WO2004012368A1 - マルチキャリア送信装置及びマルチキャリア送信方法 - Google Patents

マルチキャリア送信装置及びマルチキャリア送信方法 Download PDF

Info

Publication number
WO2004012368A1
WO2004012368A1 PCT/JP2003/009717 JP0309717W WO2004012368A1 WO 2004012368 A1 WO2004012368 A1 WO 2004012368A1 JP 0309717 W JP0309717 W JP 0309717W WO 2004012368 A1 WO2004012368 A1 WO 2004012368A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
carrier
control means
frequency
Prior art date
Application number
PCT/JP2003/009717
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Osaki
Kazuyuki Miya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/519,300 priority Critical patent/US20050233711A1/en
Priority to AU2003252748A priority patent/AU2003252748A1/en
Priority to EP20030771446 priority patent/EP1526667A1/en
Publication of WO2004012368A1 publication Critical patent/WO2004012368A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference

Definitions

  • the present invention relates to a multi-carrier transmission apparatus and a multi-carrier transmission method, and particularly to a multi-carrier transmission apparatus and a multi-carrier transmission method suitable for use in a communication apparatus in which a mobile station of a communication partner performs position detection.
  • FIG. 1 is a block diagram showing a configuration of a conventional transmission device.
  • the encoders 11-1 to 11-n encode the transmission data transmitted from the higher-level device and output the encoded transmission data to the frame assembling units 12-1 to 12-n.
  • the frame assembling units 12-1 to 1 2-n divide the transmission data into frames and output the transmission data to the primary spreaders 13-1 to 13-n.
  • the primary spreaders 13-1 to 13-! 1 multiply the transmission data by a spreading code and output the spread transmission signal to the adder 14.
  • Caro calculator 14 adds the transmission signals and outputs the result to secondary diffuser 15.
  • Secondary spreader 15 multiplies the transmission signal by a spreading code and outputs the result to roll-off filter 16.
  • the base spreader 20 is composed of the secondary spreader 15 and performs processing at the baseband frequency.
  • the portal off filter 16 suppresses frequency components outside a predetermined band with respect to the transmission signal, and outputs the suppressed transmission signal to the modulator 17.
  • Modulator 17 modulates the transmission signal and outputs the modulated transmission signal to RF analog section 18.
  • the RF analog section 18 converts the frequency of the transmission signal into a radio frequency, and outputs the frequency-converted transmission signal to the power amplifier 19.
  • Power amplifier 19 amplifies the power of the transmission signal and transmits the amplified transmission signal.
  • the control unit 21 controls the stop of signal transmission to detect the position of the mobile station. Specifically, control section 21 cuts off the transmission signal output from secondary spreader 15 to roll-off filter 16 and stops the output of the transmission signal from RF analog section 18. Thus, the base station stops transmitting signals for a short time, and the mobile station receives signals transmitted by other base stations at this time.
  • the transmission of the communicating base station must be performed. It is necessary to stop and suppress the transmission power by more than 45 dB from the level at the time of signal transmission.
  • FIG. 2 is a diagram showing an example of an electric spectrum distribution transmitted by a conventional multicarrier transmitting apparatus.
  • the vertical axis represents power
  • the horizontal axis represents frequency.
  • Distribution 25 indicates the electric spectrum distribution of a signal transmitted at carrier frequency f1
  • distribution 26 indicates the electric spectrum distribution of a signal transmitted at carrier frequency f2.
  • the power in ⁇ 1 of the distribution 26 becomes the leakage power. Due to this leakage power, the power suppression width at the carrier frequency f 1 is 27. This power suppression width 27 is the power when there is no leakage power. The suppression width is smaller than 28.
  • FIG. 3 is a diagram showing an example of signal transmission timing of a conventional multi-carrier transmission device.
  • the vertical axis represents power
  • the horizontal axis represents time.
  • 41 indicates the power at the frequency f1 of the signal transmitted at the carrier frequency f1
  • 42 indicates the leakage power at the frequency f2 of the signal transmitted at the carrier frequency f1.
  • 43 indicates the power at the frequency f2 of the signal transmitted at the carrier frequency f2
  • 44 indicates the leakage power at the frequency f1 of the signal transmitted at the carrier frequency f2.
  • FIG. 4 is a block diagram showing a configuration of a conventional communication device.
  • the communication device in FIG. 4 is a device that performs communication using a plurality of carriers.
  • the baseband units 20-1 and 20_2 perform the same operation as the baseband unit 20 of FIG.
  • the Lonoleoff filters 16_1 and 16-2 correspond to the roll-off filter 16
  • the modulators 17-1 and 17_2 correspond to the modulator 17, and the RF analog.
  • the sections 18-1 and 18-2 correspond to the RF analog section 18, and the control sections 21-11 and 21-2 correspond to the control section 21.
  • the RF analog section 18-1 converts the frequency of the transmission signal to a radio frequency, and outputs the frequency-converted transmission signal to the filter 31-1.
  • the RF analog section 18-2 frequency-converts the transmission signal to a radio frequency different from that of the RF analog section 18-1, and outputs the frequency-converted transmission signal to the filter 31_2.
  • the filter 311 and the filter 31-2 attenuate the signals in the low frequency region and the high frequency region other than the required band of the transmission signal centered on the carrier frequency, and output to the combiner 32.
  • the combiner 32 combines the transmission signals output from the finolators 31-1 and the filters 31-2, and outputs the combined signal to the power amplifier 33.
  • the power amplifier 33 amplifies the power of the transmission signal and transmits the amplified transmission signal.
  • An object of the present invention is to provide a multi-carrier transmission apparatus and a multi-carrier transmission method capable of suppressing transmission power after carrier combination at a carrier frequency in which transmission signal power is stopped in multi-carrier transmission.
  • FIG. 1 is a block diagram showing a configuration of a conventional transmission device
  • Fig. 2 shows an example of the distribution of electric spectrum transmitted by the conventional multi-carrier transmitter.
  • FIG. 3 is a diagram showing an example of signal transmission timing of a conventional multi-carrier transmission device
  • FIG. 4 is a block diagram showing a configuration of a conventional multi-carrier transmission device.
  • FIG. 5 is a block diagram showing a configuration of a multi-carrier transmission device according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing an example of signal transmission timing of the multi-carrier transmission apparatus according to the present embodiment.
  • FIG. 7 shows an electric spectrum transmitted by the multicarrier transmitting apparatus of the present embodiment.
  • FIG. 8 is a diagram showing an example of a signal transmission timing of the multi-carrier transmission device.
  • FIG. 9 is a diagram illustrating an example of signal transmission timing of the multi-carrier transmission device.
  • FIG. 5 is a block diagram showing a configuration of the multi-carrier transmitting apparatus according to Embodiment 1 of the present invention.
  • the multi-carrier transmission apparatus 100 in FIG. 5 includes a synchronization control unit 101, a control unit 102-1, a control unit 102_2, a baseband unit 103-1, and a baseband unit. 1 0 3 _ 2, switch 1 0 4-1, switch 1 0 4-2, lipstick 1/5-1, and lipstick 1/5-2 , Modulator 106--1, Modulator 106--2, RF Analog Block 107--1, RF Analog Block 107--2, Synthesizer 108, Power Amplifier 10 It mainly consists of nine.
  • a base station is configured using the multicarrier transmitting apparatus of the present invention, and a mobile station that communicates with the base station is assumed.
  • the RF analog section 107-1 transmits a signal at a frequency at which the mobile station receives a signal of another base station
  • the RF analog section 107-7-2 transmits a signal of the other base station.
  • the synchronization control unit 101 is a control unit corresponding to a system that transmits a signal at a carrier frequency ⁇ 1 for receiving a signal of another base station at a time when a mobile station of a communication partner receives a signal of another base station.
  • 1 0 2—1 and the controller 1 0 2—2 corresponding to the system that transmits signals at the carrier frequency f 2 adjacent to the frequency to receive signals from other base stations. Instructs to stop transmission.
  • the time at which the mobile station of the communication partner receives the signal of another base station is defined as the time at which the mobile station that is the communication partner of the multicarrier transmitter 100 is set to the communication partner of the other than the multicarrier transmitter 100. It is time to receive a signal.
