WO2004010148A1 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
WO2004010148A1
WO2004010148A1 PCT/JP2003/009120 JP0309120W WO2004010148A1 WO 2004010148 A1 WO2004010148 A1 WO 2004010148A1 JP 0309120 W JP0309120 W JP 0309120W WO 2004010148 A1 WO2004010148 A1 WO 2004010148A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating body
analyzer
negative pressure
analysis
analyte
Prior art date
Application number
PCT/JP2003/009120
Other languages
English (en)
French (fr)
Inventor
Junichi Oka
Original Assignee
Arkray, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray, Inc. filed Critical Arkray, Inc.
Priority to JP2004522754A priority Critical patent/JP4385108B2/ja
Priority to US10/521,685 priority patent/US20050207942A1/en
Priority to AU2003281593A priority patent/AU2003281593A1/en
Priority to EP03741469A priority patent/EP1536238A1/en
Publication of WO2004010148A1 publication Critical patent/WO2004010148A1/ja
Priority to US12/228,996 priority patent/US20080317629A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0479Details of actuating means for conveyors or pipettes hydraulic or pneumatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides

Definitions

  • the present invention relates to an analyzer provided with a rotating body for transporting an object to be analyzed.
  • an analyzer there is a semi-automatic analyzer in which a measurer supplies an analytical tool, and the supplied analytical tool is transported to a photometric site for analysis.
  • a method of transporting the analytical tool in a planar manner by, for example, a belt conveyor is employed for transport of the analytical tool.
  • a large space for transporting the analysis tool needs to be ensured in a plane, so that the size of the analyzer becomes large.
  • an analyzer that adopts a transfer method using a rotating drum as a means for suppressing an increase in the size of the analysis tool.
  • the analyzer described in the above publication includes a rotating drum 92 provided with a plurality of recesses 91 for mounting a test piece 90.
  • the test piece 90 held in the concave portion 91 is transported from the mounting portion S1 to the photometric portion S2 by the rotation of the rotating drum 92. Since the test piece 90 is simply placed in the recess 91, the test piece 90 after photometry separates from the recess 91 with the rotation of the rotating drum 92, falls, and is stored in the waste box 93. Is done.
  • the analyzer 9 has a configuration in which the test piece 90 is placed in the concave portion 91 and is freely dropped. Therefore, the transport range of the test piece 90 is limited to a range in which the test piece 90 does not fall freely (a range corresponding to the angle range indicated by 0 in FIGS. 9A and 9B).
  • the rotation speed of the rotating drum 92 should be reduced. It is necessary to set a small value. This makes it difficult to analyze a large number of sample solutions continuously in a short time.
  • An object of the present invention is to provide an analyzer capable of continuously analyzing an object to be analyzed in a short time while achieving a compact size.
  • the analysis device includes a rotating body for transporting an analysis sculpture, and holds the analysis object against the rotating body by applying a negative pressure to the analysis object. It is characterized in that it is configured to transport the analyte in the circumferential direction of the rotating body.
  • the “analyte” includes an analytical tool such as a test piece typically used for analyzing a sample.
  • the analytes include those for which the quality of the product is determined using an optical method or the like, for example, electronic components such as semiconductor devices.
  • the rotating body has, for example, an internal space in which a negative pressure is generated, a plurality of mounting portions for positioning and holding an analyte, and a through hole connecting the mounting portion and the internal space. It is formed.
  • the analyzer of the present invention is configured to include negative pressure generating means for generating a negative pressure in the internal space.
  • the rotating body is arranged, for example, such that the rotating shaft extends in a substantially horizontal direction.
  • the rotating body is, for example, formed in a cylindrical shape, and is configured such that the plurality of mounting portions are formed on an outer surface thereof.
  • the plurality of mounting portions extend, for example, in the axial direction of the rotating body, and are arranged at intervals in the circumferential direction of the rotating body.
  • the internal space accommodates a closure for selecting between a state in which the through hole is closed and a state in which the through hole is opened by being moved relative to the rotating body. Les ,.
  • the obstruction is formed, for example, as having a notch extending in the axial direction of the rotating body and extending in the axial direction.
  • the analyzer of the present invention is configured as further provided with a housing for accommodating at least a part of the rotating body, for example.
  • a housing for accommodating at least a part of the rotating body, for example.
  • One end of the ⁇ ⁇ blocking member is non-rotatably supported with respect to the housing.
  • the analyzer of the present invention can be configured as further provided with a photometric unit for optically analyzing the analysis tool.
  • the closing member opens the through-hole connected to the mounting portion on which the analyte is placed and opens the through-hole when the analyte is located at a position where the analyte can be measured by the photometry unit, and the blocking member is negatively applied to the analyte. It is configured so that pressure is applied.
  • the analyzer of the present invention transports an object to be analyzed from a position mounted on the mounting portion to a position where photometry can be performed by the photometric unit by rotating the rotating body by 180 degrees or more, for example. Is configured.
  • the closing member closes a through hole connected to the mounting portion when the mounting portion is located at a mounting portion for mounting the analyte, and a negative pressure acts on the analyte. It is preferable to configure it not to.
  • the analyzer according to the present invention may be configured to include a blade for removing the analysis target held on the mounting portion.
  • the rotating body is provided with a guide portion for allowing the blade to move relative to the rotating body in a state of being in close contact with the rotating body.
  • a space is provided.
  • the suction force action space is formed, for example, by providing a concave portion having a smaller size than the mounting portion in a portion closer to the axis of the rotating body than the mounting portion and adjacent to the mounting portion.
  • the analyzer of the present invention is configured such that when a negative pressure is applied to the analysis tool, an excessive sample attached to the analysis tool can be removed when the analysis target is an analysis tool. Childish. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an overall perspective view showing an analyzer according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a main part for describing an internal configuration of the analyzer shown in FIG.
  • FIG. 3 is a cross-sectional view for explaining the rotating body and its surroundings.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 4, illustrating the analyzer according to the second embodiment of the present invention.
  • FIG. 6 is an overall view of the rotating drum used in the experiment.
  • FIG. 7 is a sectional view taken along the line VII-VII of FIG.
  • FIG. 8 is an overall perspective view showing an example of a conventional analyzer.
  • FIG. 9A and 9B are cross-sectional views showing the main parts of the analyzer shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the analyzer 1 shown in FIGS. 1 to 4 includes a rotating body 3 accommodated in a housing 2 and applies a negative pressure to the test piece 4 to convey the test piece 4 in the circumferential direction of the rotating body 3. It is configured to do so.
