WO2004011441A1 - Pyridazinylpiperazine derivatives for treating pain - Google Patents

Pyridazinylpiperazine derivatives for treating pain Download PDF

Info

Publication number
WO2004011441A1
WO2004011441A1 PCT/US2003/023377 US0323377W WO2004011441A1 WO 2004011441 A1 WO2004011441 A1 WO 2004011441A1 US 0323377 W US0323377 W US 0323377W WO 2004011441 A1 WO2004011441 A1 WO 2004011441A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
phenyl
halo
substituted
group
Prior art date
Application number
PCT/US2003/023377
Other languages
English (en)
French (fr)
Inventor
Donald J. Kyle
Qun Sun
Original Assignee
Euro-Celtique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Euro-Celtique S.A. filed Critical Euro-Celtique S.A.
Priority to AU2003259249A priority Critical patent/AU2003259249A1/en
Publication of WO2004011441A1 publication Critical patent/WO2004011441A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • the present invention relates to Pyridazinylpiperazine Compounds, compositions comprising an effective amount of a Pyridazinylpiperazine Compound and methods for treating or preventing pain, urinary incontinence (UI), an ulcer, inflammatory- bowel disease (IBD), irritable-bowel syndrome (IBS), an addictive disorder, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, a pruritic condition, psychosis, a cognitive disorder, a memory deficit, restricted brain function, Huntington's chorea, amyotrophic lateral sclerosis (ALS), dementia, retinopathy, a muscle spasm, a migraine, vomiting, dyskinesia or depression, comprising administering to an animal in need thereof an effective amount of a Pyridazinylpiperazine Compound.
  • UI urinary incontinence
  • IBD inflammatory- bowel disease
  • IBS irritable-bowel syndrome
  • an addictive disorder e.g., anxiety, epi
  • Pain is the most common symptom for which patients seek medical advice and treatment. Pain can be acute or chronic. While acute pain is usually self-limited, chronic pain persists for 3 months or longer and can lead to significant changes in a patient's personality, lifestyle, functional ability and overall quality of life (K.M. Foley, Pain, in Cecil Textbook of Medicine 100-107 (J.C. Bennett and F. Plum eds., 20th ed. 1996)).
  • Nociceptive pain includes tissue injury-induced pain and inflammatory pain such as that associated with arthritis.
  • Neuropathic pain is caused by damage to the peripheral or cental nervous system and is maintained by aberrant somatosensory processing.
  • Group I mGluRs mGluRl and mGluR5
  • VR1 vanilloid receptors
  • Inhibiting mGluRl or mGluR5 reduces pain, as shown by in vivo treatment with antibodies selective for either mGluRl or mGluR5, where neuropathic pain in rats was attenuated (M.E. Fundytus et al, NeuroReport 9:731-735 (1998)). It has also been shown that antisense oligonucleotide knockdown of mGluRl alleviates both neuropathic and inflammatory pain (M.E. Fundytus et al, British Journal of Pharmacology 132:354-367 (2001); M.E. Fundytus et al., Pharmacology, Biochemsitry & Behavior 73:401-410 (2002)).
  • Nociceptive pain has been traditionally managed by administering non-opioid analgesics, such as acetylsalicylic acid, choline magnesium trisalicylate, acetaminophen, ibuprofen, fenoprofen, diflusinal, and naproxen; or opioid analgesics, including morphine, hydromorphone, methadone, levorphanol, fentanyl, oxycodone, and oxymorphone.
  • opioid analgesics including morphine, hydromorphone, methadone, levorphanol, fentanyl, oxycodone, and oxymorphone.
  • NMD A antagonists e.g. ketamine, dextromethorphan
  • topical lidocaine for post-herpetic neuralgia
  • tricyclic antidepressants e.g. fluoxetine, sertraline and amitriptyline
  • opioid analgesics including morphine, hydromorphone, methadone, levorphanol, fentanyl, oxycodone, and oxymorphone.
  • Urinary incontinence is uncontrollable urination, generally caused by bladder-detrusor-muscle instability.
  • UI affects people of all ages and levels of physical health, both in health care settings and in the community at large. At present, UI afflicts 15- 30% of elderly people living at home, one-third of those living in acute-care settings, and at least one-half of those living in long-term care institutions (R.M. Resnick, Lancet 346:94 (1995)). Persons having UI are predisposed to also having urinary-tract infections, pressure ulcers, perineal rashes and urosepsis.
  • UI is associated with embarrassment, social stigmatization, depression and a risk of institutionalization (Herzo et al., Annu. Rev. Gerontol. Geriatr. 9:1 A (1989)). Economically, the costs of UI are great; in the United States alone, health-care costs associated with UI are over $15 billion per annum.
  • Physiologic bladder contraction results in large part from acetylcholine-induced stimulation of post-ganglionic muscarinic-receptor sites on bladder smooth muscle.
  • Treatments for UI include the administration of drugs having bladder-relaxant properties, which help to control bladder-detrusor-muscle overactivity.
  • anticholinergics such as propantheline bromide and glycopyrrolate
  • smooth-muscle relaxants such as a combination of racemic oxybutynin and dicyclomine or an anticholinergic
  • UI See, e.g., A.J. Wein, Urol. Clin. N. Am. 22:557- 577 (1995); Levin et al, J. Urol. 128:396-398 (1982); Cooke et al, S. Afr. Med. J. 63:3 (1983); R.K. Mirakhur et al, Anaesthesia 38:1195-1204 (1983)).
  • These drugs are not effective, however, in all patients having uninhibited bladder contractions.
  • Administration of anticholinergic medications represent the mainstay of this type of treatment.
  • Ulcers are sores occurring where the lining of the digestive tract has been eroded by stomach acids or digestive juices. The sores are typically well-defined round or oval lesions primarily occurring in the stomach and duodenum. About 1 in 10 people develop an ulcer. Ulcers develop as a result of an imbalance between acid-secretory factors, also known as "aggressive factors," such as stomach acid, pepsin, and Helicobacter pylori infection, and local mucosal-protective factors, such as secretion of bicarbonate, mucus, and prostaglandins.
  • acid-secretory factors also known as "aggressive factors”
  • mucosal-protective factors such as secretion of bicarbonate, mucus, and prostaglandins.
  • Antacids such as aluminum hydroxide, magnesium hydroxide, sodium bicarbonate, and calcium bicarbonate can be used to neutralize stomach acids. Antacids, however, can cause alkalosis, leading to nausea, headache, and weakness. Antacids can also interfere with the absorption of other drugs into the blood stream and cause diarrhea.
  • H antagonists such as cimetidine, ranitidine, famotidine, and nizatidine are also used to treat ulcers.
  • H 2 antagonists promote ulcer healing by reducing gastric acid and digestive-enzyme secretion elicited by histamine and other H agonists in the stomach and duodenum.
  • H 2 antagonists can cause breast enlargement and impotence in men, mental changes (especially in the elderly), headache, dizziness, nausea, myalgia, diarrhea, rash, and fever.
  • H , K - ATPase inhibitors such as omeprazole and lansoprazole are also used to treat ulcers.
  • H + , K + - ATPase inhibitors inhibit the production of enzymes used by the stomach to secrete acid.
  • Side effects associated with H + , K + - ATPase inhibitors include nausea, diarrhea, abdominal colic, headache, dizziness, somnolence, skin rashes, and transient elevations of plasma activities of aminotransferases.
  • Sucraflate is also used to treat ulcers.
  • Sucraflate adheres to epithelial cells and is believed to form a protective coating at the base of an ulcer to promote healing.
  • Sucraflate can cause constipation, dry mouth, and interfere with the absorption of other drugs.
  • Antibiotics are used when Helicobacter pylori is the underlying cause of the ulcer. Often antibiotic therapy is coupled with the administration of bismuth compounds such as bismuth subsalicylate and colloidal bismuth citrate. The bismuth compounds are believed to enhance secretion of mucous and HCO " , inhibit pepsin activity, and act as an antibacterial against H. pylori, higestion of bismuth compounds, however, can lead to elevated plasma concentrations of Bi and can interfere with the absorption of other drugs.
  • bismuth compounds such as bismuth subsalicylate and colloidal bismuth citrate.
  • the bismuth compounds are believed to enhance secretion of mucous and HCO " , inhibit pepsin activity, and act as an antibacterial against H. pylori, higestion of bismuth compounds, however, can lead to elevated plasma concentrations of Bi and can interfere with the absorption of other drugs.
  • Prostaglandin analogues such as misoprostal, inhibit secretion of acid and stimulate the secretion of mucous and bicarbonate and are also used to treat ulcers, especially ulcers in patients who require nonsteroidal anti-inflammatory drugs. Effective oral doses of prostaglandin analogues, however, can cause diarrhea and abdominal cramping. In addition, some prostaglandin analogues are abortifacients.
  • Carbenoxolone a mineral corticoid
  • Carbenoxolone appears to alter the composition and quantity of mucous, thereby enhancing the mucosal barrier.
  • Carbenoxolone can lead to Na + and fluid retention, hypertension, hypokalemia, and impaired glucose tolerance.
  • Muscarinic cholinergic antagonists such as pirenzapine and telenzapine can also be used to reduce acid secretion and treat ulcers. Side effects of muscarinic cholinergic antagonists include dry mouth, blurred vision, and constipation.
  • the Merck Manual of Medical Information 496-500 (R. Berkow ed., 1997) and Goodman and Gilman 's The Pharmacological Basis of Therapeutics 901-915 (J. Hardman and L. Limbird eds., 9 th ed. 1996).
  • IBD Irritable-bowel disease
  • Crohn's disease which can include regional enteritis, granulomatous ileitis, and ileocolitis, is a chronic inflammation of the intestinal wall. Crohn's disease occurs equally in both sexes and is more common in Jews of eastern-European ancestry. Most cases of Crohn's disease begin before age 30 and the majority start between the ages of 14 and 24. The disease typically affects the full thickness of the intestinal wall. Generally the disease affects the lowest portion of the small intestine (ileum) and the large intestine, but can occur in any part of the digestive tract. Early symptoms of Crohn's disease are chronic diarrhea, crampy abdominal pain, fever, loss of appetite, and weight loss.
  • Crohn's disease Complications associated with Crohn's disease include the development of intestinal obstructions, abnormal connecting channels (fistulas), and abscesses.
  • the risk of cancer of the large intestine is increased in people who have Crohn's disease.
  • Crohn's disease is associated with other disorders such as gallstones, inadequate absorption of nutrients, amyloidosis, arthritis, episcleritis, aphthous stomatitis, erythema nodosum, pyoderma gangrenosum, ankylosing spondylitis, sacroilitis, uveitis, and primary sclerosing cholangitis.
  • Crohn's disease There is no known cure for Crohn's disease.
  • antibiotics are often administered to treat the symptoms of Crohn's disease.
  • the antibiotic metronidazole is often administered when the disease affects the large intestine or causes abscesses and fistulas around the anus.
  • Long-term use of metronidazole can damage nerves, resulting in pins-and-needles sensations in the arms and legs.
  • Sulfasalazine and chemically related drugs can suppress mild inflammation, especially in the large intestine. These drugs, however, are less effective in sudden, severe flare-ups.
  • Corticosteroids such as prednisone, reduce fever and diarrhea and relieve abdominal pain and tenderness.
  • Ulcerative colitis is a chronic disease in which the large intestine becomes inflamed and ulcerated, leading to episodes of bloody diarrhea, abdominal cramps, and fever. Ulcerative colitis usually begins between ages 15 and 30; however, a small group of people have their first attack between ages 50 and 70. Unlike Crohn's disease, ulcerative colitis never affects the small intestine and does not affect the full thickness of the intestine. The disease usually begins in the rectum and the sigmoid colon and eventually spreads partially or completely throughout the large intestine. The cause of ulcerative colitis is unknown.
  • ulcerative colitis Treatment of ulcerative colitis is directed to controlling inflammation, reducing symptoms, and replacing lost fluids and nutrients.
  • Anticholinergic drugs and low doses of diphenoxylate or loperamide are administered for treating mild diarrhea. For more intense diarrhea higher doses of diphenoxylate or loperamide, or deodorized opium tincture or codeine are administered.
  • Sulfasalazine, olsalazine, prednisone, or mesalamine can be used to reduce inflammation.
  • Azathioprine and mercaptopurine have been used to maintain remissions in ulcerative-colitis patients who would otherwise need long-term corticosteroid treatment. In severe cases of ulcerative colitis the patient is hospitalized and given corticosteroids intravenously.
  • Non-emergency surgery can be performed if cancer is diagnosed, precancerous lesions are detected, or vmremitting chronic disease would otherwise make the person an invalid or dependent on high doses of corticosteroids.
  • IBS Inflammatory-bowel syndrome
  • IBS intracranial pressure
  • spastic-colon type is commonly triggered by eating, and usually produces periodic constipation and diarrhea with pain. Mucous often appears in the stool. The pain can come in bouts of continuous dull aching pain or cramps, usually in the lower abdomen. The person suffering from spastic-colon type IBS can also experience bloating, gas, nausea, headache, fatigue, depression, anxiety, and difficulty concentrating.
  • the second type of IBS usually produces painless diarrhea or constipation. The diarrhea can begin suddenly and with extreme urgency. Often the diarrhea occurs soon after a meal and can sometimes occur immediately upon awakening.
  • IBS IBS-patient's diet
  • an IBS patient avoid beans, cabbage, sorbitol, and fructose.
  • a low-fat, high-fiber diet can also help some IBS patients.
  • Regular physical activity can also help keep the gastrointestinal tract functioning properly. Drugs such as propantheline that slow the function of the gastrointestinal tract are generally not effective for treating IBS.
  • Antidiarrheal drugs such as diphenoxylate and loperamide, help with diarrhea.
  • the Merck Manual of Medical Information 525-526 R. Berkow ed., 1997).
  • drugs can cause physical and/or psychological addiction.
  • Those most well known types of these drugs include opiates, such as heroin, opium, and morphine; sympathomimetics, including cocaine and amphetamines; sedative-hypnotics, including alcohol, benzodiazepines and barbiturates; and nicotine, which has effects similar to opioids and sympathomimetics.
  • Drug addiction is characterized by a craving or compulsion for taking the drug and an inability to limit its intake. Additionally, drug dependence is associated with drug tolerance, the loss of effect of the drug following repeated administration, and withdrawal, the appearance of physical and behavioral symptoms when the drug is not consumed. Sensitization occurs if repeated administration of a drug leads to an increased response to each dose.
  • U.S. Patent No. 5,556,838 to Mayer et al. discloses the use of nontoxic NMDA-blocking agents co-administered with an addictive substance to prevent the development of tolerance or withdrawal symptoms.
  • U.S. Patent No. 5,574,052 to Rose et al. discloses co-administration of an addictive substance with an antagonist to partially block the pharmacological effects of the addictive substance.
  • U.S. Patent No. 5,075,341 to Mendelson et al. discloses the use of a mixed opiate agonist/antagonist to treat cocaine and opiate addiction.
  • U.S. Patent No. 5,232,934 to Downs discloses administration of 3-phenoxypyridine to treat addiction.
  • Imperato et al. disclose using a serotonin antagonist to treat chemical addiction.
  • U.S. Patent No. 5,556,837 to Nestler et. al. discloses infusing BDNF or NT-4 growth factors to inhibit or reverse neurological adaptive changes that correlate with behavioral changes in an addicted individual.
  • U.S. Patent. No. 5,762,925 to Sagan discloses implanting encapsulated adrenal medullary cells into an animal's central nervous system to inhibit the development of opioid intolerance.
  • U.S. Patent No. 6,204,284 to Beer et al. discloses racemic ( ⁇ )-l-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0]hexane for use in the prevention or relief of a withdrawal syndrome resulting from addiction to drugs and for the treatment of chemical dependencies.
  • Parkinson's disease is a clinical syndrome comprising bradykinesia (slowness and poverty of movement), muscular rigidity, resting tremor (which usually abates during voluntary movement), and an impairment of postural balance leading to disturbance of gait and falling.
  • the features of Parkinson's disease are a loss of pigmented, dopaminergic neurons of the substantia nigra pars compacta and the appearance of intracellular inclusions known as Lewy bodies (Goodman and Gillman 's The Pharmaceutical Basis of Therapeutics 506 (9 th ed. 1996)). Without treatment, Parkinson's disease progresses to a rigid akinetic state in which patients are incapable of caring for themselves. Death frequently results from complications of immobility, including aspiration pneumonia or pulmonary embolism.
  • Drugs commonly used for the treatment of Parkinson's disease include carbidopa/levodopa, pergolide, bromocriptine, selegiline, amantadine, and trihexyphenidyl hydrochloride.
  • Anxiety is a fear, apprehension, or dread of impending danger often accompanied by restlessness, tension, tachycardia, and dyspnea.
  • Other symptoms commonly associated with anxiety include depression, especially accompanied with dysthymic disorder (chronic "neurotic" depression); panic disorder; agoraphobia and other specific phobias; eating disorders; and many personality disorders.
  • anxiety is unattached to a clearly identified treatable primary illness. If a primary illness is found, however, it can be desirable to deal with the anxiety at the same time as the primary illness.
  • benzodiazepines are the most commonly used anti-anxiety agents for generalized anxiety disorder. Benzodiazepines, however, carry the risk of producing impairment of cognition and skilled motor functions, particularly in the elderly, which can result in confusion, delerium, and falls with fractures. Sedatives are also commonly prescribed for treating anxiety.
  • the azapirones such as buspirone, are also used to treat moderate anxiety. The azapirones, however, are less useful for treating severe anxiety accompanied with panic attacks.
  • Epilepsy is a disorder characterized by the tendency to have recurring seizures. The etiology commonly consists of lesions in some part of the cortex, such as a tumor; developmental malformation; or damage due to trauma or stroke. In some cases the etiology is genetic.
  • An epileptic seizure can be triggered by repetitive sounds, flashing lights, video games, or touching certain parts of the body.
  • Epilepsy is typically treated with anti-seizure drugs.
  • anti-seizure drugs are ineffective, and the defect in the brain is isolated to a small area of the brain, surgical removal of that part of the brain can be helpful in alleviating the seizures.
  • surgical removal of the nerve fibers that connect the two sides of the brain can be helpful.
  • Examples of drugs for treating a seizure and epilepsy include carbamazepine, ethosuximide, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone, valproic acid, trimethadione, benzodiazepines, ⁇ -vinyl GABA, acetazolamide, and felbamate.
  • Anti- seizure drugs can have side effects such as drowsiness; hyperactivity; hallucinations; inability to concentrate; central and peripheral nervous system toxicity, such as nystagmus, ataxia, diplopia, and vertigo; gingival hyperplasia; gastrointestinal disturbances such as nausea, vomiting, epigastric pain, and anorexia; endocrine effects such as inhibition of antidiuretic hormone, hyperglycemia, glycosuria, osteomalacia; and hypersensitivity such as scarlatiniform rash, morbilliform rash, Stevens- Johnson syndrome, systemic lupus eryfhematosus, and hepatic necrosis; and hematological reactions such as red-cell aplasia, agranulocytosis, thrombocytopenia, aplastic anemia, and megaloblastic anemia.
  • the Merck Manual of Medical Information 345-350 R. Berkow ed., 1997).
  • a seizure is the result of abnormal electrical discharge in the brain.
  • the discharge can involve a small area of the brain and lead to the person only noticing an odd taste or smell or it can involve a large area of the brain and lead to convulsions, i.e., a seizure that causes jerking and spasms of the muscles throughout the body. Convulsions can also result in brief attacks of altered consciousness and loss of consciousness, muscle control, or bladder control.
  • a seizures is often preceded by auras, i.e., unusual sensations of smell, taste, or vision or an intense feeling that a seizure is about to begin.
  • a seizure typically lasts for about 2 to 5 minutes. When the seizure ends the person can have headache, sore muscles, unusual sensations, confusion, and profound fatigue (postictal state). Usually the person cannot remember what happened during the seizure.
  • a stroke or cerebrovascular accident is the death of brain tissue (cerebral infarction) resulting from the lack of blood flow and insufficient oxygen to the brain.
  • a stroke can be either ischemic or hemorrhagic.
  • ischemic stroke blood supply to the brain is cut off because of atherosclerosis or a blood clot that has blocked a blood vessel.
  • a hemorrhagic stroke a blood vessel bursts preventing normal blood flow and allowing blood to leak into an area of the brain and destroying it.
  • Most strokes develop rapidly and cause brain damage within minutes, hi some cases, however, strokes can continue to worsen for several hours or days. Symptoms of strokes vary depending on what part of the brain is effected.
  • Symptoms include loss or abnormal sensations in an arm or leg or one side of the body, weakness or paralysis of an arm or leg or one side of the body, partial loss of vison or hearing, double vision, dizziness, slurred speech, difficulty in thinking of the appropriate word or saying it, inability to recognize parts of the body, unusual movements, loss of bladder control, imbalance, and falling, and fainting.
