脱着工程が行われる。
図 1および図 3 Cを併せて参照するとよく理解できるように、 ステップ S 3で は、 P及着塔 Aからの製品ガス G 2の一部は、 配管 1 2、 配管 1 5、 自動弁 2 q、 流量調節弁 3 b、 配管 1 4、 および自動弁 2 jを介して吸着塔 Bに導入される。 これにより、 吸着塔 Bの内部圧力は更に昇圧する。 ステップ S I , S 2を経て内 部圧力が降下した吸着塔 Cでは、 吸着剤から不要成分が脱着し、 主に当該不要成 分を含む排出ガス G 4が、 吸着塔 Cから自動弁 2 fおよび配管 1 7を介して装置 外に排出される。
図 4 A〜図 4 Cは、 ステップ S 4〜S 6を表す。 ステップ S 4〜S 6では、 ス テツプ S 1〜 S 3におレ、て吸着塔 Aにて行われたのと同様に、 吸着塔 Bにて吸着 工程が通して行われ、 ステップ S 1〜S 3において吸着塔 Bにて行われたのと同 様に、 吸着塔 Cにて、 洗浄工程、 第 1昇圧工程、 およぴ第 2昇圧工程が順次行わ れ、 ステップ S 1〜S 3において吸着塔 Cにて行われたのと同様に、 P及着塔 Aに て、 第 1減圧工程、 第 2減圧工程、 および脱着工程が順次行われる。
図 5 A〜図 5 Cは、 ステップ S 7〜S 9を表す。 ステップ S 7〜S 9では、 ス テツプ S:!〜 S 3において吸着塔 Aにて行われたのと同様に、 吸着塔 Cにて吸着 工程が通して行われ、 ステップ S 1〜S 3において吸着塔 Bにて行われたのと同 様に、 吸着塔 Aにて、 洗浄工程、 第 1昇圧工程、 および第 2昇圧工程が順次行わ れ、 ステップ S 1〜S 3において吸着塔 Cにて行われたのと同様に、 吸着塔 Bに て、 第 1減圧工程、 第 2減圧工程、 および脱着工程が順次行われる。
単一の吸着塔での上述の一連の工程において、 脱着工程における吸着塔内の最 低圧力を 0 %とし、吸着工程における吸着塔内の最高圧力を 1 0 0 %とする場合、 第 1中間圧力は、 好ましくは 3 5〜 8 0 %、 より好ましくは 3 5〜 6 5 %の範囲 内に設定され、 且つ、 第 2中間圧力は、 好ましくは 1 5〜5 0 %、 より好ましく は 1 5〜4 0 %の範囲内に設定される。
このような方法によると、 混合ガス G 1力 ら不要成分が除去されて目的ガスが 富ィ匕された製品ガス G 2を、 ステップ S 1〜S 9にわたつて連続的に得ることが できる。
以上のような本発明の目的ガス分離方法では、第 1減圧工程中の吸着塔からの、 製品ガスに近 ヽ高レヽ目的ガス濃度を有する準製品ガス G 3が、 洗浄対象の吸着塔 に対して洗浄ガスとして導入されるとともに、 第 1減圧工程に続く第 2減圧工程 中の吸着塔からの、 依然として製品ガスに近い高い目的ガス濃度を有するガス準 製品ガス G 3が、 昇圧対象の吸着塔に対して昇圧ガスとして導入される。 第 1お ょぴ第 2減圧工程にて吸着塔から導出される準製品ガス G 3に含まれる目的ガス を、 このように有効活用することにより、 高い目的ガス回収率を達成することが 可能となる。
P S A分離装置 Xにおける配管 1 6、 流量調節弁 3 c、 および自動弁 2 rは、 次の実施形態において使用されるが、 本実施形態に係る方法では使用されない。 したがって、 本実施形態に係る方法を実施するうえでは、 P S A分離装置 から これらを除いた構成を有する装置を使用することができる。
図 6は、 P S A分離装置 Xを使用して行われる第 2の実施形態に係る目的ガス 分離方法の各ステップにつレ、て、 各吸着塔で行われる工程と、 P S A分離装置 X の各自動弁 2 a〜 2 rの開閉状態とを示す。 本実施形態では、 P S A分離装置 X の駆動時において各自動弁 2 a〜2 rの開閉状態が図 6に示すように切り替えら れることにより、 吸着塔 A, B , Cおよび配管 1 1〜1 7におけるガスの流れ状 態が決定され、 図 6に示すステップ S 1〜S 9からなる 1サイクルが繰り返され る。単一の吸着塔に着目すると、 1サイクルにおいて、 吸着工程、第 1減圧工程、 第 2減圧工程、 脱着工程、 第 1洗浄工程、 第 2洗浄工程、 第 1昇圧工程、 および 第 2昇圧工程が順次行われる。
