WO2004009060A1 - Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen. - Google Patents

Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen. Download PDF

Info

Publication number
WO2004009060A1
WO2004009060A1 PCT/ES2003/000372 ES0300372W WO2004009060A1 WO 2004009060 A1 WO2004009060 A1 WO 2004009060A1 ES 0300372 W ES0300372 W ES 0300372W WO 2004009060 A1 WO2004009060 A1 WO 2004009060A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
nanoparticles according
chitosan
glucomannan
preparation
Prior art date
Application number
PCT/ES2003/000372
Other languages
English (en)
French (fr)
Inventor
María José ALONSO FERNÁNDEZ
Carmen REMUÑÁN LÓPEZ
Margarita María CUÑA VILÁN
María ALONSO SANDE
José Luis VILA JATO
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to SI200330701T priority Critical patent/SI1561460T1/sl
Priority to CA002492995A priority patent/CA2492995A1/en
Priority to DK03765124T priority patent/DK1561460T3/da
Priority to EP03765124A priority patent/EP1561460B1/en
Priority to US10/521,382 priority patent/US20060134785A1/en
Priority to DE60310605T priority patent/DE60310605T2/de
Priority to ES03765124T priority patent/ES2279172T3/es
Publication of WO2004009060A1 publication Critical patent/WO2004009060A1/es
Priority to CY20071100323T priority patent/CY1106361T1/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes

Definitions

  • the present invention relates to nanoparticles comprising chitosan, glucomannan, at least one active ingredient, and, if appropriate, an ammonium salt, preferably sodium tripolyphosphate, which can be used to administer active ingredients to the human or animal body. Furthermore, it also refers to a process for obtaining said nanoparticles, and a composition comprising said nanoparticles.
  • the transport of nanoparticles through the mucous membranes of the human or animal body occurs naturally.
  • the effectiveness of the interaction between the nanoparticles with the epithelial cells can be improved by incorporating materials containing specific ligands into the nanoparticles.
  • the absorption of liposomes by M cells can be improved by coating said liposomes with morning residues, as described in Takada et al,
  • nanoparticles constituted by chitosan promote the transport of macromolecules incorporated therein through the nasal and intestinal epithelium.
  • a series of publications referring to chitosan nanoparticles for administration of active ingredients and methods for obtaining said nanoparticles are known in the prior art. These publications include Calvo et al, J. Appl Polym. Sel 1997, 63, 125-132; Calvo et al, Pharm. Res. 14, 1997b, 1431-1436; Fern ⁇ ndez-Urrusuno et al, Pharm. Res. 16, 1991a, 1576-1581; Fern ⁇ ndez- Urrusuno et al, S.T.P.
  • WO-A-01/01964 refers to compositions for the delayed release of biomolecules, in the form of microparticles, comprising an anionic polymer and another cationic polymer, which interact with each other, and biomolecules.
  • the cationic polymer can be a positively charged, water soluble polymer, such as chitosan.
  • ammonium polymers are mentioned dextran sulfate, heparin, alginic acid, alginate, carbonate, an anionic polymethacrylate and a positively charged polyamine acid.
  • WO-A-96/20698 refers to nanoparticles for the delayed release of bioactive agents, comprising a core based on a biocompatible and biodegradable polymer, which can be chitosan, said nanoparticles having associated or incorporated at least one bioactive agent. and at least one surface modifying agent. It also refers to a procedure for obtaining the nanoparticles, based on the mixture of organic solutions of the components, and their subsequent addition on an aqueous phase, with subsequent evaporation of the organic solvent and separation of the nanoparticles from the resulting aqueous phase.
  • WO-A-01/32751 refers to a process for the production of chitosans or chitosan derivatives in the form of nanoparticles, with an average particle diameter in the range of 10 to 1000 nm, which consists in dissolving the chitosan or chitosan derivative in an acidic aqueous medium and raise the pH of the solution in
  • SUBSTITUTE SHEET (RULE 26) presence of a surface modifying agent, to such an extent that chitosan precipitation is reached.
  • WO-A-99/47130 refers to nanoparticles having a biocompatible and biodegradable polyelectrolyte complex, from at least one polycation (which can be chitosan) and at least one polyanion, as well as at least one bioactive ingredient, the nanoparticles being obtainable by further treating the polyelectrolyte complex during or after their formation with at least one crosslinking agent (glyoxal, TSTU or EDAP).
  • at least one polycation which can be chitosan
  • polyanion as well as at least one bioactive ingredient
  • Glucomannan meanwhile, has been traditionally used as a dietary supplement, in order to reduce the level of cholesterol, in addition to being used in cosmetic applications.
  • the use of glucomannan in the preparation of pharmaceutical compositions is described in a series of documents.
  • its use in the preparation of pharmaceutical compositions in the form of gels is mentioned in WO-A-99/01166 and US-A-5662840; Xiao et al, J. Appl.
  • Polym Sel 76, 2000, 509-515 and US-A-6159504 mention its use in pharmaceutical compositions in the form of films; US-A-2002019447 and US-A-2002018812 mention pharmaceutical compositions in the form of foams, capsules and sponges; and US-A-6221393 in tablet compositions.
  • Some of these documents mention the possible incorporation of chitosan to pharmaceutical compositions.
  • the possible existence of an interaction between chitosan and glucomannan has been mentioned in some document, for example in the form of films in Xiao et al, J. Appl.
  • German publication DE19839515 refers to a pharmaceutical preparation, which contains at least one polymer-colloidal active ingredient association product (particle size of ⁇ 1 ⁇ m), in which at least one component is a biocompatible and biodegradable polymer, which can be chitosan
  • nanoparticles comprising chitosan, glucomannan, the active ingredient to be administered, and, optionally, an anionic salt, preferably sodium tripolyphosphate, solve the aforementioned prior art problems.
  • an anionic salt preferably sodium tripolyphosphate
  • the present invention relates to a process for making nanoparticles with an average diameter of less than or equal to 1 ⁇ m, incorporating at least one active ingredient, comprising the following steps: a) preparing an aqueous chitosan solution, b) preparing an aqueous solution of glucomannan, and c) mixing, with stirring, the solutions of steps a) and b), so that the chitosan and glucomannan nanoparticles are spontaneously obtained, in which at least one of the solutions of the steps a) and b) contain at least one active ingredient.
  • the present invention relates to nanoparticles obtained according to the above procedure, comprising chitosan, glucomannan and at least one active ingredient.
  • the invention relates to a pharmaceutical or cosmetic composition
  • a pharmaceutical or cosmetic composition comprising the above nanoparticles, together with at least one pharmaceutically or cosmetically acceptable excipient, respectively.
  • the glucomannan solution also contains an anionic salt, preferably sodium tripolyphosphate, in order to favor the spontaneous formation of the nanoparticles.
  • an anionic salt preferably sodium tripolyphosphate
  • the concentration of the chitosan solution used in the process is in the range between 0.5 and 5 mg / mL.
  • the concentration of the glucomannan solution of the process is in the range between 0.1 and 50 mg / mL.
  • the proportion of chitosan with respect to glucomannan may preferably vary between 1: 0.02 to 1: 100, especially preferably between 1: 0.5 and 1: 50.
  • the pH value of the chitosan solution is preferably maintained at a pH between 2 and 6.
  • the process for making the chitosan and glucomannan nanoparticles can also comprise an additional step, in which said nanoparticles are lyophilized.
  • said nanoparticles are lyophilized.
  • the nanoparticles can be stored for long periods of time, and can be easily regenerated, if necessary, by adding the necessary amount of water.
  • the present invention further relates to the chitosan and glucomannan nanoparticles, according to the invention, lyophilized, and to a pharmaceutical or cosmetic composition comprising said lyophilized nanoparticles, and to the less a pharmaceutically or cosmetically acceptable excipient.
  • chitosan and glucomannan nanoparticles obtainable by the method described above have improved stability upon contact with biological liquids and also during storage than the nanoparticles known in the state of the art.
  • the chitosan and glucomannan nanoparticles are stable in both acidic and basic aqueous media, so they can be stored in the form of a liquid suspension for long periods of time. They also have an improved absorption capacity by the human or animal body.
  • the chitosan and glucomannan nanoparticles are both pharmaceutical and cosmetic utility systems. In addition, they can be administered by various routes, such as topical, oral, nasal, pulmonary, vaginal and subcutaneous.