  • the symptoms can be permanent and can be associated with coma or stupor. Strokes can cause edema or swelling of the brain which can further damage brain tissue. For persons suffering from a stroke, intensive rehabilitation can help overcome the disability caused by impairment of brain tissue. Rehabilitation trains other parts of the brain to assume the tasks previously performed by the damaged part.
  • drugs for treating strokes include anticoagulants such as heparin, drugs that break up clots such as streptokinase or tissue plasminogen activator, and drugs that reduce swelling such as mannitol or corticosteroids.
  • anticoagulants such as heparin
  • drugs that break up clots such as streptokinase or tissue plasminogen activator
  • drugs that reduce swelling such as mannitol or corticosteroids.
  • the Merck Manual of Medical Information 352-355 R. Berkow ed., 1997. Pruritus is an unpleasant sensation that prompts scratching.
  • Pruritus can be attributed to dry skin, scabies, dermatitis, herpetiformis, atopic dermatitis, pruritus vulvae et ani, miliaria, insect bites, pediculosis, contact dermatitis, drug reactions, urticaria, urticarial eruptions of pregnancy, psoriasis, lichen planus, lichen simplex chronicus, exfoliative dermatitis, folliculitis, bullous pemphigoid, and fiberglass dermatitis.
  • pruritus is treated by phototherapy with ultraviolet B or PUNA or with therapeutic agents such as naltrexone, nalmefene, danazol, tricyclics, and antidepressants.
  • mGluR5 metabotropic glutamate receptor 5
  • Selective antagonists of the mGluR5 receptor have also been shown to exert anxiolytic and anti-depressant activity in in vivo animal models (E. Tatarczynska et al, Br. J. Pharmacol. 132(7): 1423 -1430 (2001) and P.J.M. Will et al, Trends in Pharmacological Sciences 22(7):331-37 (2001)).
  • Selective antagonists of the mGluR5 receptor have also been shown to exert anti- Parkinson activity in vivo (K. J. Ossowska et al, Neuropharmacology 41(4):413-20 (2001) and P.J.M. Will et al, Trends in Pharmacological Sciences 22(7):331-37 (2001)).
  • U.S. Patent No. 5,607,936 to Chiang et al. discloses a class of aryl piperazine compounds allegedly useful for treating inflammatory diseases, pain, or migraine.
  • EP 1 122 242 discloses cyanophenyl and nitrophenyl compounds allegedly having antiandrogen activity.
  • Japanese patent application no. 10-7572 discloses substituted piperazine compounds that allegedly are inhibitors of tumor necrosis factor.
  • Japanese patent application no. 2001-261657 discloses cyanophenyl derivatives that allegedly have anti-androgen activity.
  • new drugs useful for treating or preventing pain, UI, an ulcer, IBD, IBS, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, a pruritic condition, psychosis, a cognitive disorder, a memory deficit, restricted brain function, Huntington's chorea, ALS, dementia, retinopathy, a muscle spasm, a migraine, vomiting, dyskinesia, or depression.
  • Citation of any reference in Section 2 of this application is not to be construed as an admission that such reference is prior art to the present application. 2.
  • the present invention encompasses compounds having the formula (I):
  • A is -NH-, -N(C r C 6 )alkyl-, or -N-(O-C C 6 alkyl)-;
  • R is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , -NH 2 , C(halo) 3 , -CH(halo) 2 , or - CH 2 (halo); each R 2 is independently: (a) -halo, -OH, or -NH 2 ;
  • each halo is independently -F, -CI, -Br, or -I; n is an integer ranging from 0 to 2; and m is an integer ranging from 0 to 2.
  • the present invention encompasses compounds having the formula (II):
  • Ri is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , -NH 2 , C(halo) 3 , -CH(halo) 2 , or - CH 2 (halo); each R is independently: (a) -halo, -CN, -OH, -NO 2 , or -NH 2 ;
  • R t is:
  • each R 5 is independently -CN, -OH, -(C ⁇ _C 6 )alkyl, -(C 2 X 6 )alkenyl, -halo,
  • each R ⁇ 5 is independently -(C 1 _C 6 )alkyl, -(C 2 _C 6 )alkenyl, -(C 2 _C 6 )alkynyl, - (C _C 8 )cycloalkyl, -(C 5 _C 8 )cycloalkenyl, -phenyl, -(3- to 5-membered)heterocycle, - C(halo) 3 , -CH(halo) 2 , -CH 2 (halo), -CN, -OH,
  • each halo is independently -F, -CI, -Br, or -I; n is an integer ranging from 0 to 2; and m is an integer ranging from 0 to 2.
  • the present invention also encompasses compounds having the formula (III):
  • Ri is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , -NH 2 , C(halo) 3 , -CH(halo) 2 , or
  • each R is independently:
  • each R 5 is independently -CN, -OH, -( -C ⁇ alkyl, -(C 2 -C 6 )alkenyl, -halo,
  • each R ⁇ 5 is independently -(C 1 _C 6 )alkyl, -(C 2 _C 6 )alkenyl, -(C 2 _C 6 )alkynyl, - (C 3 _C 8 )cycloalkyl, -(C 5 _C 8 )cycloalkenyl, -phenyl, -(3- to 5-membered)heterocycle, - C(halo) 3 , -CH(halo) 2 , -CH 2 (halo), -CN, -OH,
  • each R 7 is independently -H, -(C ⁇ -C 6 )alkyl, -(C 2 -C 6 )alkenyl, -(C 2 -C 6 )alkynyl, -(C 3 -C 8 )cycloalkyl, -(C 5 -C 8 )cycloalkenyl, -phenyl, -(3- to 5-membered)heterocycle,
  • each halo is independently -F, -CI, -Br, or -I; n is an integer ranging from 0 to 2; and m is an integer ranging from 0 to 2.
  • the present invention also encompasses compounds having the formula (IN):
  • Rx is -H, -halo, -CH 3 , - ⁇ O 2 , -CN, -OH, -OCH 3 , -NH 2 , C(halo) 3 , -CH(halo) 2 , or -CH 2 (halo); each R 2 is independently:
  • each R 8 is independently -( -C ⁇ alkyl, -(C 2 -C 6 )alkenyl, -(C 2 -C 6 )alkynyl, - (C 3 -C 8 )cycloalkyl, -(C 5 -C 8 )cycloalkenyl, -phenyl, -(3- to 5-membered)heterocycle, - C(halo) 3 , -CH(halo) 2 , or CH 2 (halo); each R 9 is independently -(C ⁇ -C 6 )alkyl, -(C 2 -C 6 )alkenyl, -(C 2 -C 6 )alkynyl, -
  • the present invention also encompasses compounds having the formula (V):
  • Ri is -H, -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , -NH 2 , C(halo) 3 , -CH(halo) 2 , or
  • each R 2 is independently:
  • each R 3 is independently: (a) -halo, -CN, -OH, -NO 2 , or -NH 2 ;
  • each R 8 is independently -(C 1 -C 6 )alkyl, -(C 2 -C 6 )alkenyl, -(C 2 -C 6 )alkynyl, - (C 3 -C 8 )cycloalkyl, -(C 5 -C 8 )cycloalkenyl, -phenyl, -(3- to 5-membered)heterocycle, - C(halo) 3 , -CH(halo) 2 , or CH 2 (halo); each R 9 is independently -(C 1 -C 6 )alkyl, -(C 2 -C 6 )alkenyl, -(C 2 -C 6 )alkynyl, -
  • (C -C 8 )cycloalkyl, -(C 5 -C 8 )cycloalkenyl, -phenyl, -C(halo) 3 , -CH(halo) 2 , or CH 2 (halo), - CN, -OH, -halo, -N 3 , -NO 2 , -CH NR 7 , -NR 7 OH, -OR 7 , -COR 7 , -C(O)OR 7 , -OC(O)R 7 , - OC(O)OR 7 , -SR 7 , -S(O)R 7 , or -S(O) 2 R 7 ; each R ⁇ is independently -CN, -OH, -(C ⁇ -C 6 )alkyl, -(C 2 -C 6 )alkenyl, -(C 2 - C 6 )alkynyl, -halo, -N 3 , -NO 2 ,
  • a compound of formula (I), (II), (III), (IN), or (N) or a pharmaceutically acceptable salt thereof is useful for treating or preventing pain, UT, an ulcer, IBD, IBS, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, a pruritic condition, psychosis, a cognitive disorder, a memory deficit, restricted brain function, Huntington's chorea, ALS, dementia, retinopathy, a muscle spasm, a migraine, vomiting, dyskinesia, or depression (each being a "Condition") in an animal.
  • the invention also relates to compositions comprising an effective amount of a Pyridazinylpiperazine Compound and a pharmaceutically acceptable carrier or excipient.
  • the compositions are useful for treating or preventing a Condition in an animal.
  • the invention further relates to methods for treating a Condition, comprising administering to an animal in need thereof an effective amount of a Pyridazinylpiperazine Compound.
  • the invention further relates to methods for preventing a Condition, comprising administering to an animal in need thereof an effective amount of a Pyridazinylpiperazine Compound.
  • the invention still further relates to methods for inhibiting Nanilloid Receptor 1 ("NR1") function in a cell, comprising contacting a cell capable of expressing NR1 with an effective amount of a Pyridazinylpiperazine Compound.
  • NR1 Nanilloid Receptor 1
  • the invention still further relates to methods for inhibiting mGluR5 function in a cell, comprising contacting a cell capable of expressing mGluR5 with an effective amount of a Pyridazinylpiperazine Compound.
  • the invention still further relates to methods for inhibiting metabotropic glutamate receptor 1 ("mGluRl") function in a cell, comprising contacting a cell capable of expressing mGluRl with an effective amount of a Pyridazinylpiperazine Compound.
  • mGluRl metabotropic glutamate receptor 1
  • the invention still further relates to methods for preparing a composition, comprising the step of admixing a Pyridazinylpiperazine Compound and a pharmaceutically acceptable carrier or excipient.
  • the invention still further relates to a kit comprising a container containing an effective amount of a Pyridazinylpiperazine Compound.
  • A is -NH-.
  • A is -N(C ⁇ -C 6 )alkyl-.
  • A is -N-(O-C ⁇ -C 6 alkyl)-.
  • Ri is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 ,
  • Ri is -halo
  • Ri is -CI.
  • RT is -Br. In another embodiment, Ri is -I.
  • Ri is -F.
  • Ri is -CH 3 .
  • Ri is -NO 2 .
  • Ri is -CN. In another embodiment, Ri is -OH.
  • R is -OCH 3 .
  • R ⁇ is -NH .
  • Ri is -C(halo) 3 .
  • Ri is -CH(halo) 2 . In another embodiment, Ri is -CH 2 (halo).
  • R 2 is -halo, -OH, or -NH 2 .
  • n is 1 and R 2 is -(C 1 -C 10 )alkyl, -(C 2 -C 1 o)alkenyl, - (C 2 -C 10 )alkynyl, -(C 3 -C 10 )cycloalkyl, -(C 8 -C 14 )bicycloalkyl, -(C 8 -C 1 )tricycloalkyl, -(C 5 - C 10 )cycloalkenyl, -(C 8 -C 1 )bicycloalkenyl, -(C 8 -C 14 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • n is 1 and R 2 is -phenyl, -naphthyl, -(C ⁇ 4 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more R 6 groups.
  • m is 1 and R 3 is -halo, -CN, -OH, -NO , or -NH 2 .
  • m is 1 and R is -(C ⁇ -C ⁇ rj)alkyl, -(C 2 -C ⁇ o)alkenyl, - (C -C ⁇ o)alkynyl, -(C -C ⁇ 0 )cycloalkyl, -(C 8 -C ⁇ 4 )bicycloalkyl, -(C 8 -C 14 )tricycloalkyl, -(C 5 - C 1 o)cycloalkenyl, -(C 8 -C ⁇ 4 )bicycloalkenyl, -(C 8 -C ⁇ 4 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • m is 1 and R 3 is -phenyl, -naphthyl, -(C ⁇ 4 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more R 6 groups.
  • m is 1 and R is -CH 3 .
  • m is 1
  • R is -CH
  • the carbon atom to which the R 3 is attached is in the (Reconfiguration.
  • m is 1, R 3 is -CH 3 , and the carbon atom to which the R 3 is attached is in the (S)-configuration.
  • R is -(C ⁇ -C ⁇ 0 )alkyl, -(C 2 -C ⁇ 0 )alkenyl, -(C 2 -
  • Ci 0 alkynyl, -(C 3 -C ⁇ 0 )cycloalkyl, -(C 8 -C ⁇ 4 )bicycloalkyl, -(C 8 -Ci 4 )tricycloalkyl, -(C 5 - C ⁇ o)cycloalkenyl, -(C 8 -C ⁇ 4 )bicycloalkenyl, -(C 8 -Ci )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • the R group is unsubstituted. In another embodiment, the R t group is substituted with one R 5 group. In another embodiment, R 4 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10- membered)heteroaryl, each of which is unsubstituted or substituted with one or more groups.
  • t is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10- membered)heteroaryl, each of which is unsubstituted or substituted with one or more R 6 groups.
  • the R 4 is unsubstituted.
  • hi another embodiment Rt is substituted with one R 6 group.
  • e is a -C ⁇ -C 6 alkyl.
  • 1 ⁇ is an unsubstituted phenyl.
  • hi another embodiment t is -phenyl substituted with an R 6 group, hi another embodiment the R 6 group is substituted at the 4- position of the -phenyl.
  • t is phenyl
  • n and m are 0 and R 4 is -phenyl.
  • the -phenyl is substituted with a -(C ⁇ -C 6 ) alkyl group.
  • the -(C ⁇ -C 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is a t-butyl group substituted at the 4-position of the - phenyl.
  • the -( -C ⁇ ) alkyl group is an iso-propyl group substituted at the 4-position of the -phenyl.
  • n and m are 0, Ri is methyl, and R 4 is -phenyl.
  • the -phenyl is substituted with a -(C ⁇ -C 6 ) alkyl group.
  • the -(CrC 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is a t-butyl group or an iso-propyl group substituted at the 4-position of the -phenyl.
  • n and m are 0 and t is -phenyl substituted at its 4- position with a -CF 3 group. In another embodiment, n and m are 0 and R 4 is -phenyl substituted at its 4- position with a -OCF 3 group.
  • n is 0, m is 1, R 3 is methyl, and R t is -phenyl substituted at its 4-position with a -CF 3 group.
  • n is 0, m is 1, R 3 is methyl, and J ⁇ is -phenyl substituted at its 4-position with a -OCF 3 group.
  • the present invention also encompasses compounds of formula (II):
  • A is -N(O-C ⁇ -C 6 alkyl)-.
  • a s -CH CH-.
  • R is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , C(halo) 3 , -CH(halo) 2 , or -CH 2 (halo);
  • R is -halo
  • R is -CI. In another embodiment, R is -Br.
  • R is -I. In another embodiment, R is-F. In another embodiment, R is -CH 3 . hi another embodiment, R is -NO 2 . In another embodiment, R is -CN.
  • R is -OH. In another embodiment, R is -OCH 3 . In another embodiment, R is -NH 2 . In another embodiment, Ri is -C(halo) 3 .
  • Ri is -CH(halo) 2 .
  • R 1 is -CH 2 (halo).
  • n is 1 and R2 is -halo, -CN, -OH, -NO 2 , or -NH 2 .
  • n is 1 and R 2 is -(C 1 -C 1 o)alkyl, -(C 2 -C ⁇ 0 )alkenyl, -
  • n is 1 and R 2 is -phenyl, -naphthyl, -(C ⁇ )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more R 6 groups.
  • m is 1 and R 3 is -halo, -CN, -OH, -NO 2 , or -NH 2 .
  • R 3 is -(C 1 -C 10 )alkyl, -(C 2 -C ⁇ o)alkenyl, -(C 2 - C ⁇ o)alkynyl, -(C 3 -C ⁇ o)cycloalkyl, -(C 8 -C ⁇ 4 )bicycloalkyl, -(C 8 -C ⁇ 4 )tricycloalkyl, -(C 5 - C 1 o)cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -C 1 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • m is 1 and R is -phenyl, -naphthyl, -(C ⁇ 4 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R 3 is -CH 3 .
  • m is 1, R 3 is -CH 3 , and the carbon atom to which the R is attached is in the (Reconfiguration. In another embodiment, m is 1, R 3 is -CH , and the carbon atom to which the R is attached is in the (Reconfiguration. In another embodiment, m is 1, R 3 is -CH , and the carbon atom to which the R is attached is in the (Reconfiguration. In another embodiment, m is 1, R 3 is -CH , and the carbon atom to which the
  • R 3 is attached is in the (S)-configuration.
  • R4 is -(C ⁇ -C 10 )alkyl, -(C 2 -C ⁇ o)alkenyl, -(C 2 - C ⁇ o)alkynyl, -(C 3 -C ⁇ 0 )cycloalkyl, -(C 8 -C ⁇ 4 )bicycloalkyl, -(C 8 -C 1 )tricycloalkyl, -(C 5 - C 10 )cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -C 14 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • the t is unsubstituted. In another embodiment the t is substituted with one R 5 group.
  • t is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10- membered)heteroaryl, each of which is unsubstituted or substituted with one or more R ⁇ groups.
  • the t is unsubstituted.
  • t is substituted with one Re group
  • hi another embodiment R 6 is a -C ⁇ -C 6 alkyl.
  • R 4 is an unsubstituted phenyl.
  • R is -phenyl substituted with an Re group.
  • the R 6 group is substituted at the 4- position of the -phenyl.
  • R is phenyl
  • n and m are 0 and R 4 is -phenyl.
  • the -phenyl is substituted with a -(C ⁇ -C 6 ) alkyl group.
  • the -(C ⁇ -C 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is a t-butyl group substituted at 4-position of the - phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is an /so-propyl group substituted at the 4-position of the -phenyl.
  • n and m are 0, Ri is methyl, and R_ t is -phenyl.
  • the -phenyl is substituted with a -(C ⁇ -C 6 ) alkyl group, hi another embodiment, the -(C ⁇ -C 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is a t-butyl group or an iso-propy! group substituted at the 4-position of the -phenyl.
  • n and m are 0 and R 4 is -phenyl substituted at its 4- position with a -CF 3 group.
  • n and m are 0 and R 4 is -phenyl substituted at its 4- position with a -OCF 3 group.
  • n is 0, m is 1, R 3 is methyl, and R 4 is -phenyl substituted at its 4-position with a -CF 3 group.
  • n is 0, m is 1, R 3 is methyl, and R 4 is -phenyl substituted at its 4-position with a -OCF 3 group.
  • the present invention also encompasses compounds of formula (III):
  • A is -NH-.
  • A is -N(Ci-C 6 alkyl)-.
  • R is -halo, -CH 3 , -NO 2 , -CN, -OH, -OCH 3 , C(halo) 3 , -CH(halo) 2 , or -CH 2 (halo);
  • R is -halo. In another embodiment, R; is -CI.
  • R is -Br.
  • R is -I.
  • R is -F.
  • R is -CH 3 . In another embodiment, R is -NO 2 .
  • R is -CN
  • R is -OH.
  • R is -OCH 3 .
  • R is -NH 2 . In another embodiment, R is -C(halo) 3 .
  • R is -CH(halo) 2 .
  • R is -CH 2 (halo).
  • n s 1 and R 2 is -halo,-OH, or -NH 2 .
  • n is 1 and R 2 is -(C ⁇ -C ⁇ o)alkyl, -(C 2 -Cio)alkenyl, - (C 2 -Cio)alkynyl, -(C 3 -C 10 )cycloalkyl, -(C 8 -C 14 )bicycloalkyl, -(C 8 -C 14 )tricycloalkyl, -(C 5 - C ⁇ o)cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -Ci 4 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • n is 1 and R 2 is -phenyl, -naphthyl, -(C ⁇ 4 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R 3 is -halo, -CN, -OH, -NO 2 , or -NH 2 . In another embodiment, m is 1 and R 3 is -(C 2 -C 10 )alkenyl, -
  • m is 1 and R 3 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R is -CH 3 .
  • m is 1, R 3 is -CH 3 , and the carbon atom to which the R is attached is in the (Reconfiguration.
  • m is 1
  • R 3 is -CH 3
  • the carbon atom to which the R 3 is attached is in the (S)-configuration.
  • R t is -(C 1 -C 10 )alkyl, -(C 2 -C 1 o)alkenyl, -(C 2 - C 10 )alkynyl, -(C 3 -C 10 )cycloalkyl, -(C 8 -C 14 )bicycloalkyl, -(C 8 -C 14 )tricycloalkyl, -(C 5 - C 10 )cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -C 14 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • the t is unsubstituted.
  • the t is substituted with one R 5 group.
  • t is -phenyl, -naphthyl, -(C ⁇ 4 )aryl or -(5- to 10- membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • the R 4 is unsubstituted.
  • R 4 is substituted with one Re group.
  • R 6 is a -C ⁇ -C 6 alkyl.
  • t is -phenyl substituted with an Re group, hi another embodiment the Re group is substituted at the 4- position of the -phenyl.
  • R 4 is phenyl
  • n and m are 0 and R 4 is -phenyl.
  • the -phenyl is substituted with a -(C ⁇ -C 6 ) alkyl group.
  • the -(C ⁇ -C 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(C ⁇ -C 6 ) alkyl group is a t-butyl group substituted at 4-position of the - phenyl.
  • the -(Ci-C ⁇ ) alkyl group is an wo-propyl group substituted at the 4-position of the -phenyl.
  • n and m are 0, Ri is methyl, and R t is -phenyl.
  • the -phenyl is substituted with a -(Ci-Ce) alkyl group.
  • the -(C ⁇ -C 6 ) alkyl group is substituted at the 4-position of the -phenyl.
  • the -(Ci-C 6 ) alkyl group is a t-butyl group or an zso-propyl group substituted at the 4-position of the -phenyl.
  • n and m are 0 and t is -phenyl substituted at its 4- position with a -CF 3 group.
  • n and m are 0 and t is -phenyl substituted at its 4- position with a -OCF 3 group.
  • n is 0, m is 1, R 3 is methyl, and R is -phenyl substituted at its 4-position with a -CF 3 group.
  • n is 0, m is 1, R is methyl, and R 4 is -phenyl substituted at its 4-position with a -OCF group.
  • n is 1 and R 2 is -halo,-OH, or -NH 2 .
  • Ar 2 is a benzothiazolyl group. In another embodiment, Ar 2 is a benzoimidazolyl group. In another embodiment, Ar 2 is a benzooxazolyl group. In another embodiment, A ⁇ 2 is
  • Ar 2 is v wvr
  • Ar 2 is vwr>
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • a ⁇ 2 is
  • A12 is l)o wherein R ⁇ and q are defined above for the Pyridazinylpiperazine Compounds of formula (IV).
  • n is 1 and R 2 is -halo,-OH, or -NH 2 .
  • n is 1 and R 2 is -(Ci-Cio)alkyl, -(C 2 -C 10 )alkenyl, - (C 2 -Cio)alkynyl, -(C 3 -C ⁇ 0 )cycloalkyl, -(C 8 -C 1 )bicycloalkyl, -(C 8 -Ci 4 )tricycloalkyl, -(C 5 - Cio)cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -Ci )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substituted with one or more R 5 groups.
  • n is 1 and R 2 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R 3 is -halo, -CN, -OH, -NO 2 , or -NH 2 .
  • m is 1 and R 3 is -(Ci-Cio)alkyl, -(C 2 -Cio)alkenyl, - (C 2 -C ⁇ o)alkynyl, -(C 3 -C 10 )cycloalkyl, -(C 8 -C 14 )bicycloalkyl, -(C 8 -C 14 )tricycloalkyl, -(C 5 - C 10 )cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -C 14 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(7- to 10-membered)bicycloheterocycle, each of which is unsubstituted or substitute
  • m is 1 and R 3 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R 3 is -CH 3 .
  • m is 1
  • R 3 is -CH
  • the carbon atom to which the R 3 is attached is in the (Reconfiguration.
  • m is 1
  • R 3 is -CH 3
  • the carbon atom to which the R 3 is attached is in the (S)-configuration.
  • the present invention also encompasses compounds of formula (V):
  • Ar 2 is a benzothiazolyl group. In another embodiment, Ar 2 is a benzoimidazolyl group. In another embodiment, Ar 2 is a benzooxazolyl group. In another embodiment, A ⁇ 2 is
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Ar 2 is wherein R ⁇ and q are defined above for the Pyridazinylpiperazine Compounds of formula
  • R ⁇ and q are defined above for the Pyridazinylpiperazine Compounds of formula (V).
  • R is-H.
  • R is -halo
  • R is -CI.
  • R is -Br.
  • R is -I.
  • R is-F.
  • R is -CH 3 .
  • R is -NO 2 .
  • R is -CN.
  • R is -OH.
  • R is -OCH 3 .
  • R; is -NH 2 .
  • R is -C(halo) 3 .
  • R is -CH(halo) 2 .
  • R is -CH 2 (halo).
  • n is 1 and R 2 is -halo,-OH, or -NH 2 .
  • n is 1 and R 2 is -(C ⁇ -C ⁇ o)alkyl, -(C 2 -C ⁇ 0 )alkenyl, ⁇ (C 2 -C 10 )alkynyl, -(C 3 -C 10 )cycloalkyl, -(C 8 -C 14 )bicycloalkyl, -(C 8 -C 14 )tricycloalkyl, -(C 5 - Cio)cycloalkenyl, -(C 8 -C 14 )bicycloalkenyl, -(C 8 -C 14 )tricycloalkenyl, -(3- to 7- membered)heterocycle, or -(1- to 10-membered)bicycloheterocycle, each of which is unsubstit
  • n is 1 and R 2 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more Re groups.
  • m is 1 and R 3 is -halo, -CN, -OH, -NO 2 , or -NH 2 .
  • m is 1 and R 3 is -(C 1 -C 1 o)alkyl, -(C 2 -C 10 )alkenyl, -
  • m is 1 and R 3 is -phenyl, -naphthyl, -(C 14 )aryl or -(5- to 10-membered)heteroaryl, each of which is unsubstituted or substituted with one or more R 6 groups.
  • m is 1 and R 3 is -CH 3 .
  • m is 1
  • R 3 is -CH 3
  • the carbon atom to which the R 3 is attached is in the (Reconfiguration.
  • m is 1
  • R 3 is -CH
  • the carbon atom to which the R 3 is attached is in the (S)-configuration.
  • Pyridazinylpiperazine Compounds may have asymmetric centers and therefore exist in different enantiomeric and diastereomeric forms.
  • a Pyridazinylpiperazine Compound can be in the form of an optical isomer or a diastereomer. Accordingly, the invention encompasses Pyridazinylpiperazine Compounds and their uses as described herein in the form of their optical isomers, diasteriomers, and mixtures thereof, including a racemic mixture.
  • each R 3 can be on any carbon of the piperazine ring.
  • two R 3 groups are on a single atom of the piperazine ring.