本実施形態に係る方法は、 実質的には、 ステップ S I , S 2の間にステップ S 1, 力 ステップ S 4, S 5の間にステップ S 4, 力 ステップ S 7 , S 8の間 にステップ S 7, が追加されている点において、 第 1の実施形態に係る方法と異 T JP2003/010036 なる。
ステップ S 1 ' では、 図 6に示すように各自動弁 2 a〜 2 rの開閉状態が選択 されて、 図 7に示すようなガス流れ状態が達成される。
図 3 Aに示すステップ S 1の次の本ステップにおいて、 P及着塔 Aでは、 ステツ プ S 1から引き続 、て吸着工程が行われる。 ステップ S 1で洗浄工程 (第 1洗浄 工程) を終えた吸着塔 Bでは、 更なる洗浄工程 (第 2洗浄工程) が行われる。 具 体的には、 図 1および図 7を併せて参照するとよく理解できるように、 P及着塔 A からの製品ガス G 2の一部が、 自動弁 2 i、 配管 1 2、 配管 1 5、 自動弁 2 r、 流量調節弁 3 c、配管 1 6、配管 1 3、流量調節弁 3 a、 自動弁 2 p、配管 1 4、 および自動弁 2 jを介して吸着塔 Bに導入される。 これとともに、 吸着塔 Bから は排出ガス G 4が排出される。 この排出ガス G 4は、 自動弁 2 dおよび配管 1 7 を介して装置外に排出される。 本ステップにおいて、 吸着塔 Cは、 ガスが通流さ れずに待機状態にあり、 次のステップ S 2における第 2減圧工程に備える。
本ステップにおいては、 P及着塔 Bにて、 第 1減圧工程中の吸着塔 Cから供給さ れる準製品ガス G 3が洗浄ガスとして使用されるステップ S 1における第 1洗浄 工程に引き続き、 洗浄ガスとして製品ガス G 2が使用される第 2洗浄工程が行わ れる。 したがって、 吸着塔 Bの吸着剤の洗浄再生は促進される。 この第 2洗浄ェ 程で使用される製品ガス G 2の流量は、 吸着塔 Bにおける吸着剤の充填容積など を考慮して、 流量調節弁 3 cにより調節される。
ステップ S 4 ' では、 図 6に示すように各自動弁 2 a〜 2 rの開閉状態が選択 されて、 図 8に示すようなガス流れ状態が達成される。
図 4 Aに示すステップ S 4の次の本ステップにおいて、 吸着塔 Bでは、 ステツ プ S 4から引き続いて吸着工程が行われる。 ステップ S 4で洗浄工程 (第 1洗浄 工程) を終えた吸着塔 Cでは、 更なる洗浄工程 (第 2洗浄工程) が行われる。 具 体的には、 図 1および図 8を併せて参照するとよく理解できるように、 吸着塔 B からの製品ガス G 2の一部が、 自動弁 2 1、 配管 1 2、 配管 1 5、 自動弁 2 r、 流量調節弁 3 c、配管 1 6、配管 1 3、 流量調節弁 3 a、 自動弁 2 P、配管 1 4、 および自動弁 2 mを介して吸着塔 Cに導入される。 これとともに、 吸着塔じから は排出ガス G 4が排出される。 この排出ガス G 4は、 自動弁 2 fおよび配管 1 7 6 を介して装置外に排出される。 本ステップにおいて、 吸着塔 Aは、 ガスが通流さ れずに待機状態にあり、 次のステップ S 5における第 2減圧工程に備える。
本ステップにおいては、 吸着塔 Cにて、 第 1減圧工程中の吸着塔 Aから供給さ れる準製品ガス G 3が洗浄ガスとして使用されるステップ S 4における第 1洗浄 工程に引き続き、 洗浄ガスとして製品ガス G 2が使用される第 2洗浄工程が行わ れる。 したがって、 吸着塔 Cの吸着剤の洗浄再生は促進される。 この第 2洗浄ェ 程で使用される製品ガス G 2の流量は、 吸着塔 Cにおける吸着剤の充填容積など を考慮して、 流量調節弁 3 cにより調節される。
ステップ S 7 ' では、 図 6に示すように各自動弁 2 a〜 2 rの開閉状態が選択 されて、 図 9に示すようなガス流れ状態が達成される。
