WO2004005902A1 - Optical measuring method and device therefor - Google Patents

Optical measuring method and device therefor Download PDF

Info

Publication number
WO2004005902A1
WO2004005902A1 PCT/JP2003/008675 JP0308675W WO2004005902A1 WO 2004005902 A1 WO2004005902 A1 WO 2004005902A1 JP 0308675 W JP0308675 W JP 0308675W WO 2004005902 A1 WO2004005902 A1 WO 2004005902A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal corresponding
light
back surface
transparent
front surface
Prior art date
Application number
PCT/JP2003/008675
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Matsumura
Mutsumi Hayashi
Original Assignee
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co., Ltd. filed Critical Toray Engineering Co., Ltd.
Priority to KR1020057000344A priority Critical patent/KR100876257B1/en
Publication of WO2004005902A1 publication Critical patent/WO2004005902A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8908Strip illuminator, e.g. light tube

Definitions

  • the present invention relates to an optical measurement method and an apparatus for measuring the state of the front and back surfaces of a transparent measurement object using laser light.
  • Scattered light from foreign matter adhering to the back surface of the glass substrate is imaged far ahead of the line sensor via the imaging optics, and slightly off the position where the line sensor waits. It is composed of For this reason, foreign matter adhering to the back surface is hardly detected.
  • a mechanism utilizing the basic properties of the optical system is employed, so that the inspection can be performed with high reliability and stability.
  • the optical measuring device described in Japanese Patent No. 26711241 irradiates a glass plate with a laser beam at a first incident angle.
  • a first laser light source for making the laser light incident on the glass plate at a second incidence and angle, and a condensing optical system for condensing light originating from each laser light.
  • the light receiving element receives the condensed light, and performs a predetermined process based on a signal from the light receiving element to detect a foreign substance on the inspection surface of the glass plate.
  • the scattered light is slightly applied when the size of the foreign matter attached to the back surface exceeds the size due to the characteristics of the optical system. Entering into the sensor .. Foreign matter adhering to the back side is detected and mixed together.
  • the irradiation of laser light by the first laser light source and the irradiation of laser light by the second laser light source are independent of each other.
  • the scanning time is doubled.
  • the influence of the saturation of the light receiving element makes it impossible to distinguish between the foreign matter on the front and the foreign matter on the back. Limits inevitably exist, and even with this method, foreign substances adhering to the back surface of a certain size or more are mixedly detected.
  • the present invention has been made in view of the above-described problems, and is transparent without increasing the scanning time, and can improve the measurement accuracy of the measurement target surface of the body. It is an object of the present invention to provide an optical measuring method and an apparatus capable of measuring the state of the backside as well. Summary of the Invention
  • the optical measurement method includes irradiating the surface of the transparent measurement object supported by the support member with a linear laser beam at a predetermined angle from obliquely above, so that the light from the surface of the transparent measurement object and The light from the back side is imaged on the light-receiving part of the detector, which has a corresponding linear light-receiving part by the imaging optics, and performs predetermined processing based on the signals output from both detectors.
  • This method selectively assigns one of the signal corresponding to the front surface and the symbol corresponding to the back surface, and displays the allocation signal corresponding to the front surface and the assignment signal corresponding to the back surface.
  • the optical measurement method of the present invention when the optical measurement method of the present invention is adopted, scanning using laser light only needs to be performed once. Without increasing the time required for scanning, the light from the front and back surfaces of the transparent object to be measured is imaged by the imaging optical system onto the light-receiving part of the corresponding detector, and the measurement object surface is measured. The measurement accuracy can be increased, and the condition of not only the front surface but also the back surface can be measured.
  • the optical measuring device of the present invention irradiates a linear member at a predetermined angle from obliquely above the surface of the transparent measuring object supported by the supporting member and the transparent measuring object supported by the supporting member.
  • Laser light irradiation means imaging optical system for imaging light from the front surface and light from the back surface of the transparent measurement object, and arranged corresponding to the imaging position of each light by the imaging optical system ,
  • a pair of light receiving means having a linear light receiving portion, and performing predetermined processing based on signals output from both light receiving means to selectively generate one of a signal corresponding to the front surface and a signal corresponding to the back surface.
  • the transparent measurement can be performed without increasing the scanning time due to the fact that scanning with laser light only needs to be performed once. Pairing the light from the front and back surfaces of the object with the imaging optical system to form an image on the light-receiving part of the corresponding detector can improve the measurement accuracy of the surface to be measured. It is possible to measure not only the front surface but also the rear surface condition r. '' Brief description of the drawings
  • FIG. 1 is a schematic diagram showing an embodiment of the optical measuring device of the present invention.
  • FIG. 2 is a view showing a result of inspecting a scattered surface of a glass plate on which sphere particles are intentionally scattered, and outputting the scattered particles as surface-attached foreign matter.
  • 'FIG. 3 is a diagram showing the result of inspecting the glass substrate of FIG. 2 on which the true spherical particles are intentionally scattered by turning the glass substrate upside down and turning over the glass substrate, and outputting the result as foreign matter adhering to the back surface.
  • FIG. 1 is a schematic view showing a foreign matter and an inspection device as one embodiment of the optical measurement device of the present invention.
  • This optical measuring device is composed of a transparent measuring object supported by a support mechanism (not shown) (for example, a thin substrate such as a glass substrate for a liquid crystal display device or a substrate with a transparent film for a flat panel display device).
  • a transparent measuring object supported by a support mechanism (not shown) (for example, a thin substrate such as a glass substrate for a liquid crystal display device or a substrate with a transparent film for a flat panel display device).
  • 'A laser light source 2 that irradiates a line beam at a predetermined angle of incidence on the surface of 1, and surface scattered light and back surface scatter generated from the front and back surfaces of the transparent measurement object 1 due to the irradiated line beam
  • the surface measurement data holding unit 7 for holding and generates a two-dimensional optical measurement data corresponding to the surface of the object 1, back -The output signal from the surface light sensor 6 and the operation information of the support
  • the backside measurement data holding unit 8 that holds and stores two-dimensional optical measurement and constant data corresponding to the backside of the object 1, and the optical measurement data held in the frontside measurement data holding unit 7.
  • the front and back judgment processing is performed by inputting the optical measurement data held in the backside measurement data holding section 8 and the front side data corresponding to only the front side of the transparent measurement target 1 and the back side corresponding to only the back side It has a front and back data generation and holding unit 9 that generates and holds data, and a display unit 10 that displays only based on the front surface data and a display unit that displays based only on the back surface data.
  • An encoder that outputs a signal indicating the position of the transparent measurement target 1, and 12 is a control signal and a control signal from a stage operation control unit (included in the measurement data holding unit 7 for the surface in this embodiment).
  • the signal from the Zen coder 1 1 is input.
  • a stage con preparative roller for outputting an operation command with respect to the support mechanism.
  • the laser light source 2 irradiates the surface of the transparent measurement object 1 with a line beam at an incident angle of 45 ° or more and less than 90 °, preferably an incident angle of 0 °.
  • the laser light emitted from the laser light source 2 is preferably S-polarized light and has a wavelength of 400 to 120011 m, and preferably 800 nm.
  • the width of the line beam is preferably set to be equal to the width of the visual field of the front light sensor 5 and the back light sensor 6.
  • the imaging optical system 3 only needs to have a depth of focus smaller than the thickness of the transparent measurement target 1, and preferably has a depth of focus of 12 or less of the thickness of the transparent measurement target 1. In addition, it is preferable that the swell of the transparent measuring object 1 is set to a depth of focus or less.
  • the positions of the front-surface light sensor 5 and the back-surface light sensor 6 depend on the refractive index, thickness, incident angle of laser light, wavelength, etc. of the transparent measuring object 1. In consideration of the position offset value (deviation amount) determined by this method, the position is set to the same position as the position where the front and back surfaces of the transparent and bright measurement object 1 are imaged.
  • the front-side measurement data holding unit 7 and the back-side measurement data holding unit 8 receive signals from the front-side light sensor 5 and the back-side light sensor 6 and the movement data of the transparent measurement target 1 as inputs and correspond to the signals. In this case, two-dimensional optical measurement data corresponding to the front surface and the back surface of the transparent measurement target 1 are generated and held in consideration of the offset value.
  • the front / back data generation / holding unit 9 is an optical measurement corresponding to the same position among the two-dimensional optical measurement data held in the front side measurement 'data holding unit 7 and the back side measurement data holding unit 8. It is determined which optical measurement data to use based on the relationship between the data, and based on this determination result, only the front surface data corresponding to the front surface of the transparent measurement target 1 and the back surface only are supported. It generates and holds backside data.
  • the optical measurement data held in the front-side measurement data holding unit 7 corresponding to the same position is A
  • the optical measurement data held in the back-side measurement data holding unit 8 If the experimental measurement data is B, the output signals of A and B to be handled are both unknown at this time, but become the scattered light intensity signal from the foreign matter attached to either the front surface or the back surface.