  • the carbon atom to which an R group is attached has the (R) configuration. In another embodiment, wherein the Pyridazinylpiperazine Compound has one or two R 3 groups, the carbon atom to which the R 3 group is attached has the (S) configuration. In another embodiment, the Pyridazinylpiperazine Compound has one or two R groups, and at least one of the carbon atoms to which an R 3 group is attached has the (R) configuration. In another embodiment, the Pyridazinylpiperazine Compound has one or two R 3 groups, and at least one of the carbon atoms to which an R 3 group is attached has the (S) configuration.
  • the Pyridazinylpiperazine Compound has one or two R groups, and an R 3 group is attached to a carbon atom adjacent to a nitrogen atom attached to the pyridazinyl group, and the carbon to which the R 3 group is attached is in the (R) configuration.
  • the Pyridazinylpiperazine Compound has one or two R groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -(C ⁇ -C 4 )alkyl unsubstituted or substituted with one or more halo groups.
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CH 3 .
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CF 3 .
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CH 2 CH 3 .
  • the Pyridazinylpiperazine Compound has one or two
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -(Ci-C 4 )alkyl unsubstituted or substituted with one or more halo groups.
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CH 3 .
  • the Pyridazinylpiperazine Compound has one or two R groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CF 3 .
  • the Pyridazinylpiperazine Compound has one or two R 3 groups, an R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CH 2 CH 3 .
  • the Pyridazinylpiperazine Compound has only one
  • the R 3 group is attached to a carbon atom adjacent to a nitrogen atom attached to the pyridazinyl group, and the carbon to which the R 3 group is attached is in the (R) configuration.
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -(C ⁇ -C )alkyl unsubstituted or substituted with one or more halo groups.
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CH 3 .
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CF 3 .
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (R) configuration, and R 3 is -CH 2 CH 3 .
  • the Pyridazinylpiperazine Compound has only one
  • the R 3 group is attached to a carbon atom adjacent to a nitrogen atom attached to the pyridazinyl group, and the carbon to which the R 3 group is attached is in the (S) configuration.
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R group is attached is in the (S) configuration, and R 3 is -(d-C ⁇ alkyl unsubstituted or substituted with one or more halo groups.
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CH 3 .
  • the Pyridazinylpiperazine Compound has only one R group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CF 3 .
  • the Pyridazinylpiperazine Compound has only one R 3 group, the R 3 group is attached to a carbon atom adjacent to a nitrogen attached to the pyridazinyl group, the carbon to which the R 3 group is attached is in the (S) configuration, and R 3 is -CH 2 CH 3 .
  • Pyridazinylpiperazine Compound can be replaced by an isotope of the hydrogen, carbon or other atoms. Such compounds, which are encompassed by the present invention, are useful as research and diagnostic tools in metabolism pharmacokinetic studies and in binding assays. Illustrative Pyridazinylpiperazine Compounds are listed below in Tables I-
  • the pperazno group to which the methyl group is attached is in the S configuration.
  • -( -Cio ⁇ lkyl” means a straight chain or branched non-cyclic hydrocarbon having from 1 to 10 carbon atoms.
  • Representative straight chain -(C ⁇ -C ⁇ o)alkyls include -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n- decyl.
  • Representative branched -(C ⁇ -C 1 o)alkyls include -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, -neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl,
  • Representative straight chain -(C 1 -C 6 )alkyls include - methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl and -n-hexyl.
  • Representative branched -(Ci- Ce)alkyls include -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, -neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1,1-dimethtylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl and 3,3-dimethylbutyl.
  • -(C2-Cio)alkenyl means a straight chain or branched non-cyclic hydrocarbon having from 2 to 10 carbon atoms and including at least one carbon-carbon double bond.
  • Representative straight chain and branched (C 2 -C 10 )alkenyls include -vinyl, - allyl, -1 -butenyl, -2-butenyl, -isobutylenyl, -1 -pentenyl, -2-pentenyl, -3 -methyl- 1 -butenyl, - 2-methyl-2-butenyl, -2,3-dimethyl-2-butenyl, -1-hexenyl, -2-hexenyl, -3-hexenyl, -1- heptenyl, -2-heptenyl, -3 -heptenyl, -1-octenyl, -2-octenyl, -3-octenyl, -1
  • -(C2-C 6 )alkenyl means a straight chain or branched non-cyclic hydrocarbon having from 2 to 6 carbon atoms and including at least one carbon-carbon double bond.
  • Representative straight chain and branched (C 2 -C 6 )alkenyls include -vinyl, - allyl, -1-butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3 -methyl- 1 -butenyl, - 2-methyl-2-butenyl, -2,3-dimethyl-2-butenyl, -1-hexenyl, 2-hexenyl, 3-hexenyl and the like.
  • -(C 2 -Ci 0 )alkynyi means a straight chain or branched non-cyclic hydrocarbon having from 2 to 10 carbon atoms and including at lease one carbon-carbon triple bond.
  • Representative straight chain and branched -(C 2 -Cio)alkynyls include - acetylenyl, -propynyl, -1-butynyl, -2-butynyl, -1-pentynyl, -2-pentynyl, -3-methyl-l- butynyl, -4-pentynyl, -1-hexynyl, -2-hexynyl, -5-hexynyl, -1-heptynyl, -2-heptynyl, -6- heptynyl, -1-octynyl, -2-octynyl, -7-octynyl,
  • -(C 2 -C 6 )alkynyl means a straight chain or branched non-cyclic hydrocarbon having from 2 to 6 carbon atoms and including at lease one carbon-carbon triple bond.
  • Representative straight chain and branched (C 2 -C 6 )alkynyls include - acetylenyl, -propynyl, -1-butynyl, -2-butynyl, -1-pentynyl, -2-pentynyl, -3-methyl-l- butynyl, -4-pentynyl, -1-hexynyl, -2-hexynyl, -5-hexynyl and the like.
  • -(C 3 -C ⁇ 0 )cycloalkyl means a saturated cyclic hydrocarbon having from 3 to 10 carbon atoms.
  • Representative (C 3 -C ⁇ 0 )cycloalkyls are -cyclopropyl, -cyclobutyl, - cyclopentyl, -cyclohexyl, -cycloheptyl, -cyclooctyl, -cyclononyl and -cyclodecyl.
  • -(C 3 -C 8 )cycloalkyl means a saturated cyclic hydrocarbon having from 3 to 8 carbon atoms.
  • Representative (C 3 -C 8 )cycloalkyls include -cyclopropyl, -cyclobutyl, - cyclopentyl, -cyclohexyl, -cycloheptyl and -cyclooctyl.
  • -(C 8 -C ⁇ 4 )bicycloalkyl means a bi-cyclic hydrocarbon ring system having from 8 to 14 carbon atoms and at least one saturated cyclic alkyl ring.
  • Representative -(C 8 - C 1 )bicycloalkyls include -indanyl, -1,2,3,4-tetrahydronaphthyl, -5,6,7,8- tetrahydronaphthyl, -perhydronaphthyl and the like.
  • -(C 8 -C ⁇ )tricycloalkyl means a tri-cyclic hydrocarbon ring system having from 8 to 14 carbon atoms and at least one saturated ring.
  • Representative -(C 8 - C 1 )tricycloalkyls include -pyrenyl, -1,2,3,4-tetrahydroanthracenyl, -perhydroanthracenyl - aceanthreneyl, -1,2,3,4-tetrahydropenanthrenyl, -5,6,7,8-tetrahydrophenanthrenyl, - perhydrophenanthrenyl and the like.
  • -(C 5 -C ⁇ o)cycloalkenyl means a cyclic non-aromatic hydrocarbon having at least one carbon-carbon double bond in the cyclic system and from 5 to 10 carbon atoms.
  • Representative (C 5 -C ⁇ 0 )cycloalkenyls include -cyclopentenyl, -cyclopentadienyl, - cyclohexenyl, -cyclohexadienyl,-cycloheptenyl, -cycloheptadienyl, -cycloheptatrienyl, - cyclooctenyl, -cyclooctadienyl, -cyclooctatrienyl, -cyclooctatetraenyl, -cyclononenyl - cyclononadienyl, -cyclodecenyl, -cyclodecadienyl and the like.
  • -(C 5 -C 8 )cycloalkenyl means a cyclic non-aromatic hydrocarbon having at least one carbon-carbon double bond in the cyclic system and from 5 to 8 carbon atoms.
  • Representative (C 5 -C 8 )cycloalkenyls include -cyclopentenyl, -cyclopentadienyl, - cyclohexenyl, -cyclohexadienyl, -cycloheptenyl, -cycloheptadienyl, -cycloheptatrienyl, - cyclooctenyl, -cyclooctadienyl, -cyclooctatrienyl, -cyclooctatetraenyl and the like.
  • -(C 8 -C ⁇ )bicycloalkenyl means a bi-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in each ring and from 8 to 14 carbon atoms.
  • Representative -(C 8 -C ⁇ 4 )bicycloalkenyls include -indenyl, -pentalenyl, -naphthalenyl, - azulenyl, -heptalenyl, -1,2,7,8-tetrahydronaphthalenyl and the like.
  • -(C 8 -Ci 4 )tricycloalkenyl means a tri-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in each ring and from 8 to 14 carbon atoms.
  • Representative -(C 8 -Ci 4 )tricycloalkenyls include -anthracenyl, -phenanthrenyl, -phenalenyl, -acenaphthalenyl, ⁇ s-indacenyl, s-indacenyl and the like.
  • “-(3- to 7-membered)heterocycle” or “-(3- to 7-membered)heterocyclo” means a 3- to 7-membered monocyclic heterocyclic ring which is either saturated, unsaturated non-aromatic, or aromatic.
  • a 3-membered -(3- to 7-membered)heterocycle can contain up to 3 heteroatoms, and a 4- to 7-membered -(3- to 7-membered)heterocycle can contain up to 4 heteroatoms.
  • Each heteroatom is independently selected from nitrogen, which can be quaternized; oxygen; and sulfur, including sulfoxide and sulfone.
  • the -(3- to 7-membered)heterocycle can be attached via a nitrogen, sulfur, or carbon atom.
  • Representative -(3- to 7-membered)heterocycles include pyridyl, furyl, thiophenyl, pyrrolyl, oxazolyl, imidazolyl, thiazolyl, thiadiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyrindinyl, tetrahydr
  • “-(3- to 5-membered)heterocycle” or “-(3- to 5-membered)heterocyclo” means a 3- to 5-membered monocyclic heterocyclic ring which is either saturated, unsaturated non-aromatic, or aromatic.
  • a 3-membered -(3- to 5-membered)heterocycle can contain up to 3 heteroatoms, and a 4- to 5-membered -(3- to 5-membered)heterocycle can contain up to 4 heteroatoms.
  • Each heteroatom is independently selected from nitrogen, which can be quaternized; oxygen; and sulfur, including sulfoxide and sulfone.
  • the -(3- to 5-membered)heterocycle can be attached via a nitrogen, sulfur, or carbon atom.
  • Representative -(3- to 5-membered)heterocycles include furyl, thiophenyl, pyrrolyl, oxazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, triazinyl, pyrrolidinonyl, pyrrolidinyl, hydantoinyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydrothiophenyl and the like.
  • -(7- to 10-membered)bicycloheterocycle or "-(7- to 10- membered)bicycloheterocyclo” means a 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated non-aromatic, or aromatic.
  • a -(7- to 10- membered)bicycloheterocycle contains from 1 to 4 heteroatoms independently selected from nitrogen, which can be quaternized; oxygen; and sulfur, including sulfoxide and sulfone.
  • the -(7- to 10-membered)bicycloheterocycle can be attached via a nitrogen, sulfur, or carbon atom.
  • Representative -(7- to 10-membered)bicycloheterocycles include - quinolinyl, -isoquinolinyl, -chromonyl, -coumarinyl, -indolyl, -indolizinyl, - benzo[b]furanyl, -benzo[b]thiophenyl, -indazolyl, -purinyl, -4H-quinolizinyl, -isoquinolyl, - quinolyl, -phthalazinyl, -naphthyridinyl, -carbazolyl, -/3-carbolinyl and the like.
  • -(C ⁇ 4 )aryl means a 14-membered aromatic carbocyclic moiety such as - anthryl or -phenanthryl.
  • -(5- to 10-membered)heteroaryl means an aromatic heterocycle ring of 5 to 10 members, including both mono- and bicyclic ring systems, wherein at least one carbon atom of one or both of the rings is replaced with a heteroatom independently selected from nitrogen, oxygen and sulfur.
  • One or both of the -(5- to 10-membered)heteroaryl's rings contain at least one carbon atom.
  • Representative -(5- to 10-membered)heteroaryls include pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, thiadiazolyl, triazinyl, cinnolinyl, phthalazinyl, and quinazolinyl.
  • -Halogen or "-Halo” means -F, -Cl, -Br or -I.
  • benzooxazolyl group means wherein R 9 and s are defined above for the Pyridazinylpiperazine Compounds of formula
  • phenethyl group means an ethylene group attached to a terminal Ar 2 group, wherein one or each of two hydrogens of the ethylene group can optionally be substituted with an R 8 group.
  • a phenethyl group is depicted below:
  • Ar 2 group wherein one or each of two hydrogens of the n-propylene group can optionally be substituted with an R 8 group.
  • R 8 group A phenpropyl group is depicted below
  • animal includes, but is not limited to, a cow, monkey, chimpanzee, baboon, horse, sheep, pig, chicken, turkey, quail, cat, dog, mouse, rat, rabbit, guinea pig and human.
  • salt is a salt formed from an acid and a basic nitrogen group of one of the Pyridazinylpiperazine Compounds.
  • Illustrative salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, -toluenesulfonate, andpamoate (z.e., l,r
  • Suitable bases include, but are not limited to, hydroxides of alkali metals such as sodium, potassium, and lithium; hydroxides of alkaline earth metal such as calcium and magnesium; hydroxides of other metals, such as aluminum and zinc; ammonia, and organic amines, such as unsubstituted or hydroxy-substituted mono-, di-, or trialkylamines; dicyclohexylamine; tributyl amine; pyridine; N-methyl,N-ethylamine; diethylamine; triethylamine; mono-, bis-, or tris-(2-hydroxy-lower alkyl amines), such as mono-, bis-, or tris-(2-hydroxyethyl)amine, 2-hydroxy-
  • each of one or more of the first group's hydrogen atoms is replaced with a second group.
  • each carbon atom of a first group is independently substituted with one or two second groups.
  • each carbon atom of a first group is independently substituted with only one second group.
  • UI urinary incontinence
  • IBD means inflammatory-bowel disease
  • IBS irritable-bowel syndrome.
  • ALS amyotrophic lateral sclerosis.
  • DMSO dimethyl sulfoxide
  • DMF means dimethyl formamide
  • DCM dichloromethane
  • LDA lithium diisopropylamide
  • HMPA hexamethylphosphoramide
  • HOBT 1-hydroxybenzotriazolehydrate
  • DIG means 1,3-diisopropylcarbodiimide.
  • treatment of and “treating” includes the amelioration or cessation of a Condition or a symptom thereof.
  • prevention of and “preventing” includes the avoidance of the onset of a Condition or a symptom thereof.
  • the Pyridazinylpiperazine Compounds can be made using conventional organic synthesis or by the following illustrative methods shown in the schemes below.
  • a suitable solvent preferably DCM
  • the hydroxyl or thiol group of compound B is preferably protected with a suitable protecting group before being reacted with the isocyanate or isothiocyanate.
  • Suitable protecting groups for hydroxyl group include, but are not limited to, methyl ether, methoxymethyl ether, methoxythiomethyl ether, 2-methoxyethoxymethyl ether, bis(2- chloroethoxy)ethyl ether, tetrahydropyranyl ether, tetrahydrothiopyranyl ether, 4- methoxytetrahydropyranyl ether, methoxytetrahydrothiopyranyl ether, tetrahydrofuranyl ether, tetrahydrothiofuranyl ether, 1-ethoxyethyl ether, 1 -methyl- 1 -methoxyethyl ether, 2- (phenylselenyl ether), t-butyl ether, allyl ether, benzyl ether, o-nitrobenzyl ether, triphenylmethyl ether, o-napthyldiphenylmethyl ether, ⁇ -methoxydiphen
  • Suitable protecting groups for a thiol group include, but are not limited to, S- benzyl thioether, S- ⁇ -methoxybenzyl thioether, S-p-nitrobenzyl thioether, S-4-picolyl thioether, S-2-picolyl N-oxide thioether, S-9-anthrylmethyl thioether, S-diphenylmethyl thioether, S-di(p-methoxyphenyl)methyl thioether, S-triphenylmethyl thioether, S-2,4- dinitrophenyl thioether, S-t-butyl thioether, S-isobutoxymethyl hemithioacetal, S-2- tetrahydropyranyl hemithioacetal, S-acetamidomethyl aminothioacetal, S-cyanomethyl thioether, S-2-nitro-l-phenylethyl thioether, S-2,2-bis(
  • the compound of formula B can be prepared by reacting a 3 -halo-substituted pyridazine of formula C with a piperazine D in chloroform, in the presence of triethylamine at a temperature of about 50°C as shown below in Scheme B.
  • substituted 3-halo-pyridazines C are commercially available or can be prepared by methods well known to those skilled in the art.
  • an amine, R t -NH 2 can be reacted with triphosgene according to the Scheme C shown below.
  • a is -NH- can also be prepared by reacting R 4 NH 2 with 4-nitrophenylchloroformate (commercially available from Sigma- Aldrich, St. Louis, MO (www.sigma-aldrich.com)) to provide a carbamate, Compound E, and then reacting Compound E with Compound B as shown below in Scheme F (See, e.g., J. Org. Chem. 63(23):8515-8521 (1998) and European Patent Publication No. 549 039.
  • Formula (IN) and (N), is used in place of the amine of formula R 4 - ⁇ H 2 .
  • the amines of formula H and I are commercially available or can be made by methods well known to those skilled in the art.
  • the Pyridazinylpiperazine Compounds of Formula (I), (II), (ITi) wherein A is -N(C Ce alkyl)- can be prepared by alkylating the urea or thiourea nitrogen atom of the Pyridazinylpiperazine Compounds of Formula (I), (II), (III) wherein A is -NH-.
  • C ⁇ -C 6 alkyl halide such as methyl iodide.
  • C ⁇ -C 6 alkyl halides are commercially available or can be prepared by methods well known to those skilled in the art.
  • a hydroxylamine ester, R t NHOR 9 , wherein t and R 9 are defined above, is reacted with 4-nitrophenyl chloroformate (commercially available from Sigma- Aldrich, St. Louis, MO (www.sigma-aldrich.com)) in 1,2-dichloroethane in the presence of triethylamine to provide a carbamate, Compound F.
  • Compound F is then reacted with Compound B to provide the Pyridazinylpiperazine Compounds of Formula (I) wherein A is -N(O-C ⁇ -C 6 alkyl)- .
  • Hydroxylamine esters are commercially available or can be prepared by methods well known to those skilled in the art.
  • a hydroxylamine ester, R NHORg, wherein R 4 and R 9 are defined above, is reacted with thiophosgene (commercially available from Sigma- Aldrich, St. Louis, MO (www.sigma-aldrich.com)) in 1,2-dichloroethane in the presence of triethylamine to provide a Compound G.
  • Compound G is then reacted with Compound B to provide the Pyridazinylpiperazine Compounds of Formula (II) wherein A is -N(O-C ⁇ -C 6 alkyl)- .
  • Hydroxylamine esters are commercially available or can be prepared by methods well known to those skilled in the art.
  • a representative procedure for coupling an acid chloride with an amine is provided in T.R. Herrin et al., J. Med. Chem. 1216-1223 (1975). Methods for preparing acid halides are well known to those skilled in the art and are described in J. March, Advanced Organic Chemistry, Reaction Mechanisms and Structure John Wiley & Sons, NY, pp.
  • acid halides can be prepared by reacting the carboxylic acid with thionyl chloride, bromide, or iodide.
  • An acid chloride can also be prepared by reacting a carboxylic acid with phosphorous trichloride or tribromide.
  • An acid chloride can also be prepared by reacting the carboxylic acid with Ph 3 P in carbon tetrachloride.
  • An acid fluoride can be obtained by reacting a carboxylic acid with cyanuric fluoride.
  • the Pyridazinylpiperazine Compounds are administered to an animal in need of treatment or prevention of a Condition.
  • an effective amount of a Pyridazinylpiperazine Compound can be used to treat or prevent any condition treatable or preventable by inhibiting VRl .
  • conditions that are treatable or preventable by inhibiting VRl include, but are not limited to, pain, UI, an ulcer, IBD, and IBS.
  • an effective amount of a Pyridazinylpiperazine Compound can be used to treat or prevent any condition treatable or preventable by inhibiting mGluR5.
  • conditions that are treatable or preventable by inhibiting mGluR5 include, but are not limited to, pain, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, a pruritic condition, and psychosis.
  • an effective amount of a Pyridazinylpiperazine Compound can be used to treat or prevent any condition treatable or preventable by inhibiting mGluRl .
  • conditions that are treatable or preventable by inhibiting mGluRl include, but are not limited to, pain, UI, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, a pruritic condition, psychosis, a cognitive disorder, a memory deficit, restricted brain function, Huntington's chorea, ALS, dementia, retinopathy, a muscle spasm, a migraine, vomiting, dyskinesia, and depression.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent acute or chronic pain.
  • pain treatable or preventable using the Pyridazinylpiperazine Compounds include, but are not limited to, cancer pain, central pain, labor pain, myocardial infarction pain, pancreatic pain, colic pain, post-operative pain, headache pain, muscle pain, pain associated with intensive care, arthritic pain, and pain associated with a periodontal disease, including gingivitis and periodontitis.
  • the pain to be inhibited, treated or prevented may be associated with inflammation associated with an inflammatory disease, which can arise where there is an inflammation of the body tissue, and which can be a local inflammatory response and/or a systemic inflammation.
  • an inflammatory disease which can arise where there is an inflammation of the body tissue, and which can be a local inflammatory response and/or a systemic inflammation.
  • the Pyridazinylpiperazine Compounds can be used to inhibit, treat, or prevent pain associated with inflammatory disease including, but not limited to: organ transplant rejection; reoxygenation injury resulting from organ transplantation (see Grupp et al, J. Mol, Cell Cardiol.
  • inflammatory diseases of the joints including arthritis, rheumatoid arthritis, osteoarthritis and bone diseases associated with increased bone resorption; inflammatory bowel diseases, such as ileitis, ulcerative colitis, Barrett's syndrome, and Crohn's disease; inflammatory lung diseases, such as asthma, adult respiratory distress syndrome, and chronic obstructive airway disease; inflammatory diseases of the eye, including corneal dystrophy, trachoma, onchocerciasis, uveitis, sympathetic ophthahnitis and endophthalmitis; chronic inflammatory disease of the gum, including gingivitis and periodontitis; tuberculosis; leprosy; inflammatory diseases of the kidney, including uremic complications, glomerulonephritis and nephrosis; inflammatory disease of the skin, including sclerodermatitis, psoria
  • the Pyridazinylpiperazine Compounds can also be used for inhibiting, treating, or preventing pain associated with inflammatory disease that can, for example, be a systemic inflammation of the body, exemplified by gram-positive or gram negative shock, hemorrhagic or anaphylactic shock, or shock induced by cancer chemotherapy in response to pro-inflammatory cytokines, e.g., shock associated with pro-inflammatory cytokines.