図 5 Aに示すステップ S 7の次の本ステップにおいて、 吸着塔 Cでは、 ステツ プ S 7から引き続いて吸着工程が行われる。 ステップ S 7で洗浄工程 (第 1洗浄 工程) を終えた吸着塔 Aでは、 更なる洗浄工程 (第 2洗浄工程) が行われる。 具 体的には、 図 1および図 9を併せて参照するとよく理解できるように、 P及着塔 C からの製品ガス G 2の一部が、 自動弁 2 o、 配管 1 2、 配管 1 5、 自動弁 2 r、 流量調節弁 3 c、配管 1 6、配管 1 3、流量調節弁 3 a、 自動弁 2 P、配管 1 4、 および自動弁 2 gを介して吸着塔 Aに導入される。 これとともに、 吸着塔 Aから は排出ガス G 4が排出される。 この 出ガス G 4は、 自動弁 2 bおよび配管 1 7 を介して装置外に排出される。 本ステップにおいて、 吸着塔 Bは、 ガスが通流さ れずに待機状態にあり、 次のステップ S 8における第 2減圧工程に備える。
本ステップにおいては、 P及着塔 Aにて、 第 1減圧工程中の吸着塔 Bから供給さ れる準製品ガス G 3が洗浄ガスとして使用されるステップ S 7における第 1洗浄 工程に引き続き、 洗浄ガスとして製品ガス G 2が使用される第 2洗浄工程が行わ れる。 したがって、 吸着塔 Aの吸着剤の洗浄再生は促進される。 この第 2洗浄ェ 程で使用される製品ガス G 2の流量は、 吸着塔 Aにおける吸着剤の充填容積など を考慮して、 流量調節弁 3 cにより調節される。
単一の吸着塔での上述の一連の工程において、 脱着工程における吸着塔内の最 低圧力を 0 %とし、吸着工程における吸着塔內の最高圧力を 1 0 0 %とする場合、 第 1中間圧力は、 好ましくは 3 5〜8 0 %、 より好ましくは 3 5〜6 5 %の範囲 内に設定され、 且つ、 第 2中間圧力は、 好ましくは 15〜50%、 より好ましく は 15〜40%の範囲内に設定される。
このような方法によると、 混合ガス G 1から不要成分が除去されて目的ガスが 富ィ匕された製品ガス G 2を、 ステップ S 1〜S 9にわたつて連続的に得ることが できる。
以上のような目的ガス分離方法では、 第 1減圧工程中の吸着塔からの、 製品ガ スに近 、高 ヽ目的ガス濃度を有する準製品ガス G 3力 S、 洗浄対象の吸着塔に対し て洗浄ガスとして導入されるとともに、 第 1減圧工程に続く第 2減圧工程中の吸 着塔からの、 依然として製品ガスに近い高い目的ガス濃度を有する準製品ガス G 3が、 昇圧対象の吸着塔に対して昇圧ガスとして導入される。 第 1および第 2減 圧工程にて吸着塔から導出される準製品ガス G 3に含まれる目的ガスを、 このよ うに有効活用することにより、高い目的ガス回収率を達成することが可能となる。 カロえて、 本方法では、 吸着塔 A, B, Cについて、 準製品ガス G 3による洗浄に カロえて、 製品ガス G 2による洗浄が施されるので、 P及着塔 A, B, C内の吸着剤 の再生効率が高い傾向にある。
〔実施例 1〕
図 1に示すような P S A分離装置 Xを使用して、 図 2およぴ図 3 A〜図 5 Cに 示す各工程からなる 1サイクルを繰り返し行うことにより、 水素含有混合ガスか ら水素ガスの分離を行った。 本実施例は、 第 1の実施形態に対応する。
本実施例において、 各吸着塔は、 直径が 50 mmの円筒形状を有する。 各吸着 塔には、 ゼォライトモレキュラーシーブ (C a 5 A型) とカーボンモレキュラー シーブとを 1 : 1. 3の体積比で含有する混合体を 2. 935リツトル充填した。 混合ガスとしては、水素ガス 77. 77vol%、二酸化炭素ガス 19. 62vol%、 一酸化炭素ガス 1 vol%、およびメタンガス 1. 61 vol %を含むものを使用した。 P S A分離装置 Xには、 当該混合ガスを 85 INL/h rの速度で供給した。 吸 着工程中の吸着塔内の最高圧力は 850 kP a (ゲージ圧) とし、 第 1減圧工程 中の吸着塔内の最終圧力は 650 kP a (ゲージ圧) とし、 第 2減圧工程中の吸 着塔内の最終圧力は 325kPa (ゲージ圧) とし、 脱着工程中の吸着塔内の最 低圧力は 6 k P a (ゲージ圧) とした。