  • the illustrated test piece 4 is provided with a plurality of reagent pads 41 so as to be arranged in the longitudinal direction of the strip 40.
  • the housing 2 is provided with notches 20 in addition to a plurality of operation buttons 21 and a display 22.
  • the notch 20 has a first area 20 a for exposing a concave portion 31 of the rotating body 3, which will be described later, a second area 20 b for allowing the movement of the test piece 4, and a third area for inserting and removing the waste box 5.
  • the test piece 4 can be placed on the rotating body 3 by exposing the recess 31 in the first region 20a.
  • the rotating body 3 has a cylindrical shape having a cylindrical internal space 30.
  • the outer peripheral surface of the rotating body 3 has a plurality of And a plurality of guide portions 32 are provided.
  • the plurality of recesses 31 extend in the axial direction of the rotating body 3 (directions D 1 and D 2 in FIGS. 2 and 3), and extend in the circumferential direction of the rotating body 3 (direction D 3 in FIG. 2). They are arranged side by side at regular intervals.
  • the rotating body 3 of the present embodiment is provided with a total of eight concave portions 31.
  • Each recess 31 has a first portion 31A and a second portion 31B.
  • the first portion 31A is for mounting the test piece 4, and has a width corresponding to the width of the test piece 4.
  • the second portion 31B forms a space 31b for applying a negative pressure to the test piece 4 placed on the first portion 31A over substantially the entire length of the test piece 4 in the longitudinal direction. And the width is smaller than that of the first portion 31A. That is, as clearly shown in FIG. 4, the test piece 4 is placed in the recess 31 in a state of being in contact with the bottom face 31Aa of the first portion 31A, and the bottom face of the test piece 4 and the bottom face of the second portion 31B.
  • a space 31b extending in the directions D1 and D2 (see FIG. 2) is formed between the space 31b and the space 31b.
  • a through hole 33 extending to the internal space 30 of the rotating body 3 extends.
  • the through hole 33 is for communicating between the internal space 30 of the rotating body 3 and the recess 31.
  • the plurality of guide portions 32 are provided side by side in the circumferential direction D3 of the rotating body 3 in a region between the adjacent concave portions 31.
  • the guide portion 32 is a portion for relatively moving a blade 82, which will be described later, in close contact with the rotating body 3, and its bottom surface 32a is continuous with the bottom surface 31Aa of the first portion 31A without any step. are doing.
  • the end 34 of the rotating body 3 is connected to a pump 61 via a pipe 6 having a joint 60. More specifically, the end 34 of the rotating body 3 is inserted into the joint 60 with an O-ring 62 interposed between the outer surface 34a and the inner surface 60a of the joint 60.
  • the joint 60 is not clearly shown on the drawing, but is fixed in position with respect to the housing 2.
  • the end 34 of the rotating body 3 is supported by the housing 2 via the joint 60.
  • the internal space 30 accommodates the obstruction 7.
  • the block 7 includes a main body 71 having a notch 70 and a shaft 73 extending from an end 72 of the main body 71.
  • the shaft 73 is fixed to the housing 2 so as not to rotate. As a result, the closing member 7 is prevented from rotating, and the end 35 of the rotating body 3 is supported by the housing 2 via the closing member 7.
  • the rotating body 3 and the obstruction 7 can be easily removed, so that the rotating body 3 and the obstruction 7 can be cleaned.
  • the main body 71 has a form in which a notch 70 is formed in a columnar member having a diameter corresponding to the inner diameter of the rotating body 3. Therefore, a space 74 is formed between the rotating body 3 and the closing member 7 by the notch 70, and the outer surface 75 of the main body 71 (excluding the portion where the notch 70 is formed) is formed by the inner surface 3 A of the rotating body 3. It is configured to be in close contact with. Therefore, the through-hole 33 located at the portion corresponding to the notch 70 of the closing member 7 is opened, while the through-hole 33 located at the portion where the closing member 7 is in close contact is closed.
  • the notch 70 has a fan-shaped cross section having a central angle ⁇ of approximately 90 degrees as shown in the figure, and extends in the axial direction D 1, D 2 of the closing member 7.
  • the notch 70 opens in the axial direction D2 at the end 76 of the closing member 7.
  • the space 74 defined by the notch 70 communicates with the end opening 36 of the rotating body 3, and a negative pressure can be generated in the space 74 by the pump 61.
  • the end portion 34 of the rotating body 3 is provided with a gear portion 37 as shown in FIG. 2 and FIG.
  • the gear portion 37 meshes with a tooth 81 connected to a rotating shaft 80 of the motor 8.
  • the rotating body 3 is supported at the end 34 via the joint 60 and at the end 35 using the closing sound 7. Therefore, the rotating body 3 can rotate around the obstruction 7 in the direction of the arrow D3 by rotating the rotating shaft 80 of the motor 8 in the direction of the arrow D4.
  • the rotating body 3 is intermittently rotated, for example, by 45 degrees by controlling the rotation of the rotating shaft 80 of the motor 8.
  • the time from rotating the rotating body 3 first to rotating the rotating body 3 next time is, for example, If set to 8-10 seconds.
  • a blade 82 and a photometric unit 83 are arranged inside the housing 2, in addition to the rotating body 3, a blade 82 and a photometric unit 83 are arranged.
  • the blade 82 is for scraping off the test piece 4 held by the rotating body 3 and is in close contact with the bottom surface 32a of the guide portion 32 of the rotating body 3 or the bottom surface 31Aa of the first portion 31A of the concave portion 31.
  • the rooster has been placed. Therefore, when the rotating body 3 is rotated, the portion of the rotating body 3 where the blade 82 contacts is sequentially changed, and the test is performed when the test piece 4 is transported to the portion where the blade 82 is disposed.
  • the tip of the blade 82 is inserted between the bottom surface of the piece 4 and the bottom surface 31Aa of the first portion 31A. As a result, the test piece 4 is dropped from the rotating body 3.
  • the photometric unit 83 irradiates the reagent pad 41 of the test piece 4 with light and receives the reflected light.
  • the photometric unit 83 is connected to a light source such as an LED and a light receiving unit such as a photodiode. have.
  • the photometric unit 83 is supported by the housing 2 by a screw 84, and is configured to reciprocate in the directions of the arrows D1 and D2 by rotating the screw 84 in the directions of the arrows D5 and D6. ing. Therefore, the test piece 4 provided with the plurality of reagent pads 41 can be individually irradiated with light and received its reflected light for each reagent pad 41.
  • the analysis operation of the sample liquid using the analyzer 1 will be described.
  • the reagent pad 41 of the test piece 4 is pre-impregnated with the sample liquid, and a negative pressure is generated by the pump 61 in the space 74 formed by the notch 70 inside the rotating body 3. It is assumed that
  • the test piece 4 when analyzing the sample liquid, first, the test piece 4 is placed on the first portion 31A of the concave portion 31 of the rotating body 3 through the first region 20a of the notch 20. Place. At this time, the test piece 4 is in contact with the bottom surface 31Aa of the first portion 31A while being spaced apart from the bottom surface 31Ba of the second portion 31B by a fixed distance. As described above, since the rotating body 3 is intermittently rotated by 45 degrees, the test piece 4 can be mounted while the rotating body 3 is stopped rotating. It is preferable that the test piece 4 be placed every time the rotating body 3 rotates 45 degrees, so that the test piece 4 can be continuously supplied.