  • a chemotherapeutic agent that is administered as a treatment for cancer.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent UI.
  • UI treatable or preventable using the Pyridazinylpiperazine Compounds include, but are not limited to, urge incontinence, stress incontinence, overflow incontinence, neurogenic incontinence, and total incontinence.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent an ulcer.
  • Examples of ulcers treatable or preventable using the Pyridazinylpiperazine Compounds include, but are not limited to, a duodenal ulcer, a gastric ulcer, a marginal ulcer, an esophageal ulcer, or a stress ulcer.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent IBD, including Crohn's disease and ulcerative colitis.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent IBS.
  • IBS treatable or preventable using the Pyridazinylpiperazine Compounds include, but are not limited to, spastic-colon-type IBS and constipation-predominant IBS.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent an addictive disorder, including but not limited to, an eating disorder, an impulse-control disorder, an alcohol-related disorder, a nicotine-related disorder, an amphetamine-related disorder, a cannabis-related disorder, a cocaine-related disorder, an hallucinogen-related disorder, an inhalant-related disorders, and an opioid-related disorder, all of which are further sub-classified as listed below.
  • Eating disorders include, but are not limited to, Bulimia Nervosa,
  • Nonpurging Type Bulimia Nervosa, Purging Type
  • Anorexia Anorexia
  • Eating Disorder not otherwise specified include, but are not limited to, Intermittent Explosive Disorder, Kleptomania, Pyromania, Pathological Gambling, Trichotillomania, and Impulse Control Disorder not otherwise specified (NOS).
  • Alcohol-related disorders include, but are not limited to, Alcohol-Induced Psychotic Disorder with delusions, Alcohol Abuse, Alcohol Intoxication, Alcohol Withdrawal, Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol-Induced Persisting Amnestic Disorder, Alcohol Dependence, Alcohol-Induced Psychotic Disorder with hallucinations, Alcohol-Induced Mood Disorder, Alcohol-Induced Anxiety Disorder, Alcohol-Induced sexual Dysfunction, Alcohol-Induced Sleep Disorder, Alcohol-Related Disorder not otherwise specified (NOS), Alcohol Intoxication, and Alcohol Withdrawal.
  • Alcohol-Induced Psychotic Disorder with delusions Alcohol Abuse, Alcohol Intoxication, Alcohol Withdrawal, Alcohol Intoxication Delirium, Alcohol Withdrawal Delirium, Alcohol-Induced Persisting Dementia, Alcohol-Induced Persisting Amnestic Disorder, Alcohol Dependence, Alcohol-Induced Psychotic Disorder with hallucinations, Alcohol
  • Nicotine-related disorders include, but are not limited to, Nicotine Dependence, Nicotine Withdrawal, and Nicotine-Related Disorder not otherwise specified (NOS).
  • Amphetamine-related disorders include, but are not limited to, Amphetamine
  • Amphetamine Abuse Amphetamine Intoxication, Amphetamine Withdrawal, Amphetamine Intoxication Delirium, Amphetamine-hiduced Psychotic Disorder with delusions, Amphetamine-Induced Psychotic Disorders with hallucinations, Amphetamine-Induced Mood Disorder, Amphetamine-hiduced Anxiety Disorder, Amphetamine-Induced Sexual Dysfunction, Amphetamine-Induced Sleep Disorder,
  • Cannabis-related disorders include, but are not limited to, Cannabis Dependence, Cannabis Abuse, Cannabis Intoxication, Cannabis Intoxication Delirium, Cannabis-Induced Psychotic Disorder with delusions, Cannabis-Induced Psychotic Disorder with hallucinations, Cannabis-Induced Anxiety Disorder, Cannabis Related Disorder not otherwise specified (NOS), and Cannabis Intoxication.
  • Cocaine-related disorders include, but are not limited to, Cocaine Dependence, Cocaine Abuse, Cocaine Intoxication, Cocaine Withdrawal, Cocaine Intoxication Delirium, Cocaine-Induced Psychotic Disorder with delusions,
  • Cocame-Induced Psychotic Disorders with hallucinations Cocaine-Induced Mood Disorder, Cocaine-Induced Anxiety Disorder, Cocaine-Induced Sexual Dysfunction, Cocaine-Induced Sleep Disorder, Cocaine Related Disorder not otherwise specified (NOS), Cocaine Intoxication, and Cocaine Withdrawal.
  • Hallucinogen-related disorders include, but are not limited to, Hallucinogen Dependence, Hallucinogen Abuse, Hallucinogen intoxication, Hallucinogen Withdrawal, Hallucinogen Intoxication Delirium, Hallucinogen-Induced Psychotic Disorder with delusions, Hallucinogen-Induced Psychotic Disorders with hallucinations, Hallucinogen-Induced Mood Disorder, Hallucinogen-Induced Anxiety Disorder, Hallucinogen-Induced sexual Dysfunction, Hallucinogen-Induced Sleep Disorder, Hallucinogen Related Disorder not otherwise specified (NOS), Hallucinogen Intoxication, and Hallucinogen Persisting Perception Disorder (Flashbacks).
  • Inhalant-related disorders include, but are not limited to, Inhalant Dependence, Inhalant Abuse, Inhalant Intoxication, Inhalant Intoxication Delirium,
  • Inhalant-Induced Psychotic Disorder with delusions Inhalant-Induced Psychotic Disorder with hallucinations, Inhalant-Induced Anxiety Disorder, Inhalant Related Disorder not otherwise specified (NOS), and Inhalant Intoxication.
  • Opioid-related disorders include, but are not limited to, Opioid Dependence, Opioid Abuse, Opioid Intoxication, Opioid Intoxication Delirium, Opioid-Induced
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent Parkinson's disease and parkinsonism and the symptoms associated with Parkinson's disease and parkinsonism, including but not limited to, bradykinesia, muscular rigidity, resting tremor, and impairment of postural balance.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent generalized anxiety or severe anxiety and the symptoms associated with anxiety, including but not limited to, restlessness; tension; tachycardia; dyspnea; depression, including chronic "neurotic" depression; panic disorder; agoraphobia and other specific phobias; eating disorders; and personality disorders.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent epilepsy, including but not limited to, partial epilepsy, generalized epilepsy, and the symptoms associated with epilepsy, including but not limited to, simple partial seizures, jacksonian seizures, complex partial (psychomotor) seizures, convulsive seizures (grand mal or tonic-clonic seizures), petit mal (absence) seizures, and status epilepticus.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a stroke, including but not limited to, an ischemic stroke and a hemorrhagic stroke.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a seizure, including but not limited to, infantile spasms, febrile seizures, and epileptic seizures.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a pruritic condition, including but not limited to, pruritus caused by dry skin, scabies, dermatitis, herpetiformis, atopic dermatitis, pruritus vulvae et ani, miliaria, insect bites, pediculosis, contact dermatitis, drug reactions, urticaria, urticarial eruptions of pregnancy, psoriasis, lichen planus, lichen simplex chronicus, exfoliative dermatitis, foUiculitis, bullous pemphigoid, or fiberglass dermatitis.
  • a pruritic condition including but not limited to, pruritus caused by dry skin, scabies, dermatitis, herpetiformis, atopic dermatitis, pruritus vulvae et ani, miliaria, insect bites, pediculosis, contact dermatitis, drug reactions, urtic
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent psychosis, including but not limited to, schizophrenia, including paranoid schizophrenia, hebephrenic or disorganized schizophrenia, catatonic schizophrenia, undifferentiated schizophrenia, negative or deficit subtype schizophrenia, and non-deficit schizophrenia; a delusional disorder, including erotomanic subtype delusional disorder, grandiose subtype delusional disorder, ashamed subtype delusional disorder, persecutory subtype delusional disorder, and somatic subtype delusional disorder; and brief psychosis.
  • schizophrenia including paranoid schizophrenia, hebephrenic or disorganized schizophrenia, catatonic schizophrenia, undifferentiated schizophrenia, negative or deficit subtype schizophrenia, and non-deficit schizophrenia
  • a delusional disorder including erotomanic subtype delusional disorder, grandiose subtype delusional disorder, ashamed subtype delusional disorder, persecutory subtype delusional disorder, and somatic subtype delusional disorder
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a cognitive disorder, including but not limited to, delirium and dementia such as multi-infarct dementia, dementia pugilistica, dementia caused by AIDS, and dementia caused by Alzheimer's disease.
  • a cognitive disorder including but not limited to, delirium and dementia such as multi-infarct dementia, dementia pugilistica, dementia caused by AIDS, and dementia caused by Alzheimer's disease.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a memory deficiency, including but not limited to, dissociative amnesia and dissociative fugue.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent restricted brain function, including but not limited to, that caused by surgery or an organ transplant, restricted blood supply to the brain, a spinal cord injury, a head injury, hypoxia, cardiac arrest, or hypoglycemia.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent Huntington's chorea.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent ALS.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent retinopathy, including but not limited to, arteriosclerotic retinopathy, diabetic arteriosclerotic retinopathy, hypertensive retinopathy, non-proliferative retinopathy, and proliferative retinopathy.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a muscle spasm.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent a migraine.
  • the Pyridazinylpiperazine Compounds can be used to treat, inhibit, or prevent vomiting, including but not limited to, nausea vomiting, dry vomiting (retching), and regurgitation.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent dyskinesia, including but not limited to, tardive dyskinesia and biliary dyskinesia.
  • the Pyridazinylpiperazine Compounds can be used to treat or prevent depression, including but not limited to, major depression and bipolar disorder.
  • the invention also relates to methods for inhibiting NR1 function in a cell comprising contacting a cell capable of expressing NR1 with an effective amount of a Pyridazinylpiperazine Compound.
  • This method can be used in vitro, for example, as an assay to select cells that express VRl and, accordingly, are useful as part of an assay to select compounds useful for treating or preventing pain, UI, an ulcer, IBD, or IBS.
  • the method is also useful for inhibiting VRl function in a cell in vivo, in an animal, a human in one embodiment, by contacting a cell, in an animal, with an effective amount of a Pyridazinylpiperazine Compound, hi one embodiment, the method is useful for treating or preventing pain in an animal.
  • the method is useful for treating or preventing UI in an animal. In another embodiment, the method is useful for treating or preventing an ulcer in an animal. In another embodiment, the method is useful for treating or preventing IBD in an animal. In another embodiment, the method is useful for treating or preventing IBS in an animal.
  • tissue comprising cells capable of expressing VRl include, but are not limited to, neuronal, brain, kidney, urothelium, and bladder tissue. Methods for assaying cells that express VRl are well known in the art.
  • the invention also relates to methods for inhibiting mGluR5 function in a cell comprising contacting a cell capable of expressing mGluR5 with an amount of a Pyridazinylpiperazine Compound effective to inhibit mGluR5 function in the cell.
  • This method can be used in vitro, for example, as an assay to select cells that express mGluR5 and, accordingly, are useful as part of an assay to select compounds useful for treating or preventing pain, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, a pruritic condition, or psychosis.
  • the method is also useful for inhibiting mGluR5 function in a cell in vivo, in an animal, a human in one embodiment, by contacting a cell, in an animal, with an amount of a Pyridazinylpiperazine Compound effective to inhibit mGluR5 function in the cell.
  • the method is useful for treating or preventing pain in an animal in need thereof.
  • the method is useful for treating or preventing an addictive disorder in an animal in need thereof.
  • the method is useful for treating or preventing Parkinson's disease in an animal in need thereof.
  • the method is useful for treating or preventing parkinsonism in an animal in need thereof.
  • the method is useful for treating or preventing anxiety in an animal in need thereof.
  • the method is useful for treating or preventing a pruritic condition in an animal in need thereof.
  • the method is useful for treating or preventing psychosis in an animal in need thereof.
  • Examples of cells capable of expressing mGluR5 are neuronal and glial cells of the central nervous system, particularly the brain, especially in the nucleus accumbens. Methods for assaying cells that express mGluR5 are well known in the art.
  • the invention also relates to methods for inhibiting mGluRl function in a cell comprising contacting a cell capable of expressing mGluRl with an amount of a Pyridazinylpiperazine Compound effective to inhibit mGluRl function in the cell.
  • This method can be used in vitro, for example, as an assay to select cells that express mGluRl and, accordingly, are useful as part of an assay to select compounds useful for treating or preventing pain, UI, an addictive disorder, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, a pruritic condition, psychosis, a cognitive disorder, a memory deficit, restricted brain function, Huntington's chorea, ALS, dementia, retinopathy, a muscle spasm, a migraine, vomiting, dyskinesia, or depression.
  • the method is also useful for inhibiting mGluRl function in a cell in vivo, in an animal, a human in one embodiment, by contacting a cell, in an animal, with an amount of a Pyridazinylpiperazine Compound effective to inhibit mGluRl function in the cell.
  • the method is useful for treating or preventing pain in an animal in need thereof, hi another embodiment, the method is useful for treating or preventing UI in an animal in need thereof, hi another embodiment, the method is useful for treating or preventing an addictive disorder in an animal in need thereof.
  • the method is useful for treating or preventing Parkinson's disease in an animal in need thereof.
  • the method is useful for treating or preventing parkinsonism in an animal in need thereof, hi another embodiment, the method is useful for treating or preventing anxiety in an animal in need thereof. In another embodiment, the method is useful for treating or preventing epilepsy in an animal in need thereof. In another embodiment, the method is useful for treating or preventing stroke in an animal in need thereof. In another embodiment, the method is useful for treating or preventing a seizure in an animal in need thereof. In another embodiment, the method is useful for treating or preventing a pruritic condition in an animal in need thereof. In another embodiment, the method is useful for treating or preventing psychosis in an animal in need thereof. In another embodiment, the method is useful for treating or preventing a cognitive disorder in an animal in need thereof.
  • the method is useful for treating or preventing a memory deficit in an animal in need thereof. In another embodiment, the method is useful for treating or preventing restricted brain function in an animal in need thereof. In another embodiment, the method is useful for treating or preventing Huntington's chorea in an animal in need thereof. In another embodiment, the method is useful for treating or preventing ALS in an animal in need thereof. In another embodiment, the method is useful for treating or preventing dementia in an animal in need thereof. In another embodiment, the method is useful for treating or preventing retinopathy in an animal in need thereof. In another embodiment, the method is useful for treating or preventing a muscle spasm in an animal in need thereof. In another embodiment, the method is useful for treating or preventing a migraine in an animal in need thereof.
  • the method is useful for treating or preventing vomiting in an animal in need thereof. In another embodiment, the method is useful for treating or preventing dyskinesia in an animal in need thereof. In another embodiment, the method is useful for treating or preventing depression in an animal in need thereof.
  • Examples of cells capable of expressing mGluRl include, but are not limited to, cerebellar Purkinje neuron cells, Purkinje cell bodies (punctate), cells of spine(s) of the cerebellum; neurons and neurophil cells of olfactory-bulb glomeruli; cells of the superficial layer of the cerebral cortex; hippocampus cells; thalamus cells; superior colliculus cells; and spinal trigeminal nucleus cells.
  • cerebellar Purkinje neuron cells Purkinje cell bodies (punctate), cells of spine(s) of the cerebellum; neurons and neurophil cells of olfactory-bulb glomeruli; cells of the superficial layer of the cerebral cortex; hippocampus cells; thalamus cells; superior colliculus cells; and spinal trigeminal nucleus cells.
  • Methods for assaying cells that express mGluRl are well known in the art.
  • Pyridazinylpiperazine Compounds are useful for treating or preventing a condition in an animal in need thereof.
  • the Pyridazinylpiperazine Compounds are administered as a component of a composition that comprises a pharmaceutically acceptable carrier or excipient.
  • the present compositions, which comprise a Pyridazinylpiperazine Compound can be administered orally.
  • the Pyridazinylpiperazine Compounds of the invention can also be administered by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral, rectal, and intestinal mucosa, etc.) and can be administered together with another biologically active agent. Administration can be systemic or local.
  • Various delivery systems are known, e.g., encapsulation in liposomes, microparticles, microcapsules, or capsules and can be used to administer the Pyridazinylpiperazine Compound.
  • Methods of administration include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intracerebral, intravaginal, transdermal, rectal, by inhalation, or topical, particularly to the ears, nose, eyes, or skin.
  • the mode of administration is left to the discretion of the practitioner. In most instances, administration will result in the release of the Pyridazinylpiperazine Compounds into the bloodstream. In specific embodiments, it can be desirable to administer the
  • Pyridazinylpiperazine Compounds locally. This can be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository or enema, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
  • Intraventricular injection can be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.
  • Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant.
  • Compounds can be formulated as a suppository, with traditional binders and excipients such as triglycerides.
  • the Pyridazinylpiperazine Compounds can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990) and Treat et al. , Liposomes in the Tlierapy of Infectious Disease and Cancer 317-327 and 353-365 (1989)).
  • the Pyridazinylpiperazine Compounds can be delivered in a controlled-release system or sustained-release system (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
  • polymeric materials can be used (see Medical Applications of Controlled Release (Langer and Wise eds., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., 1984); Ranger and Peppas, J Macromol Sci. Rev. Macromol. Chem. 23:61 (1983); Levy et al, Science 228:190 (1985); During et al, Ann. Neurol. 25:351 (1989); and Howard et al, J. Neurosurg. 71:105 (1989)).
  • a controlled- or sustained- release system can be placed in proximity of a target of the Pyridazinylpiperazine
  • compositions can optionally comprise a suitable amount of a pharmaceutically acceptable excipient so as to provide the form for proper administration to the animal.
  • Such pharmaceutical excipients can be liquids, such as water and oils, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • the pharmaceutical excipients can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea and the like, hi addition, auxiliary, stabilizing, thickening, lubricating, and coloring agents can be used.
  • the pharmaceutically acceptable excipients are sterile when admimstered to an animal. Water is a particularly useful excipient when the Pyridazinylpiperazine Compound is administered intravenously.
  • Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid excipients, particularly for injectable solutions.
  • suitable pharmaceutical excipients also include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the present compositions if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
  • compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use.
  • the composition is in the form of a capsule (see e.g., U.S. Patent No. 5,698,155).
  • suitable pharmaceutical excipients are described in Remington 's Pharmaceutical Sciences 1447-1676 (Alfonso R. Gennaro ed., 19th ed. 1995), incorporated herein by reference.
  • the Pyridazinylpiperazine Compounds are formulated in accordance with routine procedures as a composition adapted for oral administration to human beings.
  • Compositions for oral delivery can be in the form of tablets, lozenges, aqueous or oily suspensions, granules, powders, emulsions, capsules, syrups, or elixirs, for example.
  • Orally administered compositions can contain one or more agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation.
  • compositions can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time.
  • Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions.
  • fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture.
  • delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations.
  • a time-delay material such as glycerol monostearate or glycerol stearate can also be used.
  • Oral compositions can include standard excipients such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, and magnesium carbonate. In one embodiment, the excipients are of pharmaceutical grade.
  • compositions for intravenous administration comprise sterile isotonic aqueous buffer. Where necessary, the compositions can also include a solubilizing agent. Compositions for intravenous administration can optionally include a local anesthetic such as lidocaine to lessen pain at the site of the injection.
  • the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent.