  • the surface data corresponding to only the surface of the transparent measurement target 1 if A> kB
  • the data is the data of the foreign matter attached to the front surface
  • the data is the back surface data corresponding to only the back surface of the transparent measurement target 1, that is, the data of the foreign material attached to the back surface.
  • k is a value determined from the intensity ratio between the light from the front surface and the light from the back surface of the transparent measurement object 1, the optical imaging characteristics of the imaging optical system, the depth of focus, and the like.
  • the light intensity from the back surface is about 1/1 of the light intensity from the front surface.
  • k becomes larger than about 2.
  • the operation of the optical measuring device having the above configuration is as follows.
  • the line beam When a line beam is irradiated from the laser light source 2 to the surface of the transparent measuring object 1 at a predetermined incident angle, the line beam refracts based on Snell's law and penetrates into the transparent measuring object 1. It is emitted from the back side. Therefore, the irradiation position of the line beam on the front side of the transparent measurement target 1 and the emission position from the back side are different from each other with reference to the optical axis of the imaging optical system 3, and ideally, the transparent measurement target.
  • the sensor placed at the image formation position of light (scattered light, etc.) from the irradiation position on the front surface is insensitive to light (scattered light, etc.) from the emission position on the back surface of the transparent measurement target 1 (this The light is received by a sensor arranged at the position where the light is focused on the rear surface of the transparent measurement target 1 from the irradiation position).
  • this portion does not affect the sensor.
  • the transparent measurement object 1 When the transparent measurement object 1 is scanned by the line beam from the laser light source 2, light from the line beam incident position of the transparent measurement object 1 is transmitted to the surface by the imaging optical system 3 and through the half mirror 4. An image is formed on the light receiving surface of the optical sensor 5. In addition, although the amount of light is greatly reduced, light from the back surface facing the line beam incident position is received by the imaging optical system 3 and through the half mirror 4, but the depth of focus is transparent. Since it is smaller than the thickness of 1, it becomes out of focus.
  • the line beam is guided to the back surface of the transparent measurement object 1 according to Snell's law and is emitted as it is. Therefore, the back side position directly opposite the line beam incident position and the line beam The position of the back surface to be cut differs from each other. As a result, light from the rear surface position where the light beam is guided is reflected by the imaging optical system 3 and by the half mirror 14 to form an image on the light receiving surface of the rear light sensor 6. .
  • the optical sensor 6 outputs a signal indicating that no foreign matter is present.
  • the output signals of the front-surface light sensor 5 and the back-surface light sensor 6 increase as the size of the foreign matter increases. And the increase in the output signal 'is quite steep at first (the effect of the change in brightness is greater than the effect of the change in image size). In addition, after the influence of the change in luminance is almost eliminated, the output signal gradually increases under the influence of the change in the image size. Therefore, an output signal suitable for the size of the foreign object can be obtained without causing saturation of the output signal. As a result, the presence of foreign matter and its size determination can be made favorable.
  • the signals from the front light sensor 5 and the back light sensor 6 and the movement data of the transparent measuring object 1 are input and, if applicable, the position offset value is taken into account.
  • the measurement data holding unit 7 for the front surface and the measurement data holding unit for the back surface The unit 8 generates two-dimensional optical measurement data respectively corresponding to the front surface and the back surface of the transparent measurement target 1. Hold. Therefore, the front surface measurement data holding unit 7 and the back surface / surface measurement data holding unit 8 hold the front surface measurement data and the back surface measurement data corresponding to the same position.
  • the front and back data generation and holding unit 9 compares the measurement data for the front surface and the measurement data for the back surface corresponding to the same position stored in the measurement data holding unit for front surface 7 and the measurement data holding unit 8 for back surface. Then, which optical measurement data is to be adopted is determined, and based on this determination result, front surface data corresponding only to the front surface of the transparent measurement target 1 and back surface data corresponding only to the back surface are generated. Hold.
  • the display unit 10 can perform a display based on only the front surface data and a display based on only the back surface data.
  • the presence / absence, position, and size of the foreign matter adhering to the back surface can be obtained from the back surface data.
  • only one scan by the laser light source 2 can be used to obtain front surface data corresponding to only the front surface of the transparent measurement target 1 and back surface data corresponding only to the back surface, thereby reducing the required time. You can.
  • the necessity of the front / back separation processing is set. Specifically, for example, when the inspection target is a transparent glass substrate, the front and back separation processing is necessary, and when the inspection target is an opaque substrate, the front and back separation processing is unnecessary. In the latter case, only the inspection result by the table inspection camera is significant, so that the same processing as in the past can be performed (detailed description is omitted).
  • the offset amount of inspection results C and D is corrected.
  • a correction amount for performing this correction it is possible to prepare in advance so that a predetermined value can be set, and the offset deviation is corrected using the predetermined value. Since this correction process is conventionally known, a detailed description will be omitted.
  • a foreign substance existing at the same coordinates is recognized based on the position coordinates of the detection results C and D in which the offset deviation has been corrected.
  • tolerance parameters (0.01 to 5: 00 mm) are set for the same coordinate determination, and foreign objects within this distance are identified. If there are a plurality of foreign substances within this distance, only the closer one is identified.
  • the foreign substance information group of C is represented by C & D
  • the foreign substance information group of D is represented by D & C.
  • C-D from which C & D is removed is denoted by C-D
  • D-C from which .D is removed is denoted by D-C.
  • the magnitudes of the detected values are compared for each identified foreign substance.
  • a value multiplied by a predetermined coefficient k is adopted.
  • the coefficient k is a value in the range of 0.:! To 10.0, and is preferably set based on, for example, an actual measurement result.
  • the default value of the coefficient k (e.g., 2.0) preferred to have set arbitrary 0
  • the surface data found by the back inspection camera is (D & C) & (D> k C)
  • FIG. 2 is a diagram showing a result of inspecting a scattered surface of a glass substrate on which sphere particles are intentionally scattered, and outputting the scattered particles as surface-attached foreign matter.
  • the left side is the foreign matter map
  • the periphery is the entire surface of the glass substrate
  • the white square area is the inspection area
  • the gray partial force S is the non-inspection area.
  • the small dots indicate the presence of foreign matter.
  • the histogram (frequency distribution) is shown on the upper right side in FIG. 2, where the horizontal axis represents the size of the foreign substance and the vertical axis represents the number of foreign substances of that size.
  • the lower right in FIG. 2 shows the number of foreign substances and the total number of foreign substances for each of the S, M, and L size classifications. As can be seen from these, about 10,000 foreign substances were detected.
  • Fig. 3 shows the glass substrate of Fig. 2 that is intentionally scattered as spherical particles. It is a figure showing the result of having done.
  • the left side is the foreign matter map
  • the periphery represents the entire surface of the glass substrate
  • the white square region represents the inspection region
  • the gray peripheral portion represents the non-inspection region.
  • the small dots indicate the presence of foreign matter.
  • the histogram (frequency distribution) is shown on the upper right side in FIG. 3, where the horizontal axis represents the size of foreign substances and the vertical axis represents the number of foreign substances of that size. From this histogram, it can be seen that many foreign substances having a size almost in the middle of the horizontal axis are present on the surface of the glass substrate. .. These foreign particles are dispersed particles.
  • the lower right in FIG. 3 shows the number of foreign particles and the total number of foreign particles for each of the S, M, and L size classifications. As can be seen from these, about 10,000 foreign substances were detected.
  • the present invention can be applied to the detection of a defect such as a scratch or a chip on the front and back of a transparent substrate.
  • the present invention can also be applied to the case of detecting the roughness of the front and back surfaces of a substrate.
  • the present invention can be applied to the case of measuring a micropatterned pattern on the front and back of a transparent substrate, and to inspect the pattern.
  • any pattern that allows light transmission for example, a pattern made of a remarkably thin metal thin film formed on a transparent substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An optical measuring device comprising a front surface measurement data holding section (7) for creating and holding two-dimensional optical measurement data corresponding to the front surface of a transparent measurement object (1) by applying a line beam to the surface of the object (1) at a predetermined angle, receiving the front surface light and back surface light generated at the front and back surfaces of the object (1) by means of a front surface light sensor (5) and a back surface light sensor (6), respectively, and receiving the output signal from the front surface light sensor (5) and operation information on a support mechanism, a back surface measurement data holding section (8) for creating and holding two-dimensional optical measurement data corresponding to the back surface of the object (1) by receiving the output signal from the back surface light sensor (6) and operation information on the support mechanism, and a front/back data creating/holding section (9) for creating and holding front surface data and back surface data on the object (1) by receiving both the front surface two-dimensional optical measurement data and the back surface two-dimensional optical measurement data and conducting front/back judgment. Without increasing the time required for scanning, the accuracy of detection of a foreign matter on the surface to be detected is enhanced, and the state of the back surface as well as that of the front surface can be detected.