  • a transmission wave of a base station (here, a multicarrier transmission apparatus 100) is stopped for a short time in order to detect a position of the mobile station.
  • the mobile station detects the pilot channel of the neighboring base station and measures the distance to the base station from the reception level.
  • the mobile station receives a signal from another base station in a short time when the transmission wave is stopped.
  • control unit 102-1 When receiving a transmission stop instruction from the synchronization control unit 101, the control unit 102-1 cuts off the path output from the baseband unit 103-1 to the roll-off filter 105-1. Switch 1 0 4—1 to stop the signal transmission.
  • control unit 102-2 when receiving a transmission stop instruction from the synchronization control unit 101, the control unit 102-2 receives the path output from the baseband unit 103-3 to the roll-off filter 1055-2. Instruct switch 104--2 to shut off the signal and instruct RF analog section 107--2 to stop signal transmission.
  • the baseband unit 103-1 encodes and modulates the transmission data output from the higher-level device, and outputs the obtained transmission signal to the switch 1044-1.
  • baseband section 103-2 encodes and modulates the transmission data output from the higher-level device, and outputs the obtained transmission signal to switch 104-2-2.
  • the switch 1044-1 outputs the transmission signal output from the baseband section 1033-1 to the roll-off filter 1055-1. Then, when a cutoff instruction is output from the control unit 102-1, the transmission signal output from the baseband unit 103-1 is not output to the roll-off filter 1055-1.
  • the switch 104-4 outputs the transmission signal output from the baseband section 103-3-2 to the roll-off filter 1055-2. Then, when a cutoff instruction is output from the control unit 102-2, the transmission signal output from the baseband unit 103-2 is not output to the roll-off filter 105-2.
  • the aperture-off filter 105-1 compresses frequency components outside a predetermined band with respect to the transmission signal, and outputs the suppressed transmission signal to the modulator 106-1.
  • the roll-off finolators 105--2 suppress the frequency components outside a predetermined band with respect to the transmission signal, and output the suppressed transmission signal to the modulator 106-6-2.
  • the modulator 106-1 modulates the transmission signal, and outputs the modulated transmission signal to the RF analog section 1077-1.
  • the modulator 106-6-2 modulates the transmission signal, and outputs the modulated transmission signal to the RF analog section 107-7-2.
  • the RF analog section 107-1 multiplies the transmission signal by the first local signal, converts the frequency to a radio frequency f 1, and outputs the frequency-converted transmission signal to the synthesizer 108.
  • the RF analog section 107-7-2 multiplies the transmission signal by the second local signal, converts the frequency to a radio frequency f2, and outputs the frequency-converted transmission signal to the synthesizer 108.
  • the combiner 108 combines the transmission signals output from the RF analog section 107-1 and the RF analog section 107-2, and outputs the synthesized signal to the power amplifier 109.
  • the power amplifier 109 amplifies the power of the transmission signal and transmits the amplified transmission signal.
  • the multi-carrier transmitting apparatus 100 stops transmitting a signal on a carrier within a predetermined band from a carrier frequency at which a communication partner receives a signal from another base station.
  • FIG. 6 is a diagram showing an example of signal transmission timing of the multi-carrier transmitting apparatus according to the present embodiment.
  • the vertical axis represents power
  • the horizontal axis represents time
  • 2 1 1 indicates the power at the frequency f1 of the signal transmitted at the carrier frequency f1
  • 2 1 2 indicates the leakage power at the frequency f2 of the signal transmitted at the carrier frequency ⁇ 1.
  • 2 2 2 indicates the power at the frequency f 2 of the signal transmitted at the carrier frequency f 2
  • 2 2 1 indicates the frequency f 1 of the signal transmitted at the carrier frequency f 2
  • the multi-carrier transmitting apparatus 100 is configured such that when the mobile station, which is the communication partner with the base station using the multi-carrier transmitting apparatus, receives a signal from another base station at time t 1 to t 2, The transmission of the carrier of the frequency f1 received by the communication partner at time t2 and the transmission of the signal of the carrier frequency f2 that leaks power to the frequency f1 are stopped.
  • the power of the signal transmitted by the multi-carrier transmitter 100 at the frequency f1 becomes P1. If signal transmission is not stopped from carrier frequency # 2, the power of the signal transmitted by multicarrier transmitting apparatus 100 at frequency f1 is P2.
  • FIG. 7 is a diagram illustrating an example of an electrical spectrum distribution transmitted by the multicarrier transmission apparatus according to the present embodiment.
  • the vertical axis represents power
  • the horizontal axis represents frequency.
  • distribution 301 shows a power spectrum distribution when a signal is transmitted at carrier frequency f1
  • distribution 302 shows a power spectrum distribution when a signal is transmitted at carrier frequency ⁇ 2.
  • distribution 303 shows an electric power spectrum distribution when signals are not transmitted at carrier frequencies f1 and f2.
  • the multi-carrier transmitting apparatus 100 of the present invention transmits a carrier having a frequency f 1 and a signal having a carrier frequency f 2 that leaks power to the frequency f 1, which is received by a communication partner from time t 1 to time t 2. By stopping the operation, the generation of leakage power can be suppressed, and the power value P 1 at f 1 in distribution 303 can be obtained.
  • the multicarrier transmission apparatus of the present invention uses the carrier used for communication by the mobile station that is the communication partner of the base station apparatus using the multicarrier transmission apparatus.
  • the leakage power from the signal of another carrier is reduced to the carrier frequency. It can be prevented from occurring above, and a required amount of suppression can be obtained with respect to the transmission power after carrier combining at the carrier frequency where the transmission signal power is stopped.
  • the present invention When the present invention is applied to a CDMA communication system, it can be realized by multiplying a signal transmitted in a baseband by a spreading code.
  • a roll filter is used, but any filter can be used as long as the filter restricts frequency components other than the desired band.
  • the time at which signal transmission of each carrier is stopped is matched, but the present invention is not limited to this.
  • the transmission stop time and the transmission restart time are respectively determined by the movement of the communication partner. It may be before or after the time when the station receives a signal from another base station.
  • 2 1 1 indicates the power at the frequency f 1 of the signal transmitted at the carrier frequency f 1
  • 2 1 2 indicates the power at the frequency f 2 of the signal transmitted at the carrier frequency f 1
  • FIG. 8 and 9 2 2 2 'Indicates the power at frequency f2 of the signal transmitted at frequency ⁇ 2, and 2 2 1 indicates the' leakage power at frequency f1 of the signal transmitted at frequency f2.
  • the signal transmission at the carrier frequency f2 is stopped, the signal transmission at the carrier frequency f1 is stopped. Then, after restarting the signal transmission of the carrier frequency f2, the signal transmission of the carrier frequency ⁇ 1 is restarted. Also, for example, in FIG. 9, after the signal transmission at the carrier frequency f2 is stopped, the signal transmission at the carrier frequency f1 is stopped. Then, after restarting the signal transmission at the carrier frequency f1, the signal transmission at the carrier frequency f2 is restarted.
  • the transmission suspension time from the last transmission stop time to the first transmission resumption time is only required if the communication partner mobile station has a minimum required time for receiving signals from other base stations.
  • a mobile station near the base station can also receive a pilot channel signal of the second base station at a different carrier frequency and measure the distance to the second base station.
  • the mobile station which is the communication partner of the base station using the multi-carrier transmission apparatus or the multi-carrier transmission method of the semi-invention can perform communication.
  • the transmission of signals in carriers within a predetermined band from this carrier frequency is stopped, so that leakage from signals from other carriers is prevented. It is possible to prevent power from being generated on this carrier frequency, and it is possible to obtain a required amount of suppression of transmission power after carrier combining at a carrier frequency at which transmission signal power is stopped.
  • the present invention is suitable for use in a wireless communication device, a base station device, and a communication terminal device that perform multicarrier communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