  • Negative pressure is generated in the test space 4 in the force space 74 that is conveyed as the rotating body 3 rotates. Alive. Therefore, a negative pressure acts on the test piece 4 from the time when the concave portion 31 communicates with the space 74 via the through hole 33, and the test piece 4 is held by the rotating body 3. Since the space 31 b extending in the D 1 and D 2 directions is interposed between the through hole 33 and the test piece 4, a negative pressure acts on the bottom surface of the test piece 4 over substantially the entire area. As a result, the test piece 4 is appropriately held with respect to the first part 31A, and the free fall of the test piece 4 from the rotating body 3 can be suppressed. When a suction force is applied to the test piece 4, an effect of removing the sample liquid excessively attached to the test piece 4 is expected.
  • a plurality of grooves may be provided in a portion of the concave portion 31 which is converted to the test piece 4.
  • the test piece 4 When the rotating body 3 is rotated by 90 degrees after the test piece 4 is placed, the test piece 4 is located in front of the photometric unit 83. In this positional relationship, light can be irradiated from the photometric unit 83 to the reagent pad 41 of the test piece 4, and reflected light from the reagent pad 41 can be received by the photometric unit 83. More specifically, by rotating the screw 84 in the direction of arrow D5, the light metering unit 83 is moved in the direction of arrow D1 while irradiating the reagent pad 41 of the test piece 4 with light and reflecting light at that time. Light reception is performed continuously. In the analyzer 1, the sample liquid is analyzed based on the photometric result in the photometric unit 83.
  • the screw 84 is rotated in the direction of arrow D6 to move the photometry unit 83 in the direction of arrow D2, and the photometry unit 83 is returned to the original position.
  • the photometry in the photometry unit 83 ends while the rotation of the rotating body 3 is stopped, and after the photometry, the rotating body 3 is rotated again.
  • the test piece 4 reaches the portion where the blade 82 is arranged.
  • the blade 82 is in contact with the bottom surface 31Aa of the first portion 31A in the concave portion 31, and the tip of the blade 82 is between the bottom surface of the test piece 4 and the bottom surface 3lAa of the first portion 31A. Plugged in. As a result, the state in which the test piece 4 is in close contact with the bottom surface 31Aa of the first portion 31A is released, and the test piece 4 is removed from the recess 31 and the rotating body 3. The test piece 4 is stored in a waste box 5.
  • FIG. 5 the same elements as those of the analyzer described above with reference to FIGS. 1 to 4 are denoted by the same reference numerals, and redundant description will be omitted.
  • the test piece 4 is placed on the first portion 31A in the recess 31 from above the rotating body 3 (see FIGS. 1 to 4). It is configured to
  • the photometric unit 83 is located below the rotating body 3, and the test piece 4 placed on the first portion 31 ⁇ is rotated by rotating the rotating body 3 by 180 degrees to perform photometry. It is configured to transport the test piece 4 to the front of the part 83.
  • the transport distance of the test piece 4 can be ensured by a distance corresponding to a rotation angle of the rotating body 3 of 180 degrees. This distance is difficult to achieve in an analyzer configured to remove the test piece 4 by free fall. From this point, it can be said that the analyzer 1 ′ can secure a large transport distance without increasing the diameter of the rotating body 3. Therefore, in the analyzer 1 ′, while the analyzer 1 ′ is downsized by adopting the transport method using the rotating body 3, the transport distance is maintained by holding the test piece 4 using the suction force. Can be secured large. As a result, it is possible to supply the test piece 4 continuously to the analyzer 1 ′ in a short time, and to analyze a large number of sample liquids in a short time.
  • the present invention is not limited to the configuration described in the above embodiment, and can be variously changed in design.
  • the number of recesses for placing test specimens on a rotating body is not limited to eight, and the force ⁇ that constitutes the recesses with two different widths (first and second recesses) is also a matter of design. It is.
  • the number of through holes for generating a negative pressure in each recess and the position of the through holes are also design items.
  • the present invention provides not only an analyzer configured to analyze a test piece, but also an analyzer configured to analyze a sample using an analysis tool having another configuration, or a determination of the quality of a product.
  • the present invention can also be applied to an analyzer for performing the above.
  • the square cylinder 85 shown in FIGS. 6 and 7 was used as a rotating body.
  • the rectangular tube 85 has four side surfaces 85A to 85D, and concave portions 86A to 89A are formed on each side surface 85A to 85D.
  • Each of the recesses 86A to 89A has a mounting portion (corresponding to the first portion 31A in the recess 31 of the analyzer 1) 86Aa to 89Aa and a suction I portion (corresponding to the second portion 31B in the recess 31 of the analyzer 1) 86Ab It has ⁇ 89 Ab.
  • Each of the recesses 86A to 89A communicates with the internal space 85E of the rectangular cylinder 85 via one through hole 86B to 89B.
  • Width W1 of each recess 86A ⁇ 89A to 5 mm, the width W2 of the suction portions 86Ab ⁇ 89Ab to 2.5 mm, the volume of the inner space 85 E, are set respectively to 1030 mm 3.
  • a negative pressure is generated in the internal space 85E by a pump (not shown).
  • the test piece 4 'used had a width of 5 mm and a length of 100 mm.
  • the test piece 4 ' is measured at the bottom of the rotating body (square tube 85). It can be held at the lower part (Fig. 6 and Fig. 7), the test piece 4 'does not fall down even if a slight external force acts, and secondly, the position of the test piece 4' once placed can be corrected. is there. In order to realize the first point, it is necessary to suck the test piece 4 'with a large force, but to realize the second point, the force acting on the test piece 4' must be reduced. Nanare.
  • the concave portion 86A was closed with the adhesive tape 86D, a negative pressure was generated in the internal space 85E, and then the test piece 4 'was suction-held in the concave portion 87A.
  • the maximum value of the negative internal pressure at which the test piece 4 'can be moved relatively easily was examined.
  • the result was 4.90 ⁇ 10 3 Pa.
  • the minimum value of the negative internal pressure at which the test piece 4 'can be held at the bottom of the square cylinder 85 even when the finger is lightly touched was examined. The result was: 1.96 ⁇ 10 3 Pa.
  • the internal pressure of the internal space 85E is set to be between 4.90 ⁇ 10 3 Pa and 1.96 ⁇ 10 3 , the holding of the test specimen 4 ′ and the west-standing arrangement are possible. You can do it. In other words, holding and aligning the test piece 4 ' The setting range of the suction force that can be performed is large, and the technique of holding the test piece 4 ′ using the suction force is feasible even with the rotating body of the form described in the embodiment and the embodiment described above. Something was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 本発明は、分析対象物(4)を搬送するための回転体(3)を備えた分析装置(1)に関する。この分析装置(1)は、分析対象物(4)に負圧を作用させて回転体(3)に対して分析対象物(4)を保持し、回転体(3)の周方向D3,D4に分析対象物(4)を搬送するように構成されている。回転体(3)は、負圧が発生させられる内部空間(30)と、分析対象物(4)を位置決め保持するための複数の載置部(31A)と、載置部(31A)と内部空間(30)との間を繋ぐ貫通孔(33)と、を有するものとして構成するのが好ましい。内部空間(30)には、回転体(3)に対して相対動させることにより、貫通孔(33)が開放する状態と閉塞される状態とを選択するための閉塞部材(7)を配置するのが好ましい。