  • Pyridazinylpiperazine Compounds are to be administered by infusion, they can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the Pyridazinylpiperazine Compounds are administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.
  • the Pyridazinylpiperazine Compounds can be administered by controlled- release or sustained-release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; 4,008,719; 5,674,533; 5,059,595; 5,591,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; and 5,733,566, each of which is incorporated herein by reference.
  • Such dosage forms can be used to provide controlled- or sustained-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
  • Suitable controlled- or sustained-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients of the invention.
  • the invention thus encompasses single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled- or sustained-release.
  • Controlled- or sustained-release pharmaceutical compositions can have a common goal of improving drug therapy over that achieved by their non-controlled or non- sustained counterparts.
  • a controlled- or sustained-release composition comprises a minimal amount of a Pyridazinylpiperazine Compound to cure or control the condition in a mimmum amount of time.
  • Advantages of controlled- or sustained-release compositions include extended activity of the drug, reduced dosage frequency, and increased patient compliance, hi addition, controlled- or sustained-release compositions can favorably affect the time of onset of action or other characteristics, such as blood levels of the Pyridazinylpiperazine Compound, and can thus reduce the occurrence of adverse side effects.
  • Controlled- or sustained-release compositions can initially release an amount of a Pyridazinylpiperazine Compound that promptly produces the desired therapeutic or prophylactic effect, and gradually and continually release other amounts of the Pyridazinylpiperazine Compound to maintain this level of therapeutic or prophylactic effect over an extended period of time.
  • the Pyridazinylpiperazine Compound can be released from the dosage form at a rate that will replace the amount of Pyridazinylpiperazine Compound being metabolized and excreted from the body.
  • Controlled- or sustained-release of an active ingredient can be stimulated by various conditions, including but not limited to, changes in pH, changes in temperature, concentration or availability of enzymes, concentration or availability of water, or other physiological conditions or compounds.
  • the amount of the Pyridazinylpiperazine Compound that is effective in the treatment or prevention of a Condition can be determined by standard clinical techniques, hi addition, in vitro or in vivo assays can optionally be employed to help identify optimal dosage ranges.
  • the precise dose to be employed will also depend on the route of administration, and the seriousness of the Condition being treated and should be decided according to the judgment of the practitioner and each patient's circumstances in view of, e.g., published clinical studies.
  • Suitable effective dosage amounts range from about 10 micrograms to about 2500 milligrams about every 4 h, although they are typically about 100 mg or less, hi one embodiment, the effective dosage amount ranges from about 0.01 milligrams to about 100 milligrams of a Pyridazinylpiperazine Compound about every 4 h, in another embodiment, about 0.020 milligrams to about 50 milligrams about every 4 h, and in another embodiment, about 0.025 milligrams to about 20 milligrams about every 4 h.
  • the effective dosage amounts described herein refer to total amounts admimstered; that is, if more than one Pyridazinylpiperazine Compound is administered, the effective dosage amounts correspond to the total amount administered.
  • the amount effective for inhibiting the receptor function in a cell will typically range from about 0.01 ⁇ g/L to about 5 mg/L, in one embodiment, from about 0.01 ⁇ g/L to about 2.5 mg/L, in another embodiment, from about 0.01 g/L to about 0.5 mg/L, and in another embodiment, from about 0.01 ⁇ g/L to about 0.25 mg/L of a solution or suspension of a pharmaceutically acceptable carrier or excipient.
  • the volume of solution or suspension is from about 1 ⁇ L to about 1 mL.
  • the volume of solution or suspension is about 200 ⁇ L.
  • the amount effective for inhibiting the receptor function in a cell will typically range from about 0.01 mg to about 100 mg/kg of body weight per day, in one embodiment, from about 0.1 mg to about 50 mg/kg body weight per day, and in another embodiment, from about 1 mg to about 20 mg/kg of body weight per day.
  • the Pyridazinylpiperazine Compounds can be assayed in vitro or in vivo for the desired therapeutic or prophylactic activity prior to use in humans.
  • Animal model systems can be used to demonstrate safety and efficacy.
  • the present methods for treating or preventing a Condition in an animal in need thereof can further comprise administering to the animal being administered a
  • Pyridazinylpiperazine Compound another therapeutic agent.
  • the other therapeutic agent is admimstered in an effective amount.
  • the present methods for inhibiting VRl function in a cell capable of expressing VRl can further comprise contacting the cell with an effective amount of another therapeutic agent.
  • the present methods for inhibiting n ⁇ GluR5 function in a cell capable of expressing mGluR5 can further comprise contacting the cell with an effective amount of another therapeutic agent.
  • the present methods for inhibiting mGluRl function in a cell capable of expressing mGluRl can further comprise contacting the cell with an effective amount of another therapeutic agent.
  • the other therapeutic agent includes, but is not limited to, an opioid agonist, a non-opioid analgesic, a non-steroidal anti-inflammatory agent, an antimigraine agent, a Cox-II inhibitor, an antiemetic, a /3-adrenergic blocker, an anticonvulsant, an antidepressant, a Ca2+-channel blocker, an anticancer agent, an agent for treating or preventing UI, an agent for treating or preventing an ulcer, an agent for treating or preventing IBD, an agent for treating or preventing IBS, an agent for treating addictive disorder, an agent for treating Parkinson's disease and parkinsonism, an agent for treating anxiety, an agent for treating epilepsy, an agent for treating a stroke, an agent for treating a seizure, an agent for treating a pruritic condition, an agent for treating psychosis, an agent for treating Huntington's chorea, an agent for treating ALS, an agent for treating a cognitive disorder, an agent for treating a migraine, an agent
  • Effective amounts of the other therapeutic agents are well known to those skilled in the art. However, it is well within the skilled artisan's purview to determine the other therapeutic agent's optimal effective-amount range.
  • the effective amount of the Pyridazinylpiperazine Compound is less than its effective amount would be where the other therapeutic agent is not administered.
  • the Pyridazinylpiperazine Compounds and the other therapeutic agent act synergistically to treat or prevent a Condition.
  • Examples of useful opioid agonists include, but are not limited to, alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, bupreno hine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, levophenacylmorphan, lofentanil
  • the opioid agonist is selected from codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, morphine, tramadol, oxymorphone, pharmaceutically acceptable salts thereof, and mixtures thereof.
  • non-steroidal anti-inflammatory agents such as aspirin, ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid, tolfenamic acid
  • non-opioid analgesics include the following, non-limiting, chemical classes of analgesic, antipyretic, nonsteroidal anti-inflammatory drugs: salicylic acid derivatives, including aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, salicylsalicylic acid, sulfasalazine, and olsalazin; para-aminophenol derivatives including acetaminophen and phenacetin; indole and indene acetic acids, including indomethacin, sulindac, and etodolac; heteroaryl acetic acids, including tolmetin, diclofenac, and ketorolac; anthranilic acids (fenamates), including mefenamic acid and meclofenamic acid; enolic acids, including oxicams (piroxicam, tenoxicam), and pyrazolidinediones (phenylbutazone
  • useful antimigraine agents include, but are not limited to, alpiropride, dihydroergotamine, dolasetron, ergocomine, ergocominine, ergocryptine, ergot, ergotamine, flumedroxone acetate, fonazine, lisuride, lomerizine, methysergide oxetorone, pizotyline, and mixtures thereof.
  • the other therapeutic agent can also be an agent useful for reducing any potential side effect of a Pyridazinylpiperazine Compounds.
  • the other therapeutic agent can be an antiemetic agent.
  • useful antiemetic agents include, but are not limited to, metoclopromide, domperidone, prochlorperazine, promethazine, chlorpromazine, trimethobenzamide, odansteron, granisetron, hydroxyzine, acetylleucine monoethanolamine, alizapride, azaserron, benzquinamide, bietanautine, bromopride, buclizine, clebopride, cyclizine, dimenhydrinate, diphenidol, dolasetron, meclizine, methallatal, metopimazine, nabilone, oxyperndyl, pipamazine, scopolamine, sulpiride, tetrahydrocannabinol, thie
  • Examples of useful /3-adrenergic blockers include, but are not limited to, acebutolol, alprenolol, amosulabol, arotinolol, atenolol, befunolol, betaxolol, bevantolol, bisoprolol, bopindolol, bucumolol, bufetolol, bufuralol, bunitrolol, bupranolol, butidrine hydrochloride, butofilolol, carazolol, carteolol, carvedilol, celiprolol, cetamolol, cloranolol, dilevalol, epanolol, esmolol, indenolol, labetalol, levobunolol, mepindolol, metipranolol, metoprolol, mopro
  • useful anticonvulsants include, but are not limited to, acetylpheneturide, albutoin, aloxidone, aminoglutethimide, 4-amino-3-hydroxybutyric acid, atrolactamide, beclamide, buramate, calcium bromide, carbamazepine, cinromide, clomethiazole, clonazepam, decimemide, diethadione, dimethadione, doxenitroin, eterobarb, ethadione, ethosuximide, ethotoin, felbamate, fluoresone, gabapentin, 5-hydroxytryptophan, lamotrigine, magnesium bromide, magnesium sulfate, mephenytoin, mephobarbital, metharbital, methetoin, methsuximide, 5-methyl-5-(3-phenanthryl)-hydantoin, 3-methyl-5-phenylhydantoin, narcobarbit
  • Examples of useful antidepressants include, but are not limited to, binedaline, caroxazone, citalopram, dimethazan, fencamine, indalpine, indeloxazine hydrocholoride, nefopam, nomifensine, oxitriptan, oxypertine, paroxetine, sertraline, thiazesim, trazodone, benmoxine, iproclozide, iproniazid, isocarboxazid, nialamide, octamoxin, phenelzine, cotinine, rolicyprine, rolipram, maprotiline, metralindole, mianserin, mirtazepine, adinazolam, amitriptyline, amitriptylinoxide, amoxapine, butriptyline, clomipramine, demexiptiline, desipramine, dibenz
  • Ca2+-channel blockers examples include, but are not limited to, bepridil, clentiazem, diltiazem, fendiline, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, amlodipine, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, fantofarone, and perhexiline.
  • useful anticancer agents include, but are not limited to, acivicin, aclarubicin, acodazole hydrochloride, acronine, adozelesin, aldesleukin, altretamine, ambomycin, ametantrone acetate, aminoglutethimide, amsacrine, anastrozole, anthramycin, asparaginase, asperlin, azacitidine, azetepa, azotomycin, batimastat, benzodepa, bicalutamide, bisantrene hydrochloride, bisnafide dimesylate, bizelesin, bleomycin sulfate, brequinar sodium, bropirimine, busulfan, cactinomycin, calusterone, caracemide, carbetimer, carboplatin, carmustine, carubicin hydrochloride, carzelesin, cedefingol, chlorambucil,
  • anti-cancer drugs examples include, but are not limited to,
  • B betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlns; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A;
  • B vector system, eryfhrocyte gene therapy; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.
  • useful therapeutic agents for treating or preventing UI include, but are not limited to, propantheline, imipramine, hyoscyamine, oxybutynin, and dicyclomine.
  • useful therapeutic agents for treating or preventing an ulcer include, antacids such as aluminum hydroxide, magnesium hydroxide, sodium bicarbonate, and calcium bicarbonate; sucraflate; bismuth compounds such as bismuth subsahcylate and bismuth subcitrate; H 2 antagonists such as cimetidine, ranitidine, famotidine, and nizatidine; ET 1" , K + - ATPase inhibitors such as omeprazole, iansoprazole, and lansoprazole; carbenoxolone; misprostol; and antibiotics such as tetracycline, metronidazole, timidazole, clarithromycin, and amoxicillin.
  • antacids such as aluminum hydroxide, magnesium hydroxide, sodium bicarbonate, and calcium bicarbonate
  • sucraflate bismuth compounds such as bismuth subsahcylate and bismuth subcitrate
  • H 2 antagonists such as ci
  • useful therapeutic agents for treating or preventing IBD include, but are not limited to, anticholinergic drugs; diphenoxylate; loperamide; deodorized opium tincture; codeine; broad-spectrum antibiotics such as metronidazole; sulfasalazine; olsalazine; mesalamine; prednisone; azathioprine; mercaptopurine; and methotrexate.
  • useful therapeutic agents for treating or preventing IBS include, but are not limited to, propantheline; muscarine receptor antogonists such as pirenzapine, methoctramine, ipratropium, tiotropium, scopolamine, methscopolamine, homatropine, homatropine methylbromide, and methantheline; and antidiarrheal drugs such as diphenoxylate and loperamide.
  • useful therapeutic agents for treating or preventing an addictive disorder include, but are not limited to, methadone, desipramine, amantadine, fluoxetine, buprenorphine, an opiate agonist, 3-phenoxypyridine, levomethadyl acetate hydrochloride, and serotonin antagonists.
  • Examples of useful therapeutic agents for treating or preventing Parkinson's disease and parkinsonism include, but are not limited to, carbidopa/levodopa, pergolide, bromocriptine, ropinirole, pramipexole, entacapone, tolcapone, selegihne, amantadine, and trihexyphenidyl hydrochloride.
  • useful therapeutic agents for treating or preventing anxiety include, but are not limited to, benzodiazepines, such as alprazolam, brotizolam, chlordiazepoxide, clobazam, clonazepam, clorazepate, demoxepam, diazepam, estazolam, flumazenil, flurazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, quazepam, temazepam, and triazolam; non-benzodiazepine agents, such as buspirone, gepirone, ipsapirone, tiospirone, zolpicone, zolpidem, and zaleplon; tranquilizers, such as barbituates, e.g., amobarbital, aprobarbital, butabarbital, butalbital, mepho
  • useful therapeutic agents for treating or preventing epilepsy include, but are not limited to, carbamazepine, ethosuximide, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone, valproic acid, trimethadione, benzodiazepines, ⁇ -vinyl GABA, acetazolamide, and felbamate.
  • useful therapeutic agents for treating or preventing stroke include, but are not limited to, anticoagulants such as heparin, agents that break up clots such as streptokinase or tissue plasminogen activator, agents that reduce swelling such as mannitol or corticosteroids, and acetylsalicylic acid.
  • useful therapeutic agents for treating or preventing a seizure include, but are not limited to, carbamazepine, ethosuximide, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone, valproic acid, trimethadione, benzodiazepines, gabapentin, lamotrigine, ⁇ -vinyl GABA, acetazolamide, and felbamate.
  • useful therapeutic agents for treating or preventing a pruritic condition include, but are not limited to, naltrexone; nalmefene; danazol; tricyclics such as amitriptyline, imipramine, and doxepin; antidepressants such as those given below, menthol; camphor; phenol; pramoxine; capsaicin; tar; steroids; and antihistamines.
  • useful therapeutic agents for treating or preventing psychosis include, but are not limited to, phenothiazines such as chlorpromazine hydrochloride, mesoridazine besylate, and thoridazine hydrochloride; thioxanthenes such as chloroprothixene and thiothixene hydrochloride; clozapine; risperidone; olanzapine; quetiapine; quetiapine fumarate; haloperidol; haloperidol decanoate; loxapine succinate; molindone hydrochloride; pimozide; and ziprasidone.
  • phenothiazines such as chlorpromazine hydrochloride, mesoridazine besylate, and thoridazine hydrochloride
  • thioxanthenes such as chloroprothixene and thiothixene hydrochloride
  • clozapine
  • Examples of useful therapeutic agents for treating or preventing Huntington's chorea include, but are not limited to, haloperidol and pimozide.
  • useful therapeutic agents for treating or preventing ALS include, but are not limited to, baclofen, neurotrophic factors, riluzole, tizanidine, benzodiazepines such as clonazepan and dantrolene.
  • useful therapeutic agents for treating or preventing cognitive disorders include, but are not limited to, agents for treating or preventing dementia such as tacrine; donepezil; ibuprofen; antipsychotic drugs such as thioridazine and haloperidol; and antidepressant drugs such as those given below.
  • useful therapeutic agents for treating or preventing a migraine include, but are not limited to, sumatriptan; methysergide; ergotamine; caffeine; and beta- blockers such as propranolol, verapamil, and divalproex.
  • Examples of useful therapeutic agents for treating, inhibiting, or preventing vomiting include, but are not limited to, 5-HT 3 receptor antagonists such as odansteron, dolasetron, granisetron, and tropisetron; dopamine receptor antagonists such as prochlorperazine, thiethylperazine, chlorpromazin, metoclopramide, and domperidone; glucocorticoids such as dexamethasone; and benzodiazepines such as lorazepam and alprazolam.
  • 5-HT 3 receptor antagonists such as odansteron, dolasetron, granisetron, and tropisetron
  • dopamine receptor antagonists such as prochlorperazine, thiethylperazine, chlorpromazin, metoclopramide, and domperidone
  • glucocorticoids such as dexamethasone
  • benzodiazepines such as lorazepam and alprazolam.
  • Examples of useful therapeutic agents for treating or preventing dyskinesia include, but are not limited to, reserpine and tetrabenazine.
  • useful therapeutic agents for treating or preventing depression include, but are not limited to, tricyclic antidepressants such as amitryptyline, amoxapine, bupropion, clomipramine, desipramine, doxepin, imipramine, maprotiline, nefazadone, nortriptyline, protriptyline, trazodone, trimipramine, and venlafaxine; selective serotonin reuptake inhibitors such as fluoxetine, fluvoxamine, paroxetine, and setraline; monoamine oxidase inhibitors such as isocarboxazid, pargyline, phenelzine, and tranylcypromine; and psychostimulants such as dextroamphetamine and methylphenidate.
  • tricyclic antidepressants such as amitryptyline, amoxapine, bupropion, clomipramine, desipramine, doxepin, imipramine
  • a Pyridazinylpiperazine Compound and the other therapeutic agent can act additively or, in one embodiment, synergistically.
  • a Pyridazinylpiperazine Compound is administered concurrently with another therapeutic agent.
  • a composition comprising an effective amount of a Pyridazinylpiperazine Compound and an effective amount of another therapeutic agent can be administered.
  • a composition comprising an effective amount of a Pyridazinylpiperazine Compound and a different composition comprising an effective amount of another therapeutic agent can be concurrently administered.
  • an effective amount of a Pyridazinylpiperazine Compound is administered prior or subsequent to administration of an effective amount of another therapeutic agent.
  • the Pyridazinylpiperazine Compound is administered while the other therapeutic agent exerts its therapeutic effect, or the other therapeutic agent is admimstered while the Pyridazinylpiperazine Compound exerts its preventative or therapeutic effect for treating or a Condition.
  • a composition of the invention is prepared by a method comprising admixing a Pyridazinylpiperazine Compound or a pharmaceutically acceptable salt and a pharmaceutically acceptable carrier or excipient. Admixing can be accomplished using methods well known for admixing a compound (or salt) and a pharmaceutically acceptable carrier or excipient. In one embodiment the Pyridazinylpiperazine Compound or the pharmaceutically acceptable salt of the Compound is present in the composition in an effective amount. 3.8.2 KITS
  • the invention encompasses kits that can simplify the administration of a Pyridazinylpiperazine Compound to an animal.
  • a typical kit of the invention comprises a unit dosage form of a Pyridazinylpiperazine Compound.
  • the unit dosage form is a container, which can be sterile, containing an effective amount of a Pyridazinylpiperazine Compound and a pharmaceutically acceptable carrier or excipient.
  • the kit can further comprise a label or printed instructions instructing the use of the Pyridazinylpiperazine Compound to treat or prevent a Condition.
  • the kit can also further comprise a unit dosage form of another therapeutic agent, for example, a container containing an effective amount of the other therapeutic agent.
  • the kit comprises a container containing an effective amount of a Pyridazinylpiperazine Compound and an effective amount of another therapeutic agent.
  • Kits of the invention can further comprise a device that is useful for administering the unit dosage forms.
  • a device includes, but are not limited to, a syringe, a drip bag, a patch, an inhaler, and an enema bag.
  • Examples 1-6 relate to the synthesis of illustrative Pytidazinylpiperazine
  • a mixture of Compound A55 and Compound 8 was prepared by a procedure analogous to that used to prepare the mixture of Compound 3 and Compound A49 described in Example 4.1 except that 4-trifluorophenylisocyanate was used in place of 4-tert- butylphenylisocyanate.
  • Compound A55 can be isolated from the mixture of Compound A55 and Compound 8 using conventional techniques such as chromatography or recrystallization.
  • a mixture of Compound A55 and Compound 8 was prepared as described in Example 4.3.
  • the mixture of Compound A55 and Compound 8 was reduced with H 2 over Pd and purified and separated by a procedure analogous to the procedure used to prepare Compound 5 and Compound A17 described in Example 4.2 to provide Compound A23 and Compound 10.
  • Compound A23 1H NMR (CDC1 3 ) ⁇ 8.42 (s, IH), 7.69-7.51 (m, 4H), 7.21 (s, IH), 3.83-3.65 (m, 4H), 3.44-3.24 (m, 4H), 2.34 (s, 3H).