同期制御部101は、通信相手の移動局が他局の信号を受信する時間に、他局の信号を受信するキャリア周波数f1で信号を送信する系統に対応する制御部102−1と他局の信号を受信する周波数に隣接するキャリア周波数f2で信号を送信する系統に対応する制御部102−2とに信号送信の停止を指示する。制御部102−1及び102−2は、同期制御部101から送信停止の指示を受けた場合、送信する信号の遮断をスイッチ104−1及びスイッチ104−2に指示し、信号送信の停止をRFアナログ部107−1及びRFアナログ部107−2に指示する。

Description

明 細 書 マルチキヤリァ送信装置及びマルチキヤリァ送信方法 技術分野
本発明は、 マルチキヤリァ送信装置及びマルチキヤリァ送信方法に関し、 特 に通信相手の移動局が位置検出を行う通信装置に用いて好適なマルチキヤリァ 送信装置及びマルチキヤリァ送信方法に関する。 背景技術
基地局と移動局が通信を行う C DMA通信では、 移動局の位置を検出するた めに、 基地局は、 短時間信号の送信を停止する。 そして、 移動局は、 基地局が 信号の送信を停止する時間に周辺基地局が送信する信号 (パイ口ットチャネル) を受信し、 受信した信号のレベルから移動局と基地局との距離を測定する。 図 1は、 従来の送信装置の構成を示すプロック図である。 符号化器 1 1— 1 〜1 1一 nは、 上位装置から送信された送信データを符号化し、 符号化した送 信データをフレーム組立部 1 2— 1〜 1 2— nに出力する。 フレーム組立部 1 2— 1〜 1 2— nは、 送信データをフレーム単位に分割し、 この送信データを 1次拡散器 1 3— 1〜1 3— nに出力する。
1次拡散器 1 3— 1〜1 3— !1は、 送信データに拡散符号を乗算し、 拡散さ れた送信信号を加算器 1 4に出力する。 カロ算器 1 4は、 送信信号を加算して 2 次拡散器 1 5に出力する。 2次拡散器 1 5は、 送信信号に拡散符号を乗算して ロールオフフィルタ 1 6に出力する。
これら、符号ィ匕器 1 1 _ 1〜1 1一 n、フレーム組立部 1 2— 1 ~ 1 2— n、 1次拡散器 1 3— l〜1 3— n、 加算器 1 4、 及び 2次拡散器 1 5からベース パンド部 2 0が構成され、 ベースバンド周波数での処理が行われる。 そして、 口ールオフフィルタ 1 6は、 送信信号に対して所定の帯域外の周波数成分を抑 圧し、 抑圧後の送信信号を変調器 1 7に出力する。
変調器 1 7は、 送信信号を変調し、 変調した送信信号を R Fアナログ部 1 8 に出力する。 R Fアナログ部 1 8は、 送信信号を無線周波数に周波数変換し、 周波数変換した送信信号を電力増幅器 1 9に出力する。 電力増幅器 1 9は、 送 信信号の電力を増幅し、 増幅後の送信信号を送信する。
制御部 2 1は、 移動局の位置を検出するために、 信号の送信の停止を制御す る。 具体的には、 制御部 2 1は、 2次拡散器 1 5からロールオフフィルタ 1 6 に出力される送信信号を遮断し、 R Fアナログ部 1 8から送信信号が出力され るのを停止する。 このように、 基地局は、 短時間信号の送信を停止し、 移動局 は、 この時間に他の基地局が送信する信号を受信する。
一般に、 通信中の基地局近傍にいる移動局が第 2の基地局のパイロットチヤ ネノレ信号を受信して第 2の基地局との距離を測定するためには、 通信中の基地 局の送信を停止して送信電力を信号送信時のレベルから 4 5 d B以上の抑圧す ることが必要となる。
上記で説明した移動局の位置を検出するために基地局が短時間信号の送信を 停止する動作を、 マルチキャリア送信に適用した場合、 隣接するキャリアから 漏洩する電力が発生する。
図 2は、 従来のマルチキャリア送信装置が送信する電カスペクトラム分布の —例を示す図である。図 2において、縦軸は電力を示し、横軸は周波数を示す。 分布 2 5は、 キャリア周波数 f 1で送信する信号の電カスペクトラム分布を示 し、 分布 2 6は、 キヤリァ周波数 f 2で送信する信号の電カスペクトラム分布 を示す。
キヤリァ周波数 f 1で送信する信号のみ停止した場合、 分布 2 6の ί 1にお ける電力が漏洩電力となる。 この漏洩電力によりキャリア周波数 f 1における 電力抑圧幅は 2 7となる。 この電力抑圧幅 2 7は、 漏洩電力がない場合の電力 抑圧幅 2 8より小さい。
図 3は、 従来のマルチキヤリァ送信装置の信号送信タイミングの一例を示す 図である。 図 3において、 縦軸は電力を示し、 横軸は時刻を示す。
図 3において、 4 1は、 キャリア周波数 f 1で送信される信号の周波数 f 1 での電力を示し、 4 2は、 キャリア周波数 f 1で送信される信号の周波数 f 2 での漏洩電力を示す。 また、 4 3は、 キャリア周波数 f 2で送信される信号の 周波数 f 2での電力を示し、 4 4は、 キャリア周波数 f 2で送信される信号の 周波数 f 1での漏洩電力を示す。
この電力の漏洩を防ぐ方法として図 4のマルチキヤリァ送信装置が考えられ ている。 図 4は、 従来の通信装置の構成を示すプロック図である。 図 4の通信 装置は、 複数のキャリアを用いて通信を行う装置である。 図 4においてベース バンド部 2 0—1及び 2 0 _ 2は、 図 1のベースバンド部 2 0と同様の動作を 行う。 同様に、 ローノレオフフィルタ 1 6 _ 1及び 1 6— 2はロールオフフィル タ 1 6が対応し、 変調器 1 7— 1及び 1 7 _ 2は変調器 1 7が対応し、 R Fァ ナログ部 1 8— 1及び 1 8— 2は、 R Fアナログ部 1 8が対応し、 制御部 2 1 一 1及び 2 1— 2は制御部 2 1が対応する。
R Fアナログ部 1 8— 1は、 送信信号を無線周波数に周波数変換し、 周波数 変換した送信信号をフィルタ 3 1—1に出力する。 R Fアナログ部 1 8— 2は、 送信信号を R Fアナログ部 1 8— 1と異なる無線周波数に周波数変換し、 周波 数変換した送信信号をフィルタ 3 1 _ 2に出力する。
フィルタ 3 1一 1及びフィルタ 3 1 - 2は、 キヤリァ周波数を中心とする送 信信号の所要帯域以外の低周波数領域と高周波数領域の信号を減衰し、 合成器 3 2に出力する。 合成器 3 2は、 フイノレタ 3 1 - 1及びフィルタ 3 1— 2から 出力された送信信号を合成し、電力増幅器 3 3に出力する。電力増幅器 3 3は、 送信信号の電力を増幅し、 増幅後の送信信号を送信する。
しかしながら、 従来の装置では、 各キャリアの信号を合成した後、 電力増幅 を行う時に歪みが発生し、 基地局が信号の送信を停止しても、 隣接するキヤリ ァが送信するため発生する漏洩電力が充分に抑圧できないという問題がある。 また、 キャリア別に電力を増幅し、 フィルタを介す方法では、 大電力用フィ ルタが帯域外の信号を充分に抑圧できないという問題もある。
発明の開示
本発明の目的は、 マルチキャリア送信において、 送信信号の電力を停止した キヤリァ周波数でのキヤリァ合成後の送信電力を抑圧することのできるマルチ キヤリァ送信装置及びマルチキヤリァ送信方法を提供することである。
この目的は、 通信相手の移動局が通信に使用するキヤリァを用いて他の基地 局の信号を受信する場合に、 このキャリア周波数から所定の帯域内にあるキヤ リァの信号送信を停止することにより達成される。 図面の簡単な説明
図 1は、 従来の送信装置の構成を示すプロック図、
図 2は、 従来のマルチキャリア送信装置が送信する電カスペクトラム分布の —例を示す図、
図 3は、 従来のマルチキヤリァ送信装置の信号送信タイミングの一例を示す 図、
図 4は、 従来のマルチキヤリァ送信装置の構成を示すプロック図、 図 5は、 本発明の実施の形態 1に係るマルチキヤリァ送信装置の構成を示す ブロック図、
図 6は、 本実施の形態におけるマルチキヤリァ送信装置の信号送信タイミン グの一例を示す図、
図 7は、 本実施の形態のマルチキャリア送信装置が送信する電カスペクトラ ム分布の一例を示す図、
図 8は、 マルチキヤリァ送信装置の信号送信タイミングの一例を示す図、 及 び、
図 9は、 マルチキヤリァ送信装置の信号送信タイミングの一例を示す図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を用いて説明する。
(実施の形態 1 )
図 5は、 本発明の実施の形態 1に係るマルチキヤリァ送信装置の構成を示す ブロック図である。 図 5のマルチキヤリァ送信装置 1 0 0は、 同期制御部 1 0 1と、 制御部 1 0 2— 1と、 制御部 1 0 2 _ 2と、 ベースバンド部 1 0 3— 1 と、 ベースバンド部 1 0 3 _ 2と、 スィッチ 1 0 4—1と、 スィッチ 1 0 4— 2と、 口一ゾレ才フフィ /レタ 1 0 5— 1と、 口一ノレオフフィノレタ 1 0 5— 2と、 変調器 1 0 6— 1と、 変調器 1 0 6— 2と、 R Fアナログ部 1 0 7— 1と、 R Fアナログ部 1 0 7— 2と、 合成器 1 0 8と、 電力増幅器 1 0 9とから主に構 成される。
なお、 本発明のマルチキャリア送信装置を用いて基地局を構成し、 この基地 局と通信する移動局を想定する。
以下、 R Fアナログ部 1 0 7— 1が、 移動局が他の基地局の信号を受信する 周波数で信号を送信し、 R Fアナログ部 1 0 7— 2が、 移動局が他の基地局の 信号を受信する周波数で信号を送信する例について説明する。
同期制御部 1 0 1は、 通信相手の移動局が他の基地局の信号を受信する時間 に、 他の基地局の信号を受信するキャリア周波数 ί 1で信号を送信する系統に 対応する制御部 1 0 2— 1と他の基地局の信号を受信する周波数に隣接するキ ャリァ周波数 f 2で信号を送信する系統に対応する制御部 1 0 2— 2とに信号 送信の停止を指示する。
ここで、 通信相手の移動局が他の基地局の信号を受信する時間とは、 マルチ キャリア送信装置 1 0 0の通信相手である移動局が、 マルチキャリア送信装置 1 0 0以外の通信相手の信号を受信する時間である。
例えば、 C DMA (Code Division Multiple Access) 移動通信の下り回 線において、 移動局の位置検出のため、 基地局 (ここではマルチキャリア送信 装置 1 0 0 ) の送信波を短時間停波し、 この間に移動局は周辺基地局のパイ口 ットチャネルを検出し、 その受信レベルから基地局との距離を測定することが 行われる。 この送信波を停波する短時間に移動局が他の基地局の信号を受信す る。
制御部 1 0 2— 1は、 同期制御部 1 0 1から送信停止の指示を受けた場合、 ベースバンド部 1 0 3— 1からロールオフフィルタ 1 0 5 - 1に出力される経 路を遮断することをスィッチ 1 0 4— 1に指示し、 また、 信号送信の停止を R
Fアナログ部 1 0 7— 1に指示する。
同様に、 制御部 1 0 2— 2は、 同期制御部 1 0 1から送信停止の指示を受け た場合、 ベースバンド部 1 0 3— 2からロールオフフィルタ 1 0 5— 2に出力 される経路を遮断することをスィッチ 1 0 4— 2に指示し、 また、 信号送信の 停止を R Fアナログ部 1 0 7— 2に指示する。
ベースバンド部 1 0 3— 1は、上位装置から出力された送信データを符号化、 変調し、 得られた送信信号をスィッチ 1 0 4— 1に出力する。 同様に、 ベース バンド部 1 0 3— 2は、上位装置から出力された送信データを符号化、変調し、 得られた送信信号をスィツチ 1 0 4— 2に出力する。
スィッチ 1 0 4— 1は、 ベースバンド部 1 0 3— 1から出力された送信信号 をロールオフフィルタ 1 0 5— 1に出力する。 そして、 制御部 1 0 2— 1から 遮断の指示が出力された場合、 ベースバンド部 1 0 3— 1から出力された送信 信号をロールオフフィルタ 1 0 5— 1に出力しない。 スィッチ 1 0 4— 2は、 ベースバンド部 1 0 3— 2から出力された送信信号 をロールオフフィルタ 1 0 5— 2に出力する。 そして、 制御部 1 0 2— 2から 遮断の指示が出力された場合、 ベースバンド部 1 0 3— 2から出力された送信 信号をロールオフフィルタ 1 0 5— 2に出力しない。
口ールオフフィルタ 1 0 5— 1は、 送信信号に対して所定の帯域外の周波数 成分を抑圧し、 抑圧後の送信信号を変調器 1 0 6 - 1に出力する。 ロールオフ フイノレタ 1 0 5— 2は、送信信号に対して所定の帯域外の周波数成分を抑圧し、 抑圧後の送信信号を変調器 1 0 6 - 2に出力する。
変調器 1 0 6— 1は、 送信信号を変調し、 変調した送信信号を R Fアナログ 部 1 0 7— 1に出力する。 変調器 1 0 6— 2は、 送信信号を変調し、 変調した 送信信号を R Fアナログ部 1 0 7— 2に出力する。
R Fアナログ部 1 0 7— 1は、 送信信号に第 1のローカル信号を乗算して無 線周波数 f 1に周波数変換し、 周波数変換した送信信号を合成器 1 0 8に出力 する。 R Fアナログ部 1 0 7— 2は、 送信信号に第 2のローカル信号を乗算し て無線周波数 f 2に周波数変換し、 周波数変換した送信信号を合成器 1 0 8に 出力する。
合成器 1 0 8は、 R Fアナ口グ部 1 0 7— 1及び R Fアナ口グ部 1 0 7— 2 から出力された送信信号を合成し、 電力増幅器 1 0 9に出力する。 電力増幅器 1 0 9は、 送信信号の電力を増幅し、 増幅後の送信信号を送信する。
上記構成により、 マルチキヤリァ送信装置 1 0 0は、 通信相手が他の基地局 の信号を受信するキヤリァ周波数から所定の帯域内にあるキヤリァで信号を送 信することを停止する。
次に、 マルチキャリア送信装置 1 0 0のタイミングについて説明する。 図 6 は、 本実施の形態におけるマルチキヤリァ送信装置の信号送信タイミングの一 例を示す図である。
図 6において、 縦軸は電力を示し、 横軸は時刻を示す。 図 6において、 2 1 1は、 キャリア周波数 f 1で送信される信号の周波数 f 1での電力を示し、 2 1 2は、 キャリア周波数 ί 1で送信される信号の周波数 f 2での漏洩電力を示 す。
また、 図 6において、 2 2 2は、 キャリア周波数 f 2で送信される信号の周 波数 f 2での電力を示し、 2 2 1は、 キヤリァ周波数 f 2で送信される信号の 周波数 f 1での漏洩電力を示す。
マルチキヤリァ送信装置 1 0 0は、 このマルチキヤリァ送信装置を用いた基 地局との通信相手である移動局が t 1から t 2の時刻に他の基地局からの信号 を受信する場合、 t 1から t 2の時間に通信相手が受信する周波数 f 1のキヤ リァ及び周波数 f 1に電力を漏洩するキヤリァ周波数 f 2の信号を送信するこ とを停止する。
キヤリァ周波数 f 1及び f 2で信号の送信を停止することにより、 マルチキ ャリア送信装置 1 0 0が周波数 f 1で送信する信号の電力は、 P 1となる。 も し、 キヤリァ周波数 ί 2から信号送信を停止しない場合、 マルチキャリア送信 装置 1 0 0が周波数 f 1で送信する信号の電力は、 P 2となる。
図 7は、 本実施の形態のマルチキャリア送信装置が送信する電カスペクトラ ム分布の一例を示す図である。 図 7において、 縦軸は電力を示し、 横軸は周波 数を示す。 図 7において、 分布 3 0 1は、 キヤリァ周波数 f 1で信号を送信し た場合の電力スペクトラム分布を示し、 分布 3 0 2は、 キャリア周波数 ί 2で 信号を送信した場合の電カスペクトラム分布を示す。 また、 分布 3 0 3は、 キ ャリア周波数 f 1及び f 2で信号を送信しない場合の電カスペクトラム分布を 示す。
キヤリァ周波数 ί 1のみ信号の送信を停止した場合、 キヤリァ周波数 f 2で 送信した信号の漏洩電力が周波数 f 1に発生する。 すなわち、 図 7に示すよう に、 電カスペクトラム分布 3 0 2の周波数 f 1における電力値 P 2が漏洩電力 として発生する。 一方、 本発明のマルチキヤリァ送信装置 1 0 0は、 t 1から t 2の時間に通 信相手が受信する周波数 f 1のキャリア及び周波数 f 1に電力を漏洩するキヤ リァ周波数 f 2の信号を送信することを停止することにより、 漏洩電力の発生 を抑え、 分布 3 0 3の f 1における電力値 P 1とすることができる。
このように、 本実施の形態のマルチキャリア送信装置によれば、 本発明のマ ルチキヤリァ送信装置を用いた基地局装置の通信相手である移動局が通信に使 用しているキヤリァを用いて他の基地局の信号を受信する時間に、 このキヤリ ァ周波数から所定の帯域内にあるマルチキヤリァ送信装置のキヤリァの信号送 信を停止することにより、 他のキャリアの信号からの漏洩電力がこのキャリア 周波数上に発生することを防ぐことができ、 また、 送信信号の電力を停止した キヤリァ周波数でのキヤリァ合成後の送信電力に対して所要の抑圧量を得るこ とができる。 また、 許容電力値が大きく、 かつ所望帯域外の信号を大きく抑圧 するフィルタ、 または周波数歪みの少ない電力増幅器を用いる必要もなく、 送 信信号の出力を停止したキヤリァ周波数でのキヤリァ合成後の送信電力を抑圧 することができる。
なお、 本発明を C DMA通信方式に適用する場合、 ベースバンドにおいて送 信する信号に拡散符号を乗算することにより実現可能である。
また、 上記説明ではロールフィルタを用いているが、 所望の帯域以外の周波 数成分を制限するフィルタであれば、 、ずれも適用できる。
また、 上記説明では、 各キャリアの信号送信を停止する時間を一致させてい るがこれに限らず、図 8及ぴ図 9のように、送信停止時刻及び送信再開時刻は、 それぞれ通信相手の移動局が他の基地局の信号を受信する時間から前後しても 良い。
図 8及び図 9において、 2 1 1は、 キャリア周波数 f 1で送信される信号の 周波数 f 1での電力を示し、 2 1 2は、 キャリア周波数 f 1で送信される信号 の周波数 f 2での漏洩電力を示す。 また、 図 8及び図 9において、 2 2 2は、 '周波数 ί 2で送信される信号の周波数 f 2での電力を示し、 2 2 1は、 '周波数 f 2で送信される信号の周波数 f 1での漏洩電力を示す。
例えば、 図 8では、 キャリア周波数 f 2の信号送信を停止した後、 キャリア 周波数 f 1の信号送信を停止する。 そして、 キャリア周波数 f 2の信号送信を 再開した後にキャリア周波数 ί 1の信号送信を再開する。 また、 例えば、 図 9 では、 キャリア周波数 f 2の信号送信を停止した後、 キャリア周波数 f 1の信 号送信を停止する。 そして、 キャリア周波数 f 1の信号送信を再開した後にキ ャリァ周波数 f 2の信号送信を再開する。
この場合、 最後の送信停止時刻から最初の送信再開時刻までの送信休止時間 は、 通信相手の移動局が他の基地局の信号を受信する最低必要な時間を確保し ていればよレ、。
また、 基地局装置の通信相手である移動局が通信に使用しているキヤリアと このキヤリァ周波数から所定の帯域内にあるマルチキヤリァ送信装置のキヤリ ァの信号送信を停止している時間に、 通信中の基地局近傍にいる移動局は、 異 なるキャリア周波数で第 2の基地局のパイロットチャネル信号を受信して第 2 の基地局との距離を測定することもできる。
以上の説明から明らかなように、 本発明のマルチキヤリァ送信装置及びマル チキヤリァ送信方法によれば、 半発明のマルチキヤリァ送信装置あるいはマル チキヤリァ送信方法を用いた基地局の通信相手である移動局が、 通信に使用し ているキャリアを用いて他の基地局の信号を受信する場合、 このキャリア周波 数から所定の帯域内にあるキヤリァの信号送信を停止することにより、 他のキ ャリァの信号からの漏洩電力がこのキヤリァ周波数上に発生することを防ぐこ とができ、 また、 送信信号の電力を停止したキャリア周波数でのキャリア合成 後の送信電力に対して所要の抑圧量を得ることができる。
また、 送信停止時刻および送信再開時刻を一致させない場合、 キャリア毎に 送信の停止 ·再開を行うことにより、 送信電力の単位時間あたりの変動が小さ くできるので、 電力増幅器等で行われる定利得制御や歪補僙 (抑圧) の制御を 安定的に動作させることができる。 本明細書は、 2002年 7月 31日出願の特願 2002— 223485に基 づくものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 マルチキャリア通信を行う無線通信装置、 基地局装置、 及ぶ通信 端末装置に用いて好適である。

Claims

請 求 の 範 囲
1 . 通信相手局への送信に使用するキヤリァ周波数を用いて前記通信相手局が 第三の他局の信号を受信する時間に前記キヤリアと前記キヤリァ周波数から所 定の帯域内にある信号の送信停止を指示する指示手段と、 相異なる複数のキャ リァ周波数で信号を送信し、 前記指示手段の指示に従い信号送信を停止する送 信手段と、 を具備するマルチキャリア送信装置。
2 . 指示手段は、 前記通信相手と通信を行うキャリア周波数での信号送信を制 御する第 1制御手段と、 前記キャリア周波数から所定の帯域内にある周波数で の信号送信を制御する第 2制御手段と、 第 1制御手段により制御された信号送 信タイミングと第 2制御手段により制御された信号送信タイミングとに同じタ ィミングで信号送信を停止することを指示する第 3制御手段と、 を具備する請 求の範囲第 1項に記載のマルチキヤリァ送信装置。
3 . 指示手段は、 前記通信相手と通信を行うキャリア周波数での信号送信を制 御する第 1制御手段と、 前記キャリアの周波数から所定の帯域内にあるキヤリ ァ周波数での信号送信を制御する第 2制御手段と、 第 1制御手段に送信停止を 指示した後で第 2制御手段に送信停止を指示し所定の送信停止時間経過後に第 1制御手段に送信再開を指示した後で第 2制御手段に送信再開を指示する第 3 制御手段と、 を具備する請求の範囲第 1項に記載のマルチキヤリァ送信装置。
4 . 指示手段は、 前記通信相手と通信を行うキャリア周波数での信号送信を制 御する第 1制御手段と、 前記キャリアの周波数から所定の帯域内にあるキヤリ ァ周波数での信号送信を制御する第 2制御手段と、 第 1制御手段に送信停止を 指示した後で第 2制御手段に送信停止を指示し所定の送信停止時間経過後に第
2制御手段に送信再開を指示した後で第 1制御手段に送信再開を指示する第 3 制御手段と、 を具備する請求の範囲第 1項に記載のマルチキヤリァ送信装置。
5 . 請求の範囲第 1項に記載のマルチキャリア送信装置を有する基地局装置。
6 .請求の範囲第 1項に記載のマルチキャリア送信装置を有する基地局装置と、 通信中の基地局装置のキヤリァが休止したとき前記基地局装置以外の基地局装 置のキャリアを受信する移動局装置とからなる移動通信システム。
7 . 通信相手局への送信に使用するキヤリァ周波数を用いて通信相手局が第三 の他局の信号を受信する時間に前記キヤリァと前記キヤリァ周波数から所定の 帯域内にあるキャリアとの信号送信停止を指示する指示行程と、 相異なる複数 のキヤリァ周波数から信号を送信し、 前記指示手段の指示に従い信号送信を停 止する送信行程と、 を具備するマルチキヤリァ送信方法。
PCT/JP2003/009717 2002-07-31 2003-07-31 マルチキャリア送信装置及びマルチキャリア送信方法 WO2004012368A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/519,300 US20050233711A1 (en) 2002-07-31 2003-07-31 Multi-carrier transmission device and multi-carrier transmission method
AU2003252748A AU2003252748A1 (en) 2002-07-31 2003-07-31 Multi-carrier transmission device and multi-carrier transmission method
EP20030771446 EP1526667A1 (en) 2002-07-31 2003-07-31 Multi-carrier transmission device and multi-carrier transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223485A JP3732811B2 (ja) 2002-07-31 2002-07-31 マルチキャリア送信装置及びマルチキャリア送信方法
JP2002-223485 2002-07-31