Description

明細書 光学的測定方法およびその装置 技術分野  Description Optical measuring method and its device
こ の発明はレーザ光を用いて透明測定対象物の表面および裏 面の状態を測定する光学的測定方法およびその装置に関する。 背景技術  The present invention relates to an optical measurement method and an apparatus for measuring the state of the front and back surfaces of a transparent measurement object using laser light. Background art
従来から、 液晶表示装置用のガラス基板、 フラ ッ トパネルデ小 スプレイ装置用の透明膜付き基板な どの薄い基板の表面に付着 した異物の検査を行 う ための光学的測定装置が提案されている。 たと えば、 月 間デイ スプレイ 2 0 0 1年 1 2月号別冊に記載の 発明者らの開.発した異物検査装置では、 結像検出方式と ライ ンセ ンサを組み合わせた装置構成を巧みに利用 して、 裏面に付着した 異物を検出する事無く .、 表面に付着した異物を精度良く 検出する こ と を実現している。  2. Description of the Related Art Conventionally, there has been proposed an optical measurement device for inspecting foreign substances attached to a thin substrate surface such as a glass substrate for a liquid crystal display device and a substrate with a transparent film for a flat panel display device. For example, the foreign substance inspection device disclosed by the inventors described in the separate volume of the Monthly Display in February 2001 issued a clever use of the device configuration that combines the imaging detection method and the sensor. As a result, it is possible to accurately detect foreign matter attached to the front surface without detecting foreign matter attached to the back surface.
ガラス基板の裏面に付着した異物からの散乱光は、 結像光学系 を介してライ ンセンサのはるか前方で、 しかもラィ ンセンサが待 ち構える'位置からわずかに外れた位置に結像される よ う に構成 されている。 このため、 裏面に付着した異物はほとんど検出され るこ とが無い。 この方式では、 光学系の基本的な性質を利用 した メ カニズムを採用 しているため、 信頼性が高く 、 安定して検査で き る とい う ものである。  Scattered light from foreign matter adhering to the back surface of the glass substrate is imaged far ahead of the line sensor via the imaging optics, and slightly off the position where the line sensor waits. It is composed of For this reason, foreign matter adhering to the back surface is hardly detected. In this method, a mechanism utilizing the basic properties of the optical system is employed, so that the inspection can be performed with high reliability and stability.
あるいは、 特許第 2 6 7 1 2 4 1 号公報に記載された光学的測 定装置は、 ガラス板に対して第 1 の入射角度でレーザ光を入射さ せる第 1 のレーザ光源と、 ガラス板に対して第 2の入射,角度でレ 一ザ光を入射させる第 2 の レーザ光源と、各レーザ光に起因する 光を集光する集光光学系と、 集光された光を受光する受光素子と、 受光素子 らの信号に基づいて所定の処理を行ってガラス板の 被検査面の異物を検出するものである。 Alternatively, the optical measuring device described in Japanese Patent No. 26711241 irradiates a glass plate with a laser beam at a first incident angle. A first laser light source for making the laser light incident on the glass plate at a second incidence and angle, and a condensing optical system for condensing light originating from each laser light. The light receiving element receives the condensed light, and performs a predetermined process based on a signal from the light receiving element to detect a foreign substance on the inspection surface of the glass plate.
したがって、 例えば、 ガラス板の裏面に付着した異物の影響を 排除して表面に付着した異物を高精度に検出できる と思われる。  Therefore, for example, it is considered that foreign matter adhering to the front surface can be detected with high accuracy by eliminating the influence of foreign matter adhering to the back surface of the glass plate.
月間ディスプレイ 2 0 0 1 年 1 2月号別冊に記載された異 物検査装置では、 光学系の特性上、 裏面に付着した異物も有る大 きさ以上になる と、 わずかながらこの散乱光がライ ンセンサに入.. つてきてしまい、 裏面に付着した異物を混在して検出してしま う -事になる。  In the foreign object inspection device described in the separate volume of the Monthly Display for February 2001, the scattered light is slightly applied when the size of the foreign matter attached to the back surface exceeds the size due to the characteristics of the optical system. Entering into the sensor .. Foreign matter adhering to the back side is detected and mixed together.
たとえは、 L C D用の 1。 1 m mのガラス'基板を表面の Ι μ ιη 以上の異物を.検出しよ う とする と、 裏面の 2 0 μ πι以上の異物を 同時に検出し しま う事になる。 通常の L C D工程内には、 2 0 μ m程度のごみはほとんと存在しないため、 実用上の問題はそれ ほど大き く ないが、裏面に付着した異物を完全に検出しないこと が望ましい。  For example, one for LCD. Attempting to detect foreign matter with a size of Ιμιη or more on the front surface of a 1mm glass substrate will simultaneously detect foreign matter with a size of 20μπι or more on the back surface. Since practically no dust of about 20 μm is present in the ordinary LCD process, the practical problem is not so large. However, it is desirable not to completely detect foreign matter adhering to the back surface.
さ らに当然の事ながら、 この方式では、 裏面に付着した異物を 排除しょ う と しているだけで、 裏面に付着した異物を検出するこ とは出来なかった。  Naturally, this method could not detect foreign substances adhering to the back surface, only to remove foreign substances adhering to the back surface.
特許第 2 6 7 1 2 4 1号公報に記載された光学的測定装置で は、 第 1 のレーザ光源によるレーザ光の照射と第 2のレ一ザ光源 による レーザ光の照射とを互いに独立させて行わなければなら ないので、 スキャ ン所要時間が 2倍になってしま う という不都合 がある。 また、集光光学系によ り集光ざれた光を受光素子に導,いている ので、 受光素子の飽和の影響を受けて、 表の異物と裏の異物とを 区別できなく なってしま う限界が必然的に存在し、 この方式でも、 ある大き さ以上の裏面に付着した異物を混在して検出してしま う。 In the optical measuring device described in Japanese Patent No. 26711241, the irradiation of laser light by the first laser light source and the irradiation of laser light by the second laser light source are independent of each other. The scanning time is doubled. In addition, since the light condensed by the condensing optical system is guided to the light receiving element, the influence of the saturation of the light receiving element makes it impossible to distinguish between the foreign matter on the front and the foreign matter on the back. Limits inevitably exist, and even with this method, foreign substances adhering to the back surface of a certain size or more are mixedly detected.
さ らに、 ガラス板の ¾面に付着した異物のみを検出しているだ けであるから、 ガラス板の裏面に付着した異物を検出するこ とは できない。 具体的には、 ガラス板の表面の状態を検出'できるだけ ,であって、 裏面の状態を検出することはできなかった。  Furthermore, since only foreign substances adhering to the lower surface of the glass plate are detected, foreign substances adhering to the rear surface of the glass plate cannot be detected. Specifically, the state of the front surface of the glass plate could be detected as much as possible, and the state of the back surface could not be detected.
この発明は上記の問題点に鑑みてなされたものであり、 スキヤ ン所要時間を増大させるこ となく 、 透明.体の測定対象面の測定精 度を高めるこ とができ、 しかも、 表面のみならず裏面の状態をも 測定するこ とができる光学的測定方法およびその装置を提供す るこ とを目的.と している。 発明の要約  The present invention has been made in view of the above-described problems, and is transparent without increasing the scanning time, and can improve the measurement accuracy of the measurement target surface of the body. It is an object of the present invention to provide an optical measuring method and an apparatus capable of measuring the state of the backside as well. Summary of the Invention
本発明の光学的測定方法は、 支持部材によ り支持された透明測 定対象物の表面に斜め上方から所定角度で直線状のレーザ光を 照射し、 透明測定対象物の表面からの光および裏面からの光を結 像光学系によ りそれぞれ対応する、 庳線状の受光部を有する、 検 出器の受光部に結像させ、 両検出器から出力された信号に基づく 所定の処理を行って、 選択的に表面に対応する信号、 裏面に対応 する 言号の一方に割り 当て、 表面に対応する割り 当て信号、 裏面 に対応する割り当て信号をそれぞれ表示する方法である。  The optical measurement method according to the present invention includes irradiating the surface of the transparent measurement object supported by the support member with a linear laser beam at a predetermined angle from obliquely above, so that the light from the surface of the transparent measurement object and The light from the back side is imaged on the light-receiving part of the detector, which has a corresponding linear light-receiving part by the imaging optics, and performs predetermined processing based on the signals output from both detectors. This method selectively assigns one of the signal corresponding to the front surface and the symbol corresponding to the back surface, and displays the allocation signal corresponding to the front surface and the assignment signal corresponding to the back surface.
したがって、 本発明の光学的測定方法を採用した場合には、 レ 一ザ光によるスキャンを 1 回だけ行えばよいこ と に起因してス キャ ン所要時間を増大させる事なく 、 透明測定対象物の,.表面、 裏 面からの光を結像光学系によって対応する検出器の受光部に結 像させるこ とに起因して測定対象面の測定精度を高めるこ と力 S でき、 しかも、 表面のみならず裏面の状態をも測定することがで きる。 Therefore, when the optical measurement method of the present invention is adopted, scanning using laser light only needs to be performed once. Without increasing the time required for scanning, the light from the front and back surfaces of the transparent object to be measured is imaged by the imaging optical system onto the light-receiving part of the corresponding detector, and the measurement object surface is measured. The measurement accuracy can be increased, and the condition of not only the front surface but also the back surface can be measured.