  • a mixture of Compound A57 and Compound 12 was prepared by a procedure analogous to that used to prepare the mixture of Compound 3 and Compound A49 described in Example 4.1 except that 4-trifluoromethoxyphenylisocyanate was used in place of 4-tert-butylphenylisocyanate.
  • Compound A57 can be isolated from the mixture of Compound A57 and Compound 12 using conventional techniques such as chromatography or recrystallization. 4.6. EXAMPLE 6: SYNTHESIS OF
  • a mixture of Compound A57 and Compound 12 was prepared as described in Example 4.5.
  • the mixture of Compound A57 and Compound 12 was reduced with H 2 over Pd and purified and separated by a procedure analogous to the procedure used to prepare Compound 5 and Compound A17 described in Example 4.2 to provide Compound A25 and Compound 14. ,
  • the following assay can be used to demonstrates Piperidine Compounds that bind to and modulate the activity of n ⁇ GluR5.
  • glial cultures are prepared from cortices of Sprague- Dawley 18 days old embryos. The cortices are dissected and then dissociated by trituration. The resulting cell homogenate is plated onto poly-D-lysine precoated T175 flasks (BIOCOAT, commercially available from Becton Dickinson and Company Inc. of Franklin Lakes, NJ ) in Dulbecco's Modified Eagle's Medium (“DMEM,” pH 7.4), buffered with 25 mM HEPES, and supplemented with 15% fetal calf serum ("FCS,” commercially available from Hyclone Laboratories Inc. of Omaha, NE ), and incubated at 37°C and 5% CO 2 .
  • BIOCOAT poly-D-lysine precoated T175 flasks
  • DMEM Dulbecco's Modified Eagle's Medium
  • FCS fetal calf serum
  • FCS supplementation is reduced to 10%.
  • oligodendrocytes and microglia are removed by strongly tapping the sides of the flasks.
  • secondary astrocyte cultures are established by subplating onto 96 poly-D- lysine precoated T175 flasks (BIOCOAT) at a density of 65,000 cells/well in DMEM and 10% FCS.
  • the astrocytes are washed with serum free medium and then cultured in DMEM, without glutamate, supplemented with 0.5% FCS, 20 mM HEPES, 10 ng/mL epidermal growth factor ("EGF"), 1 mM sodium pyruvate, and IX penicillin/streptomycin at pH 7.5 for 3 to 5 days at 37°C and 5% CO 2 .
  • DMEM serum free medium
  • FCS 20 mM HEPES
  • EGF epidermal growth factor
  • IX penicillin/streptomycin IX penicillin/streptomycin at pH 7.5 for 3 to 5 days at 37°C and 5% CO 2 .
  • the procedure allows the expression of the n ⁇ GluR5 receptor by astrocytes, as demonstrated by S. Miller et al, J. Neuroscience 15(9):6103-6109 (1995).
  • Assay Protocol After 3-5 days incubation with EGF, the astrocytes are washed with 127 mM NaCl, 5 mM KCl, 2 mM MgCl 2 , 700 mM NaH 2 PO 4 , 2 mM CaCl 2 , 5 mM NaHCO 3 , 8 mM HEPES, 10 mM Glucose at pH 7.4 ("Assay Buffer") and loaded with the dye Fluo-4 (commercially available from Molecular Probes hie. of Eugene, OR) using 0.1 mL of Assay Buffer containing Fluo-4 (3 mM final).
  • the cells are then washed twice with 0.2 mL Assay Buffer and resuspended in 0.1 mL of Assay Buffer.
  • the plates containing the astrocytes are then transferred to a Fluorometric Imaging Plate reader (commercially available from Molecular Devices Corporation of Sunnyvale, CA) for the assessment of calcium mobilization flux in the presence of glutamate and in the presence or absence of antagonist.
  • DMSO solutions containing various concentrations of a Pyridazinylpiperazine Compound diluted in Assay Buffer (0.05 mL of 4X dilutions for competition curves) are added to the cell plate and fluorescence is momtored for 2 minutes.
  • EXAMPLE 8 IN VIVO ASSAYS FOR PREVENTION OR TREATMENT OF PAIN Test Animals: Each experiment uses rats weighing between 200-260 g at the start of the experiment. The rats are group-housed and have free access to food and water at all times, except prior to oral administration of a Pyridazinylpiperazine Compound when food is removed for 16 hours before dosing. A control group acts as a comparison to rats treated with a Pyridazinylpiperazine Compound. The control group is admimstered the carrier for the Pyridazinylpiperazine Compound. The volume of carrier administered to the control group is the same as the volume of carrier and Pyridazinylpiperazine Compound administered to the test group.
  • Tail flick latencies are defined as the interval between the onset of the thermal stimulus and the flick of the tail. Animals not responding within 15 seconds are removed from the tail flick unit and assigned a withdrawal latency of 15 seconds. Tail flick latencies are measured immediately before (pre-treatment) and 1, 3, and 6 hours following administration of a Pyridazinylpiperazine Compound. Data are expressed as tail flick latency(s) and the percentage of the maximal possible effect (% MPE), i.e., 15 seconds, is calculated as follows:
  • Acute pain can also be assessed by measuring the animal's response to noxious mechanical stimuli by determining the paw withdrawal threshold (PWT), as described below.
  • hiflammatory Pain To assess the actions of the Pyridazinylpiperazine Compounds for the treatment or prevention of inflammatory pain the Freund's complete adjuvant (FCA) model of inflammatory pain is used. FCA-induced inflammation of the rat hind paw is associated with the development of persistent inflammatory mechanical hyperalgesia and provides reliable prediction of the anti-hyperalgesic action of clinically useful analgesic drugs (L.
  • the partial sciatic nerve ligation model of neuropathic pain is used to produce neuropathic hyperalgesia in rats (Z. Seltzer et al, "A Novel Behavioral Model of Neuropathic Pain Disorders Produced in Rats by Partial Sciatic Nerve Injury," Pain 43:205-218 (1990)). Partial ligation of the left sciatic nerve is performed under isoflurane/ ⁇ 2 inhalation anaesthesia.
  • the left thigh of the rat is shaved and the sciatic nerve exposed at high thigh level through a small incision and is carefully cleared of surrounding connective tissues at a site near the trocanther just distal to the point at which the posterior biceps semitendinosus nerve branches off of the common sciatic nerve.
  • a 7-0 silk suture is inserted into the nerve with a 3/8 curved, reversed-cutting mini-needle and tightly ligated so that the dorsal 1/3 to l A of the nerve thickness is held within the ligature.
  • the wound is closed with a single muscle suture (7-0 silk) and a Michelle clip. Following surgery, the wound area is dusted with antibiotic powder.
  • % reversal 100 - [(right pre-administration PWT- left post-administration PWT) / ( right pre-administration PWT-left pre-administration PWT)] x 100.
  • the spinal nerve ligation model of neuropathic pain is used to produce mechanical hyperalgesia, thermal hyperalgesia and tactile allodynia in rats.
  • Surgery is performed under isoflurane/O 2 inhalation anaesthesia. Following induction of anaesthesia a 3 cm incision is made and the left paraspinal muscles are separated from the spinous process at the L 4 - S 2 levels. The L 6 transverse process is carefully removed with a pair of small rongeurs to identify visually the L 4 - L 6 spinal nerves.
  • the left L 5 (or L 5 and L 6 ) spinal nerve(s) is isolated and tightly ligated with silk thread.
  • a complete hemostasis is confirmed and the wound is sutured using non-absorbable sutures, such as nylon sutures or stainless steel staples.
  • Sham-treated rats undergo an identical surgical procedure except that the spinal nerve(s) is not manipulated. Following surgery animals are weighed, admimstered a subcutaneous (s.c.) injection of saline or ringers lactate, the wound area is dusted with antibiotic powder and they are kept on a warm pad until they recover from the anesthesia. Animals are then be returned to their home cages until behavioral testing begins.
  • the animals are assessed for response to noxious mechanical stimuli by determining PWT, as described below, immediately prior to and 1, 3, and 5 hours after being administered a Pyridazinylpiperazine Compound for both the left rear paw and right rear paw of the animal.
  • the animal can also be assessed for response to noxious thermal stimuli or for tactile allodynia, as described below.
  • the Chung model for neuropathic pain is described in S.H. Kim, "An Experimental Model for Peripheral Neuropathy Produced by Segmental Spinal Nerve Ligation in the Rat," Pain 50(3):355-363 (1992). The results will demonstrate that Pyridazinylpiperazine Compounds are useful for treating or preventing neuropathic pain.
  • the paw pressure assay can be used to assess mechamcal hyperalgesia.
  • hind paw withdrawal thresholds (PWT) to a noxious mechanical stimulus are determined using an analgesymeter (Model 7200, commercially available from Ugo Basile of Italy) as described in C. Stein, "Unilateral Inflammation of the Hindpaw in Rats as a Model of Prolonged Noxious Stimulation: Alterations in Behavior and Nociceptive Thresholds," Pharmacology Biochemistry and Behavior 3_1:451 -455 (1988).
  • the maximum weight that can be applied to the hind paw is set at 250 g and the end point is taken as complete withdrawal of the paw.
  • PWT is determined once for each rat at each time point and only the affected (ipsilateral) paw is tested.
  • the plantar test can be used to assess thermal hyperalgesia. For this test, hind paw withdrawal latencies to a noxious thermal stimulus are determined using a plantar test apparatus
  • Tactile Allodynia To assess tactile allodynia, rats are placed in clear, plexiglass compartments with a wire mesh floor and allowed to habituate for a period of at least 15 minutes. After habituation, a series of von Frey monofilaments are presented to the plantar surface of the left (operated) foot of each rat. The series of von Frey monofilaments consists of six monofilaments of increasing diameter, with the smallest diameter fiber presented first. Five trials are conducted with each filament with each trial separated by approximately 2 minutes. Each presentation lasts for a period of 4-8 seconds or until a nociceptive withdrawal behavior is observed. Flinching, paw withdrawal or licking of the paw are considered nociceptive behavioral responses.
  • the elevated plus maze test or the shock-probe burying test can be used to assess the anxiolytic activity of Pyridazinylpiperazine Compounds in rats or mice.
  • the Elevated Plus Maze Test The elevated plus maze consists of a platform with 4 arms, two open and two closed (50x10x50 cm enclosed with an open roof). Rats (or mice) are placed in the center of the platform, at the crossroad of the 4 arms, facing one of the closed arms. Time spent in the open arms vs the closed arms and number of open arm entries during the testing period are recorded. This test is conducted prior to drug administration and again after drug admimstration. Test results are expressed as the mean time spent in open arms and the mean number of entries into open arms.
  • the Shock-Probe Burying Test For the shock-probe burying test the testing apparatus consists of a plexiglass box measuring 40x30x40 cm, evenly covered with approximately 5 cm of bedding material (odor absorbent kitty litter) with a small hole in one end tlirough which a shock probe (6.5 cm long and 0.5 cm in diameter) is inserted. The plexiglass shock probe is helically wrapped with two copper wires through which an electric current is administered.
  • Rats are habituated to the testing apparatus for 30 min on 4 consecutive days without the shock probe in the box. On test day, rats are placed in one comer of the test chamber following drug administration. The probe is not electrified until the rat touches it with its snout or fore paws, at which point the rat receives a brief 2 mA shock. The 15 min testing period begins once the rat receives its first shock and the probe remains electrified for the remainder of the testing period. The shock elicits burying behavior by the rat.
  • the duration of time the rat spends spraying bedding material toward or over the probe with its snout or fore paws is measured as well as the number of contact-induced shocks the rat receives from the probe.
  • Known anxiolytic drugs reduce the amount of burying behavior.
  • an index of the rat's reactivity to each shock is scored on a 4 point scale. The total time spent immobile during the 15 min testing period is used as an index of general activity.
  • the shock-probe burying test is described in D. Treit, 1985, supra. The results will demonstrate that Pyridazinylpiperazine Compounds are useful for treating or preventing anxiety.
  • the condition place preference test or drug self-administration test can be used to assess the ability of Pyridazinylpiperazine Compounds to attenuate the rewarding properties of known drugs of abuse.
  • the Condition Place Preference Test The apparatus for the conditioned place preference test consists of two large compartments (45x45x30 cm) made of wood with a plexiglass front wall. These two large compartments are distinctly different. Doors at the back of each large compartment lead to a smaller box (36x18x20 cm) box made of wood, painted grey, with a ceiling of wire mesh.
  • the two large compartments differ in terms of shading (white vs black), level of illumination (the plexiglass door of the white compartment is covered with aluminum foil except for a window of 7x7 cm), texture (the white compartment has a 3 cm thick floor board (40x40 cm) with nine equally spaced 5 cm diameter holes and the black has a wire mesh floor), and olfactory cues (saline in the white compartment and 1 mL of 10% acetic acid in the black compartment). On habituation and testing days, the doors to the small box remain open, giving the rat free access to both large compartments.
  • the first session that a rat is placed in the apparatus is a habituation session and entrances to the smaller grey compartment remain open giving the rat free access to both large compartments.
  • rats generally show no preference for either compartment.
  • rats are given 6 conditioning sessions. Rats are divided into 4 groups: carrier pre-treatment + carrier (control group), 2-Pyrimidinylpiperazine Compound pre-treatment + carrier, carrier pre-treatment + morphine, 2-Pyrimidinylpiperazine Compound pre-treatment + morphine.
  • carrier pre-treatment + carrier control group
  • 2-Pyrimidinylpiperazine Compound pre-treatment + carrier carrier pre-treatment + morphine
  • 2-Pyrimidinylpiperazine Compound pre-treatment + morphine 2-Pyrimidinylpiperazine Compound pre-treatment + morphine.
  • Each rat receives three conditioning sessions consisting of 3 drug combination-compartment and 3 carrier- compartment pairings.
  • the order of injections and the drug/compartment pairings are counterbalanced within groups.
  • rats are injected prior to testing (30 min to 1 hour) with either morphine or carrier and the rat is placed in the apparatus, the doors to the grey compartment remain open and the rat is allowed to explore the entire apparatus for 20 min.
  • the time spent in each compartment is recorded.
  • Known drugs of abuse increase the time spent in the drug-paired compartment during the testing session. If the
  • Pyridazinylpiperazine Compound blocks the acquisition of morphine conditioned place preference (reward), there will be no difference in time spent in each side in rats pre-treated with a Pyridazinylpiperazine Compound and the group will not be different from the group of rats that was given carrier + carrier in both compartments. Data will be analyzed as time spent in each compartment (drug combination-paired vs carrier-paired). Generally, the experiment is repeated with a minimum of 3 doses of a Pyridazinylpiperazine Compound.
  • the Drug Self- Administration Test is a standard commercially available operant conditioning chamber. Before drug trials begin rats are trained to press a lever for a food reward. After stable lever pressing behavior is acquired, rats are tested for acquisition of lever pressing for drug reward. Rats are implanted with chronically indwelling jugular catheters for i.v. administration of compounds and are allowed to recover for 7 days before training begins. Experimental sessions are conducted daily for 5 days in 3 hour sessions. Rats are trained to self- administer a known drug of abuse, such as morphine. Rats are then presented with two levers, an "active" lever and an "inactive" lever.
  • Pressing of the active lever results in drug infusion on a fixed ratio 1 (FR1) schedule (i.e., one lever press gives an infusion) followed by a 20 second time out period (signaled by illumination of a light above the levers). Pressing of the inactive lever results in infusion of excipient. Training continues until the total number of morphine infusions stabilizes to within ⁇ 10% per session. Trained rats are then used to evaluate the effect of Pyridazinylpiperazine Compounds pre-treatment on drug self-administration. On test day, rats are pre-treated with a Pyridazinylpiperazine Compound or excipient and then are allowed to self-administer drug as usual.
  • FR1 ratio 1
  • cDNA encoding rat mGluRla receptor is obtained from, e.g., Prof. S. Nakanishi (Kyoto, Japan). It is transiently transfected into HEK-EBNA cells using a procedure described by Schlaeger et al., New Dev. NewAppl. Anim. Cell Techn., Proc. ESACT Meet., 15 th a (1998), 105-112 and 117-120.
  • [Ca 2+ ] measurements are performed on mGluRla transfected HEK-EBNA cells after incubation of the cells with Fluo-3 AM (0.5 ⁇ M final concentration) for 1 hour at 37°C followed by 4 washes with assay buffer (DMEM supplemented with Hank's salt and 20 mM HEPES.
  • [Ca 2+ ] measurements are done using a flurometric imaging plate reader, e.g., FLIPR from Molecular Devices Corporation, La Jolla, CA. 10 ⁇ M glutamate as agonist is used to evaluate the potency of the antagonists.
  • EXAMPLE 12 BINDING OF PYRJDAZINYLIMINOPIPERAZINE COMPOUNDS TO VRl
  • Methods for assaying compounds capable of inhibiting VRl are well known to those skilled in the art, for example, those methods disclosed in U.S. Patent No. 6,239,267 to Duckworth et al U.S. Patent No. 6,406,908 to Mclntyre et al; or U.S. Patent No. 6,335,180 to Julius et al.
  • the results of these assays will demonstrate that Cyanoiminopiperazine Compounds bind to and modulate the activity of VRl. Binding of Compound A17 to VRl: Assay Protocol
  • Human VRl cloning Human spinal cord RNA (commercially available from Clontech, Palo Alto, CA) was used. Reverse transcription was conducted on 1.0 ⁇ g total RNA using Thermoscript Reverse Transcriptase (commercially available from Invitrogen, Carlsbad, CA) and oligo dT primers as detailed in its product description. Reverse transcription reactions were incubated at 55 °C for 1 h, heat-inactivated at 85 °C for 5 min, and RNase H-treated at 37 °C for 20 min.
  • Human VRl cDNA sequence was obtained by comparison of the human genomic sequence, prior to annotation, to the published rat sequence. Intron sequences were removed and flanking exonic sequences were joined to generate the hypothetical human cDNA. Primers flanking the coding region of human VRl were designed as follows: forward primer, GAAGATCTTCGCTGGTTGCACACTGGGCCACA; and reverse primer, GAAGATCTTCGGGGACAGTGACGGTTGGATGT. PCR of VRl was performed on one tenth of the Reverse transcription reaction mixture using Expand Long Template Polymerase and Expand Buffer 2 in a final volume of 50 ⁇ L according to the manufacturer's instructions (Roche Applied Sciences, Indianapolis, IN).
  • PCR amplification was performed for 25 cycles at 94°C for 15 sec, 58°C for 30 sec, and 68°C for 3 min followed by a final incubation at 72 °C for 7 min to complete the amplification.
  • a PCR product of -2.8 kb was gel-isolated using a 1.0% agarose, Tris- Acetate gel containing 1.6 ⁇ g/mL of crystal violet and purified with a S.N.A.P. UV-Free Gel Purification Kit (commercially available from Invitrogen).
  • the VRl PCR product was cloned into the pIND/V5-His-TOPO vector (commercially available from Invitrogen) according to the manufacturer's instructions. DNA preparations, restriction enzyme digestions, and preliminary DNA sequencing were performed according to standard protocols. Full-length sequencing confirmed the identity of the human VRl.
  • cell culture reagents were purchased from Life Technologies of Rockville, MD.
  • HEK293-EcR cells expressing the ecdysone receptor (commercially available from Invitrogen) were cultured in Growth Medium (Dulbecco's Modified Eagles Medium containing 10% fetal bovine serum (commercially available from HYCLONE, Logan, UT), lx penicillin/streptomycin, lx glutamine, 1 mM sodium pyruvate and 400 ⁇ g/mL Zeocin (commercially available from mvitrogen)).
  • Growth Medium Dulbecco's Modified Eagles Medium containing 10% fetal bovine serum (commercially available from HYCLONE, Logan, UT), lx penicillin/streptomycin, lx glutamine, 1 mM sodium pyruvate and 400 ⁇ g/mL Zeocin (commercially available from mvitrogen)).
  • the VRl-pLND constructs were transfected into the HEK293-EcR cell line using Fugene transfection reagent (commercially available from Roche Applied Sciences, Basel, Switzerland). After 48 h, cells were transferred to Selection Medium (Growth Medium containing 300 ⁇ g/mL G418 (commercially available from Invitrogen)). Approximately 3 weeks later individual Zeocin/G418 resistant colonies were isolated and expanded. To identify functional clones, multiple colonies were plated into 96-well plates and expression was induced for 48 h using Selection Medium supplemented with 5 ⁇ M ponasterone A (“PonA”) (commercially available from Invitrogen).
  • PonA 5 ⁇ M ponasterone A
  • Fluo-4 a calcium-sensitive dye that is commercially available from Molecular Probes, Eugene, OR
  • FLIPR Fluorometric Imaging Plate Reader
  • the cells were washed twice with 0.2 mL wash buffer and resuspended in 0.05 mL lx Hank's Balanced Salt Solution (commercially available from Life Technologies) containing 3.5 mM CaCi 2 and 10 mM Citrate, pH 7.4 ("assay buffer"). Plates were then transferred to a FLIPR (commercially available from Molecular Devices) for assay. Compound A17 was diluted in assay buffer, and 50 mL of the resultant solution were added to the cell plates and the solution monitored for two minutes. The final concentration of Compound A17 ranged from about 50 pM to about 3 ⁇ M.
  • Agonist buffer (wash buffer titrated with IN HCl to provide a solution having a pH of 5.5 when mixed 1 : 1 with assay buffer) (0.1 mL) was then added to each well, and the plates were incubated for 1 additional minute. Data were collected over the entire time course and analyzed using Excel and Graph Pad Prism. Compound A17 when assayed according to this protocol had an IC 50 of 220.7 ⁇ 50.5 nM (n + 3).
PCT/US2003/023377 2002-07-26 2003-07-25 Pyridazinylpiperazine derivatives for treating pain WO2004011441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003259249A AU2003259249A1 (en) 2002-07-26 2003-07-25 Pyridazinylpiperazine derivatives for treating pain