Publications (1)

Publication Number Publication Date
WO2004012368A1 true WO2004012368A1 (ja) 2004-02-05

Family

ID=31184970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009717 WO2004012368A1 (ja) 2002-07-31 2003-07-31 マルチキャリア送信装置及びマルチキャリア送信方法

Country Status (6)

Country Link
US (1) US20050233711A1 (ja)
EP (1) EP1526667A1 (ja)
JP (1) JP3732811B2 (ja)
CN (1) CN1650552A (ja)
AU (1) AU2003252748A1 (ja)
WO (1) WO2004012368A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382465C (zh) * 2004-10-21 2008-04-16 大唐移动通信设备有限公司 时分双工移动通信系统终端工作在副载波时的同步方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117644A (ja) * 1997-06-27 1999-01-22 Toshiba Corp 無線基地局、無線端末、無線通信システムおよびそのキャリア割り当て制御方法
JPH1127231A (ja) * 1997-06-30 1999-01-29 Toshiba Corp 無線通信システム
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038450A (en) * 1997-09-12 2000-03-14 Lucent Technologies, Inc. Soft handover system for a multiple sub-carrier communication system and method thereof
KR100322001B1 (ko) * 1998-09-16 2002-06-22 윤종용 이동통신시스템에서이동국의위치측정장치및방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117644A (ja) * 1997-06-27 1999-01-22 Toshiba Corp 無線基地局、無線端末、無線通信システムおよびそのキャリア割り当て制御方法
JPH1127231A (ja) * 1997-06-30 1999-01-29 Toshiba Corp 無線通信システム
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382465C (zh) * 2004-10-21 2008-04-16 大唐移动通信设备有限公司 时分双工移动通信系统终端工作在副载波时的同步方法

Also Published As

Publication number Publication date
AU2003252748A1 (en) 2004-02-16
CN1650552A (zh) 2005-08-03
JP2004064653A (ja) 2004-02-26
EP1526667A1 (en) 2005-04-27
JP3732811B2 (ja) 2006-01-11
US20050233711A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
AU689332B2 (en) Multiple band radio
US8818444B2 (en) Method and system for providing wireless base station radio with non-disruptive service power class switching
RU2185039C2 (ru) Устройство и способ формирования пилот-сигнала для выполнения жесткого переключения каналов связи
JP2006512850A (ja) 多重モード送信機
WO2006118055A1 (ja) 無線送信装置、ポーラ変調送信装置及び無線通信装置
JP2005039765A (ja) マルチモード型無線端末および無線送受信部
EP3804252B1 (en) Device for hybrid transmitter
JP2978920B1 (ja) Cdma基地局における送信電力制御方法及びそのシステム
US8874052B2 (en) Method and apparatus for improving efficiency and distortion leakage in a wireless power amplifier
JP3831251B2 (ja) 送信電力増幅ユニット
JP2001285192A (ja) 移動通信端末と基地局
WO2004012368A1 (ja) マルチキャリア送信装置及びマルチキャリア送信方法
JP2004349941A (ja) 送信装置、無線基地局及びクリッピング方法
KR101235141B1 (ko) 이동 통신 무선 중계 장치 및 무선 중계 신호 처리 방법
JP2004297656A (ja) フィードフォワード型増幅器とこの増幅器を備えた無線通信機
CA3126991A1 (en) Amplifier networks in a repeater
CN112039554A (zh) 铁路无线通信的终端设备及方法
KR100266868B1 (ko) 코드분할다중접속기지국시스템의파일럿송신기
JP3513138B2 (ja) 通信端末およびその制御回路
KR100713215B1 (ko) 이동통신 단말기의 전력증폭기 구동전압 가변장치 및 방법
JP2002290166A (ja) 増幅装置
JP2003018028A (ja) 基地局増幅装置
JP2000078035A (ja) 送信回路及び方法
KR20040041209A (ko) 감쇠기를 이용한 이동통신 시스템의 중계기
WO2007080641A1 (ja) 送信波除去装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003809858X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003771446

Country of ref document: EP

Ref document number: 10519300

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003771446

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003771446

Country of ref document: EP