' 本発明の光学的測定装置は、透明測定対象物を支持する支持部 材と、 支持部材により支持された透明測定対象物の表面に斜め上 方から所定角度で直線状のレーザ光を照射する レーザ光照射手 段と、 透明測定対象物の表面からの光およぴ裏面からの光を結像 させる結像光学系と、 結像光学系による各光の結像位置に対応し て配置された、 直線状の受光部を有する、 1対の受光手段と、 両 受光手段から出力された信号に基づく所定の処理を行って、 選択 的に表面に対応する信号、 裏面に対応する信号の一方に割り 当て る処理手段と.、 表面に対応する割り 当て信号、 裏面に対応する割 り 当て信号をそれぞれ表示する表示手段とを含むものである。 したがって、 本発明の光学的測定装置を採用した場合には、 レ 一ザ光によ るス キャ ンを 1 回だけ行えばよいこ と に起因してス キャン所要時間を増大させる事なく 、 透明測定対.象物の表面、 裏 面からの光を結像光学系によって対応する検出器の受光部に結 像させるこ とに起因して測定対象面の測定精度を高める こ とが でき、 しかも、 表面のみならず裏面の状態 ¾rも測定するこ とがで さる。 ' 図面の簡単な説明  '' The optical measuring device of the present invention irradiates a linear member at a predetermined angle from obliquely above the surface of the transparent measuring object supported by the supporting member and the transparent measuring object supported by the supporting member. Laser light irradiation means, imaging optical system for imaging light from the front surface and light from the back surface of the transparent measurement object, and arranged corresponding to the imaging position of each light by the imaging optical system , A pair of light receiving means having a linear light receiving portion, and performing predetermined processing based on signals output from both light receiving means to selectively generate one of a signal corresponding to the front surface and a signal corresponding to the back surface. It includes a processing means for allocating, and a display means for displaying an allocation signal corresponding to the front side and an allocation signal corresponding to the back side. Therefore, when the optical measuring device of the present invention is adopted, the transparent measurement can be performed without increasing the scanning time due to the fact that scanning with laser light only needs to be performed once. Pairing the light from the front and back surfaces of the object with the imaging optical system to form an image on the light-receiving part of the corresponding detector can improve the measurement accuracy of the surface to be measured. It is possible to measure not only the front surface but also the rear surface condition r. '' Brief description of the drawings
第 1図は、 この発明の光学的測定装置の一実施形態を示す概略 図である。 第 2図は、 真球の粒子を意図的に散布したガラス ¾板,の散布面 を検査し、 表面付着異物と して出力された結果を示す図である。 ' 第 3図は、 真球の粒子を意図的に散布した第 2図のガラス基板 を、 上下を反転させて裏返して検査し、 裏面付着異物と して出力 された結果を示す図である。 発明を実施するための最良の形態 FIG. 1 is a schematic diagram showing an embodiment of the optical measuring device of the present invention. FIG. 2 is a view showing a result of inspecting a scattered surface of a glass plate on which sphere particles are intentionally scattered, and outputting the scattered particles as surface-attached foreign matter. 'FIG. 3 is a diagram showing the result of inspecting the glass substrate of FIG. 2 on which the true spherical particles are intentionally scattered by turning the glass substrate upside down and turning over the glass substrate, and outputting the result as foreign matter adhering to the back surface. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 この発明の光学的測定方法および その装置の実施の形態を詳細に説明する。 ' · 第 1 図はこの発明の光学的測定装置の一実施形態である異物, 検査装攉を示す概略図である。  Hereinafter, embodiments of an optical measurement method and an optical measurement apparatus according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing a foreign matter and an inspection device as one embodiment of the optical measurement device of the present invention.
この光学的測定装置は、 '図示しない支持機構によ り支持された 透明測定対象物 (例えば、 液晶表示装置用のガラス基板、 フラ ッ トパネルディ.スプレイ装置用の透明膜付き基板などの薄い基板) ' 1 の表面に対して、 所定の入射角でラインビームを照射する レー ザ光源 2 と、 照射されたライ ンビームに起因して透明測定対象物 1 の表面、 裏面から生じる表面散乱光、 裏面散乱光を結像させる 結像光学系 3 と、 結像位置よ り も上流側の所定位置に設けられた ハーフミ ラー 4 と、 ハーフミ ラー 4を透過した表面光の結像位置 に受光面が位置するよ う に配置された表面光用センサ 5 と、 ハ ー フ ミ ラー 4 によ り反射された裏面光の結像位置に受光面が位置 するよ うに配置された裏面光用センサ 6 と、 表面光用センサ 5か らの出力信号お :よび支.持機構の動作情報を入力と して透明測定 、対象物 1 の表面に対応する 2次元の光学的測定データを生成し て保持する表面用測定データ保持部 7 と、 裏-面光用センサ 6から の出力信号および支持機構の動作情報を入力と して透明測定対 象物 1 の裏面に対応する 2次元の光学的測,定データを^成して 保持する裏面用測定データ保持部 8 と、 表面用測定データ保持部 7に保持されている光学的測定データ と裏面用測定データ保持 部 8 に保持されている光学的測定データ とを入力と して表裏判 定処理を行い、 透明測定対象物 1の表面のみに対応する表面デー タおよび裏面のみに対応する裏面データを生成して保持する表 裏データ生成保持部 9 と、 表面データのみに基づく表示おょぴ裏 面データのみに基づく表示を行う表示部 1 0 とを、 有している なお、 1 1 は透明測定対象物 1 の位置を示す信号'を出力するエ ンコーダ、 1 2はステージ動作制御部 (この実施形態では表面用.. 測定データ保持部 7に含まれている) からの制御信号およぴェン コーダ 1 1 .からの信号を入力と して支持機構に対する動作指令 を出力するステージコン ト ローラである。 This optical measuring device is composed of a transparent measuring object supported by a support mechanism (not shown) (for example, a thin substrate such as a glass substrate for a liquid crystal display device or a substrate with a transparent film for a flat panel display device). 'A laser light source 2 that irradiates a line beam at a predetermined angle of incidence on the surface of 1, and surface scattered light and back surface scatter generated from the front and back surfaces of the transparent measurement object 1 due to the irradiated line beam An imaging optical system 3 for imaging light, a half mirror 4 provided at a predetermined position upstream of the imaging position, and a light receiving surface located at an imaging position of surface light transmitted through the half mirror 4. Surface light sensor 5, a back light sensor 6 arranged so that the light receiving surface is located at an image forming position of the back light reflected by the half mirror 4, and a surface light sensor Exit from 5 Signal Contact:. Yobi支transparent measured as input operation information of the lifting mechanism, the surface measurement data holding unit 7 for holding and generates a two-dimensional optical measurement data corresponding to the surface of the object 1, back -The output signal from the surface light sensor 6 and the operation information of the support The backside measurement data holding unit 8 that holds and stores two-dimensional optical measurement and constant data corresponding to the backside of the object 1, and the optical measurement data held in the frontside measurement data holding unit 7. The front and back judgment processing is performed by inputting the optical measurement data held in the backside measurement data holding section 8 and the front side data corresponding to only the front side of the transparent measurement target 1 and the back side corresponding to only the back side It has a front and back data generation and holding unit 9 that generates and holds data, and a display unit 10 that displays only based on the front surface data and a display unit that displays based only on the back surface data. An encoder that outputs a signal indicating the position of the transparent measurement target 1, and 12 is a control signal and a control signal from a stage operation control unit (included in the measurement data holding unit 7 for the surface in this embodiment). The signal from the Zen coder 1 1 is input. A stage con preparative roller for outputting an operation command with respect to the support mechanism.
前記レーザ光源 2 は、 透明測定対象物 1 の表面に対して、 4 5 ° 以上、 9 0 ° 未満の入射角度、 好ましく はぎ 0 ° の入射角度 でライ ンビームを照射する ものである。 そ して、 レーザ光源 2か ら出射される レーザ光は、 好ましく は S偏光で波長が 4 0 0〜 1 2 0 0 11 m、 好ま しく は 8 0 0 n mである。 また、 ラインビーム の幅は、 表面光用センサ 5、 裏面光用センサ 6の視野幅と同等の 幅に設定することが好ましい。  The laser light source 2 irradiates the surface of the transparent measurement object 1 with a line beam at an incident angle of 45 ° or more and less than 90 °, preferably an incident angle of 0 °. The laser light emitted from the laser light source 2 is preferably S-polarized light and has a wavelength of 400 to 120011 m, and preferably 800 nm. Further, the width of the line beam is preferably set to be equal to the width of the visual field of the front light sensor 5 and the back light sensor 6.
* 前記結像光学系 3 は焦点深度が透明測定対象物 1 の厚みよ り も小さいものであればよく 、 焦点深度が透明測定対象物 1 の厚み の 1 2以下であることが好ましい。 また、 透明測定対象物 1 のう ねり などをこ 焦点深度以下に納めるこ とが好ましい。  * The imaging optical system 3 only needs to have a depth of focus smaller than the thickness of the transparent measurement target 1, and preferably has a depth of focus of 12 or less of the thickness of the transparent measurement target 1. In addition, it is preferable that the swell of the transparent measuring object 1 is set to a depth of focus or less.