Description

明 細 書 分析装置 技術分野
本発明は、 分析対象物を搬送するための回転体を備えた分析装置に関する。 背景技術
分析装置としては、 分析用具の供給を測定者が行い、 供給された分析用具を測 光部位まで搬送して分析を行う半自動のものがある。 分析用具の搬送には、 たと えばベルトコンベアなどにより分析用具を平面的に搬送する方法が採用されてレヽ る。 ところが、 分析用具の搬送を平面的に行う方法では、 分析用具を搬送するた めのスペースを平面的に大きく確保する必要があるために、 分析装置が大型ィ匕し てしまうといった問題がある。 これに対して、 分析用具の大型化を抑制するため のものとして、 回転ドラムを用いた搬送方法を採用した分析装置がある。
この搬送方法を採用した分析装置としては、 たとえば日本国特開 ¥6— 323997 号公報に開示されたものがある。 上記公報に記載の分析装置は、 本願の図8に示 したように、試験片 90を載置するための複数の凹部 91が設けられた回転ドラム 92 を備えたものである。 図 9 Aおよび図 9 Bに示したように、 凹部 91に保持された 試験片 90は、 回転ドラム 92の回転によって載置部位 S 1力 >ら測光部位 S 2まで搬 送される。 試験片 90は、 単に凹部 91に載置しているだけであるため、 測光後の試 験片 90は、 回転ドラム 92の回転にともなって凹部 91から離脱して落下し、廃棄箱 93に収容される。
分析装置 9では、 凹部 91に対して試験片 90を載置し、 それを自由落下させる構 成を採用している。 そのため、 試験片 90が自由落下しない範囲 (図 9 Aおよび図 9 Bに 0で示した角度範囲に相当する範囲) に、 試験片 90の搬送範囲が限定され てしまう。 その一方で、 試料液の分析を適切に行うためには、 試験片 90に試料液 を供給してから、 一定以上の反応時間を確保する必要がある。 したがって、 短い 搬送 »で目的とする反応時間を確保するためには、 回転ドラム 92の回転速度を 小さく設定する必要が生じる。 その には、 短時間で連続的に多数の試料液を 分析するのが困難となる。 これに対して、 短時間で連続的に多数の試料液を分析 するためには、 分析用具 90を載置するための載置部位 S 1から測光部位 S 2まで の距離を大きく確保する必要がある。 搬送距離は、 回転ドラム 92の径を大きくす ることにより大きくすることができるが、 その には、 結局、 分析装置 9の大 型化を招来してしまう。 発明の開示
本発明は、 小型ィ匕を達成しつつも、 短時間で連続的に分析対象物の分析を行う ことができる分析装置を iヰすることを目的としている。
本発明により提供される分析装置は、 分析雕物を搬送するための回転体を備 え、 カゝつ、 分析対象物に負圧を作用させて上記回転体に対して分析対象物を保持 し、 上記回転体の周方向に分析 物を搬送するように構成されていることを特 徴としている。
ここで、 「分析舰物」 としては、 典型的には試料の分析を行うために使用さ れる試験片などの分析用具が挙げられる。 分析対象物には、 光学的手法などを利 用して製品の良否の判定がなされるもの、 たとえば半導体装置などの電子部品も 含まれる。
回転体は、 たとえば負圧が発生させられる内部空間と、 分析 物を位置決め 保持するための複数の載置部と、 載置部と内部空間との間を繋ぐ貫通孔と、 を有 するものとして形成される。 この^、 本発明の分析装置は、 内部空間に負圧を 発生させるための負圧発生手段を備えたものとして構成される。
回転体は、 たとえば回転軸が略水平方向に延びるように配置される。
回転体は、 たとえば円筒状に形成され、 力つ、 その外表面に上記複数の載置部 が形成されたものとして構成される。
複数の載置部は、 たとえば回転体の軸方向に延びるとともに、 回転体の周方向 において間隔を隔てて配置される。
内部空間には、 回転体に対して相対動させることにより、 貫通孔が閉塞される 状態と開放される状態とを選択するための閉塞き附を収容しておくのが好まし レ、。
閉塞き附は、 たとえば回転体の軸方向に延び、 力つ上記軸方向に延びる切欠を 有するものとして構成される。
本発明の分析装置は、 たとえば回転体の少なくとも一部を収容する筐体をさら に備えたものとして構成される。 この^ \ 閉塞部材における一方の端部は、 筐 体に対して回転不能に支持される。
本発明の分析装置は、 分析用具を光学的に分析するための測光部をさらに備え たものとして構成することができる。 この場合、 閉塞部材は、 分析対象物が測光 部によって測光可能な位置に存在する状態では、 当該分析 物が載置された載 置部に繋がる貫通孔を開放して当該分析 物に対して負圧が作用した状態とな るように構成される。
本発明の分析装置は、 たとえば回転体を 180度以上回転させることにより、 分 析対象物を、 載置部に載置された位置から測光部におレヽて測光可能な位置まで搬 送するように構成される。
閉塞部材は、 載置部が分析対象物を載置するための載置部位に位置するときに は、 当該載置部に繋がる貫通孔を閉塞して当該分析対象物に対して負圧が作用し ないように構成するのが好ましレ、。
本発明の分析装置は、 載置部に保持された分析対象物を取り外すためのブレー ドを備えたものとして構成することもできる。
この 、 回転体には、 回転体に密着した状態でブレードが回転体に対して相 対動することを許容するためのガイド部を設けるのが好ましい。
各載置部と当該載置部に繋がる貫通孔の間には、 分析対象物に対して、 この分 析対象物における回転体の軸方向に延びる領域に負圧を作用させるための吸引力 作用空間が設けるのが好ましい。
吸引力作用空間は、 たとえば載置部よりも寸法の小さい凹部を、 当該載置部に 隣接させて載置部よりも回転体の軸に近レ、部分に設けることにより形成される。 本発明の分析装置は、 分析対象物が分析用具である ¾ ^には、 分析用具に負圧 を作用させたときに、 分析用具に付着した余剰な試料を除去できるように構成す るのが子ましい。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態に係る分析装置を示す全体斜視図である。 図 2は、 図 1に示した分析装置の内部構成を説明するための要部を示す平面図 である。
図 3は、 回転体およびその周囲を説明するための断面図である。
図 4は、 図 2の IV— IV線に沿う断面図である。
図 5は、 本発明の第 2の実施の形態に係る分析装置を示す図 4に相当する断面 図である。
図 6は、 実験で使用した回転ドラムの全体 # ^見図である。
図 7は、 図 6の VII— VII線に沿う断面図である。
図 8は、 従来の分析装置の一例を示す全体斜視図である。
図 9 Aおよび図 9 Bは、 図 8に示した分析装置の要部を示す断面図である。 発明を実施するための最良の形態
まず、 本発明の第 1の実施の形態にっレ、て、 図 1ないし図 4を参照して説明す る。
図 1ないし図 4に示した分析装置 1は、筐体 2内の収容された回転体 3を備え、 試験片 4に負圧を作用させて、 回転体 3の周方向に試験片 4を搬送するように構 成されたものである。 図示した試験片 4は、 短冊片 40の長手方向に並ぶようにし て複数の試薬パッド 41が設けられたものである。
図 1に示したように、 筐体 2には、 複数の操作ボタン 21や表示器 22の他、 切欠 20が設けられている。切欠 20は、後述する回転体 3の凹部 31を露出させるための 第 1領域 20 a、 試験片 4の移動を許容するための第 2領域 20b、 および廃棄箱 5 を出し入れするための第 3領域 20 cを有している。 なお、 第 1領域 20 aにおいて 凹部 31を露出させる状態とすることにより、 回転体 3に対して試験片 4を載置す ることができる。