  • the active ingredient to be incorporated in the chitosan and glucomannan nanoparticles is the ingredient for which the formulation is intended. This ingredient will have an effect on the human or animal organism after administration; This effect can be to cure, minimize or prevent a disease.
  • the active ingredient can be a drug, a vitamin, a vaccine, etc., or a cosmetic agent, intended to improve the physical and aesthetic appearance (for example, skin hydration).
  • the chitosan and glucomannan nanoparticles according to the present invention have a high association capacity of bioactive macromolecules, for example insulin, bovine serum albumin or immunogenic proteins.
  • the association capacity depends on the type of macromolecule incorporated.
  • the degree of association may depend on the degree of chitosan deacetylation: the higher the degree of deacetylation, the greater the efficacy of association.
  • the active ingredient to be incorporated into the nanoparticles is dissolved in one of the two aqueous solutions used in the formation of the nanoparticles.
  • these must be previously dissolved in a polar organic solvent, miscible with aqueous media, and then added to the chitosan solution, or to the glucomannan solution.
  • they may be dissolved in the same solution or in different solutions.
  • bioactive macromolecules they can be incorporated preferably according to the following methods: i) the macromolecule is dissolved in sodium tripolyphosphate, and the resulting mixture is incorporated into the glucomannan solution used for the preparation of the nanoparticles; ii) the macromolecule is dissolved in a NaOH solution; the solution obtained is added to sodium tripolyphosphate; The resulting mixture is incorporated into the glucomannan solution used to make the nanoparticles; iii) the macromolecule is dissolved in sodium phosphate at pH 6.6; the solution obtained is added to sodium tripolyphosphate; The resulting mixture is incorporated into the glucomannan solution used to make the nanoparticles; iv) the macromolecule is added to the chitosan solution used to make the nanoparticles.
  • the macromolecule is added to a NaOH solution; the obtained mixture is added to the chitosan solution used for the preparation of the nanoparticles; vi) the macromolecule is added to a solution of sodium phosphate at pH 6.6; The mixture obtained is added to the chitosan solution used to make the nanoparticles.
  • the chitosan and glucomannan nanoparticles are colloidal in nature, that is, their average diameter is equal to or less than 1 ⁇ m.
  • the average particle size is mainly influenced by the proportion of chitosan with respect to glucomannan, by the degree of deacetylation of chitosan, by the incorporation of an anionic salt, for example sodium tripolyphosphate, and by the nature of the active ingredient.
  • the nanoparticles can have a positive or negative surface charge (measured by the zeta potential), whose magnitude depends on the composition, the nanoparticles and the degree of chitosan deacetylation.
  • the nanoparticles have the ability to release the active ingredient incorporated therein in a delayed and / or controlled manner.
  • the release of the active ingredient can be controlled by combining factors such as the proportion of chitosan with
  • TPP Sodium Tripolyphosphate
  • Pl Protein of plant origin (Ricinus communis) consisting of two polypeptides.
  • Chitosan nanoparticles (with a deacetylation degree of 88%), glucomannan and sodium tripolyphosphate were prepared according to the process of the invention, with different proportions of glucomannan. Once prepared, its average diameter and its zeta potential were measured.
  • Chitosan nanoparticles (with a degree of deacetylation of 88%) and glucomannan were prepared, without the addition of any anionic salt, according to the method of the invention, with different proportions of glucomannan. Once prepared, its average diameter and its potential Z were measured.
  • Chitosan nanoparticles (with a degree of deacetylation of 88%) and glucomannan were prepared, incorporating sodium tripolyphosphate, according to the method of the invention, with different proportions of chitosan and glucomannan, incorporating the Pl or insulin protein. Once prepared, its average diameter and its potential Z were measured.
  • Chitosan nanoparticles (with a degree of deacetylation of 88%) and glucomannan were prepared, without incorporating any anionic salt, according to the method of the invention, with different proportions of chitosan and glucomannan, incorporating the Pl protein or insulin. Once prepared, its average diameter and potential Z were measured. Table 4
  • Chitosan nanoparticles (88% deacetylation degree) and glucomannan were prepared, incorporating sodium tripolyphosphate, according to the method of the invention, with a CS / TPP ratio of 3: 1, incorporating Pl protein (25% theoretical load) , according to different methods.
  • the efficacy of association of the Pl protein with the nanoparticles was measured, as well as their loading capacity.
  • Chitosan nanoparticles (88% deacetylation degree) and glucomannan were prepared, without incorporating any anionic salt, according to the method of the invention, with different proportions of CS / GM, incorporating in the same Pl protein.
  • Chitosan nanoparticles (88% deacetylation degree) and glucomannan were prepared, without incorporating any anionic salt, according to the method of the invention, incorporating the same Pl protein or insulin.
  • the efficacy of association of the Pl protein and insulin with the nanoparticles was measured, as well as their loading capacity.
  • Chitosan nanoparticles (88% deacetylation degree) and glucomannan were prepared according to the method of the invention, incorporating indomethacin or acyclovir therein.
  • the efficacy of association of indomethacin and acyclovir with nanoparticles was measured, as well as their diameter.
  • ⁇ _ Efficacy of association ⁇ . ,. .
  • Chitosan nanoparticles (88% deacetylation degree), glucomannan and sodium tripolyphosphate were prepared, according to the process of the invention, with different CS / TPP / GM ratios. On them, the effect of the type and concentration of cryoprotectant agent used in lyophilization of the nanoparticles on the size and zeta potential of the particles (Df: final diameter, Di: initial diameter) has been verified (see Figure 1). )
  • Chitosan nanoparticles (88% deacetylation degree), glucomannan and sodium tripolyphosphate were prepared, according to the process of the invention, with different CS / TPP / GM ratios. During incubation in a phosphate buffer solution at pH 7.4 for 2 hours, the average particle diameter was measured.
  • Example 15 Chitosan nanoparticles were prepared (degree of deacetylation 42% and 88%)
  • Example 16 Chitosan and glucomannan nanoparticles were prepared according to the method of the invention, incorporating BSA- 125 1. The nanoparticles were
  • Example 17 Chitosan nanoparticles (degree of deacetylation 42% and 88%) and glucomannan were prepared according to the method of the invention, incorporating BSA- 125 1. The nanoparticles were administered orally to mice, and radioactivity levels were measured in different tissues after 24 hours, (see figure 8)
  • Example 18 Chitosan and glucomannan nanoparticles were prepared according to the method of the invention, incorporating BSA-1. The nanoparticles were administered intraduodenally to mice, and the levels of radioactivity in different tissues were measured after 24 hours. Chitosan nanoparticles were used as control, (see figure 9)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas nanopartículas y composiciones que las contienen, comprendiendo dichas nanopartículas quitosano, glucomanano, al menos un ingrediente activo, y, en caso dado, una sal aniónica, de forma preferida tripolifosfato sódico, las cuales pueden ser utilizadas para administrar ingredientes activos al cuerpo humano o animal.