前記表面光用センザ 5、 裏面光用センサ 6 の配置位置は、 透明 測定対象物 1 の屈折率、 厚み、 レーザ光の入射角度、 波長などに よ り定まる位置オフセッ ト値 (ズレ量). を考慮して、 透,明測定対 象物 1 の表面、 裏面が結像される位置と等しい位置に設定される。 The positions of the front-surface light sensor 5 and the back-surface light sensor 6 depend on the refractive index, thickness, incident angle of laser light, wavelength, etc. of the transparent measuring object 1. In consideration of the position offset value (deviation amount) determined by this method, the position is set to the same position as the position where the front and back surfaces of the transparent and bright measurement object 1 are imaged.
前記表面用測定データ保持部 7、 裏面用測定データ保持部 8は、 表面光用センサ 5、 裏面光用センサ 6 からの信号、 および透明測 定対象物 1 の移動データを入力と し、 かつ該当する場合にはオフ セッ ト値を考慮して、 透明測定対象物 1 の表面、 裏面にそれぞれ 対応する 2次元の光学的測定データを生成して保持するもので ある。  The front-side measurement data holding unit 7 and the back-side measurement data holding unit 8 receive signals from the front-side light sensor 5 and the back-side light sensor 6 and the movement data of the transparent measurement target 1 as inputs and correspond to the signals. In this case, two-dimensional optical measurement data corresponding to the front surface and the back surface of the transparent measurement target 1 are generated and held in consideration of the offset value.
前記表裏データ生成保持部 9は、 前記表面用測定'データ保持部 7、裏面用測定データ保持部 8に保持されている 2次元の光学的 測定データのう ち、 同一位置に対応する光学的測定デ一タ どう し の関係に基づいて何れの光学的測定データを採用するかを判定 ' し、 この判定結果に基づいて透明測定対象物 1 の表面のみに対応 する表面データおよび裏面のみに対応する裏面データを生成し て保持するものである。 具体的に異物検査装置の場合には、 同一 位置に対応させて表面用測定データ保持部 7 に保持されている 光学的測定データを A、 裏面用測定データ保持部 8 に保持されて "いる光学的測定データを B と した場合に、 取り扱う A、 Bの出力 信号は双方と も、 この時点では不明だが表面か裏面かどちらかに 付着した異物からの散乱光強度信号になる 基本的に異物が大き く なれば散乱光強度も大き く なる特性がある。 結像光学系と直線 状の受光部すなわちライ ンセンサを用いているので、 この出力信 号をその異物の像の総輝度信号とする と、 異物の大き さの増加に 伴う この出力信号の増加は、 当初はかなり急峻である (像の大き さの変化による影響だけでなく 、 輝度の変化による影響も大き い) また、 散乱光強度が増加に伴って輝度が飽和して、 輝度の変 化による影響がほとんどなく なった後は、'像の大ききの,影響を受 けて出力信号が緩やかに増加する。 従って、 出力信号の飽和を生 じさせること無く 、 異物の大きさに見合った出力信号を得るこ と ができる。 The front / back data generation / holding unit 9 is an optical measurement corresponding to the same position among the two-dimensional optical measurement data held in the front side measurement 'data holding unit 7 and the back side measurement data holding unit 8. It is determined which optical measurement data to use based on the relationship between the data, and based on this determination result, only the front surface data corresponding to the front surface of the transparent measurement target 1 and the back surface only are supported. It generates and holds backside data. Specifically, in the case of a foreign matter inspection device, the optical measurement data held in the front-side measurement data holding unit 7 corresponding to the same position is A, and the optical measurement data held in the back-side measurement data holding unit 8 If the experimental measurement data is B, the output signals of A and B to be handled are both unknown at this time, but become the scattered light intensity signal from the foreign matter attached to either the front surface or the back surface. Since the intensity of the scattered light increases as the size increases, since the imaging optical system and the linear light receiving unit, that is, the line sensor, are used, if this output signal is used as the total luminance signal of the image of the foreign matter, However, the increase in the output signal with the increase in the size of the foreign substance is quite steep at first (not only due to the change in the image size but also to the change in the luminance). With the increase Degree is saturated, change of brightness After the influence of the image has almost disappeared, the output signal gradually increases under the influence of the large image. Therefore, an output signal suitable for the size of the foreign object can be obtained without causing saturation of the output signal.
さ らには、 この A、 Bそれぞれの信号を比較して状の受光部す なわちラインセンサを用いているので、 A > k Bならば透明測定 対象物 1 の表面のみに対応する表面データすなわち表面に付着 した異物のデータ と し、 逆に、 A≤ k Bならば透明測定対象物 1 の裏面のみに対応する裏面データすなわち裏面に付着した異物 のデータ とする。 なお、 kは、 透明測定対象物 1 の表面からの光. と裏面からの光との強度比や結像光学系の光学的結像特性、 焦点 深度等によ り求まる値である。 例えば、 レーザ光と して S偏光を 採用 し、 入射角度を 8 0 ° に設定した場合には、 裏面からの光強 度が表面から.の光強度の約 1 / 1になる。 これに光学的特性をか ね合わせる と kはおよそ 2 よ り も大きな値になる。  Furthermore, since the signals of A and B are compared and the shape of the light receiving unit, that is, the line sensor, is used, if A> kB, the surface data corresponding to only the surface of the transparent measurement target 1 if A> kB That is, the data is the data of the foreign matter attached to the front surface, and conversely, if A≤kB, the data is the back surface data corresponding to only the back surface of the transparent measurement target 1, that is, the data of the foreign material attached to the back surface. Here, k is a value determined from the intensity ratio between the light from the front surface and the light from the back surface of the transparent measurement object 1, the optical imaging characteristics of the imaging optical system, the depth of focus, and the like. For example, when S-polarized light is used as the laser beam and the incident angle is set to 80 °, the light intensity from the back surface is about 1/1 of the light intensity from the front surface. When this is taken into account with the optical characteristics, k becomes larger than about 2.
さ らに、 前述の出力信号の増加が緩やかになる前後で、 この判 定式を使い分けることで、 よ り精度の高い判定を実施することが できる。 すなわち、 この時判定式はよ り複雑な非線形の判定式に なる。  Furthermore, by using this determination formula properly before and after the increase in the output signal becomes more gradual, a more accurate determination can be performed. That is, at this time, the decision formula becomes a more complicated nonlinear decision formula.
上記の構成の光学的測定装置の作用は次のとおりである。  The operation of the optical measuring device having the above configuration is as follows.
レ ザ光源 2から透明測定対象物 1 の表面に所定の入射角度 でライ ンビームを照射すれば、 このライ ンビームは、 スネルの法 則に基づく屈折を行って透明測定対象物 1 の内部に侵入し、 裏面 から出射する。 したがって、 ラインビームの透明測定対象物 1 の 表面への照射位置と裏面からの出射位置とは、 結像光学系 3の光 軸を基準と して互いに異なり、 理想的には、 透明測定対象.物 1 の 表面への照射位置からの光 (散乱光など) の結像位置に,.配置され たセンサは透明測定対象物 1 の裏面の出射位置からの光 (散乱光 など) には不感となる (この光は透明測定対象物 1 の裏面への照 射位置からの光の結像位置に配置されたセンサによ り受光され る)。 また、 透明測定対象物 Γの表面への照射位置と正対する裏 面にはラインビームが照射されないので、 この部分もセンサには 影響を及ぼさないこ とになる。 When a line beam is irradiated from the laser light source 2 to the surface of the transparent measuring object 1 at a predetermined incident angle, the line beam refracts based on Snell's law and penetrates into the transparent measuring object 1. It is emitted from the back side. Therefore, the irradiation position of the line beam on the front side of the transparent measurement target 1 and the emission position from the back side are different from each other with reference to the optical axis of the imaging optical system 3, and ideally, the transparent measurement target. Object 1 The sensor placed at the image formation position of light (scattered light, etc.) from the irradiation position on the front surface is insensitive to light (scattered light, etc.) from the emission position on the back surface of the transparent measurement target 1 (this The light is received by a sensor arranged at the position where the light is focused on the rear surface of the transparent measurement target 1 from the irradiation position). In addition, since the line beam is not irradiated on the back surface directly opposite to the irradiation position on the surface of the transparent measurement object Γ, this portion does not affect the sensor.
しかし、 実際には、 レーザ光の性質上、 透明測定対象物 1 の表. 面への照射位置と正対する裏面にもわずかな光が照射されるの で、 センサに影響を及ぼす可能性があり、 光学的測定誤差をもた らす原因となる。  However, in practice, due to the nature of the laser light, even a small amount of light is radiated to the front surface of the transparent measurement object 1 and the back surface opposite to the irradiation position, which may affect the sensor. However, this may cause an optical measurement error.
この実施形態はこのよ うな実状を考慮したものであり、 以下の' 処理を行う こ とによ り、 光学的測定誤差を大幅に抑制するこ とが でき る。 .  In this embodiment, such a situation is taken into account, and by performing the following processing, optical measurement errors can be significantly suppressed. .
さ らに説明する。  This will be explained further.
レーザ光源 2 からのライ ンビームによ り透明測定対象物 1 を スキヤンすれば、 透明測定対象物 1 のラインビーム入射位置から の光が結像光学系 3によ り、 かつハーフミラー 4を通して、 表面 光用センサ 5の受光面に結像される。 また、 光量は大幅に減少す るものの、 ライ ンビーム入射位置に正対する裏面からの光が結像 光学系 3 によ り 、 かつハーフミ ラー 4を通して受光されるが、 焦 点深度が透明測定対象物 1 の厚みよ り も小さいので、 ピンボケ状 態となる。  When the transparent measurement object 1 is scanned by the line beam from the laser light source 2, light from the line beam incident position of the transparent measurement object 1 is transmitted to the surface by the imaging optical system 3 and through the half mirror 4. An image is formed on the light receiving surface of the optical sensor 5. In addition, although the amount of light is greatly reduced, light from the back surface facing the line beam incident position is received by the imaging optical system 3 and through the half mirror 4, but the depth of focus is transparent. Since it is smaller than the thickness of 1, it becomes out of focus.
また、 前記ラインビームは、 スネルの法則にしたがって透明測 定対象物 1 の裏面に導かれ、 そのまま出射される。 したがって、 ライ ンビーム入射位置に正対する裏面位置と、 ライ ンビームが導 かれる裏面位置とは互いに異なる。 この結果、 ライ ンビ广ムが導 かれる裏面位置からの光が結像光学系 3によ り、 かつハーフミ ラ 一 4によ り反射されて、 裏面光用センサ 6の受光面に結像される。 Further, the line beam is guided to the back surface of the transparent measurement object 1 according to Snell's law and is emitted as it is. Therefore, the back side position directly opposite the line beam incident position and the line beam The position of the back surface to be cut differs from each other. As a result, light from the rear surface position where the light beam is guided is reflected by the imaging optical system 3 and by the half mirror 14 to form an image on the light receiving surface of the rear light sensor 6. .
さて、 測定内容を異物検査と した時、 これらの場合において、 ライ ンビームの影響を受ける場所に異物が全く 存在していなけ れば散乱光などの強度が著しく低いので、 表面光用センサ 5、 裏 面光用センサ 6 からは異物が存在していないこ と を示す信号が 出力される。  Now, when the content of the measurement is a foreign substance inspection, in these cases, if there is no foreign substance at the place affected by the line beam, the intensity of scattered light is extremely low. The optical sensor 6 outputs a signal indicating that no foreign matter is present.
' 逆に、 ラインビームの影響を受ける'場所に異物が存在していれ ば散乱光などの強度が高く なるので、 表面光用センサ 5、 裏面光. 用センサ 6 からは異物が存在しているこ と を示す信号が出力さ れる。  Conversely, if there is a foreign substance in the place affected by the line beam, the intensity of scattered light etc. will increase, so the presence of the foreign substance from the front light sensor 5 and the backside light sensor 6 Signals indicating and are output.
ここで、 表面光用センサ 5、 裏面光用センサ 6は、 異物の大 ¾ さの増加に伴.つて出力信号が増加する。 そして、 出力信号の増カロ' は、 当初はかなり急峻である (像の大きさの変化による影響よ り も輝度の変化による影響が大きい)。 また、 輝度の変化による影 響が殆どなく なった後は、 像の大き さの変化による影響を受けて 出力信号が緩やかに増加する。 したがって、 出力 号の飽和を生 じさせることなく 、 異物の大きさに見合った出力信号を得るこ と ができる。 この結果、 異物の存在とその大き さ判定を良好にする ことができる。  Here, the output signals of the front-surface light sensor 5 and the back-surface light sensor 6 increase as the size of the foreign matter increases. And the increase in the output signal 'is quite steep at first (the effect of the change in brightness is greater than the effect of the change in image size). In addition, after the influence of the change in luminance is almost eliminated, the output signal gradually increases under the influence of the change in the image size. Therefore, an output signal suitable for the size of the foreign object can be obtained without causing saturation of the output signal. As a result, the presence of foreign matter and its size determination can be made favorable.
そ して、 表面光用センサ 5、 裏 |g光用センサ 6からの信号、 お よび透明測定対象物 1 の移動データを入力と し、 かつ該当する場 合には位置オフセッ ト値を考慮して、 前記表面用測定データ保持 部 7、 裏面用測定データ保持 :部 8 は、 透明測定対象物 1 の表面、 裏面にそれぞれ対応する 2次元の光学的測定データを生成して 保持する。 したがって、 表面用測定データ保持部 7、 裏,面用測定 データ保持部 8 には、 同じ位置に対応する表面用測定データ、 裏 面用測定データが保持される。 The signals from the front light sensor 5 and the back light sensor 6 and the movement data of the transparent measuring object 1 are input and, if applicable, the position offset value is taken into account. The measurement data holding unit 7 for the front surface and the measurement data holding unit for the back surface : The unit 8 generates two-dimensional optical measurement data respectively corresponding to the front surface and the back surface of the transparent measurement target 1. Hold. Therefore, the front surface measurement data holding unit 7 and the back surface / surface measurement data holding unit 8 hold the front surface measurement data and the back surface measurement data corresponding to the same position.
その後は、 表裏データ生成保持部 9において、 表面用測定デー タ保持部 7、 裏面用測定データ保持部 8 に保持されている同じ位 '置に対応する表面用測定データ、 裏面用測定データを比較して何 れの光学的測定データを採用するかを判定し、 この判定結果に基 づいて透明測定対象物 1 の表面のみに対応する表面データおよ ぴ裏面のみに対応する裏面データを生成して保持する。  After that, the front and back data generation and holding unit 9 compares the measurement data for the front surface and the measurement data for the back surface corresponding to the same position stored in the measurement data holding unit for front surface 7 and the measurement data holding unit 8 for back surface. Then, which optical measurement data is to be adopted is determined, and based on this determination result, front surface data corresponding only to the front surface of the transparent measurement target 1 and back surface data corresponding only to the back surface are generated. Hold.
そして、 表示部 1 0.によって、 表面データのみに基づく表示お よび裏面データのみに基づく表示を行う ことができる。  Then, the display unit 10 can perform a display based on only the front surface data and a display based on only the back surface data.
異物検査装置の場合は表面データから表面に付着する異物の— 有無、 位置、 大きさを得る  In the case of a foreign matter inspection device, the presence / absence, position, and size of foreign matter adhering to the surface are obtained from the surface data
こ とができ、裏面データからは裏面に付着する異物の有無、位置、' 大ききを得るこ とができる。  Thus, the presence / absence, position, and size of the foreign matter adhering to the back surface can be obtained from the back surface data.
したがって、 これらの表示に基づいて、 透明測定対象物 1 の表 面のみならず、 裏面に付着した異物の有無、 異物の密度などを簡 単に、 かつ正確に把握することができる。 また、 例えば、 透明測 定対象物 1 の洗浄の前後に上記の一連の処理を行う こ と によつ て、 洗浄の効果を確認することができる。  Therefore, based on these displays, it is possible to easily and accurately grasp not only the surface of the transparent measurement target 1 but also the presence or absence of foreign matter attached to the back surface, the density of the foreign matter, and the like. Further, for example, by performing the above-described series of processing before and after cleaning the transparent measurement target 1, the effect of the cleaning can be confirmed.
また、 レーザ光源 2によ り 1回のスキャンを行うだけで透明測 定対象物 1 の表面のみに対応する表面データおよび裏面のみに 対応する裏面データを得ることができるので、 所要時間を短縮す るこ とができる。  In addition, only one scan by the laser light source 2 can be used to obtain front surface data corresponding to only the front surface of the transparent measurement target 1 and back surface data corresponding only to the back surface, thereby reducing the required time. You can.
次いで、 本発明の光学的測定方法の他の実施態様を説明する。 なお、 この方法を透明ガラス基板の異物検査に適用 し、 透明ガラ ス基板の表面、 裏面にそれぞれフ ーカスを合わせた表,,検査用カ メ ラ、 裏検查用カメ ラを設け、 表検査用カメ ラ、 裏検査用カメ ラ 'によ り得られる検査結果をそれぞれ C、 Dで表している。 Next, another embodiment of the optical measurement method of the present invention will be described. In addition, this method was applied to the inspection of foreign substances on the transparent glass substrate, Inspection results obtained by the front, back and back inspection cameras with the focus on the front and back of the substrate, respectively, and the front and back inspection cameras Are represented by C and D, respectively.
まず、 表裏分離処理の要否を設定する。 具体的には、 例えば、 検査対象が透明ガラス基板である場合には表裏分離処理が必要 であり 、 検査対象が不透明な基板である場合には、 表裏分離処理 が不要である。 そして、 後者の場合には、 表検耷用カメ ラによる 検査結果のみが意味を持つので、 従来と同様の処理を行えばよい こ とになる (詳細な説明は省略する)。  First, the necessity of the front / back separation processing is set. Specifically, for example, when the inspection target is a transparent glass substrate, the front and back separation processing is necessary, and when the inspection target is an opaque substrate, the front and back separation processing is unnecessary. In the latter case, only the inspection result by the table inspection camera is significant, so that the same processing as in the past can be performed (detailed description is omitted).
そして、 表裏分離処理が必要であると設定された場合には、 検. 查結果 C、 .Dを保存し、 それぞれに関連性があることを認識させ る。 具体的には、 例えば、 関連性があるこ とを示すフラグをセッ 卜する。  If it is determined that front and back separation processing is necessary, save the inspection and inspection results C and .D and make them aware that they are related. Specifically, for example, a flag indicating that there is relevance is set.
その後、 検査結果 C、 Dのオフセッ ト的なずれ量を捕正する。 この補正を行うための補正量と しては、 所定の値を設定できるよ う に予め準備し.ておく こ とが可能であり、 この所定の値を用いて オフセッ トずれを補正する。 なお、 この補正処理は従来公知であ るから、 詳細な説明を省略する。  Then, the offset amount of inspection results C and D is corrected. As a correction amount for performing this correction, it is possible to prepare in advance so that a predetermined value can be set, and the offset deviation is corrected using the predetermined value. Since this correction process is conventionally known, a detailed description will be omitted.
次いで、両検査結果 C、 Dに基づく演算処理の一例を説明する。 先ず、 オフセッ トずれが補正された検查結果 C、 Dの位置座標 を基に、 同一座標に存在する異物を認識する。 ここで、 同一座標 判定には ト レランスパラメータ ( 0 . 0 1 〜 5 。 0 0 m m ) を設 け、 この距離内に存在する異物を同一視する。 また、 この距離内 'に異物が複数存在する場合には、 よ り近い方のみを同一視する。  Next, an example of a calculation process based on both inspection results C and D will be described. First, a foreign substance existing at the same coordinates is recognized based on the position coordinates of the detection results C and D in which the offset deviation has been corrected. Here, tolerance parameters (0.01 to 5: 00 mm) are set for the same coordinate determination, and foreign objects within this distance are identified. If there are a plurality of foreign substances within this distance, only the closer one is identified.
このよ う に同一視された両検查結果 C、 Dの異物データのうち Cの異物情報群を C & Dで表し、 Dの異物情報群を D & Cで表す, また、 C力、ら C &Dを除去したものを C一 Dで表し、,. Dから D & Cを除去したものを D— Cで表す。 In the two detection results C and D thus identified, the foreign substance information group of C is represented by C & D, and the foreign substance information group of D is represented by D & C. Also, C-D from which C & D is removed is denoted by C-D, and D-C from which .D is removed is denoted by D-C.
この場合には、 表 1 に示すよ う に異物の搀出を行う ことができ る。  In this case, foreign substances can be detected as shown in Table 1.
表 1  table 1
Figure imgf000015_0001
また、 表 1 において不明である と されている C &D と D & C と に関しては、 同一視されたそれぞれの異物について検出値の大小 比較を行う。ただし、 Cの検出値をそのまま探用するのではなく、 所定の係数 kを乗算したものを採用する。ここで、係数 kは、 0 . :! 〜 1 0. 0の範囲の値であり、 例えば、 実測結果などに基づい て設定することが好ま しい。 また、 操作の簡単化のために、 係数 kのデフォルト値 (例えば、 2. 0 ) を設定していることが好ま しい 0
Figure imgf000015_0001
For C & D and D & C, which are unknown in Table 1, the magnitudes of the detected values are compared for each identified foreign substance. However, instead of searching for the detected value of C as it is, a value multiplied by a predetermined coefficient k is adopted. Here, the coefficient k is a value in the range of 0.:! To 10.0, and is preferably set based on, for example, an actual measurement result. Further, for simplicity of operation, the default value of the coefficient k (e.g., 2.0) preferred to have set arbitrary 0
この場合には、 表 2に示すよ う に異物の検出を行う ことができ る。  In this case, foreign substances can be detected as shown in Table 2.
表 2  Table 2
C & D k C > D 〇 C & D k C> D 〇
C &D k C≤ D - x ( c表面 =廃棄) C & D k C≤ D-x (c surface = waste)
D & C D≤ k C 〇 D & C D≤ k C 〇
D & C D > k C X (D表面-廃棄) 従って、 表裏の判定は次のとおり になる。 D &CD> k CX (D surface-waste) Therefore, the judgment of front and back is as follows.
表 = ( C - D ) . + { ( C &D) & ( k C〉 D) } Table = (C-D). + {(C & D) & (k C> D)}
裏 二 (D - C ) + { (D & C) & (D k C) } Ura ni (D-C) + {(D & C) & (D k C)}
また、 表検査用カメ ラで見つけた裏面のデータは ( C & D ) & ( k C≤ D ) ,  In addition, the data on the back surface found by the front inspection camera is (C & D) & (k C ≤ D),
裏検査用カメ ラで見つけた表面のデータは (D & C) & (D > k C) The surface data found by the back inspection camera is (D & C) & (D> k C)
となり、 これらは異物検出結果と しては採用されず、廃棄される: 上記の処理を行って異物検出を行った結果を第 2図、 および第 3図に示す。 .  These are not adopted as the foreign substance detection results and are discarded. The results of the above processing and foreign substance detection are shown in FIGS. 2 and 3. .
第 2図は、 真球の粒子を意図的に散布したガラス基板の散布面 を検査し、 表面付着異物と して出力された結果を示す図である。 第 2図中左側が異物マップであり、 周囲がガラス基板の全面を 表し、 白い四.角形の領域が検査領域を表し、 グレーの周囲部分力 S 非検査領域を表している。 そして、 小さい点が異物の存在を表し ている。  FIG. 2 is a diagram showing a result of inspecting a scattered surface of a glass substrate on which sphere particles are intentionally scattered, and outputting the scattered particles as surface-attached foreign matter. In FIG. 2, the left side is the foreign matter map, the periphery is the entire surface of the glass substrate, the white square area is the inspection area, and the gray partial force S is the non-inspection area. And the small dots indicate the presence of foreign matter.
また、 第 2図中右上側がヒ ス ト グラム (度数分布) であり、 横 .軸に異物の大き さ、 縦軸にその大きさの異物の個数を表している c そして、 このヒス トグラムから、 ガラス基板の表面には、 横軸の ほぼ真ん中強の大き さの異物が多く存在しているこ とが分かる。 これらの異物が散布した粒子である。 Also, the histogram (frequency distribution) is shown on the upper right side in FIG. 2, where the horizontal axis represents the size of the foreign substance and the vertical axis represents the number of foreign substances of that size. C From this histogram, It can be seen that the surface of the glass substrate has many foreign substances with a size almost in the middle of the horizontal axis. These foreign particles are dispersed particles.
さ らに、 第 2図中右下には、 S、 M、 Lサイズ分類ごとの異物 個数と トータル異物個数とを表している。 そして、 これらから分 かるよ う に、 約 1万個の異物を検出している。  In addition, the lower right in FIG. 2 shows the number of foreign substances and the total number of foreign substances for each of the S, M, and L size classifications. As can be seen from these, about 10,000 foreign substances were detected.
第 3図は、 真球の粒子を意図.的に散布した第 2図のガラス基板 を、 上下を反転させて裏返して'検査し、 裏面付着異物と して出力 された結果を示す図である。 Fig. 3 shows the glass substrate of Fig. 2 that is intentionally scattered as spherical particles. It is a figure showing the result of having done.
第 3図中左側が異物マップであり、 周囲がガラス基板の全面を 表し、 白い四角形の領域が検查領域を表し、 グレーの周囲部分が 非検査領域を表している。 そして、 小さい点が異物の存在を表し ている。,このマップは、 第 2図のマップを上下反転するよ う に裏 返した状態に類似している。  In FIG. 3, the left side is the foreign matter map, the periphery represents the entire surface of the glass substrate, the white square region represents the inspection region, and the gray peripheral portion represents the non-inspection region. And the small dots indicate the presence of foreign matter. This map is similar to the map in Fig. 2 turned upside down.
また、 第 3図中右上側がヒス トグラム (度数分布) であり、 横 軸に異物の大きさ、 縦軸にその大きさの異物の個数を表している。 そして、 このヒ ス トグラムから、 ガラス基板の表面には、 横軸の ほぼ真ん中強の大き さの異物が多.く存在しているこ とが分かる。.. これらの異物が散布した粒子である。  The histogram (frequency distribution) is shown on the upper right side in FIG. 3, where the horizontal axis represents the size of foreign substances and the vertical axis represents the number of foreign substances of that size. From this histogram, it can be seen that many foreign substances having a size almost in the middle of the horizontal axis are present on the surface of the glass substrate. .. These foreign particles are dispersed particles.
さ らに、 第 3図中右下には、 S、 M、 Lサイズ分類ごとの異物' 個数と トータル異物個数と を表している。 そして、 これらから分 かるよ うに、 .約 1万個の異物を検出している。  In addition, the lower right in FIG. 3 shows the number of foreign particles and the total number of foreign particles for each of the S, M, and L size classifications. As can be seen from these, about 10,000 foreign substances were detected.
第 2図、 および第 3図から分かるよ う に、 表面付着異物、 およ 'び裏面付着異物を精度よく検出できた。  As can be seen from FIG. 2 and FIG. 3, the surface-attached foreign matter and the rear-surface attached foreign matter were accurately detected.
なお、 以上には、 透明基板の表裏の異物の検出を行う具体例を 説明したが、 透明基板の表裏の傷、 欠けなどの欠陥の検出を行う 場合にも適用するこ とができるほか、 透明基板の表裏の粗さの検 出を行う場合にも適用するこ とができる。  Although a specific example of detecting foreign matter on the front and back of a transparent substrate has been described above, the present invention can be applied to the detection of a defect such as a scratch or a chip on the front and back of a transparent substrate. The present invention can also be applied to the case of detecting the roughness of the front and back surfaces of a substrate.
さ らに、 透明基板の表裏に微小パターンニングされたパターン を測定する場合、 そのパタ ンを検査する場合にも適用するこ と ができる。 ただし、 これらの場合には、 光の透過を許容するパタ ーン (例えば、 透明基板に形成された著しく薄い金属薄膜からな るパターン) であればよく 、 パターンの有無に拘らず、'透明基板 の裏面まで光が照射されることを確保できる。  Furthermore, the present invention can be applied to the case of measuring a micropatterned pattern on the front and back of a transparent substrate, and to inspect the pattern. However, in these cases, any pattern that allows light transmission (for example, a pattern made of a remarkably thin metal thin film formed on a transparent substrate) may be used. It can be ensured that light is irradiated to the back surface of the substrate.

Claims

請求の範囲 The scope of the claims
1 . 支持部材によ り支持された透明測定対象物の'表面に斜め上方 から所定角度で直'線状のレーザ光を照射し、 透明測定対象物の表 面からの光おょぴ裏面からの光を結像光学系によ り それぞれ対 応する、 直線状の受光部を有する、 検出器の受光部に結像させく 両検出器から出力された信号に基づく所定の処理を行って、 選択 的に表面に対応する信号、 裏面に対応する信号の一方に割り 当て、 表面に対応する割り 当て信号、 裏面に対応する割り 当て信号をそ れぞれ表示することを特徴とする光学的測定方法。  1. Irradiate a linear laser beam at a predetermined angle from obliquely above the surface of the transparent measurement object supported by the support member, and illuminate the light from the front surface of the transparent measurement object from the back. Each of the light beams corresponds to a corresponding one of the imaging optical systems, has a linear light receiving portion, and forms an image on the light receiving portion of the detector.Performs predetermined processing based on signals output from the two detectors. Optical measurement characterized by selectively assigning one of the signal corresponding to the front surface and the signal corresponding to the back surface, and displaying the assignment signal corresponding to the front surface and the assignment signal corresponding to the back surface, respectively. Method.
2 . 表面に対応する割り 当て信号、 裏面に対応する割り当て信号 に基づく所定の演算を行つて透明測定対象物の表裏の欠陥を表 す信号を生成する請求項 1 に記載の光学的測定方法。  2. The optical measurement method according to claim 1, wherein a predetermined operation is performed based on an assignment signal corresponding to the front side and an assignment signal corresponding to the back side to generate a signal representing a front and back defect of the transparent measurement object.
' 3 . 表面に対応する割り 当て信号、 裏面に対応する割り当て信号 に基づく所定の演算を行つて透明測定'対象物の表裏の異物を表 す信号を生成する請求項 1 に記載の光学的測定方法。  '3. The optical measurement according to claim 1, which performs a predetermined operation based on the assignment signal corresponding to the front side and the assignment signal corresponding to the back side to generate a signal representing the foreign matter on the front and back of the object. Method.
4 . 透明測定対象物 ( 1 ) を支持する支持部材と、  4. a support member for supporting the transparent measurement object (1);
支持部材によ り支持された透明測定対象物 ( 1 ) の表面に斜め 上方から所定角度で直線状のレーザ光を照射する レーザ光照射 手段 ( 2 ) と、  A laser beam irradiation means (2) for irradiating a linear laser beam at a predetermined angle from obliquely above the surface of the transparent measurement object (1) supported by the support member;
透明測定対象物 ( 1 ) の表面からの光および裏面からの光を結 像させる結像光学系 ( 3 ) と、  An imaging optical system (3) for imaging light from the front surface and light from the back surface of the transparent measurement object (1);
結像光学系( 3 )による各光の結像位置に対応して配置された、 直線状の受光部を有する、 1対の受光手段 ( 5 ) " ( 6 ) と、  A pair of light receiving means (5) "(6) having a linear light receiving portion arranged corresponding to an image forming position of each light by the image forming optical system (3);
両受光手段 ( 5 ) ( 6 ) から出力された信号に基づく所定の処δ 理を行って、 選択的に表面に対応する信号、 裏面に対応する信号 の一方に割り当てる処理手段 ( 7 ) ( 8 ) ( 9 ) と、 表面に対応する割り 当て信号、 裏面に対応する割り 当て信号を それぞれ表示する表示手段 ( 1 0 ) 'と Processing means (7) (8) that performs predetermined processing based on the signals output from both light receiving means (5) and (6) and selectively assigns one of a signal corresponding to the front side and a signal corresponding to the back side. ) (9) and Display means (10) 'for displaying the assignment signal corresponding to the front side and the assignment signal corresponding to the back side
を含むことを特徵とす 光学的測定装置。  An optical measurement device comprising:
5 . 前記結像光学系 ( 3 ) は、 ハーフミ ラー ( 4 ) を含んでいる' 請求項 4 に記載の光学的測定装置。  5. The optical measuring device according to claim 4, wherein the imaging optical system (3) includes a half mirror (4).
6 . 表面に対応する割り 当て信号、 裏面に対応する割り 当て信号 に基づく 所定の演算を行って透明測定対象物の表裏の欠陥を表 す信号を生成する信号生成手段をさ らに含む請求項 4または請 求項 5に記載の光学的測定装置。  6. A signal generating means for performing a predetermined operation based on the assignment signal corresponding to the front surface and the assignment signal corresponding to the back surface to generate a signal representing a defect on the front and back of the transparent measurement object. 4. An optical measuring device according to claim 5 or claim 5.
7. 表面に対応する割り 当て信号、 裏面に対応する割り 当て信号 に基づく所定の演算を行って透明測定対象物の表裏の異物を表 す信号を生成する信号生成手段をさ らに含む請求項 4または請 求項 5 に記載め光学的測定装置。  7. A signal generating means for performing a predetermined operation based on the assignment signal corresponding to the front surface and the assignment signal corresponding to the back surface to generate a signal representing foreign matter on the front and back of the transparent measurement object is further provided. Optical measuring device as described in 4 or claim 5.
PCT/JP2003/008675 2002-07-08 2003-07-08 Optical measuring method and device therefor WO2004005902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020057000344A KR100876257B1 (en) 2002-07-08 2003-07-08 Optical measuring method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-198074 2002-07-08
JP2002198074A JP4104924B2 (en) 2002-07-08 2002-07-08 Optical measuring method and apparatus

Publications (1)

Publication Number Publication Date
WO2004005902A1 true WO2004005902A1 (en) 2004-01-15

Family

ID=30112417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008675 WO2004005902A1 (en) 2002-07-08 2003-07-08 Optical measuring method and device therefor

Country Status (5)

Country Link
JP (1) JP4104924B2 (en)
KR (1) KR100876257B1 (en)
CN (1) CN100570342C (en)
TW (1) TW200409912A (en)
WO (1) WO2004005902A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006779A3 (en) * 2003-06-30 2006-02-09 Motorola Inc Unbiased signal to interference ratio in wireless communications devices and methods therefor
US7929129B2 (en) 2009-05-22 2011-04-19 Corning Incorporated Inspection systems for glass sheets

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417205B2 (en) * 2004-08-27 2010-02-17 大日本スクリーン製造株式会社 Substrate processing equipment
JP5082552B2 (en) * 2007-04-05 2012-11-28 コニカミノルタホールディングス株式会社 Optical measuring apparatus and optical measuring method
KR101209857B1 (en) * 2009-02-20 2012-12-10 삼성코닝정밀소재 주식회사 Detection apparatus for particle on the glass and detection method using the same
TWI485392B (en) * 2010-02-08 2015-05-21 Ygk Corp Foreign body inspection device and inspection method
KR101685703B1 (en) * 2010-02-25 2016-12-12 가부시끼가이샤 야마나시 기쥬쯔 고오보오 Alien substance inspection apparatus and inspection method
DE102011103003A1 (en) * 2011-05-24 2012-11-29 Lufthansa Technik Ag Method and device for crack inspection of an aircraft or gas turbine component
JP2013140061A (en) * 2012-01-02 2013-07-18 Yamanashi Gijutsu Kobo:Kk Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
KR20150056713A (en) 2013-11-15 2015-05-27 삼성전자주식회사 Non-destructive inspection system for display panel and method, and non-destructive inspection apparatus therefor
KR102233643B1 (en) * 2014-06-17 2021-04-01 헤래우스 쿼츠 노쓰 아메리카 엘엘씨 Apparatus and method for measurement of transparent cylindrical articles
WO2018085233A1 (en) * 2016-11-02 2018-05-11 Corning Incorporated Method and apparatus for inspecting defects on transparent substrate
JP2018128326A (en) * 2017-02-07 2018-08-16 大塚電子株式会社 Optical spectrum measuring device and method of measuring optical spectrum
CN107764841B (en) * 2017-11-17 2024-03-01 仝人智能科技(江苏)有限公司 Device and method for detecting and distinguishing defects of upper surface and lower surface of transparent glass cover plate
KR102580487B1 (en) * 2018-06-18 2023-09-21 주식회사 케이씨텍 Pad monitoring apparatus and pad monotirng system, pad monitoring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130381A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Device for detecting faulty part on plate surface
JPH06281418A (en) * 1993-03-24 1994-10-07 Asahi Glass Co Ltd Optical thickness measuring method of plate-shaped transparent body having ruggedness
JPH09258197A (en) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd Method for discriminating front and rear defects of glass substrate
JP2000074849A (en) * 1998-08-31 2000-03-14 Toshiba Corp Foreign matter detecting method and device
JP2001208702A (en) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defects
JP2002062122A (en) * 2000-08-23 2002-02-28 Asahi Glass Co Ltd Method and apparatus for measurement of shape of glass sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048144A (en) * 1996-07-31 1998-02-20 Dainippon Printing Co Ltd Glass substrate inspecting instrument

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130381A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Device for detecting faulty part on plate surface
JPH06281418A (en) * 1993-03-24 1994-10-07 Asahi Glass Co Ltd Optical thickness measuring method of plate-shaped transparent body having ruggedness
JPH09258197A (en) * 1996-03-18 1997-10-03 Hitachi Electron Eng Co Ltd Method for discriminating front and rear defects of glass substrate
JP2000074849A (en) * 1998-08-31 2000-03-14 Toshiba Corp Foreign matter detecting method and device
JP2001208702A (en) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd Method and apparatus for inspecting defects
JP2002062122A (en) * 2000-08-23 2002-02-28 Asahi Glass Co Ltd Method and apparatus for measurement of shape of glass sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006779A3 (en) * 2003-06-30 2006-02-09 Motorola Inc Unbiased signal to interference ratio in wireless communications devices and methods therefor
US7929129B2 (en) 2009-05-22 2011-04-19 Corning Incorporated Inspection systems for glass sheets

Also Published As

Publication number Publication date
CN100570342C (en) 2009-12-16
JP2004037400A (en) 2004-02-05
KR100876257B1 (en) 2008-12-26
KR20050035243A (en) 2005-04-15
CN1666100A (en) 2005-09-07
JP4104924B2 (en) 2008-06-18
TW200409912A (en) 2004-06-16
TWI320099B (en) 2010-02-01

Similar Documents

Publication Publication Date Title
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
TWI408360B (en) Apparatus for detecting particles on a glass surface and a method thereof
KR101485192B1 (en) Systems and methods for determining the shape of glass sheets
WO2004005902A1 (en) Optical measuring method and device therefor
US20210341353A1 (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
JP3269288B2 (en) Optical inspection method and optical inspection device
JPH03267745A (en) Surface property detecting method
JPH10160683A (en) Foreign object inspection method and device
TWI412736B (en) A apparatus and method for inspecting inner defect of substrate
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
US6433353B2 (en) Method and apparatus for inspecting surface irregularities of transparent plate
JP2009085691A (en) Inspection device
JP5219487B2 (en) Defect inspection apparatus and defect inspection program
JP3480176B2 (en) Glass substrate front / back defect identification method
JP2010271133A (en) Optical scanning type plane inspection device
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2004219119A (en) Defect inspection method and device
JPH10142160A (en) Method and apparatus for optical inspection
JP2002014058A (en) Method and apparatus for checking
JP3141470B2 (en) Three-dimensional shape detection method and apparatus
TW201128182A (en) Foreign object inspection device and method
JPH09218162A (en) Surface defect inspection device
KR20110097182A (en) Alien substance inspection apparatus and inspection method
JPH067109B2 (en) Optical appearance inspection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038161745

Country of ref document: CN

Ref document number: 1020057000344

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057000344

Country of ref document: KR

122 Ep: pct application non-entry in european phase