図 2ないし図 4に示したように、 回転体 3は、 円柱状の内部空間 30を有する筒 状の形態とされている。 回転体 3の外周面には、 試験片 4を保持するための複数 の凹部 31と、 複数のガイド部 32と、 が設けられている。 ' 複数の凹部 31は、 回転体 3の軸方向 (図2および図 3の D 1, D 2方向)に延び るとともに、 回転体 3の周方向 (図 2の D 3方向)におレ、て一定間隔隔てて並んで 設けられている。 本実施の形態の回転体 3には、 合計で 8個の凹部 31が設けられ ている。 各凹部 31は、 第 1部分 31Aおよび第 2部分 31 Bを有している。
第 1部分 31 Aは、 試験片 4を載置するためのものであり、 試験片 4の幅寸法に 対応した幅寸法を有している。 第 2部分 31 Bは、 第 1部分 31 Aに載置された試験 片 4に対して、 この試験片 4の長手方向の略全域にわたって負圧を作用させるた めの空間 31 bを形成するためのものであり、第 1部分 31Aよりも幅寸法が小さく されている。 すなわち、 図 4によく表れているように、 凹部 31においては、 第 1 部分 31 Aの底面 31Aaに当接した状態で試験片 4が載置され、試験片 4と第 2部分 31 Bの底面 31Baとの間には、 D 1,D 2方向 (図 2参照)に延びる空間 31 bが形成さ れる。
図 3および図 4に示したように、第 2凹部 31Bの底面 31Baからは、回転体 3の 内部空間 30に繋がる貫通孔 33が延びている。 この貫通孔 33は、 回転体 3の内部空 間 30と凹部 31との間を連通させるためのものである。
図 2および図 4に示したように、複数のガイド部 32は、 隣接する凹部 31の間の 領域において、 回転体 3の周方向 D 3に並んで設けられている。 ガイド部 32は、 後述するブレ一ド 82を回転体 3に対して密着した状態で相対動させるための部分 であり、 その底面 32 aが第 1部分 31 Aの底面 31Aaに対して段差なく連続してい る。
図 2および図 3に示したように、 回転体 3の端部 34は、 ジョイント 60を有する 配管 6を介してポンプ 61に接続されている。 より具体的には、 回転体 3の端部 34 は、その外面 34 aとジョイント 60の内面 60 aとの間に Oリング 62を介在させた状 態で、 ジョイント 60に揷入されている。 これにより、 回転体 3の内部空間 30の気 密性が確保されてレ、るとともに、 ポンプ 61を利用して、 内部空間 30に負圧を発生 させることができるようになつている。 ジョイント 60は、 図面上には明確に表れ ていないが、 筐体 2に対して位置固定されている。 その結果、 回転体 3の端部 34 は、 ジョイント 60を介して筐体 2に支持されている。 図 3および図 4に示したように、 内部空間 30には、 閉塞奋附 7が収容されてい る。 この閉塞咅附 7は、切欠 70を有する本体部 71と、 この本体部 71の端部 72から 延出する軸部 73とを有している。 軸部 73は、 筐体 2に対して回転不能に固定され ている。 その結果、 閉塞部材 7が回転しないようになされているとともに、 回転 体 3の端部 35が閉塞部材 7を介して筐体 2に支持されてレ、る。
このような構成では、 回転体 3や閉塞き附 7を容易に取り外すことができるた め、 回転体 3や閉塞咅附 7を洗浄することができるようになる。
本体部 71は、 回転体 3の内径に相当する を有する円柱状の部材に対して、 切欠 70を形成した形態を有している。 このため、 切欠 70によって回転体 3と閉塞 部材 7との間に空間 74が形成されるとともに、本体部 71の外面 75 (切欠 70が形成 された部分を除く) が回転体 3の内面 3 Aに密着するように構成されている。 し たがって、 閉塞部材 7の切欠 70に相当する部分に位置する貫通孔 33は、 開放状態 とされる一方、 閉塞部材 7が密着した部分に位置する貫通孔 33は閉塞される。 こ れにより、 試験片 4を載置していなレヽ凹部 31や負圧を作用させる必要のなレ、部位 に位置する凹部 31が内部空間 30と連通することを回避し、内部空間 30に発生した 負圧が不必要に低下してしまうことを抑制することができる。
切欠 70は、 図示した略 90度の中心角 Θを有する扇状の断面を有しているととも に、 閉塞部材 7の軸方向 D 1 ,D 2に延びている。 この切欠 70は、 閉塞部材 7の端 部 76において軸方向 D 2に開放している。 その結果、 切欠 70により規定される空 間 74は、 回転体 3の端部開口 36に連通し、空間 74にはポンプ 61により負圧を発生 させることができる。
回転体 3の端部 34には、 図 2および図 4に示したように歯車部 37が設けられて レ、る。 この歯車部 37は、モータ 8の回転軸 80に接続された歯 ¾81と嚙み合うもの である。 回転体 3は、 上述したように端部 34がジョイント 60を介して、端部 35が 閉塞音附 7を利用して支持されている。 そのため、 回転体 3は、 モータ 8の回転 軸 80を矢印 D 4方向に回転させることによって、 閉塞咅附 7の周りを矢印 D 3方 向に回転することができる。 回転体 3は、 モータ 8の回転軸 80の回転を制御する ことにより、 たとえば回転体 3は 45度ずつ間欠的に回転させられる。 この^ 先に回転体 3を回転させてから次に回転体 3を回転させるまでの時間は、 たとえ ば 8〜10秒に設定される。
筐体 2の内部には、 回転体 3の他に、 ブレード 82および測光部 83が配置されて レ、る。 ブレード 82は、 回転体 3に保持された試験片 4を搔き落とすためのもので あり、回転体 3におけるガイド部 32の底面 32 aまたは凹部 31における第 1部分 31 Aの底面 31Aaに密着して酉己置されている。 したがって、回転体 3を回転させた場 合には、 回転体 3におけるブレード 82が当接する部分が順次変ィ匕するとともに、 ブレード 82が配置された部分に試験片 4が搬送されたときに試験片 4の底面と第 1部分 31 Aの底面 31Aaとの間にブレード 82の先端が差し込まれる。 これにより、 試験片 4は、 回転体 3から搔き落とされる。
一方、 測光部 83は、 試験片 4の試薬パッド 41に対して光を照射し、 その反射光 を受光するためのものであり、 たとえば L E Dなどの光†原とフォトダイォードな どの受光部とを有している。 測光部 83は、 スクリュウ 84によって筐体 2に支持さ れており、 スクリュウ 84を矢印 D 5または D 6方向に回転させることにより、 矢 印 D 1,D 2方向に往復移動するように構成されている。 したがって、複数の試薬 パッド 41が設けられた試験片 4に対しては、試薬パッド 41毎に個別に光照射およ びその反射光の受光を行うことができる。
次に、 分析装置 1を用いての試料液の分析動作にっレ、て説明する。 ただし、 試 験片 4の試薬パッド 41には、 予め試料液が含浸させられているものとし、 回転体 3の内部において切欠 70によって形成される空間 74には、ポンプ 61によって負圧 が発生させられているものとする。
図 2および図 4に示したように、 試料液の分析に当たっては、 まず切欠 20の第 1領域 20 aを介して回転体 3における凹部 31の第 1部分 31 Aに対して試験片 4 を載置する。 このとき、試験片 4は、第 2部分 31 Bの底面 3lBaから一定赚離間 した状態で第 1部分 31 Aの底面 31Aaに当接する。上述したように、回転体 3は 45 度ずつ間欠的に回転させられるため、 試験片 4の載置は回転体 3の回転が停止し ている間に行うことができる。 また、 試験片 4の載置は、 回転体 3が 45度回転す る毎に行うのが好ましく、 そうすれば、 連続的に試験片 4を供給することができ るようになる。