Description

NANOPARTÍCULAS PARA LA ADMINISTRACIÓN DE INGREDIENTES ACTIVOS, PROCEDIMIENTO PARA LA ELABORACIÓN DE DICHAS PARTÍCULAS Y COMPOSICIÓN QUE LAS CONTIENEN.
CAMPO DE LA INVENCIÓN
La presente invención se refiere a nanopartículas que comprenden quitosano, glucomanano, al menos un ingrediente activo, y, en caso dado, una sal amónica, de forma preferida tripolifosfato sódico, las cuales pueden ser utilizadas para administrar ingredientes activos al cuerpo humano o animal. Además, se refiere también a un procedimiento para obtener dichas nanopartículas, y a una composición que comprende dichas nanopartículas.
ANTECEDENTES DE LA INVENCIÓN
Es conocido que la administración de numerosos ingredientes activos por diferentes vías de administración al cuerpo humano o animal presenta diversas dificultades. Especialmente, cabe indicar las dificultades que presenta la administración por vías mucosas, especialmente de péptidos y proteínas, ya que dicha administración está fuertemente afectada por la limitada permeabilidad de las barreras epiteliales del cuerpo humano o animal. Es conocido asimismo que es posible superar parte de estas dificultades incorporando los ingredientes activos que se desean administrar en partículas de pequeño tamaño. El transporte a través de las mucosas de dichas partículas se ve afectado de forma determinante por el tamaño de estas partículas, aumentando el transporte con la disminución del tamaño de las partículas. Por lo tanto, el transporte a través de las mucosas de, por ejemplo, nanopartículas (en general, con un diámetro medio inferior a 1 μm), es mayor que el de micropartículas (en general, con un diámetro medio de 1 μm hasta varios cientos μm). De hecho, el transporte de nanopartículas a través de las mucosas del cuerpo humano o animal ocurre de forma natural. Asimismo, se conoce que la eficacia de la interacción entre las nanopartículas con las células epiteliales puede ser mejorada mediante la incorporación a las nanopartículas de materiales que contienen ligandos específicos. Por ejemplo, la absorción de liposomas por células M puede ser mejorada recubriendo dichos liposomas con residuos de mañano, tal y como describen los documentos Takada et al,
HOJA DE SUSTITUCIÓN (REGLA 26) Biochim. Biophys. Acta 802, 1984, 237-243 y Tomizawa et al, Pharm. Res. 10, 1993, 549-
552. Además, se sabe que las nanopartículas constituidas por quitosano fomentan el transporte de macromoléculas incorporadas en las mismas a través del epitelio nasal e intestinal. Se conocen en el Estado de la Técnica una serie de publicaciones que se refieren a nanopartículas de quitosano para administración de ingredientes activos y a procedimientos de obtención para dichas nanopartículas. Entre dichas publicaciones cabe destacar Calvo et al, J. Appl Polym. Sel 1997, 63, 125-132; Calvo et al, Pharm. Res. 14, 1997b, 1431- 1436; Fernάndez-Urrusuno et al, Pharm. Res. 16, 1991a, 1576-1581; Fernάndez- Urrusuno et al, S.T.P. Pharm. Sel 9, 1999b, 429-436; Tokumitsu et al, Pharm. Res. 16, 1999, 1830-1835; Mitra et al, J. Control. Reléase 74, 2001, 317-323; US-A-2001051189, y US-A-5843509. Todas estas nanopartículas, cuyo componente mayoritario es el quitosano, tienen el inconveniente de que no son estables a determinados valores de pH, concretamente, se disuelven en medio ácido, y precipitan en medio básico. El documento WO-A-01/01964 por su parte se refiere a composiciones para la liberación retardada de biomoléculas, en forma de micropartículas, que comprenden un polímero aniónico y otro catiónico, los cuales interaccionan entre sí, y biomoléculas. El polímero catiónico puede ser un polímero con carga positiva, soluble en agua, como por ejemplo el quitosano. Como polímeros amónicos se mencionan sulfato de dextrano, heparina, ácido algínico, alginato, caragenato, un polimetacrilato aniónico y un ácido poliamínico cargado positivamente.
El documento WO-A-96/20698 se refiere a nanopartículas para la liberación retardada de agentes bioactivos, que comprenden un núcleo a base de un polímero biocompatible y biodegradable, que puede ser quitosano, teniendo dichas nanopartículas asociados o incorporados al menos un agente bioactivo y al menos un agente modificante de la superficie. Asimismo, se refiere a un procedimiento de obtención de las nanopartículas, basado en la mezcla de disoluciones orgánicas de los componentes, y su posterior adición sobre una fase acuosa, con evaporación posterior del disolvente orgánico y separación de las nanopartículas de la fase acuosa resultante. El documento WO-A-01/32751 se refiere a un procedimiento para la elaboración de quitosanos o derivados de quitosano en forma de nanopartículas, con un diámetro de partícula medio en el intervalo de 10 hasta 1000 nm, que consiste en disolver el quitosano o derivado de quitosano en un medio acuoso ácido y elevar el pH de la disolución en
HOJA DE SUSTITUCIÓN (REGLA 26) presencia de un agente modificador de superficie, hasta tal punto que se llega a la precipitación del quitosano.
El documento WO-A-99/47130 se refiere a nanopartículas que presentan un complejo de polielectrolito biocompatible y biodegradable, a partir de al menos un policatión (que puede ser quitosano) y al menos un polianión, así como al menos un ingrediente bioactivo, siendo las nanopartículas obtenibles tratando adicionalmente el complejo de polielectrolito durante o después de su formación con al menos un agente reticulante (glioxal, TSTU o EDAP).
La mayoría de los sistemas conocidos de nanopartículas y micropartículas elaborados a base de quitosano presentan la importante desventaja de ser inestables tras su administración in vivo, así como durante su almacenamiento. Suelen existir dificultades en el proceso de liofilización, específicamente problemas en la reconstitución de los sistemas liofilizados, lo cual representa una limitación importante adicional para la explotación adecuada de este tipo de sistemas. Además, para la liofilización de estos sistemas, descrita en el estado de la técnica, es necesaria la adición de elevadas cantidades de azúcares. Como consecuencia de lo anterior, las nanopartículas y micropartículas conocidas deben, en general, ser almacenadas en forma de una suspensión líquida; esto normalmente tiene como consecuencia la destrucción de estos sistemas en pocos meses.
El glucomanano, por su parte, ha sido utilizado tradicionalmente como suplemento dietético, con el fin de reducir el nivel de colesterol, además de que ha sido empleado en aplicaciones cosméticas. La utilización de glucomanano en la preparación de composiciones farmacéuticas está descrita en una serie de documentos. Por ejemplo, su uso en la preparación de composiciones farmacéuticas en forma de geles se menciona en WO- A-99/01166 y US-A-5662840; Xiao et al, J. Appl. Polym. Sel 76, 2000, 509-515 y US-A- 6159504 mencionan su uso en composiciones farmacéuticas en forma de películas; US-A- 2002019447 y US-A-2002018812 mencionan composiciones farmacéuticas en forma de espumas, cápsulas y esponjas; y US-A-6221393 en composiciones en forma de tabletas. Algunos de estos documentos mencionan la eventual incorporación de quitosano a las composiciones farmacéuticas. Se ha mencionado en algún documento la posible existencia de una interacción entre quitosano y glucomanano, por ejemplo en forma de películas en Xiao et al, J. Appl. Polym. Sel 76, 2000, 509-515, así como en forma de granulos con un diámetro mayor que 1 m , para administrar fármacos analgésicos, en Xie et al, J. Macromol Sel, Puré Appl.
HOJA DE SUSTITUCIÓN (REGLA 26) Chem. A29, 1992, 931-8 y Xie et al, J. Clin. Pharm. Sel 1, 1992, 42-8. La publicación alemana DE19839515 se refiere a una preparación farmacéutica, que contiene al menos un producto de asociación polímero - ingrediente activo coloidal (tamaño de partícula de < 1 μm), en que al menos un componente es un polímero biocompatible y biodegradable, que puede ser quitosano.