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US39859402P 2002-07-26 2002-07-26
US60/398,594 2002-07-26
US41102002P 2002-09-17 2002-09-17
US60/411,020 2002-09-17
US41315502P 2002-09-25 2002-09-25
US60/413,155 2002-09-25
US41652502P 2002-10-08 2002-10-08
US60/416,525 2002-10-08

Publications (1)

Publication Number Publication Date
WO2004011441A1 true WO2004011441A1 (en) 2004-02-05

Family

ID=31192373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/023377 WO2004011441A1 (en) 2002-07-26 2003-07-25 Pyridazinylpiperazine derivatives for treating pain

Country Status (3)

Country Link
US (2) US7262194B2 (US07696207-20100413-C00025.png)
AU (1) AU2003259249A1 (US07696207-20100413-C00025.png)
WO (1) WO2004011441A1 (US07696207-20100413-C00025.png)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007642A2 (en) * 2003-07-11 2005-01-27 Abbott Laboratories Novel azaheterocyclic amides useful for treating pain
US7129235B2 (en) 2003-07-11 2006-10-31 Abbott Laboratories Amides useful for treating pain
US7754711B2 (en) * 2003-07-30 2010-07-13 Xenon Pharmaceuticals Inc. Pyridazine derivatives and their use as therapeutic agents
US7776861B2 (en) 2003-07-24 2010-08-17 Purdue Pharma L.P. Therapeutic agents useful for treating pain
WO2010092342A1 (en) 2009-02-10 2010-08-19 Takeda Pharmaceutical Company Limited Organosilicon compounds and their use as the modulators of the trpv1 receptor
US7834035B2 (en) 2003-11-06 2010-11-16 Addex Pharma Sa Allosteric modulators of metabotropic glutamate receptors
WO2012158844A1 (en) 2011-05-17 2012-11-22 Shionogi & Co., Ltd. Heterocyclic compounds
US8431575B2 (en) 2010-02-18 2013-04-30 Transtech Pharma, Inc. Phenyl-heteroaryl derivatives and methods of use thereof
WO2013146969A1 (ja) * 2012-03-29 2013-10-03 第一三共株式会社 新規二置換シクロヘキサン誘導体
WO2013170113A1 (en) * 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9017722B2 (en) 2001-01-29 2015-04-28 Intermune, Inc. Pharmaceutical composition containing as an active ingredient 5-methyl-1-phenyl-2-(1H)-pyridone
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9296723B2 (en) 2012-05-11 2016-03-29 Abbvie Inc. NAMPT inhibitors
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10188637B2 (en) 2016-03-29 2019-01-29 Hoffmann-La Roche Inc. Granulate formulation of 5-methyl-1-phenyl-2-(1H)-pyridone and method of making the same
US10351535B2 (en) 2013-12-20 2019-07-16 Esteve Pharmaceuticals, S.A. Piperazine derivatives having multimodal activity against pain
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10899734B2 (en) 2016-06-23 2021-01-26 St. Jude Children's Research Hospital, Inc. Small molecule modulators of pantothenate kinases
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11547709B2 (en) 2017-12-27 2023-01-10 St. Jude Children's Research Hospital, Inc. Methods of treating disorders associated with castor
DE102022104759A1 (de) 2022-02-28 2023-08-31 SCi Kontor GmbH Co-Kristall-Screening Verfahren, insbesondere zur Herstellung von Co-Kristallen
US11891378B2 (en) 2017-12-27 2024-02-06 St. Jude Children's Research Hospital, Inc. Small molecule modulators of pantothenate kinases