試験片 4は、 回転体 3の回転にともなって搬送される力 空間 74には負圧が発 生している。 このため、 試験片 4には、 凹部 31が貫通孔 33を介して空間 74と連通 した時点から負圧が作用し、 試験片 4が回転体 3に保持される。 貫通孔 33と試験 片 4との間には、 D 1 ,D 2方向に延びる空間 31 bが介在しているため、試験片 4 の底面には、 略全域にわたって負圧が作用する。 これにより、 試験片 4が第 1部 分 31 Aに対して適切に保持され、 試験片 4が回転体 3から自由落下してしまうこ とを抑制することができる。 試験片 4に対して吸引力を作用させた場合には、 試 験片 4に対して過剰に付着した試料液が除去される効果も期待される。
試験片 4に付着した余剰な試料液を確実に除去するために、 凹部 31における試 験片 4に翻 ¾する部分に、 複数の溝を設けるようにしてもよい。
試験片 4が載置されてから回転体 3を 90度回転させた には、 試験片 4は、 測光部 83の正面に位置する。 この位置関係においては、 測光部 83から試験片 4の 試薬パッド 41に対して光を照射でき、また試薬パッド 41からの反射光を測光部 83 において受光することができる。 より具体的には、 スクリュウ 84を矢印 D 5方向 に回転させることにより、 測光部 83を矢印 D 1方向に移動させつつ、 試験片 4の 各試薬パッド 41に対する光照射とそのときの反射光の受光が連続的に行われる。 分析装置 1では、 測光部 83での測光結果に基づいて、 試料液の分析が行われる。 一方、 測光部 83における測光が終了した場合には、 スクリュゥ 84を矢印 D 6方 向に回転させることによって測光部 83を矢印 D 2方向に移動させ、 測光部 83を元 の位置に復帰させる。 測光部 83における測光は、 回転体 3の回転が停止させられ ている間に終了し、 測光後においては、 回転体 3が再び回転させられる。 回転体 3を一定角度回転させた # ^には、 試験片 4は、 ブレード 82が配置された部位に 到達する。 このとき、 ブレード 82は、 凹部 31における第 1部分 31Aの底面 31Aa に当接した状態となっており、 ブレード 82の先端は、 試験片 4の底面と第 1部分 31 Aの底面 3lAaとの間に差し込まれる。 その結果、 試験片 4が第 1部分 31 Aの 底面 31Aaに密着した状態が解除され、凹部 31ひレヽては回転体 3から試験片 4が搔 き取られる。 この試験片 4は、 廃棄箱 5内に収容される。
次に、本発明の第 2の実施の形態について、 図 5を参照して説明する。 ただし、 図 5におレ、ては、 図 1ないし図 4を参照して先に説明した分析装置と同様な要素 については、 同一の符号を付してあり、 重複説明は省略する。 図 5に示した分析装置 では、先に説明した分析装置 1と同様に、回転体 3 (図 1ないし図 4参照)の上方から凹部 31における第 1部分 31Aに対して試験片 4を 載置するように構成されている。 その一方で、 分析装置 では、 測光部 83が回転 体 3の下方に位置しており、 第 1部分 31 Αに載置された試験片 4を、 回転体 3を 180度回転させることにより、 測光部 83の正面まで試験片 4を搬送するように構 成されている。 この分析装置 1 'では、 試験片 4が回転体 3の最下部に位置する部 位においても試験片 4を保持する必要があるために、閉塞部材 7 'の切欠 70'の形状 が先の分析装置 1における閉塞部材 7の切欠 70(図 3および図 4参照)とは異なつ ている。 また、 回転体 3の最下部において測光を行うため、 ブレード 82の配置箇 所も異なっている。 ただし、分析装置 においても、分析装置 1 (図 1ないし図 4 参照)と同様にして試料液の分析が行われる。
このような分析装置 1 'では、回転体 3の回転角度が 180度に相当する距離だけ、 試験片 4の搬送距離を確保することができる。 この距離は、 自由落下により試験 片 4を取り除く構成の分析装置においては達成困難なものである。 この点からす れば、 分析装置 1 'では回転体 3の径を大きくすることなく搬送距離を大きく確保 できるといえる。 したがって、 分析装置 1 'では、 回転体 3を利用した搬送方法を 採用することにより分析装置 1 'の小型化を達成しつつも、 吸引力を利用して試験 片 4を保持することにより搬送距離を大きく確保できる。 その結果、 分析装置 1 ' に対して短時間に連続的に試験片 4を供給し、 短時間で多くの試料液を分析する ことが可能となる。
本発明は、 上述した実施の形態で説明した構成には限定されず、 種々に設計変 更可能である。 たとえば、 回転体における試験片を載置するための凹部の個数は 8個には限定されず、 凹部を幅寸法の異なる 2つ (第 1および第 2凹部)により構 成する力^かも設計事項である。 各凹部に負圧を発生させるための貫通孔の個数 やその形成位置も設計事項である。
本発明は、 試験片を分析するように構成された分析装置ばかりでなく、 その他 の構成の分析用具を用いて試料の分析を行うように構成された分析装置、 あるい は製品の良否の判定を行うための分析装置にも適用することができる。 実施例
本発明者は、 吸引力を利用して回転体に試験片を保持し、 試験片を搬送する方 法に実用性がある力 かを検討した。 回転体に対応するものとして、 図 6および 図 7に示した角筒 85を した。 この角筒 85は、 4つの側面 85A〜85Dを有して いるとともに、各側面 85A〜85Dに凹部 86A〜89Aが形成されたものである。角 筒 85の外形寸法は、 HXHX L =15 X 15 X 100mmである。各凹部 86A〜89Aは、 載置部 (分析装置 1の凹部 31における第 1部分 31Aに相当) 86Aa〜89 Aaおよび吸 弓 I部(分析装置 1の凹部 31における第 2部分 31Bに相当) 86Ab〜89Abを有して いる。各凹部 86A〜89Aは、 1つの貫通孔 86 B〜89Bを介して角筒 85の内部空間 85Eに連通している。各凹部 86A〜89Aの幅寸法 W1は 5mmに、各吸引部 86Ab 〜89Abの幅寸法 W2は 2.5mmに、 内部空間 85 Eの容積は、 1030mm3にそれぞれ 設定されている。 この内部空間 85 Eには、 図外のポンプによって負圧が発生する ようになされている。試験片 4'としては、幅寸法が 5mm、長さ寸法が 100mmの ものを使用した。
実用上留意すべき点は、 第 1に、 試験片 4'が回転体 (角筒 85)の最下部において 測光されることがあるため、 試験片 4'を回転体 (角筒 85)の最下部において保持で き (図 6および図 7の状態)、 多少の外力が作用しても試験片 4'が落ちないこと、 第 2に、 一旦載置した試験片 4 'の位置補正をできることである。 第 1の点を実現 するためには、 試験片 4'を大きな力によって吸引すればよい反面、 第 2の点を実 現するためには、 試験片 4'に作用する力を小さくしなければならなレ、。
実際の検討にあたっては、 まず、 凹部 86 Aを粘着テープ 86Dによって塞いだ状 態として、 内部空間 85E内に負圧を発生させた上で、 凹部 87Aに試験片 4'を吸引 保持させた。 この状態において、 試験片 4'を比較的容易に移動させることができ る内部圧力の負圧の最大値を検討した。 その結果は、 一 4.90X103Paであった。 一方、角筒 85最下部において、 指で軽く触っても試験片 4'を保持させておくこと ができる内部圧力の負圧の最小値を検討した。 その結果は、 — 1.96X103Paであ つた。 したがって、 図示した角筒 85を用いる^には、 内部空間 85Eの内部圧力 を一 4.90 X 103Pa〜一 1.96 X 103に設定すれば、 試験片 4'の保持および西立置合 わせを行うことが きる。 言レ、換えれば、 試験片 4'の保持および赚置合わせを 行うことができる吸引力の設定範囲が し、 吸引力を利用した試験片 4'の保持 手法は、 実施の形態にぉレ、て説明した形態の回転体にっレ、ても実現可能性がある ことが された。

Claims

請 求 の 範 囲
1 . 分析¾ 物を搬送するための回転体を備え、 カゝつ、
分析 物に負圧を作用させて上記回転体に対して分析 ¾ 物を保持し、 上 記回転体の周方向に分析対象物を搬送するように構成されていることを特徴とす る、 分析装置。
2 . 上記回転体は、 負圧が発生させられる内部空間と、 分析文豫物を位置決め保 持するための複数の載置部と、上記载置部と上記内部空間との間を繋ぐ貫通孔と、 を有している、 請求項 1に記載の分析装
3 . 上記内部空間に負圧を発生させるための負圧発生手段をさらに備えている、 請求項 2に記載の分析装置。
4. 上記回転体は、 その回転軸が略水平方向に延びるように配置されている、 請 求項 1に記載の分析装 So
5 . 上記回転体は、 円筒状に形成され、 カゝつ、 その外表面に上記複数の載置部が 形成されたものである、 請求項 2に記載の分析装置。
6 . 上記複数の載置部は、 上記回転体の軸方向に延びているとともに、 上記回転 体の周方向にぉレ、て間隔を隔てて配置されている、 請求項 5に記載の分析装置。
7 . 上記内部空間には、 上記回転体に対して相対動させることにより、 上記貫通 孔が閉塞される状態と開放される状態とを選択するための閉塞部材が収容されて いる、 請求項 2に記載の分析装 go
8 . 上記閉塞部材は、 上記回転体の軸方向に延びているとともに、 上記軸方向に 延びる切欠を有している、 請求項 7に記載の分析装置。
9 . 上記回転体の少なくとも一部を収容する筐体をさらに備えており、 上記閉塞部材における一方の端部は、 上記筐体に対して回転不能に支持され ている、 請求項 に記載の分析装置。
10. 分析 ¾ ^物を光学的に分析するための測光部をさらに備えており、
上記閉塞部材は、 分析纖物が上記測光部によつて測光可能な位置に存在す る状態では、 当該分析 物が載置された載置部に繋がる貫通孔を開放して当該 分析 物に対して負圧が作用した状態となるように構成されている、 請求項 7 に記載の分析装置。
11. 上記回転体を 180度以上回転させることにより、 分析対象物を、 上記載置部 に載置された位置から上記測光部において測光可能な位置まで搬送するように構 成されている、 請求項 10に記載の分析装置。
12. 上記閉塞部材は、 載置部が分析文豫物を載置するための載置部位に位置する ときには、 当該載置部に繋がる貫通孔を閉塞して当該分析対象物に対して負圧が 作用しないように構成されている、 請求項 7に記載の分析装置。
13. 載置部に保持された分析対象物を取り外すためのブレードを備えている、 請 求項 1に記載の分析装置。
14. 上記回転体には、 上記回転体に密着した状態で上記ブレードが上記回転体に 対して相対動することを許容するためのガイド部が設けられている、 請求項 13に 記載の分析装置。
15. 上記各載置部と当該載置部に繋がる貫通孔の間には、 分析 物に対して、 この分析^^物における上記回転体の軸方向に延びる領域に負圧を作用させるた めの吸引力作用空間が設けられている、 請求項 2に記載の分析装置。
16. 上記吸引力作用空間は、 上記載置部よりも寸法の小さい凹部を、 上記載置部 に «させて上記載置部よりも上記回転体の軸に近レ、部分に設けることにより形 成されている、 請求項 15に記載の分析装置。
17. 上記分析纖物は、 試料の分析を行うための分析用具であり、
上記分析用具に負圧を作用させたときに、 上記分析用具に付着した余剰な試 料を除去できるように構成されている、 請求項 1に記載の分析装置。
PCT/JP2003/009120 2002-07-19 2003-07-17 分析装置 WO2004010148A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004522754A JP4385108B2 (ja) 2002-07-19 2003-07-17 分析装置
US10/521,685 US20050207942A1 (en) 2002-07-19 2003-07-17 Analyzing Device
AU2003281593A AU2003281593A1 (en) 2002-07-19 2003-07-17 Analyzing device
EP03741469A EP1536238A1 (en) 2002-07-19 2003-07-17 Analyzing device
US12/228,996 US20080317629A1 (en) 2002-07-19 2008-08-19 Analyzing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002210435 2002-07-19
JP2002-210435 2002-07-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/228,996 Division US20080317629A1 (en) 2002-07-19 2008-08-19 Analyzing device

Publications (1)

Publication Number Publication Date
WO2004010148A1 true WO2004010148A1 (ja) 2004-01-29

Family

ID=30767728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009120 WO2004010148A1 (ja) 2002-07-19 2003-07-17 分析装置

Country Status (6)

Country Link
US (2) US20050207942A1 (ja)
EP (1) EP1536238A1 (ja)
JP (1) JP4385108B2 (ja)
CN (1) CN100567988C (ja)
AU (1) AU2003281593A1 (ja)
WO (1) WO2004010148A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525206A (ja) * 2016-09-12 2019-09-05 プロテック ライフ アンド ヘルス カンパニー リミテッド 携帯用尿分析装置
JP2022000648A (ja) * 2014-08-28 2022-01-04 シングル テクノロジーズ アクティエボラーグ ハイスループット生化学的スクリーニング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116036Y2 (ja) * 1981-07-16 1989-05-12
JPH06323997A (ja) * 1993-05-14 1994-11-25 Terumo Corp 分析装置
JPH11311505A (ja) * 1998-04-28 1999-11-09 Ikegami Tsushinki Co Ltd 微小物体の検査方法および検査装置
JP3232286B2 (ja) * 1999-07-12 2001-11-26 株式会社ヨコタコーポレーション 尿の自動検査装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1997791A (en) * 1933-09-14 1935-04-16 Arthur S Hoberg Hopper discharge mechanism
BE788990A (fr) * 1971-09-23 1973-03-19 Lilly Co Eli Systeme optique de controle de capsules
DE2803849C2 (de) * 1978-01-30 1984-02-02 Clinicon International Gmbh, 6800 Mannheim Gerät zum Auswerten von Teststreifen
US4672892A (en) * 1983-10-24 1987-06-16 Ackley E Michael Apparatus for conveying and marking pellet-shaped articles
JP3331256B2 (ja) * 1994-05-10 2002-10-07 バイエルコーポレーション 試験片表裏判別手段
DE19715031A1 (de) * 1997-04-11 1998-10-15 Boehringer Mannheim Gmbh Magazin zur Bevorratung von Testelementen
JP3896447B2 (ja) * 1997-06-12 2007-03-22 アークレイ株式会社 臨床検査装置
JP3758004B2 (ja) * 1997-08-06 2006-03-22 シオノギクオリカプス株式会社 錠剤の外観検査装置
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0116036Y2 (ja) * 1981-07-16 1989-05-12
JPH06323997A (ja) * 1993-05-14 1994-11-25 Terumo Corp 分析装置
JPH11311505A (ja) * 1998-04-28 1999-11-09 Ikegami Tsushinki Co Ltd 微小物体の検査方法および検査装置
JP3232286B2 (ja) * 1999-07-12 2001-11-26 株式会社ヨコタコーポレーション 尿の自動検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000648A (ja) * 2014-08-28 2022-01-04 シングル テクノロジーズ アクティエボラーグ ハイスループット生化学的スクリーニング
JP2019525206A (ja) * 2016-09-12 2019-09-05 プロテック ライフ アンド ヘルス カンパニー リミテッド 携帯用尿分析装置

Also Published As

Publication number Publication date
EP1536238A1 (en) 2005-06-01
CN100567988C (zh) 2009-12-09
US20050207942A1 (en) 2005-09-22
CN1668926A (zh) 2005-09-14
US20080317629A1 (en) 2008-12-25
AU2003281593A1 (en) 2004-02-09
JPWO2004010148A1 (ja) 2005-11-17
JP4385108B2 (ja) 2009-12-16

Similar Documents

Publication Publication Date Title
US8449842B2 (en) Molecular reader
JP7203041B2 (ja) 微小流体の分析のためのシステム、デバイス、及び方法
WO2007062225A3 (en) Test substrate handling apparatus
JP6131595B2 (ja) 測定方法
US20050156124A1 (en) Optical device and turbidity detection apparatus using same
JP6723409B2 (ja) 分析チップ及び試料分析装置
JP2007526464A (ja) 試験エレメント用の搬送路を装備した分析携行端末
JPWO2015177823A1 (ja) 分析装置
JP2006322851A (ja) 全反射減衰を利用した測定装置及びその測定方法
JP2013185967A (ja) 生化学検査装置
EP3315970B1 (en) Measurement method, measurement chip used for same, and kit for measurement
CN102483375B (zh) 具有变换器刚性元件的分析装置
MX2007002225A (es) Instrumento con una tarjeta de memoria que actualiza algoritmos de medicion y metodos para el uso del mismo.
JP4882097B2 (ja) 余剰液吸引機構および化学分析装置
JP2009079926A (ja) 試験紙搬送機構および化学分析装置
WO2004010148A1 (ja) 分析装置
JP4576549B2 (ja) 分析用具の向き選択機構および分析装置
WO2016132945A1 (ja) 反応方法および反応装置
JP2009085797A (ja) バイオチップを用いた検査方法及び装置
JP2006322854A (ja) 全反射減衰を利用した測定装置及びその押し付け量調整方法
WO2018150943A1 (ja) 送液システム、検査システム及び送液方法
JP7134747B2 (ja) キュベット搬送装置及び自動分析装置
JP2005345253A (ja) 分析装置
JP2006090836A (ja) 測定装置
KR100459766B1 (ko) 유전자 판독기에 이용되는 슬라이드 그립퍼

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004522754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038171740

Country of ref document: CN

Ref document number: 10521685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003741469

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003741469

Country of ref document: EP