De acuerdo con todo lo anterior, existía una necesidad de proporcionar un tipo de nanopartículas, con propiedades mejoradas de absorción por el cuerpo humano y animal, especialmente a través del tejido mucosal, y las cuales pudieran ser almacenadas a más largo plazo sin sufrir alteraciones importantes. Además, habitualmente los procedimientos para la preparación de nanopartículas, a base de quitosano o no, requieren el uso de disolventes orgánicos, los cuales presentan los problemas conocidos por cualquier experto medio en la materia, tales como su toxicidad y la dificultad de su eliminación de las nanopartículas, por lo que era conveniente encontrar un procedimiento para elaborar nanopartículas que cumplieran las propiedades arriba mencionadas, el cual fuera sencillo y no necesitara el uso de disolventes orgánicos.
DESCRIPCIÓN DE LA INVENCIÓN
Se ha encontrado ahora que nanopartículas que comprenden quitosano, glucomanano, el ingrediente activo que se desea administrar, y, optativamente, una sal aniónica, de forma preferida tripolifosfato sódico, resuelven los problemas del estado de la técnica mencionados. Además, se ha encontrado un método de preparación de las nanopartículas anteriores, sencillo y sin la necesidad de usar disolventes orgánicos.
Según un primer aspecto, la presente invención se refiere a un procedimiento para elaborar nanopartículas con un diámetro medio inferior o igual a 1 μm, que incorporan al menos un ingrediente activo, que comprende las siguientes etapas: a) preparar una disolución acuosa de quitosano, b) preparar una disolución acuosa de glucomanano, y c) mezclar, bajo agitación, las disoluciones de las etapas a) y b), de modo que se obtienen espontáneamente las nanopartículas de quitosano y glucomanano, en el cual al menos una de las soluciones de las etapas a) y b) contiene al menos un ingrediente activo.
HOJA DE SUSTITUCIÓN (REGLA 26) Según un segundo aspecto, la presente invención se refiere a nanopartículas obtenidas según el procedimiento anterior, que comprenden quitosano, glucomanano y al menos un ingrediente activo.
Según un aspecto adicional, la invención se refiere a una composición farmacéutica o cosmética que comprende las nanopartículas anteriores, junto con al menos un excipiente farmacéuticamente o cosméticamente aceptable, respectivamente.
Según una forma de realización preferida del procedimiento, la disolución de glucomanano contiene además una sal aniónica, de forma preferida tripolifosfato sódico, con el fin de favorecer la formación espontánea de las nanopartículas. De forma preferida, la concentración de la disolución de quitosano empleada en el procedimiento está en el intervalo entre 0,5 y 5 mg/mL.
Asimismo de forma preferida, la concentración de la disolución de glucomanano del procedimiento está en el intervalo entre 0,1 y 50 mg/mL.
La proporción de quitosano con respecto a glucomanano (en peso) puede variar, de forma preferida, entre 1 :0,02 hasta 1 :100, de forma especialmente preferida entre 1 :0,5 y 1 :50.
Durante el procedimiento de elaboración de las nanopartículas, el valor de pH de la disolución de quitosano de forma preferida se mantiene a un pH entre 2 y 6.
El procedimiento de elaboración de las nanopartículas de quitosano y glucomanano puede además comprender una etapa adicional, en la cual dichas nanopartículas son liofilizadas. Al contrario que en las nanopartículas conocidas en el estado de la técnica, para la liofilización de las nanopartículas según la presente invención únicamente es necesaria la adición de cantidades pequeñas de azúcares, aunque también es posible realizar la liofilización sin la adición de azúcares. En su forma liofilizada, las nanopartículas pueden ser almacenadas durante largos períodos de tiempo, y ser fácilmente regeneradas, en caso necesario, mediante la adición de la cantidad necesaria de agua.
De acuerdo con esta forma de realización adicional en que las nanopartículas obtenidas son liofilizadas, la presente invención se refiere además a las nanopartículas de quitosano y glucomanano, según la invención, liofilizadas, y a una composición farmacéutica o cosmética que comprende dichas nanopartículas liofilizadas, y al menos un excipiente farmacéuticamente o cosméticamente aceptable.
HOJA DE SUSTITUCIÓN (REGLA 26) Las nanopartículas de quitosano y glucomanano obtenibles mediante el procedimiento arriba descrito presentan una estabilidad mejorada al contacto con líquidos biológicos y también durante el almacenaje que las nanopartículas conocidas en el estado de la técnica. De hecho, las nanopartículas de quitosano y glucomanano son estables en medio acuoso tanto ácido como básico, por lo que pueden ser almacenadas en forma de una suspensión líquida durante largos períodos de tiempo. Asimismo presentan una capacidad de absorción por el cuerpo humano o animal mejorada.
Además, las nanopartículas de quitosano y glucomanano son sistemas de utilidad tanto farmacéutica como cosmética. Además, pueden ser administradas por diversas vías, como por ejemplo tópica, oral, nasal, pulmonar, vaginal y subcutánea. El ingrediente activo a incorporar en las nanopartículas de quitosano y glucomanano es el ingrediente para el cual se destina la formulación. Este ingrediente tendrá un efecto sobre el organismo humano o animal tras su administración; dicho efecto puede ser curar, minimizar o prevenir una enfermedad. El ingrediente activo puede ser un fármaco, una vitamina, una vacuna, etc., o un agente cosmético, destinado a mejorar la apariencia física y estética (por ejemplo hidratación de la piel).
Las nanopartículas de quitosano y glucomanano según la presente invención presentan una alta capacidad de asociación de macromoléculas bioactivas, por ejemplo insulina, albúmina de suero bovino o proteínas inmunogénicas. La capacidad de asociación depende del tipo de macromolécula incorporada. Asimismo, para determinadas macromoléculas, el grado de asociación puede depender del grado de desacetilación del quitosano: cuanto mayor es el grado de desacetilación, mayor es la eficacia de asociación.
No obstante, también es posible incorporar otros ingredientes activos a las nanopartículas, tanto de carácter lipofílico como hidrofílico. Cabe destacar, por ejemplo, la incorporación eficaz de indometacina (moderadamente lipofílico) y de aciclovir (hidrofílico).
El ingrediente activo a incorporar en las nanopartículas es disuelto en una de las dos disoluciones acuosas empleadas en la formación de las nanopartículas. En el caso de ingredientes activos lipofílicos, éstos se habrán de disolver previamente en un disolvente orgánico polar, miscible con medios acuosos, y seguidamente se adicionará a la solución de quitosano, o bien a la solución de glucomanano. En el caso de incorporar más de un ingrediente activo a las nanopartículas, éstos pueden estar disueltos o en la misma disolución o en diferentes disoluciones.
HOJA DE SUSTITUCIÓN (REGLA 26) En el caso de incorporar macromoléculas bioactivas, éstas pueden ser incorporadas de forma preferida según los siguientes métodos: i) la macromolécula es disuelta en tripolifosfato sódico, y la mezcla resultante es incorporada a la disolución de glucomanano empleada para la elaboración de las nanopartículas; ii) la macromolécula es disuelta en una disolución de NaOH; la disolución obtenida es añadida a tripolifosfato sódico; la mezcla resultante es incorporada a la disolución de glucomanano empleada para la elaboración de las nanopartículas; iii) la macromolécula es disuelta en fosfato sódico a pH 6,6; la disolución obtenida es añadida a tripolifosfato sódico; la mezcla resultante es incorporada a la disolución de glucomanano empleada para la elaboración de las nanopartículas; iv) la macromolécula es añadida a la disolución de quitosano empleada para la elaboración de las nanopartículas. v) la macromolécula es añadida a una disolución de NaOH; la mezcla obtenida es adicionada a la disolución de quitosano empleada para la elaboración de las nanopartículas; vi) la macromolécula es añadida a una disolución de fosfato sódico a pH 6,6; la mezcla obtenida es adicionada a la disolución de quitosano empleada para la elaboración de las nanopartículas. Las nanopartículas de quitosano y glucomanano son de naturaleza coloidal, es decir, su diámetro medio es igual o inferior a 1 μm. El tamaño medio de las partículas se ve influenciado principalmente por la proporción de quitosano con respecto a glucomanano, por el grado de desacetilación del quitosano, por la incorporación de una sal aniónica, por ejemplo tripolifosfato sódico, y por la naturaleza del ingrediente activo. Por otra parte, las nanopartículas pueden presentar una carga superficial positiva o negativa (medida mediante el potencial zeta), cuya magnitud depende de la composición , de las nanopartículas y del grado de desacetilación del quitosano.
Además, las nanopartículas tienen la capacidad de liberar de forma retardada y/o controlada el ingrediente activo incorporado a las mismas. La liberación del ingrediente activo puede controlarse combinando factores como la proporción de quitosano con
HOJA DE SUSTITUCIÓN (REGLA 26) respecto a glucomanano, el grado de desacetilación del quitosano y el método de elaboración de las nanopartículas.
A continuación, otros fines, características y ventajas de la invención aparecerán claramente a la luz de la descripción explicativa que sigue realizada con referencia a varios ejemplos ilustrativos que no suponen en modo alguno limitar el alcance de la invención.
EJEMPLOS:
A lo largo de los ejemplos se emplean las siguientes abreviaturas: CS = Quitosano GM = Glucomanano fosforilado TPP = Tripolifosfato sódico Pl : Proteína de origen vegetal (Ricinus communis) constituida por dos polipéptidos.
Ejemplo 1
Se prepararon nanopartículas de quitosano (con un grado de desacetilación del 88%), glucomanano y tripolifosfato sódico según el procedimiento de la invención, con diferentes proporciones de glucomanano. Una vez preparadas, se midió su diámetro medio y su potencial zeta.
Tabla 1
CS/TPP/GM Diámetro medio Potencial zeta
(p/p) (nm) (mV)
6/1/2.3 250 ± 24 + 32.2 ± 2.0 6/1/4.6 302 ± 26 + 15.2 ± 1.7
Ejemplo 2
Se prepararon nanopartículas de quitosano (con un grado de desacetilación del 88%), y glucomanano, sin la adición de ninguna sal aniónica, según el procedimiento de la invención, con diferentes proporciones de glucomanano. Una vez preparadas, se midió su diámetro medio y su potencial Z.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 2
CS/GM Diámetro medio Potencial Zeta (p/p) ( nm ) ( mV )
6/4.6 252.1 ± 15 + 31.25 ± 1.06 6/13.8 185.5 ± 3 + 33.2 ± 0.8
Ejemplo 3
Se prepararon nanopartículas de quitosano (con un grado de desacetilación de 88%) y glucomanano, incoφorando tripolifosfato sódico, según el procedimiento de la invención, con diferentes proporciones de quitosano y glucomanano, incoφorando la proteína Pl o insulina. Una vez preparadas, se midió su diámetro medio y su potencial Z.
Tabla 3
CS/TPP/GM Proteína CS/proteína Diámetro medio Potencial zeta
(p/p/p) asociada (P/p) ( nm ) (mV)
4/1/1.5 Pl 1.6/1 552 ± 4 +32.1 ± 1
6/1/4.6 Pl 1.3/1 296 ± 6 +15.9 + 0.2
6/1/4.6 Pl 2.2/1 263 ± 6 +30.3 ± 0.6
6/0.7/4.6 Insulina 2/1 265.8 ± 6 +32.2 ± 0.4
Ejemplo 4
Se prepararon nanopartículas de quitosano (con un grado de desacetilación de 88%) y glucomanano, sin incoφorar ninguna sal aniónica, según el procedimiento de la invención, con diferentes proporciones de quitosano y glucomanano, incoφorando la proteína Pl o insulina. Una vez preparadas, se midió su diámetro medio y su potencial Z. Tabla 4
CS/GM Diámetro medio Potencial zeta
Proteína asociada (P/P) ( nm ) (mV)
6/4.6 Insulina 252.3 ± 4 + 15.5 + 0.6
6/4.6 Pl 205 ± 11 + 8.5 ± 2.7
6/13.8 Pl 293.2 ± 5 + 11.9 ± 3.2
HOJA DE SUSTITUCIÓN (REGLA 26) Ejemplo 5
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%) y glucomanano, incoφorando tripolifosfato sódico, según el procedimiento de la invención, con una proporción de CS/TPP de 3:1, incoφorando en las mismas proteína Pl (carga teórica 25%), según diferentes métodos. Se midió la eficacia de asociación de la proteína Pl a las nanopartículas, así como la capacidad de carga de las mismas.
Tabla 5
Método Eficacia de asociación Capacidad de carga
(%) (%) τpp ¡ 15.4 + 2.7 8.1 1 1.4
NaOH-TPP " 5.6 1 0.3 3.2 1 0.2
Fosfato-TPP 22.6 ± 0.2 11.1 1 0.1
CS iv 15.5 ± 2.7 7.1 1 1.2
NaOH-CS v 8.7 + 3.2 5.1 1 1.8
Fosfato-CS vi 26.0 ± 0.1 11.9 1 0.5 Pl fue di suelto en
' TPP;
"NaOH, y adicionado a TPP;
111 fosfato de sodio a pH 6.6, y adicionado a TPP; iv CS; v NaOH, y adicionado a CS; y
VI fosfato de sodio a pH 6.6, y adicionado a CS
Ejemplo 6
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%) y glucomanano, incoφorando tripolifosfato sódico, según el procedimiento de la invención, con una proporción de CS/TPP de 6:1, incoφorando en las mismas proteína Pl (carga
HOJA DE SUSTITUCIÓN (REGLA 26) teórica 25%), según diferentes métodos. Se midió la eficacia de asociación de la proteína Pl a las nanopartículas, así como la capacidad de carga de las mismas.
Tabla 6
Método Eficacia de asociación (%) Capacidad de carga
TPP ' 13.3 14.0 16.8 14.9
NaOH-TPP " 8.7 1 1.6 10.5 1 1.9
Fosfato-TPP '" 26.3 1 1.2 27.6 1 1.3
CS iv 6.5 1 1.7 9.8 1 2.6
NaOH-CS iv 18.2 1 1.9 21.4 1 2.4
Fosfato-CS vi 24.5 1 1.6 25.4 1 1.7
Pl fue disuelto en:
TPP;
'NaOH, y adicionado a TPP;
" fosfato sódico a pH 6.6, y adicionado a TPP;
V CS;
' NaOH, y adicionado a CS; y
" fosfato sódico a pH 6.6, y adicionado a CS.
Ejemplo 7
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%) y glucomanano, sin incoφorar ninguna sal aniónica, según el procedimiento de la invención, con diferentes proporciones de CS/GM, incoφorando en las mismas proteína Pl. Se midió la eficacia de asociación de la proteína Pl a las nanopartículas, así como la capacidad de carga de las mismas.
CS/GM _ . , Eficacia de asociación Capacidad de carga
(p/p) Paterna asociada (%) (%)
6/4.6 Pl 37.3 ± 3.8 19.16 ± 1.95
6/13.8 Pl 22.4 ± 7.1 4.46 ± 1.41
HOJA DE SUSTITUCIÓN (REGLA 26) Ejemplo 8
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%) y glucomanano, sin incoφorar ninguna sal aniónica, según el procedimiento de la invención, incoφorando en las mismas proteína Pl o insulina. Se midió la eficacia de asociación de la proteína Pl y la insulina a las nanopartículas, así como la capacidad de carga de las mismas.
CS/GM Proteína Eficacia de asociación Capacidad de carga
(p/p) asociada (%) (%)
6/4.6 Pl 37.3 ± 3.8 19.16 ± 1.95
6/4.6 Insulina 37.5 ± 3.1 23.77 ± 1.78
Ejemplo 9
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%) y glucomanano, según el procedimiento de la invención, incoφorando en las mismas indometacina o aciclovir. Se midió la eficacia de asociación de la indometacina y del aciclovir a las nanopartículas, así como el diámetro de las mismas. τ_ , . , Eficacia de asociación ^. , ,. .
Fármaco asociado Diámetro medio (nm)
( /o)
Indometacina 81.81 ± 3.89 619 ± 15
Aciclovir 27.36 ± 7.90 304 ± 8
Ejemplo 10
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%), glucomanano y tripolifosfato sódico, según el procedimiento de la invención, con diferentes proporciones CS/TPP/GM. Sobre las mismas se ha comprobado el efecto del tipo y de la concentración de agente crioprotector utilizado en la liofilización de las nanopartículas sobre el tamaño y el potencial zeta de las partículas (Df: diámetro final, Di: diámetro inicial), (ver figura 1)
HOJA DE SUSTITUCIÓN (REGLA 26) Ejemplo 11
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%), glucomanano y tripolifosfato sódico, según el procedimiento de la invención, con diferentes proporciones CS/TPP/GM. Durante su incubación en una disolución tampón de fosfato a pH 7,4 durante 2 horas, se midió el diámetro medio de las partículas.
Proporciones teóricas CS/TPP/GM: (• ) 3/1/13.5, (B) 3/1/6.7 y ( + ) 6/1/23. (ver figura 2)
Ejemplo 12
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%), glucomanano, según el procedimiento de la invención, con diferentes proporciones CS/GM. Durante su incubación en una disolución tampón de fosfato a pH 7,4, se midió el diámetro medio de las partículas. (^ ) CS/GM = 6/4.6; ( ) CS/GM = 6/13.8; ( B )
CS/TPP/GM = 6/1/4.6. (ver figura 3)
Ejemplo 13
Se prepararon nanopartículas de quitosano (grado de desacetilación 88%), glucomanano, según el procedimiento de la invención, con diferentes proporciones CS/GM, incoφorando insulina. Se midió la liberación de la insulina en tampón de fosfato a pH 7,4 y 37 °C. (•) CS/TPP/GM = 6/1/4.6 y (B) CS/GM = 6/4.6. (ver figura 4)
Ejemplo 14 Se prepararon nanopartículas de quitosano (grado de desacetilación 88%), glucomanano, según el procedimiento de la invención, con diferentes proporciones CS/GM, incoφorando proteína Pl . Se midió la liberación de la insulina en tampón de fosfato a pH 7,4 y 37 °C. (•) CS/TPP/GM = 6/1/4.6 y (B) CS/GM = 6/4.6 (ver figura 5)
Ejemplo 15 Se prepararon nanopartículas de quitosano (grado de desacetilación 42% y 88%)
1 S y glucomanano, según el procedimiento de la invención, incoφorando 1-BSA. Las nanopartículas fueron administradas oralmente a ratones, y se midieron los niveles de radioactividad en la sangre tras 2, 4, 6 y 24 horas, (ver figura 6)
Ejemplo 16 Se prepararon nanopartículas de quitosano y glucomanano, según el procedimiento de la invención, incoφorando BSA-1251. Las nanopartículas fueron
HOJA DE SUSTITUCIÓN (REGLA 26) administradas de forma intraduodenal a ratones, y se midieron los niveles de radioactividad en la sangre tras 0.5, 2 y 24 horas. Se utilizaron nanopartículas de quitosano como control, (ver figura 7)
Ejemplo 17 Se prepararon nanopartículas de quitosano (grado de desacetilación 42% y 88%) y glucomanano, según el procedimiento de la invención, incoφorando BSA-1251. Las nanopartículas fueron administradas oralmente a ratones, y se midieron los niveles de radioactividad en diferentes tejidos tras 24 horas, (ver figura 8)
Ejemplo 18 Se prepararon nanopartículas de quitosano y glucomanano, según el procedimiento de la invención, incoφorando BSA- 1. Las nanopartículas fueron administradas de forma intraduodenal a ratones, y se midieron los niveles de radioactividad en diferentes tejidos tras 24 horas. Se utilizaron nanopartículas de quitosano como control, (ver figura 9)
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
1. Procedimiento para la elaboración de nanopartículas, con un diámetro medio igual o inferior a 1 μm, y que incoφoran al menos un ingrediente activo, caracterizado
5 porque comprende las siguientes etapas: a) preparar una disolución acuosa de quitosano, b) preparar una disolución acuosa de glucomanano y c) mezclar, bajo agitación, las disoluciones de las etapas a) y b), de modo que se obtienen espontáneamente las nanopartículas de quitosano y glucomanano, 0 en el cual al menos una de las soluciones de las etapas a) y b) contiene al menos un ingrediente activo.
2. Procedimiento para la elaboración de nanopartículas según la reivindicación 1, caracterizado porque la disolución de glucomanano contiene una sal aniónica.
3. Procedimiento para la elaboración de nanopartículas según la reivindicación 2, 5 caracterizado porque la sal aniónica es tripolifosfato sódico.
4. Procedimiento para la elaboración de nanopartículas según la reivindicación 3, caracterizado porque el tripolifosfato sódico está en una concentración de entre 0,1 y 5 mg/mL.
5. Procedimiento para la elaboración de nanopartículas según cualquiera de las 0 reivindicaciones 1 a 4, caracterizado porque la concentración de la disolución de quitosano está en el intervalo entre 0,5 y 5 mg/L.
6. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 5, caracterizado porque la concentración de la disolución de glucomanano está en el intervalo entre 0,5 y 50 mg/L. 5
7. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 4, caracterizado porque la proporción entre quitosano y glucomanano está entre 1 :0,1 y 1 :100.
8. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 4 y 7, caracterizado porque la proporción entre quitosano y o glucomanano está entre 1 :0,5 y 1 :50.
HOJA DE SUSTITUCIÓN (REGLA 26)
9. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 8, caracterizado porque la disolución de quitosano presenta un pH entre 2 y 6.
10. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 9, caracterizado porque el ingrediente activo es una macromolécula bioactiva.
11. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 10, caracterizado porque el ingrediente activo se selecciona del grupo que comprende insulina, albúmina de suero bovino y proteínas inmunogénicas.
12. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 9, caracterizado porque el ingrediente activo es un fármaco de bajo peso molecular.
13. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 9 y 12, caracterizado porque el ingrediente activo se selecciona del grupo que comprende aciclovir e indometacina.
14. Procedimiento para la elaboración de nanopartículas según cualquiera de las reivindicaciones 1 a 13, caracterizado porque comprende una etapa adicional después de la etapa c), en la cual las nanopartículas son liofilizadas.
15. Nanopartículas con un diámetro medio igual o inferior a 1 μm, para la administración de al menos un ingrediente activo, caracterizadas porque comprenden quitosano, glucomanano y al menos un ingrediente activo.
16. Nanopartículas según la reivindicación 15, caracterizadas porque son obtenibles mediante el procedimiento según las reivindicaciones 1 a 11.
17. Nanopartículas según cualquiera de las reivindicaciones 15 y 16, caracterizadas porque además comprenden una sal aniónica.
18. Nanopartículas según la reivindicación 17, caracterizadas porque la sal aniónica es tripolifosfato sódico.
19. Nanopartículas según cualquiera de las reivindicaciones 15 a 18, caracterizadas porque el ingrediente activo es una macromolécula bioactiva.
HOJA DE SUSTITUCIÓN (REGLA 26)
20. Nanopartículas según cualquiera de las reivindicaciones 15 a 19, caracterizadas porque el ingrediente activo se selecciona del grupo que comprende insulina, albúmina de suero bovino y proteínas inmunogénicas.
21. Nanopartículas según cualquiera de las reivindicaciones 15 a 18, caracterizadas 5 porque el ingrediente activo es un fármaco de bajo peso molecular.
22. Nanopartículas según cualquiera de las reivindicaciones 15 a 18 y 21, caracterizadas porque el ingrediente activo se selecciona del grupo que comprende aciclovir e indometacina.
23. Nanopartículas según cualquiera de las reivindicaciones 15 a 22, caracterizadas 0 porque la proporción quitosano : glucomanano está entre 1 :0,02 y 1 : 100.
24. Nanopartículas según cualquiera de las reivindicaciones 15 a 23, caracterizadas porque la proporción quitosano : glucomanano está entre 1 :0,5 y 1 :50.
25. Nanopartículas según cualquiera de las reivindicaciones 15 a 22, caracterizadas porque son liofilizadas tras su obtención. 5
26. Composición farmacéutica, caracterizada porque comprende las nanopartículas según cualquiera de las reivindicaciones 15 a 24 y al menos un excipiente farmacéuticamente aceptable.
27. Composición cosmética, caracterizada porque comprende las nanopartículas según cualquiera de las reivindicaciones 15 a 24 y al menos un excipiente cosméticamente o aceptable.
28. Composición farmacéutica, caracterizada porque comprende las nanopartículas de la reivindicación 25, tras ser regeneradas mediante la adición de agua, y al menos un excipiente farmacéuticamente aceptable.
29. Composición cosmética, caracterizada porque comprende las nanopartículas de 5 la reivindicación 25, tras ser regeneradas mediante la adición de agua, y al menos un excipiente cosméticamente aceptable.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2003/000372 2002-07-19 2003-07-16 Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen. WO2004009060A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SI200330701T SI1561460T1 (sl) 2002-07-19 2003-07-16 Nanodelci za aplikacijo uäśinkovin, postopek za pripravo teh delcev in sestavek, ki jih vsebuje
CA002492995A CA2492995A1 (en) 2002-07-19 2003-07-16 Nanoparticles for the administration of active ingredients, method of producing said particles and composition containing same
DK03765124T DK1561460T3 (da) 2002-07-19 2003-07-16 Nanopartikler til indgivelse af aktive ingredienser, fremgangsmåde til fremstilling af nævnte partikler og komposition, som omfatter det samme
EP03765124A EP1561460B1 (en) 2002-07-19 2003-07-16 Nanoparticles for the administration of active ingredients, method of producing said particles and composition containing same
US10/521,382 US20060134785A1 (en) 2002-07-19 2003-07-16 Nanoparticles for the administration of active ingredients, method of producing said particles and composition containing same
DE60310605T DE60310605T2 (de) 2002-07-19 2003-07-16 Nanoteilchen zur verabreichung von wirkstoffen, verfahren zur herstellung dieser teilchen und diese enthaltende zusammensetzung
ES03765124T ES2279172T3 (es) 2002-07-19 2003-07-16 Nanoparticulas para la administracion de ingredientes activos, procedimiento para la elaboracion de dichas particulas y composiciones que las contienen.
CY20071100323T CY1106361T1 (el) 2002-07-19 2007-03-08 Νανοσωματιδια για τη χορηγηση ενepγων συστατικων, μεθοδος παραγωγης των αναφepθεντων σωματιδιων και συνθεση που τα πepιεχει

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200201694 2002-07-19
ES200201694A ES2221530B1 (es) 2002-07-19 2002-07-19 Nanoparticulas para la administracion de ingredientes activos,procedimiento para la elaboracion de dichas particulas y composicion que las contienen.

Publications (1)

Publication Number Publication Date
WO2004009060A1 true WO2004009060A1 (es) 2004-01-29

Family

ID=30470576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000372 WO2004009060A1 (es) 2002-07-19 2003-07-16 Nanopartículas para la administración de ingredientes activos, procedimiento para la elaboración de dichas partículas y composición que las contienen.

Country Status (11)

Country Link
US (1) US20060134785A1 (es)
EP (1) EP1561460B1 (es)
AT (1) ATE348602T1 (es)
CA (1) CA2492995A1 (es)
CY (1) CY1106361T1 (es)
DE (1) DE60310605T2 (es)
DK (1) DK1561460T3 (es)
ES (2) ES2221530B1 (es)
PT (1) PT1561460E (es)
SI (1) SI1561460T1 (es)
WO (1) WO2004009060A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112758A1 (es) * 2003-06-20 2004-12-29 Advanced In Vitro Cell Technologies, S.L. Nanopartículas de ácido hialurónico
US8628801B2 (en) 2004-04-29 2014-01-14 Universidad De Navarra Pegylated nanoparticles
US8895067B2 (en) 2004-04-29 2014-11-25 Universidad De Navarra Immune response stimulating composition comprising nanoparticles based on a methyl vinyl ether-maleic acid copolymer

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036946A1 (en) * 2005-09-28 2007-04-05 Padma Venkitachalam Devarajan Compositions for enhanced absorption of biologically active agents
EP1774971A1 (en) * 2005-10-14 2007-04-18 Advanced in Vitro Cell Technologies, S.L. Chitosan and heparin nanoparticles
WO2007149868A2 (en) * 2006-06-20 2007-12-27 The Regents Of The University Of California Controlled release encapsulated anti-bacterial and anti-inflammatory nanoparticles
US9173852B2 (en) * 2008-04-08 2015-11-03 Tian Si Polymer Materials Technology Development Co. Glycyrrhetinic acid-mediated nanoparticles of hepatic targeted drug delivery system, process for preparing the same and use thereof
JP5804453B2 (ja) * 2009-05-14 2015-11-04 国立大学法人 東京大学 結晶性ポリオール微粒子及びその調製方法
US8945551B2 (en) * 2009-07-09 2015-02-03 Polymers Crc Ltd. Biopolymer hybrid gel-depot delivery system
DE102009048553A1 (de) 2009-09-29 2011-03-31 Carl Zeiss Smt Gmbh Katadioptrisches Projektionsobjektiv mit Umlenkspiegeln und Projektionsbelichtungsverfahren
US8802076B2 (en) 2010-10-04 2014-08-12 Duke University Compositions and methods for modulating an immune response
JP5903250B2 (ja) * 2011-11-16 2016-04-13 清水化学株式会社 徐放性組成物
KR101372834B1 (ko) * 2011-12-12 2014-03-14 전북대학교산학협력단 하이드로겔 버블 및 이의 제조방법
US9114091B2 (en) * 2013-07-05 2015-08-25 Shimizu Chemical Corporation Sustained release solid dosage preparations
CN107970228A (zh) * 2017-11-02 2018-05-01 天津大学 一种以壳聚糖-tpp-kgm为复合壁材的纳米微囊的制备方法
CN111420067B (zh) * 2020-03-09 2021-08-27 西南交通大学 一种复合微球纳米载体及其制备方法和应用
WO2021209493A2 (en) * 2020-04-15 2021-10-21 Solyplus Gmbh Means and methods of preventing and treating infections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562924A (en) * 1992-03-11 1996-10-08 Coletica Polysaccharide wall microcapsules containing primary alcohol functions and compositions containing same
EP0860166A1 (en) * 1996-07-29 1998-08-26 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562924A (en) * 1992-03-11 1996-10-08 Coletica Polysaccharide wall microcapsules containing primary alcohol functions and compositions containing same
EP0860166A1 (en) * 1996-07-29 1998-08-26 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112758A1 (es) * 2003-06-20 2004-12-29 Advanced In Vitro Cell Technologies, S.L. Nanopartículas de ácido hialurónico
US8628801B2 (en) 2004-04-29 2014-01-14 Universidad De Navarra Pegylated nanoparticles
US8895067B2 (en) 2004-04-29 2014-11-25 Universidad De Navarra Immune response stimulating composition comprising nanoparticles based on a methyl vinyl ether-maleic acid copolymer

Also Published As

Publication number Publication date
ES2221530B1 (es) 2006-02-16
CA2492995A1 (en) 2004-01-29
DE60310605T2 (de) 2007-09-27
ES2279172T3 (es) 2007-08-16
CY1106361T1 (el) 2011-10-12
EP1561460B1 (en) 2006-12-20
ES2221530A1 (es) 2004-12-16
EP1561460A1 (en) 2005-08-10
SI1561460T1 (sl) 2007-06-30
ATE348602T1 (de) 2007-01-15
DE60310605D1 (de) 2007-02-01
PT1561460E (pt) 2007-03-30
DK1561460T3 (da) 2007-04-30
US20060134785A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
ES2221530B1 (es) Nanoparticulas para la administracion de ingredientes activos,procedimiento para la elaboracion de dichas particulas y composicion que las contienen.
EP1652517B8 (en) Hyaluronic acid nanoparticles
US9526705B2 (en) Lipidated glycosaminoglycan particles and their use in drug and gene delivery for diagnosis and therapy
CA2723563C (en) Method of forming non-immunogenic hydrophobic protein nanoparticles, and uses therefor
EP1774971A1 (en) Chitosan and heparin nanoparticles
EP1968638B1 (en) Controlled release gels
BRPI0613234A2 (pt) sistema que inclui nanopartìculas para a libertação de moléculas biologicamente ativas, composição farmacêutica, composição cosmética, vacina, procedimento para obtenção de um sistema para a libertação controlada de molécula biologicamente ativa, procedimento para a obtenção de nanopartìculas e utilização de um sistema
ES2280400T3 (es) Suspension coloidal de particulas submicronicas de vectorizacion de principios activos y su modo de preparacion.
WO2010049562A1 (es) Sistemas nanoparticulares elaborados a base de polímeros aniónicos.
WO1998004244A1 (es) Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas
JP5491119B2 (ja) 薬物含有微粒子を含む医薬組成物およびその製造方法
WO2018196819A1 (zh) 一种包裹有难溶于水药物的蛋白质颗粒及其制备方法
Sadukhan et al. Tailored Bio-Polymeric Nanomicellar Carriers: A Promising approach for the delivery of poorly water soluble Drugs
CN118105334A (zh) 一种可注射的高溶出度巴瑞替尼缓释制剂的制备方法
ES2341165B2 (es) Nanoparticulas de acido colominico y derivados.
Shah et al. chitosan Nanoparticles
MXPA05013920A (es) Nanoparticulas de acido hialuronico
AU2002326564A1 (en) Lipidated glycosaminoglycan particles and their use in drug and gene delivery for diagnosis and therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003765124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2492995

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2003765124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006134785

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521382

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10521382

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003765124

Country of ref document: EP