本実施例に係る方法によると、純度 9 9 . 9 9 9 vol%の水素ガスを回収率 7 6 . 5 %で得ることができた。 これらの結果、 並びに、 第 1および第 2減圧工程最終 圧力については、 図 1 0の表に掲げる。
〔実施例 2〕
本実施例では、第 1?咸圧工程最終圧力を 6 5 0 k P aに代えて 5 2 0 k P a (ゲ ージ圧) とし、 且つ、 第 2減圧工程最終圧力を 3 2 5 k P aに代えて 2 6 0 k P a (ゲージ圧) とした以外は、 実施例 1と同様にして、 混合ガスから水素ガスの 分離を行った。
本実施例に係る方法によると、純度 9 9 . 9 9 9 vol %の水素ガスを回収率 7 8 . 3 %で得ることができた。 これらの結果、 並びに、 第 1および第 2減圧工程最終 圧力については、 図 1 0の表に掲げる。 〔実施例 3〕
本実施例では、第 1減圧工程最終圧力を 6 5 0 k P aに代えて 4 5 0 k P a (ゲ ージ圧) とし、 且つ、 第 2減圧工程最終圧力を 3 2 5 k P aに代えて 2 2 5 k P a (ゲージ圧) とした以外は、 実施例 1と同様にして、 混合ガスから水素ガスの 分離を行った。
本実施例に係る方法によると、純度 9 9 . 9 9 9 vol%の水素ガスを回収率 8 0 . 2 %で得ることができた。 これらの結果、 並びに、 第 1およぴ第 2減圧工程最終 圧力については、 図 1 0の表に掲げる。
〔実施例 4〕
本実施例では、第 1減圧工程最終圧力を 6 5 0 k P aに代えて 3 7 0 k P a (ゲ ージ圧) とし、 第 2減圧工程最終圧力を 3 2 5 k P aに代えて 1 8 5 k P a (ゲ ージ圧) とした以外は、 実施例 1と同様にして、 混合ガスから水素ガスの分離を 行った。
本実施例に係る方法によると、純度 9 9 . 9 9 9 vol %の水素ガスを回収率 7 8 . 03 010036
0 %で得ることができた。 これらの結果、 並びに、 第 1およぴ第 2減圧工程最終 圧力については、 図 1 0の表に掲げる。
〔比較例〕
図 1に示すような P S A分離装置 Xを使用して、 図 1 1 A〜図 1 3 Cに示す各 工程からなる 1サイクルを繰り返し行うことにより、 水素含有混合ガスから水素 ガスの分離を行つた。 本比較例では、 1サイクルにお ヽて単一 P及着塔に対して行 われる減圧工程は一度であり、 当該減圧工程の最終圧力は 4 2 5 k P a (ゲージ 圧) とした。 また、 吸着塔を洗净するための洗浄ガスとしては、 P及着工程中の吸 着塔からの製品ガスを使用し、減圧工程中の吸着塔からのガスを使用しなかった。 これら以外の条件は、 実施ィ列 1と同様とした。
本比較例に係る方法によると、純度 9 9. 9 9 9 vol%の水素ガスを回収率 6 9 . 5 %でしカゝ得ることができなかつた。 これらの結果および減圧工程最終圧力につ いては、 図 1 0の表に掲げる。
〔評価〕
図 1 0の表から理解できるように、 1サイクルにおいて 2段階の減圧工程 (第 1および第 2減圧工程) が行われ、 第 1減圧工程にて吸着塔から導出される準製 品ガスを洗浄ガスとして他の吸着塔に導入することにより当該他の吸着塔の洗浄 工程が行われ、 第 2減圧工程にて吸着塔から導出される準製品ガスを昇圧ガスと して他の吸着塔に導入することにより当該他の吸着塔の昇圧工程が行われる実施 例 1〜 4に係る方法によると、 1サイクルにぉ 、て 1段階のみの減圧工程が行わ れ且つ洗浄ガスの全てが製品ガスで賄われる比較例に係る方法よりも、 水素ガス 回収率は大幅に向上してレ、る。
また、 実施例:!〜 4を比較すると、 洗浄に使用される準製品ガスの量と、 昇圧 に使用される準製品ガスの量とのバランスにより、 水素ガス回収率が変化するこ とが理解できょう。 実施例 3の方法は、 水素ガスの回収率について最も優れてい る。

Claims

請求の範囲
1 . 吸着剤が充填された複数の吸着塔を用いて混合ガスから目的ガスを分離する ための方法であって、
選択された 1つの吸着塔に前記混合ガスを導入し、 当該混合ガスに含まれる 不要成分を前記吸着剤に吸着させ、 前記目的ガスが富化された製品ガスを当該吸 着塔から導出するための吸着工程と、
第 1導出ガスを導出することによって前記吸着塔の内部圧力を第 1中間圧力 まで降下させるための第 1減圧工程と、
第 2導出ガスを導出することによつて前記吸着塔の内部圧力を第 2中間圧力 まで更に降下させるための第 2減圧工程と、
前記吸着剤から前記不要成分の少なくとも一部を脱着させて排出するための 脱着工程と、
前記吸着塔に洗浄ガスを導入するとともに当該吸着塔から排出ガスを排出す るための洗净工程と、
前記吸着塔に昇圧ガスを導入することによつて当該吸着塔の内部圧力を上昇 させるための昇圧工程と、を含む 1サイクルが各吸着塔において繰り返し行われ、 前記第 1減圧工程中の吸着塔から導出される前記第 1導出ガスは、 前記洗浄 工程中の吸着塔に前記洗浄ガスとして導入され、 前記第2減圧工程中の吸着塔か ら導出される前記第 2導出ガスは、 前記昇圧工程中の吸着塔に前記昇圧ガスとし て導入される、 目的ガス分離方法。
2. 前記 1サイクルは、 前記昇圧工程の後に、 前記吸着塔に追加昇圧ガスを導入 することによって当該吸着塔の内部圧力を更に上昇させるための追加昇圧工程を 含み、 前記吸着工程中の吸着塔から導出される前記製品ガスの一部は、 前記追加 昇圧工程中の吸着塔に前記追加昇圧ガスとして導入される、 請求項 1に記載の目 的ガス分離方法。
3. 前記 1サイクルは、 前記洗浄工程の後に、 前記吸着塔に追加洗浄ガスを導入 するとともに当該吸着塔から排出ガスを排出するための追加洗浄工程を含み、 前 記吸着工程中の吸着塔から導出される前記製品ガスの一部は、 前記追加洗浄工程 中の吸着塔に前記追加洗浄ガスとして導入される、 請求項 1に記載の目的ガス分 離方法。
4. 前記脱着工程における前記吸着塔内の最低圧力を 0 %とし、 前記吸着工程に おける前記吸着塔内の最高圧力を 1 0 0 %とする場合、 前記第 1中間圧力は 3 5 〜 8 0 %の範囲内にある、 請求項 1に記載の目的ガス分離方法。
5. 前記第 2中間圧力は 1 5〜 5 0 %の範囲内にある、 請求項 4に記載の目的ガ ス分離方法。
6 . 前記混合ガスは、 目的ガスとしての水素ガス、 および、 不要成分としての二 酸化炭素ガスを含む、 請求項 1に記載の目的ガス分離方法。
PCT/JP2003/010036 2002-08-07 2003-08-06 目的ガス分離方法 WO2004014523A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/523,506 US20050268780A1 (en) 2002-08-07 2003-08-06 Method of separating target gas
EP03784559A EP1552873A1 (en) 2002-08-07 2003-08-06 Method of separating target gas
CA002493994A CA2493994A1 (en) 2002-08-07 2003-08-06 Method of separating target gas
AU2003254839A AU2003254839A1 (en) 2002-08-07 2003-08-06 Method of separating target gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002229982A JP2004066125A (ja) 2002-08-07 2002-08-07 目的ガスの分離方法
JP2002-229982 2002-08-07

Publications (1)

Publication Number Publication Date
WO2004014523A1 true WO2004014523A1 (ja) 2004-02-19

Family

ID=31711668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010036 WO2004014523A1 (ja) 2002-08-07 2003-08-06 目的ガス分離方法

Country Status (9)

Country Link
US (1) US20050268780A1 (ja)
EP (1) EP1552873A1 (ja)
JP (1) JP2004066125A (ja)
KR (1) KR20050030957A (ja)
CN (1) CN1671462A (ja)
AU (1) AU2003254839A1 (ja)
CA (1) CA2493994A1 (ja)
TW (1) TWI230093B (ja)
WO (1) WO2004014523A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771668B2 (ja) * 2004-03-31 2011-09-14 大阪瓦斯株式会社 水素製造方法とその装置
JP4815104B2 (ja) * 2004-03-31 2011-11-16 大阪瓦斯株式会社 水素製造方法とその装置
US7645323B2 (en) * 2005-08-16 2010-01-12 Oxyvital Limited Method and apparatus for improving the air quality within an enclosed space
CN101528592A (zh) 2006-10-20 2009-09-09 住友精化株式会社 氢气的分离方法和分离装置
AU2007318658A1 (en) * 2006-11-08 2008-05-15 Sumitomo Seika Chemicals Co., Ltd. Hydrogen gas separation method and separation apparatus
JP5372607B2 (ja) * 2009-05-29 2013-12-18 住友精化株式会社 ヘリウム精製方法およびヘリウム精製装置
BR112013018276A2 (pt) * 2011-03-01 2019-09-24 Exxonmobil Upstream Res Co métodos de remover contaminantes de uma corrente de hidrocarbonetos por adsorção oscilante e aparelhos e sistemas relacionados
JP5039861B1 (ja) * 2012-01-30 2012-10-03 住友精化株式会社 製品ガス供給方法、および製品ガス供給システム
US9381460B2 (en) 2014-09-11 2016-07-05 Air Products And Chemicals, Inc. Pressure swing adsorption process
EP2823872A3 (en) 2014-09-11 2015-05-06 Air Products And Chemicals, Inc. Pressure swing adsorption process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443179A (en) * 1977-09-12 1979-04-05 Hokusan Kk Adsobent regeneration method in pressure changing adsorption separating method for mixing gas with adsobent
EP0598321A1 (en) * 1992-11-16 1994-05-25 Air Products And Chemicals, Inc. Adsorption Process with mixed repressurization and purge/equalization
JPH07108126A (ja) * 1993-10-15 1995-04-25 Mitsubishi Heavy Ind Ltd 圧力スイングガス分離方法
US5549733A (en) * 1994-03-30 1996-08-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of a gas by adsorption
JP2001279267A (ja) * 2000-03-29 2001-10-10 Mitsubishi Kakoki Kaisha Ltd 圧力変動吸着分離装置を用いた工業ガス製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430418A (en) * 1967-08-09 1969-03-04 Union Carbide Corp Selective adsorption process
US3564816A (en) * 1968-12-30 1971-02-23 Union Carbide Corp Selective adsorption process
DE2930782A1 (de) * 1979-07-28 1981-02-12 Linde Ag Verfahren zur adsorptiven reinigung oder zerlegung von gasgemischen
DE3122701A1 (de) * 1981-06-06 1982-12-23 Bergwerksverband Gmbh, 4300 Essen Verfahren zur trennung von gasgemischen mittels druckwechseltechnik
DE3132758A1 (de) * 1981-08-19 1983-03-03 Linde Ag, 6200 Wiesbaden Absorptionsverfahren
FR2599274B1 (fr) * 1986-06-02 1988-08-26 Air Liquide Procede et installation de separation d'un melange gazeux par adsorption.
US4761165A (en) * 1987-09-01 1988-08-02 Union Carbide Corporation Pressure swing adsorption control method and apparatus
FR2672818B1 (fr) * 1991-02-20 1993-04-23 Air Liquide Procede de production d'oxygene par adsorption.
FR2761616B1 (fr) * 1997-04-02 1999-05-07 Air Liquide Procede et installation de separation d'un melange gazeux par adsorption
FR2788993B1 (fr) * 1999-01-29 2001-02-23 Air Liquide Procede d'epuration d'un gaz par adsorption
DE60127717T2 (de) * 2000-12-25 2007-12-27 Sumitomo Seika Chemicals Co., Ltd. Verfahren zur Abtrennung von Wasserstoffgasen
US6585804B2 (en) * 2001-11-09 2003-07-01 Air Products And Chemicals, Inc. Pressure swing adsorption process operation at turndown conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443179A (en) * 1977-09-12 1979-04-05 Hokusan Kk Adsobent regeneration method in pressure changing adsorption separating method for mixing gas with adsobent
EP0598321A1 (en) * 1992-11-16 1994-05-25 Air Products And Chemicals, Inc. Adsorption Process with mixed repressurization and purge/equalization
JPH07108126A (ja) * 1993-10-15 1995-04-25 Mitsubishi Heavy Ind Ltd 圧力スイングガス分離方法
US5549733A (en) * 1994-03-30 1996-08-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for the production of a gas by adsorption
JP2001279267A (ja) * 2000-03-29 2001-10-10 Mitsubishi Kakoki Kaisha Ltd 圧力変動吸着分離装置を用いた工業ガス製造方法

Also Published As

Publication number Publication date
KR20050030957A (ko) 2005-03-31
TW200404023A (en) 2004-03-16
JP2004066125A (ja) 2004-03-04
EP1552873A1 (en) 2005-07-13
TWI230093B (en) 2005-04-01
CN1671462A (zh) 2005-09-21
US20050268780A1 (en) 2005-12-08
CA2493994A1 (en) 2004-02-19
AU2003254839A1 (en) 2004-02-25

Similar Documents

Publication Publication Date Title
JP2744596B2 (ja) 供給ガス混合物の比較的吸着力の弱い成分から比較的吸着力の強い成分を選択的に分離する方法
KR100254295B1 (ko) 단일 흡착 베드를 이용한 압력 스윙 흡착 방법
JP2634022B2 (ja) 真空スイング吸着法によるガス成分の分離方法
AU691985B2 (en) Pressure swing adsorption process
US3977845A (en) Adsorptive process for selective separation of gases
US6379431B1 (en) Pressure swing adsorption process with multiple beds on purge and/or with ten beds and four pressure equalization steps
JP2981302B2 (ja) ガスの分離方法
JPH0257972B2 (ja)
US6113672A (en) Multiple equalization pressure swing adsorption process
WO2004014523A1 (ja) 目的ガス分離方法
JPH0268111A (ja) 改良された圧力スイング吸着法
KR20030081361A (ko) 목적 가스의 분리방법 및 분리장치
JPH07110762B2 (ja) 高濃度酸素の製造方法
JPH10272332A (ja) ガス分離装置及びその運転方法
JP4611514B2 (ja) 水素ガスの分離方法
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow
KR19980016382A (ko) 압력변동흡착식 고순도 이산화탄소 제조방법
JP2981303B2 (ja) ガス混合物から気体不純物を分離する方法
KR100292555B1 (ko) 높은 생산성을 갖는 수소 압력변동흡착 공정
JP3561886B2 (ja) 圧力変動吸着分離方法
CA2452536C (en) Pressure swing adsorption process with multiple beds on purge and/or with ten beds and four pressure equalization steps
CA1049937A (en) Adsorptive process for selective separation of gases
JP2005349249A (ja) 酸素ガスおよび窒素ガスの併行分離方法
JPH07108126A (ja) 圧力スイングガス分離方法
JP2000210524A (ja) 混合ガス吸着分離方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057001400

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003254839

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2493994

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003818253X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10523506

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003784559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 114/KOLNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057001400

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003784559

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003784559

Country of ref document: EP