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262194B2 (en) * 2002-07-26 2007-08-28 Euro-Celtique S.A. Therapeutic agents useful for treating pain
US7582635B2 (en) 2002-12-24 2009-09-01 Purdue Pharma, L.P. Therapeutic agents useful for treating pain
SI1942106T1 (sl) * 2003-08-01 2012-01-31 Euro Celtique Sa Terapevtska sredstva, uporabna za zdravljenje bolečine
US20080153845A1 (en) * 2006-10-27 2008-06-26 Redpoint Bio Corporation Trpv1 antagonists and uses thereof
CA2833209C (en) * 2007-04-27 2016-06-28 Purdue Pharma L.P. Piperidine and piperazine compounds as trpv1 antagonists
US8323702B2 (en) * 2010-01-28 2012-12-04 Okoro Chuks I Composition and method for treating ulcers
US8921373B2 (en) 2010-06-22 2014-12-30 Shionogi & Co., Ltd. Compounds having TRPV1 antagonistic activity and uses thereof
CA2835885C (en) * 2011-05-17 2020-08-25 Niiki Pharma Aquisition Corp. 2 Medicaments and methods for treating cancer
UA113288C2 (xx) 2011-06-22 2017-01-10 Trpv1 антагоністи, що містять дигідроксизамісник, і їх застосування

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003380A1 (en) * 1994-07-25 1996-02-08 Zeneca Limited Aromatic amino ethers as pain relieving agents
US5607936A (en) * 1994-09-30 1997-03-04 Merck & Co., Inc. Substituted aryl piperazines as neurokinin antagonists
WO2000042852A1 (en) * 1999-01-25 2000-07-27 Smithkline Beecham Corporation Compounds and methods
WO2000048446A2 (en) * 1999-02-17 2000-08-24 Astrazeneca Ab Use of antagonists of pg-e for the treatment of neuropathic pain
EP1061077A1 (en) * 1998-03-02 2000-12-20 Kowa Co., Ltd. Novel pyridazine derivatives and drugs containing the same as the active ingredient
WO2002010154A2 (en) * 2000-07-27 2002-02-07 Eli Lilly And Company Substituted heterocyclic amides

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI56836C (fi) 1977-10-25 1980-04-10 Fermion Oy 4-substituerade piperazin-1-(n-aryl-n'-cyano)-karboximidamider som aer mellanprodukter vid framstaellningen av farmakologiskt vaerdefulla 6,7-dimetoxi- eller 6,7,8-trimetoxi-4-amino-2-(4-substituerade-piperazin-1-yl)-kinazoliner
US4450272A (en) * 1982-05-06 1984-05-22 American Cyanamid Company Antiatherosclerotic 1-piperazine-thicarboxamides
US4439606A (en) * 1982-05-06 1984-03-27 American Cyanamid Company Antiatherosclerotic 1-piperazinecarbonyl compounds
US5316759A (en) * 1986-03-17 1994-05-31 Robert J. Schaap Agonist-antagonist combination to reduce the use of nicotine and other drugs
DE3822792C2 (de) * 1987-07-11 1997-11-27 Sandoz Ag Neue Verwendung von 5HT¶3¶-Antagonisten
US5198459A (en) * 1987-07-11 1993-03-30 Sandoz Ltd. Use of 5HT-3 antagonists in preventing or reducing dependency on dependency-inducing agents
US5075341A (en) * 1989-12-01 1991-12-24 The Mclean Hospital Corporation Treatment for cocaine abuse
US6204284B1 (en) * 1991-12-20 2001-03-20 American Cyanamid Company Use of 1-(substitutedphenyl)-3-azabicyclo[3.1.0]hexanes for the treatment of chemical dependencies
US5232934A (en) * 1992-07-17 1993-08-03 Warner-Lambert Co. Method for the treatment of psychomotor stimulant addiction
DE4234295A1 (de) * 1992-10-12 1994-04-14 Thomae Gmbh Dr K Carbonsäurederivate, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
US5321012A (en) * 1993-01-28 1994-06-14 Virginia Commonwealth University Medical College Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance
GB9306578D0 (en) * 1993-03-30 1993-05-26 Merck Sharp & Dohme Therapeutic agents
GB9308725D0 (en) * 1993-04-27 1993-06-09 Wyeth John & Brother Ltd Piperazine derivatives
US5461047A (en) * 1993-06-16 1995-10-24 G. D. Searle & Co. 2-,3-,4-,5-,6-,7-,8-,9- and/or 10-substituted dibenzoxazepine and dibenzthiazepine compounds, pharmaceutical compositions and methods of use
US5464788A (en) * 1994-03-24 1995-11-07 Merck & Co., Inc. Tocolytic oxytocin receptor antagonists
FR2722788B1 (fr) * 1994-07-20 1996-10-04 Pf Medicament Nouvelles piperazides derivees d'aryl piperazine, leurs procedes de preparation, leur utilisation a titre de medicament et les compositions pharmaceutiques les comprenant
US5556837A (en) * 1994-08-01 1996-09-17 Regeneron Pharmaceuticals Inc. Methods for treating addictive disorders
US5762925A (en) * 1994-11-03 1998-06-09 Sagen; Jacqueline Preventing opiate tolerance by cellular implantation
PL183865B1 (pl) 1995-01-11 2002-07-31 Samjin Pharmaceutical Co Nowe pochodne piperazyny i środek farmaceutyczny
US5792769A (en) * 1995-09-29 1998-08-11 3-Dimensional Pharmaceuticals, Inc. Guanidino protease inhibitors
JPH107572A (ja) 1996-06-17 1998-01-13 Sumitomo Pharmaceut Co Ltd 腫瘍壊死因子産生阻害剤
PL325341A1 (en) * 1996-06-29 1998-07-20 Samjin Pharmaceutical Co Derivatives od piperazine and method of obtaining them
JP2003524574A (ja) 1997-08-05 2003-08-19 ノボ ノルディスク アクティーゼルスカブ 2,5−及び3,5−二置換アニリン誘導体、その調製及び使用
EP1067123B1 (en) * 1998-03-31 2011-01-19 Kyowa Hakko Kirin Co., Ltd. Nitrogenous heterocyclic compounds
US6329395B1 (en) * 1998-06-08 2001-12-11 Schering Corporation Neuropeptide Y5 receptor antagonists
AU754529B2 (en) 1998-09-22 2002-11-21 Yamanouchi Pharmaceutical Co., Ltd. Cyanophenyl derivatives
EP1140905B1 (en) 1998-12-23 2003-05-14 Eli Lilly And Company Heteroaromatic amides as inhibitor of factor xa
AU763030B2 (en) 1999-03-03 2003-07-10 Samjin Pharmaceutical Co., Ltd. Piperazine derivatives and process for the preparation thereof
US6109269A (en) * 1999-04-30 2000-08-29 Medtronic, Inc. Method of treating addiction by brain infusion
JP2001328938A (ja) 2000-03-17 2001-11-27 Yamanouchi Pharmaceut Co Ltd シアノフェニル誘導体を有効成分とする医薬
JP2001261657A (ja) 2000-03-17 2001-09-26 Yamanouchi Pharmaceut Co Ltd シアノフェニル誘導体
WO2001095856A2 (en) * 2000-06-15 2001-12-20 Chaconne Nsi Co., Ltd. Urea derivative useful as an anti-cancer agent and process for preparing same
EP1313477A4 (en) 2000-07-15 2004-03-03 Smithkline Beecham Corp COMPILATIONS AND METHODS
WO2002006234A1 (fr) * 2000-07-17 2002-01-24 Takeda Chemical Industries, Ltd. Derives de sulfonate, procede de production et utilisation de ces derives
JP2004506714A (ja) * 2000-08-21 2004-03-04 パシフィック コーポレーション 新規チオ尿素化合物及びこれを含有する薬学的組成物
ATE393141T1 (de) 2000-08-21 2008-05-15 Pacific Corp Neue thiourea-derivate und pharmazeutische zusammensetzungen die diese enthalten
TWI258469B (en) * 2001-03-19 2006-07-21 Dainippon Pharmaceutical Co Aryl-substituted alicyclic compounds and pharmaceutical composition containing the same
PE20030417A1 (es) 2001-09-13 2003-08-06 Smithkline Beecham Plc Derivados de urea como antagonistas del receptor vainilloide
JP2003192673A (ja) 2001-12-27 2003-07-09 Bayer Ag ピペラジンカルボキシアミド誘導体
KR20040085151A (ko) 2002-01-17 2004-10-07 뉴로젠 코포레이션 캡사이신 조절자로서의 치환된 퀴나졸린-4-일 아민 유사체
JP4583760B2 (ja) * 2002-02-01 2010-11-17 ユーロ−セルティーク エス.エイ. 疼痛の治療に有用な治療薬
ES2316777T3 (es) 2002-02-15 2009-04-16 Glaxo Group Limited Moduladores de receptores vainilloides.
US20030158188A1 (en) * 2002-02-20 2003-08-21 Chih-Hung Lee Fused azabicyclic compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor
US7074805B2 (en) 2002-02-20 2006-07-11 Abbott Laboratories Fused azabicyclic compounds that inhibit vanilloid receptor subtype 1 (VR1) receptor
EA200500114A1 (ru) * 2002-06-28 2005-06-30 Еуро-Селтик, С. А. Терапевтические агенты, используемые для лечения боли
US7262194B2 (en) * 2002-07-26 2007-08-28 Euro-Celtique S.A. Therapeutic agents useful for treating pain
WO2004080411A2 (en) * 2003-03-07 2004-09-23 Neurocrine Biosciences, Inc. Melanin-concentrating hormone receptor antagonists and compositions and methods related thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003380A1 (en) * 1994-07-25 1996-02-08 Zeneca Limited Aromatic amino ethers as pain relieving agents
US5607936A (en) * 1994-09-30 1997-03-04 Merck & Co., Inc. Substituted aryl piperazines as neurokinin antagonists
EP1061077A1 (en) * 1998-03-02 2000-12-20 Kowa Co., Ltd. Novel pyridazine derivatives and drugs containing the same as the active ingredient
WO2000042852A1 (en) * 1999-01-25 2000-07-27 Smithkline Beecham Corporation Compounds and methods
WO2000048446A2 (en) * 1999-02-17 2000-08-24 Astrazeneca Ab Use of antagonists of pg-e for the treatment of neuropathic pain
WO2002010154A2 (en) * 2000-07-27 2002-02-07 Eli Lilly And Company Substituted heterocyclic amides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACTA CHIM. (BUDAPEST), vol. 70, no. 1-2, 1971, pages 101 - 122 *
CHEMICAL ABSTRACTS, vol. 76, no. 1, 3 January 1972, Columbus, Ohio, US; abstract no. 3796, TOLDY L. ET AL: "Piperazine derivatives" XP002262435 *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561217B2 (en) 2001-01-29 2017-02-07 Intermune, Inc. Pharmaceutical composition containing as an active ingredient 5-methyl-1-phenyl-2-(1H)-pyridone
US9017722B2 (en) 2001-01-29 2015-04-28 Intermune, Inc. Pharmaceutical composition containing as an active ingredient 5-methyl-1-phenyl-2-(1H)-pyridone
WO2005007642A2 (en) * 2003-07-11 2005-01-27 Abbott Laboratories Novel azaheterocyclic amides useful for treating pain
WO2005007642A3 (en) * 2003-07-11 2005-05-26 Abbott Lab Novel azaheterocyclic amides useful for treating pain
US7129235B2 (en) 2003-07-11 2006-10-31 Abbott Laboratories Amides useful for treating pain
JP2007523865A (ja) * 2003-07-11 2007-08-23 アボット・ラボラトリーズ 疼痛治療に有用な新規なアザ複素環アミド類
US7348343B2 (en) 2003-07-11 2008-03-25 Abbott Laboratories Inc. Amides useful for treating pain
US7776861B2 (en) 2003-07-24 2010-08-17 Purdue Pharma L.P. Therapeutic agents useful for treating pain
US8637548B2 (en) 2003-07-24 2014-01-28 Purdue Pharma L.P. Therapeutic agents useful for treating pain
US9301953B2 (en) 2003-07-24 2016-04-05 Purdue Pharma L.P. Therapeutic agents useful for treating pain
US8178560B2 (en) 2003-07-24 2012-05-15 Purdue Pharma L.P. Therapeutic agents useful for treating pain
US7754711B2 (en) * 2003-07-30 2010-07-13 Xenon Pharmaceuticals Inc. Pyridazine derivatives and their use as therapeutic agents
US8163775B2 (en) 2003-11-06 2012-04-24 Addex Pharma Sa Allosteric modulators of metabotropic glutamate receptors
US8030331B2 (en) 2003-11-06 2011-10-04 Addex Pharma Sa Allosteric modulators of metabotropic glutamate receptors
US7834035B2 (en) 2003-11-06 2010-11-16 Addex Pharma Sa Allosteric modulators of metabotropic glutamate receptors
US8841323B2 (en) 2006-03-15 2014-09-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9266834B2 (en) 2006-03-15 2016-02-23 Janssen Pharmaceuticals, Inc. 1, 4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors
US9067891B2 (en) 2007-03-07 2015-06-30 Janssen Pharmaceuticals, Inc. 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mGluR2-receptors
US8906939B2 (en) 2007-03-07 2014-12-09 Janssen Pharmaceuticals, Inc. 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8722894B2 (en) 2007-09-14 2014-05-13 Janssen Pharmaceuticals, Inc. 1,3-disubstituted-4-phenyl-1H-pyridin-2-ones
US11071729B2 (en) 2007-09-14 2021-07-27 Addex Pharmaceuticals S.A. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US9132122B2 (en) 2007-09-14 2015-09-15 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′]bipyridinyl-2′-ones
US8748621B2 (en) 2007-09-14 2014-06-10 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US9114138B2 (en) 2007-09-14 2015-08-25 Janssen Pharmaceuticals, Inc. 1′,3′-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2H,1′H-[1,4′] bipyridinyl-2′-ones
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US8691849B2 (en) 2008-09-02 2014-04-08 Janssen Pharmaceuticals, Inc. 3-azabicyclo[3.1.0]hexyl derivatives as modulators of metabotropic glutamate receptors
US8697689B2 (en) 2008-10-16 2014-04-15 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
US8691813B2 (en) 2008-11-28 2014-04-08 Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
WO2010092342A1 (en) 2009-02-10 2010-08-19 Takeda Pharmaceutical Company Limited Organosilicon compounds and their use as the modulators of the trpv1 receptor
US9085577B2 (en) 2009-05-12 2015-07-21 Janssen Pharmaceuticals, Inc. 7-aryl-1,2,4-triazolo[4,3-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9226930B2 (en) 2009-05-12 2016-01-05 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-a] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8937060B2 (en) 2009-05-12 2015-01-20 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US10071095B2 (en) 2009-05-12 2018-09-11 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of neurological and psychiatric disorders
US9737533B2 (en) 2009-05-12 2017-08-22 Janssen Pharmaceuticals. Inc. 1,2,4-triazolo [4,3-A] pyridine derivatives and their use for the treatment of prevention of neurological and psychiatric disorders
US8946205B2 (en) 2009-05-12 2015-02-03 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9045461B2 (en) 2010-02-18 2015-06-02 Transtech Pharma, Llc Phenyl-heteroaryl derivatives and methods of use thereof
US8741900B2 (en) 2010-02-18 2014-06-03 Transtech Pharma, Llc Phenyl-heteroaryl derivatives and methods of use thereof
US8431575B2 (en) 2010-02-18 2013-04-30 Transtech Pharma, Inc. Phenyl-heteroaryl derivatives and methods of use thereof
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
US9012448B2 (en) 2010-11-08 2015-04-21 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9156830B2 (en) 2011-05-17 2015-10-13 Shionogi & Co., Ltd. Heterocyclic compounds
WO2012158844A1 (en) 2011-05-17 2012-11-22 Shionogi & Co., Ltd. Heterocyclic compounds
WO2013146969A1 (ja) * 2012-03-29 2013-10-03 第一三共株式会社 新規二置換シクロヘキサン誘導体
CN104684906B (zh) * 2012-05-11 2017-06-09 艾伯维公司 Nampt抑制剂
JP2015516436A (ja) * 2012-05-11 2015-06-11 アッヴィ・インコーポレイテッド Nampt阻害薬
US9758511B2 (en) 2012-05-11 2017-09-12 Abbvie Inc. NAMPT inhibitors
CN104684906A (zh) * 2012-05-11 2015-06-03 艾伯维公司 Nampt抑制剂
WO2013170113A1 (en) * 2012-05-11 2013-11-14 Abbvie Inc. Nampt inhibitors
US9296723B2 (en) 2012-05-11 2016-03-29 Abbvie Inc. NAMPT inhibitors
US10584129B2 (en) 2013-06-04 2020-03-10 Janssen Pharmaceuticals Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US10106542B2 (en) 2013-06-04 2018-10-23 Janssen Pharmaceutica Nv Substituted 6,7-dihydropyrazolo[1,5-a]pyrazines as negative allosteric modulators of mGluR2 receptors
US9708315B2 (en) 2013-09-06 2017-07-18 Janssen Pharmaceutica Nv 1,2,4-triazolo[4,3-a]pyridine compounds and their use as positive allosteric modulators of MGLUR2 receptors
US10351535B2 (en) 2013-12-20 2019-07-16 Esteve Pharmaceuticals, S.A. Piperazine derivatives having multimodal activity against pain
US10745361B2 (en) 2013-12-20 2020-08-18 Esteve Pharmaceuticals, S.A. Piperazine derivatives having multimodal activity against pain
US10537573B2 (en) 2014-01-21 2020-01-21 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11103506B2 (en) 2014-01-21 2021-08-31 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US11369606B2 (en) 2014-01-21 2022-06-28 Janssen Pharmaceutica Nv Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
US10188637B2 (en) 2016-03-29 2019-01-29 Hoffmann-La Roche Inc. Granulate formulation of 5-methyl-1-phenyl-2-(1H)-pyridone and method of making the same
US10899734B2 (en) 2016-06-23 2021-01-26 St. Jude Children's Research Hospital, Inc. Small molecule modulators of pantothenate kinases
US11547709B2 (en) 2017-12-27 2023-01-10 St. Jude Children's Research Hospital, Inc. Methods of treating disorders associated with castor
US11891378B2 (en) 2017-12-27 2024-02-06 St. Jude Children's Research Hospital, Inc. Small molecule modulators of pantothenate kinases
DE102022104759A1 (de) 2022-02-28 2023-08-31 SCi Kontor GmbH Co-Kristall-Screening Verfahren, insbesondere zur Herstellung von Co-Kristallen

Also Published As

Publication number Publication date
US20080200472A1 (en) 2008-08-21
US20040235853A1 (en) 2004-11-25
US7262194B2 (en) 2007-08-28
AU2003259249A1 (en) 2004-02-16
US7696207B2 (en) 2010-04-13

Similar Documents

Publication Publication Date Title
EP1472225B1 (en) 2-piperazine-pyridines useful for treating pain
US7262194B2 (en) Therapeutic agents useful for treating pain
US7342017B2 (en) 1,2,5-Thiadiazol-3-yl-piperazine therapeutic agents useful for treating pain, depression and anxiety
AU2004259357B2 (en) Piperidine compounds and pharmaceutical compositions containing them
US6864261B2 (en) Therapeutic agents useful for treating pain
US20110152324A1 (en) Therapeutic agents useful for treating pain
EP1583763A1 (en) Benzoazolypiperazine derivatives having mglur1- and mglur5-antagonistic activity
WO2004029031A2 (en) Therapeutic piperazine compounds
EP1556354A2 (en) Therapeutic piperazine derivates useful for treating pain
EP1664041A1 (en) Phenyl-carboxamide compounds useful for treating pain
EP1664016A2 (en) Therapeutic agents useful for treating pain
EP1648880B1 (en) Therapeutic agents useful for treating pain
WO2003093236A1 (en) 1-(pyrid-2-yl)-piperazine compounds as metabotropic glutamate receptor inhibitor
EP1727801A1 (en) Piperazines useful for treating pain

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP