WO2004005519A1 - Construcción de una cepa de levadura enológica de saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa, para ser utilizada en la elaboracion de vinos - Google Patents
Construcción de una cepa de levadura enológica de saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa, para ser utilizada en la elaboracion de vinos Download PDFInfo
- Publication number
- WO2004005519A1 WO2004005519A1 PCT/ES2003/000324 ES0300324W WO2004005519A1 WO 2004005519 A1 WO2004005519 A1 WO 2004005519A1 ES 0300324 W ES0300324 W ES 0300324W WO 2004005519 A1 WO2004005519 A1 WO 2004005519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- enzymes
- yeast
- gene
- cerevisiae
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12H—PASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
- C12H1/00—Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages
- C12H1/003—Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages by a biochemical process
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
- C12N1/185—Saccharomyces isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01015—Polygalacturonase (3.2.1.15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
- C12R2001/85—Saccharomyces
- C12R2001/865—Saccharomyces cerevisiae
Definitions
- the PGU1 gene is a gene that codes for the production of polygalacturonases in yeasts.
- Overexpression of the PGU1 gene in the wild yeast strain MR-7 of Saccharomyces cerevisiae results in a polygalacturonase overproduction that is secreted to the yeast culture supernatant .
- These enzymes, polygalacturonases are widely used in the wine industry to perform the racking and clarification of musts and wines which facilitates the filtering tasks of these, since they degrade the pectic substances.
- Pectic substances are a group of complex polysaccharides that appear in varying amounts in all tissues of higher plants. They are located in the intercellular spaces forming part of the middle lamina, and therefore, are primarily responsible for the integrity and coherence of plant tissues. These polymers are constituted by a main chain of units of (1, 4) - ⁇ -D-galacturonic acid partially esterified with methyl groups. The polysaccharides of the grape are the result of the degradation and solubilization of a part of the pectic substances of the skin cell wall and the pulp and these can be pectins or gums. Pectins are chains formed almost exclusively by galacturonic acid units partially esterified by methanol. Gums are the residues of the transformation of the pectic substances of the must, after the action of endogenous or exogenous pectinases (Dubourdieu et al., 1981. Connaisance Vigne Vin. 15: 29-40).
- pectic substances pose a problem as they affect clarification, stabilization and filtration (Pilnik and Rombouts 1985. Carbohydr. Res. 142: 93-105). Pectic substances fill the filter layers during wine filtration. For this reason and to improve filtration problems, pectolytic enzymes are used. Pectic substances are naturally degraded by pectic enzymes. Pectic enzymes, pectinases or pectolytic enzymes are classified into pectinases and depolymerizing enzymes.
- Pectinesterase PME
- PME Pectinesterase
- Depolymerases break the ⁇ - (1, 4) bonds between galacturonic acid residues of the pectic substances either by hydrolysis (hydrolases or polygalacturonases) or by ⁇ -elimination (liases). They are produced by numerous fungi and bacteria, some yeasts and higher plants.
- endopolygalacturonases endopolygalacturonases that break the polymer inside the chain, lead to a sharp reduction in viscosity, while the exo-PG, which cut at the ends of the polymer, produce a much smaller reduction in the viscosity.
- Pectic enzymes are produced by plants and microorganisms, although their presence in insects, nematodes and some protozoa has also been described. There are numerous reviews of pectic enzymes (Reková-Benková and Markovic, 1976. Adv. Carbhydr. Chem. Biochem. 33: 323-385; Fogarty WM et al., 1983. Applied Science Pubkishers; Rombouts F..M. Et al. ., 1989. Economic Microbiology. 5: 227-282; Sakai T. et al., 1993. Adv. Appl. Microbiol. 39: 213-294).
- the pectic substances are modified by the action of natural grape pectinases or by industrial enzymes, added during fermentation, to facilitate the clarification and filtration processes.
- pectic enzymes are mainly obtained from Aspergillus niger and consist of a mixture of enzymes, which represent a fairly broad spectrum of enzymatic activities, some of which are considered unfavorable since they give rise to unwanted characteristics in the wine.
- quality and performance are important since, as Sims et al. (1988) demonstrated.
- the present invention proposes the use in the alcoholic fermentation of musts, of a genetically modified yeast, which produces large amounts of enzyme, to achieve the same effects that commercial enzymes, at the level of clarification and filtration of wines, but without the problems that these enzymes entail at the aromatic level of wines and methanol production.
- Table 1 Strains and plasmids used in this study.
- the culture media used for the growth of yeasts and bacteria are described below:
- Yeast extract 1%
- peptone 2%
- glucose 2%
- solid medium 2% bacteriological agar is added.
- YEPD was used as a medium.
- the Polygalacturonic is dissolved in boiling distilled water, the other components are added and finally the pH is adjusted to 8.0.
- the medium contains tryptone (1%), yeast extract (0.5%), sodium chloride (1%) and 2% bacteriological agar. When necessary, the medium was supplemented with ampicillin at a final concentration of 60 ⁇ g / mL.
- wild yeasts were selected and it was checked if they had polygalacturonase + genotype. This check is carried out by PCR and by DNA-DNA hybridization (Southern E.M. 1975. J. Mol. Biol. 98: 503-517). It is found that all wild S. cerevisiae strains tested carry the PGU1 gene (gene encoding the production of polygalacturonase). Subsequently, the polygalacturonase activity is measured in plaque and in a liquid medium, making sure that not all of them have activity, which indicates that some strains of yeast carry the gene but it is not active.
- DNA manipulation (restriction enzyme treatment, ligaments, E. coli transformation, DNA quantification and plasmid isolation was carried out following the methodology described by Sambrook et al. (1989). Molecular cloning: A laboratory manual ( 2nd ed). for the recovery of DNA from agarose gels He used the Biorad kit. Isolation of bacterial plasmid DNA is performed using a commercial kit from Promega (Wizard R Plus Midipreps-DNA Purification System). The genomic DNA isolation of S. cerevisiae was carried out according to the protocol described by Struhl, with slight modifications (Struhl et al, 1979. Proc. Nati. Acad.Sci.USA. 76: 1035-1039).
- PCR Chain polymerization reaction
- the reaction mixture contained 1 ⁇ L of each dNTP (5 mM), 1 ⁇ L of each oligonucleotide (PG-1 and PG-2), 10 ⁇ L (4xl0 6 cells / mL), 10 ⁇ L of the 10X buffer of the Taq DNA Polymerase , 3.5 ⁇ L of MgCl 2 (50 mM), 1 ⁇ L of Taq DNA Polymerase (Promega).
- the volume was completed with sterile mili-Q water. The final reaction volume was 100 ⁇ L.
- PG1 (5 'CGCGGATCCATGATTTCTGCTAATTCATTACTTATTT3')
- PGlr 5 'CGCGGATCCTTAACAGCTTGCACCAGATCCAG3'
- a YNB medium was used for plate detection of peptide enzyme producing strains. The plates were incubated 5 days at 30 ° C and the production of pectic enzymes was detected by adding C1H 6N on the plate as described by Blanco et al, (1994). When the strain is producing enzymes that degrade pectin, a hydrolysis halo appears around the colony, easily recognizable against the opaque medium. Polygalacturonase activity was determined in a liquid medium according to the Somogyi method (Somogy M. 1952. J. Biol .. Chem. 159: 19-23) modified by elson (Nelson NJ. 1957. Academic Press. New York. 3:85 -86).
- test mixture containing 500 ⁇ L of sample (concentrated and dialyzed supernatant) and 500 ⁇ L of substrate (0.5% PGA dissolved in 50 mM acetic buffer-acetate, pH 5.5) was incubated, at 37 ° C, for a period Variable time according to the samples.
- Plasmid pBEJ16-PGUl was used for the transformation of S. cerevisiae MR-7 and this was carried out following the protocol described by Ito et al. (Ito et al, 1983. J. Bacteriol. 153: 163-168). For this, the cells were grown in YEPD until the absorbance, at 600 nm, was between 0.7-0.9. 10 mL of the culture was centrifuged and the cells washed twice with sterile water, resuspended in 1 mL of 0.1 M lithium acetate in TE and incubated at 30 ° C with gentle shaking for 1-2 hours.
- Figure 1 shows the ligation and transfer of E. Coli.
- Figure 2 depicts the recovery of the plasmid with the PGU1 gene.
- the recombinant strain (USC-1), deposited in the Spanish Type Culture Collection (CECT) with the order number CECT 11777, showed a high pectolytic activity (520 U / mL) in liquid medium with respect to the wild strain MR- 7 (142 U / ml).
- the Polygalacturonase activity was determined in the supernatant, dialyzed in acetic-acetate buffer for 24 hours, by Somogy-Nelson.
- the vinification tests were carried out in 10 liter glass containers. These containers were filled with sterile must of the Albari ⁇ o variety (native white variety of Galicia) ._ The pre-circles were prepared with the strains to be studied in Albari ⁇ o must and incubated 24 hours at 30 ° C with 160 rpm. Subsequently they were inoculated by adding the appropriate volume of these cultures, until obtaining a cell density of 10 6 cells / mL. The fermentations are carried out at a temperature of 18 ° C.
- PCR to see the implantation of the strains was performed from whole S. cerevisiae cells following the method of Bellis et al. (Bellis et al., 1987. Nucleic. Acids. Research 15, 16: 6749).
- the oligonucleotides used were designed by Ness et al. (Nessy coL, 1992. J. Sci. Food Agrie.
- Yeast strains were prepared according to the method of Bellis et al. (Bellis et al., 1987. Nucleic. Acids. Research. 15, 16: 6749). Yeasts (50 ⁇ L) were grown in 150 mL of sterile YEPD overnight at 30 ° C and with shaking (100 rpm). The next day they were collected by centrifugation (10 min at 3000 rpm), washed twice in a solution of 0.05 M EDTA, pH 8.5 and resuspended in 2 mL of 0.05 M EDTA. Then 1 mL of this solution was mixed with 1 mL of 1% agarose in 0.05 M EDTA and placed in small molds giving rise to blocks.
- the blocks were incubated in a lysis buffer, for 6 hours at 37 ° C, to destroy the yeast cell walls (0.5 M NaCl, 0.25 M EDTA, 0.125 M Tris HC1, pH 7.5, ⁇ - 0.5 M mercaptoethanol). Subsequently, the lysis buffer was replaced by another solution for 36 hours at 42 ° C to destroy cellular proteins (Streptomyces griseus 1 mg / mL pronase E, 1% sarcosyl, 0.45 M EDTA). The blocks were washed three times for 30 min in TE buffer at 50 ° C (10 mM Tris, pH 8, 1 mM EDTA), and three times for 30 min in the same buffer at room temperature.
- the chromosomes of the yeast are separated according to their size by agarose gel electrophoresis.
- CHEF Counter Clamped Homogeneous Electric Field
- a Pharmacia brand device was used to perform constant voltage migration (165 V) and at a temperature of 10 ° C.
- the electrophoresis conditions are as follows: pressed 90 s for 20 h, pressed 100 s for 12 h, pressed 120 s for 12 h, pressed 30 s for 4 h.
- the yeast chromosomes used as size markers come from a strain of S. cerevisiae (YNN 295).
- the filtered volume was 100 ml through Millipore membranes of 0.45 ⁇ m pore size.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- General Chemical & Material Sciences (AREA)
- Physiology (AREA)
- Food Science & Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Construcción de una cepa de levadura enológica de Saccharomyces cerevisiae recombinante para el gen PGU1, que sobreexpresa una endopoligalacturonasa. La cepa de levadura sintetiza y secreta una poligalacturonasa/pectinasa a concentraciones altas, para su utilización en la industria enológica. Mejora los procesos de clarificación y filtración de los vinos, sin modificar su aroma ni aumentar el nivel de metanol de los mismos.
Description
TÍTULO
Construcción de una cepa de levadura enológica de Saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa.
DESCRIPCIÓN
El gen PGU1 es un gen que codifica para la producción de poligalacturonasas en levaduras. La sobreexpresión del gen PGU1 en la cepa de levadura silvestre MR-7 de Saccharomyces cerevisiae (cepa seleccionada de la microbiota autóctona de la variedad de uva Albariño en Galicia) da lugar a una superproducción de poligalacturonasa que es secretada al sobrenadante de cultivo de la levadura. Estos enzimas, poligalacturonasas, son muy utilizados en la industria enológica para realizar el desfangado y la clarificación de mostos y vinos lo cual facilita las tareas de filtrado de los mismos, ya que degradan las sustancia pécticas.
Las sustancias pécticas son un grupo de polisacáridos complejos que aparecen en cantidad variable en todos los tejidos de plantas superiores. Se localizan en los espacios intercelulares formando parte de la lámina media, y por tanto, son los principales responsables de la integridad y coherencia de los tejidos de las plantas. Estos polímeros están constituidos por una cadena principal de unidades de ácido (l,4)-α-D-galacturónico parcialmente esterificadas con grupos metilo. Los polisacáridos de la uva son el resultado de la degradación y solubilización de una parte de las sustancias pécticas de la pared de las células del hollejo y de la pulpa y estos pueden ser pectinas o gomas. Las pectinas son cadenas formadas casi exclusivamente por unidades de ácido galacturónico parcialmente esterificado por metanol. Las gomas son los residuos de la transformación de las sustancias pécticas del mosto, después de la acción de las pectinasas endógenas o exógenas (Dubourdieu y col., 1981. Connaisance Vigne Vin. 15: 29-40).
En el vino las sustancias pécticas suponen un problema ya que afectan a la clarificación, estabilización y filtración (Pilnik y Rombouts 1985. Carbohydr. Res. 142: 93-105). Las sustancias pécticas colmatan las capas filtrantes durante la filtración de los vinos. Por este motivo y para mejorar los problemas de filtración se utilizan los enzimas pectolíticos. Las sustancias pécticas son degradadas de forma natural por los enzimas pécticos. Los enzimas pécticos, pectinasas o enzimas pectolíticos se clasifican en pectinasas y enzimas depolimerizantes.
HOJA DE SUSTITUCIÓN (REGLA 26)
Pectinesterasas (PME), son los enzimas encargados de liberar los grupos metilo de la pectina, formando ácido péctico. Son producidos por las plantas superiores, numerosos hongos, bacterias y algunas levaduras (Sakai y col., 1993. Science. 230: 1350-1354).
Depolimerasas, rompen los enlaces α-(l,4) entre residuos de ácido galacturónico de las sustancias pécticas bien por hidrólisis (hidrolasas o poligalacturonasas) o por β- eliminación (liasas). Son producidos por numerosos hongos y bacterias, algunas levaduras y por plantas superiores. Las endopoligalacturonasas (endo-PG) que rompen el polímero en el interior de la cadena, dan lugar a una acusada reducción de la viscosidad, mientras que las exo-PG, que cortan en los extremos del polímero, producen una reducción mucho menor de la viscosidad.
Los enzimas pécticos son producidos por plantas y microorganismos, aunque también se ha descrito su presencia en insectos, nematodos y algunos protozoos. Son numerosas las revisiones sobre los enzimas pécticos (Reková-Benková y Markovic, 1976. Adv. Carbhydr. Chem. Biochem. 33: 323-385; Fogarty W.M. y col, 1983. Applied Science Pubkishers; Rombouts F..M. y col., 1989. Economic Microbiology. 5: 227-282; Sakai T. y col, 1993. Adv. Appl. Microbiol. 39: 213-294).
Los enzimas producidos por hongos han sido estudiados especialmente en Aspergillus, porque este hongo se utiliza como fuente productora de poligalacturonasas a nivel industrial (Maldonado y col., 1994. Curr. Microbiol. 28: 193-196). Se han clonado varios genes que codifican para la producción de poligalacturonasas y pectin liasas, especialmente a partir de Aspergillus niger (Gysler y col., 1990. Gene. 89: 101-108; Ruttkowski j col, 1991; Bussink y col, 1991. Mol. Microbiol. 5,6: 1353-1361; Bussink y col, 1992. Eur. J. Biochem. 208:83-90; Ho y col, 1995. Curr. Genet. 27: 141-149; Cary y col, 1995. Gene. 153:129-133). La síntesis de enzimas pécticos en levaduras no está tan extendida como en bacterias y hongos, y además, el espectro de enzimas producidas es más reducido. El enzima producido por las levaduras es casi siempre una poligalacturonasa (endo o exo).
Los primeros autores que estudiaron la presencia de enzimas pécticos en la levadura Saccharomyces cerevisiae fueron Luh y Phaff (Luh B.S. y col, 1954. Arch. Biochem. Biophys. 33: 213-22). Mckay (Mckay 1990. Letters of Applied Microbiology. 11:41-44) publica la degradación de ácido poligalacrurónico por dos cepas de S. cerevisiae. Gainvors y col, (1994) Yeast 10:1311-1319, encontraron la presencia de actividad poligalacturonasa, pectinesterasa y pectato liasa en una cepa de esta levadura; y Blanco y
col, (1994). Can. J. Microbiol. 40: 974-977, caracterizaron la endo-PG de la cepa S. cerevisiae 1389.
Laing y Pretorius, (1993). J. Appl. Bacteriol. 75: 149-158 y Van Resburg y col, (1994). Curr. Genet. 27: 17-22, obtuvieron cepas recombinantes de S. cerevisiae expresando un gen de una pectato liasa de Erwinia chrysanthemi y un gen de una poligalacturonasa de Erwinia carotovora en levaduras de vino. González Candelas y col,
(1995) FEMS Microbiol. Letters. 126: 263-270, construye una cepa recombinante de levadura de vino de la especie S. cerevisiae, expresando un gen que codifica para una pectin liasa de Fusarium solani. Siekstele y col, (1999) Yeast. 15:311-322, realizan la clonación y expresión de un gen que codifica para una endopoligalacturonasa de Kluyveromices marxianus (EPGU1), encontrando que la secuencia de aminoácidos mostraba gran similitud con poligalacturonasas de hongos.
En la industria enológica, durante la transformación del mosto en la vinificación, las sustancias pécticas son modificadas por la acción de pectinasas naturales de la uva o por enzimas industriales, añadidos durante la fermentación, para facilitar los procesos de clarificación y filtración.
Como ya se ha indicado anteriormente, los preparados comerciales de enzimas pécticos se obtienen fundamentalmente de Aspergillus niger y están constituidos por una mezcla de enzimas, que representan un espectro bastante amplio de actividades enzimáticas, alguna de las cuales se consideran desfavorables ya que dan lugar a características no deseadas en el vino. En este sentido, hay que tener en cuenta que la calidad y rendimiento son importantes puesto que, como demostraron Sims y col, (1988).
Am. J. Enol. and Nitic. 39,4: 341-343 y Haight y Gump (1994). Am. J. Enol. and Vitic. 45,1: 113-116, cuando se utilizan preparados comerciales que contienen enzimas de diversos tipos, el rendimiento es mayor que en el caso de utilizar enzimas pécticos únicamente.
Williams y col, (1978) Am. J. Enol. and Nitic. 29:92-96, comprobaron que los vinos clarificados rápidamente eran claros y arrutados, mientras que los que estaban más tiempo en contacto con los residuos tenían malos aromas.
En el caso de vinificación en blanco, estos enzimas pueden dar lugar a una aumento de vinil-fenoles y como consecuencia una depreciación de la calidad aromática del vino.
Esto es debido a que las pectinasas industriales, de Aspergillus niger, contienen actividad de tipo cinamil esterasa (CE) que catalizan la hidrólisis de los esteres tártricos de los ácidos
hidroxicinámicos del mosto durante la fase prefermentativa. Bajo la acción de la cinamato decarboxilasa de S. cerevisiae, los ácidos p-cumarico y ferúlico son transformados en vinil- fenoles (vinil-4-fenol y vinil-4-gaiacol) durante la fermentación alcohólica (Chatonnet y col, 1992. Revue Fran9aise dOenologie. 138: 21-24). El uso de poligalacturonasas de levaduras no provoca el aumento en el contenido de metanol de los vinos. Se sabe que el contenido en metanol de los vinos obtenidos a partir de mostos extraídos con enzimas pécticos comerciales es mayor que el de vinos obtenidos en condiciones controladas en ausencia de estos enzimas (Bertrand y col, 1996. Revue Francaise dOenologie. 157: 28-30). Este último dato es un factor a tener en cuenta, ya que durante la actuación de las pectinasas de Aspergillus niger se liberan estos grupos metilo al medio, los cuales influyen negativamente sobre las características organolépticas de los vinos obtenidos a partir de estos mostos.
Otros autores (Gainvors y col, 1994. Yeast 10: 1311-1319), manifiestan el interés enológico de una fuente pectinolítica natural, presente en las levaduras de vinificación, sin el riesgo que producen los preparados enzimáticos procedentes de Aspergillus niger y otros hongos. Delfíni C, 1994. Assoc. Enol. Enotec. Ital. Sciacia., destaca la gran utilidad que tiene el disponer de una cepa de levadura con alta actividad pectolítica, ya que además ayudaría a extraer de la piel de la uva las moléculas precursoras del aroma que se incorporarían al proceso normal de la fermentación.
Belarbi y Lemaresquier, 1994. Assoc. Enol. Enotec. Ital. Sciacia, evidenciaron la efectividad de la cepa C94 de S. cerevisiae en la clarificación de los vinos, atribuyéndola a la actividad pectolítica que disminuía la viscosidad del mosto.
En este sentido Gainvors y col, 1994. Yeast 10: 1311-1319, demuestra que añadir al mosto un extracto enzimático de S. cerevisiae (SCPP 2180) con actividad pectinesterasa, pectinliasa y poligalacturonasa tiene el mismo efecto sobre la turbidez que la misma cantidad de la preparación comercial Endozyme (Pascal Biotech SARL-Paris). Blanco y col, 1997. Tesis Doctoral, Universidad de Santiago de Compostela, demuestran también que en la fermentación del vino, llevada a cabo con cepas de levadura de S. cerevisiae poligalacturonasa +, el proceso de clarificación es mas fácil y el tiempo de filtración se reduce en un 50% en algunos casos.
La presencia de poligalacturonasas en cepas de S. cerevisiae también fue descrita en un 75% de las cepas de S. cerevisiae aisladas en fermentaciones espontáneas de mostos del NW de España.
Debido a los problemas que supone la utilización de enzimas pectolíticos comerciales en la elaboración de los vinos, la presente invención propone el uso en la fermentación alcohólica de los mostos, de una levadura modificada genéticamente, que produzca grandes cantidades de enzima, para conseguir los mismos efectos que los enzimas comerciales, a nivel de clarificación y filtración de los vinos, pero sin los problemas que estos enzimas conllevan a nivel aromático de los vinos y de producción de metanol.
Las cepas y plásmidos utilizados están descritos en la Tabla 1.
Tabla 1: Cepas y plásmidos utilizados en este estudio.
Cepa/plάsmido Características relevantes Referencia
Cepas S. cerevisiae MR-7 Cepa enológica seleccionada Este estudio
USC1 Cepa transformada con el gen PGU1 Este estudio
Bacterias
Escherichia coli DH5α Hanahan (1983)
Plásmidos pBSK+ - PGU1 4,05 Kb. AmpR , β-GAL Blanco (1997) pBEJl 6 - PGU1 10,09 Kb. AmpR LEU2, pPGK Blanco (1997)
Los medios de cultivo utilizados para el crecimiento de levaduras y bacterias se describen a continuación:
Medios para levaduras: Medio YEPD:
Extracto de levadura (1%), peptona (2%) , glucosa (2%). Para medio sólido se añade agar bacteriológico al 2%. Para seleccionar las cepas transformantes de levadura se utilizó como medio YEPD
+ geneticina (G418) (Handfield y col, 1990. Curr. Genet. 18: 303-313). Medio YNB para la detección de la actividad pectolítica:
En placa: acido poligalacturónico (0.5%), sacarosa (0.5%), YNB w/o aminoácidos (0.7%), aminoácido necesarios en cada caso y agar bacteriológico al 2%. El
poligalacturónico se disuelve en agua destilada hirviendo, se añaden los demás componentes y finalmente se ajusta el pH a 8.0.
Medios para bacterias: Medio LB para crecimiento y mantenimiento:
Contiene triptona (1%), extracto de levadura (0.5%), cloruro sódico (1%) y agar bacteriológico al 2%. Cuando fue necesario el medio se suplemento con ampicilina a una concentración final de 60 μg/mL.
PROCEDIMIENTO DE CONSTRUCCIÓN DE LA CEPA USC-1 El proceso que se describe a continuación comienza con la selección de levaduras silvestres que posean actividad poligalacturonasa, ya que esta actividad es la que queremos incrementar en dicha cepa, de forma que al producir vino con ella logremos los mismo efectos que los enzimas comerciales. A continuación se describe paso a paso el proceso realizado. S elección de levadura silvestre MR-7 :
En primer lugar se seleccionaron levaduras silvestres y se comprobó si poseían genotipo poligalacturonasa + . Esta comprobación se realiza mediante PCR y mediante hibridación ADN-ADN (Southern E.M. 1975. J. Mol. Biol. 98: 503-517). Se comprueba que todas las cepas silvestres de S. cerevisiae analizadas portan el gen PGU1 (gen que codifica para la producción de poligalacturonasa). Posteriormente se mide la actividad poligalacturonasa en placa y en medio líquido comprobándose que no todas tienen actividad, lo que nos indica que algunas cepas de levadura portan el gen pero no es activo.
Teniendo en cuenta que hay cepas con y sin actividad poligalacturonasa, nos interesa una cepa que sea poligalacturonasa positiva, es decir que produzca el enzima, para así manipularla de forma que incrementemos la cantidad de enzima producido. Para ello se realizó la construcción de una levadura enológica de Saccharomyces cerevisiae recombinante, con la finalidad de sobreexpresar una endopoligalacturonasa, para ser utilizada en la elaboración de vino. Esto se llevó a cabo con una cepa silvestre poligalacturonasa + denominada S. cerevisiae MR-7. Manipulación de ácidos nucleicos:
La manipulación del DNA (tratamiento con enzimas de restricción, ligaciones, transformación de E. coli, cuantificación de DNA y aislamiento de plásmidos se llevó a cabo siguiendo la metodología descrita por Sambrook y col. (1989). Molecular cloning: A laboratory manual (2a ed). Para la recuperación de DNA a partir de geles de agarosa se
utilizó el kit de Biorad. El aislamiento de ADN plasmídico de bacterias se realiza utilizando un kit comercial de Promega (WizardR Plus Midipreps-DNA Purification System). El aislamiento de ADN genómico de S. cerevisiae se llevó a cabo según el protocolo descrito por Struhl, con ligeras modificaciones (Struhl y col, 1979. Proc. Nati. Acad.Sci.USA. 76:1035-1039). El aislamiento de ADN genómico de S. cerevisiae se llevó a cabo según el protocolo descrito por Struhl, con ligeras modificaciones (Struhl y col, 1979. Proc. Nati. Acad.Sci.USA. 76:1035-1039) Hibridación ADN-ADN (Southem-Blot):
La detección de secuencias de ADN específicas se realizó siguiendo la técnica descrita_por Southern (Southern E.M. 1975. J. Mol. Biol.. 98: 503-517). El ADN genómico
(digerido totalmente con el enzima Hind III) se híbrido con una sonda de ADN marcada con un kit no radiactivo (DIG High DNA Labeling and Detection Starter Kit II) de
Boehringer Mannheim.
Reacción de polimerización en cadena (PCR): Para la detección del gen PGU1 en las cepas, se llevó a cabo la PCR utilizando
DNA polimerasa (Promega). La mezcla de reacción contenía 1 μL de cada dNTP (5 mM), 1 μL de cada oligonucleótido (PG-1 y PG-2), 10 μL (4xl06 celulas/mL), 10 μL del tampón 10X de la Taq DNA Polimerasa, 3.5 μL de MgCl2 (50 mM), 1 μL de Taq ADN Polimerasa (Promega). Se completó el volumen con agua mili-Q estéril. El volumen final de la reacción fue de 100 μL.
PG1 (5 'CGCGGATCCATGATTTCTGCTAATTCATTACTTATTT3 ') PGlr (5 'CGCGGATCCTTAACAGCTTGCACCAGATCCAG3 ') Las condiciones de amplificación fueron:
- 1 ciclo a 94°C, 2 min para la desnaturalización, - 30 ciclos a 94°C 30 s, 55°C 30 s, y 72°C 30 s para la amplificación, y
- 1 ciclo a 72 °C, 5 min para finalizar la reacción.
Detección de la actividad pectolítica:
Para la detección en placa de cepas productoras de enzimas pécticos se utilizó un medio YNB. Las placas se incubaron 5 días a 30°C y la producción de enzimas pécticas se detectó añadiendo C1H 6N sobre la placa como describen Blanco y col, (1994). Cuando la cepa es productora de enzimas que degradan la pectina, aparece un halo de hidrólisis alrededor de la colonia, fácilmente reconocible frente al medio opaco.
La actividad poligalacturonasa fue determinada en medio líquido según el método de Somogyi (Somogy M. 1952. J. Biol.. Chem. 159:19-23) modificado por elson (Nelson NJ. 1957. Academic Press. New York. 3:85-86). La mezcla de ensayo, que contenía 500 μL de muestra (sobrenadante concentrado y dializado) y 500 μL de sustrato (PGA al 0.5% disuelto en tampón acético-acetato 50 mM, pH 5.5) se incubó, a 37°C, durante un periodo de tiempo variable según las muestras.
El contenido de proteína de las muestras fue determinado siguiendo el método de Lowry (Lowry y col, 1951. J. Biol.. Chem. 193: 265-275), utilizando seroalbúmina bovina (BSA) como patrón de concentración conocida. CONSTRUCCIÓN DE LA CEPA USC-1
Para la construcción de la cepa que produzca una gran cantidad de enzima, hay que aumentar el número de copias del gen que codifica para la producción del enzima en cuestión (gen PGU1) en la levadura silvestre, es decir la sobreexpresión de dicho gen.
Sobreexpresión del gen PGU1 de Saccharomyces cerevisiae en la levadura silvestre MR-7:
El plásmido pBEJ16-PGUl fue utilizado para la transformación de S. cerevisiae MR-7 y esta se llevó a cabo siguiendo el protocolo descrito por Ito y col. (Ito y col, 1983. J. Bacteriol. 153: 163-168). Para ello, las células se crecieron en YEPD hasta que la absorbancia, a 600 nm, estuviera comprendida entre 0.7-0.9. Se centrifugaron 10 mL del cultivo y las células se lavaron 2 veces con agua estéril, se resuspendieron en 1 mL de acetato de litio 0.1 M en TE y se incubaron a 30°C con agitación suave durante 1-2 horas.
A continuación, se hicieron alícuotas de 100 μL a las que se añadieron 40 μg de "ADN carrier" (ADN de esperma de salmón hervido 15 min) y 1-2 μg de DNA transformante y la mezcla se incubó durante 30 min a 30°C, tras lo cual se añadieron 0.7 mL de PEG-4000 al 40% en acetato de litio 0.1 M y se incubó de nuevo a 30 °C 30 min. Seguidamente, las células se sometieron a choque térmico 5 min a 42°C y, después de lavarlas dos veces con TE, se sembraron por extensión en placas con el medio selectivo adecuado.
En la Figura 1 se representa la ligación y transferencia de E. Coli. En la Figura 2 se representa la recuperación del plásmido con el gen PGU1.
La cepa recombinante (USC-1), depositada en la Colección Española de Cultivos Tipo (CECT) con el número de orden CECT 11777, mostró una gran actividad pectolítica (520 U/mL) en medio líquido con respecto a la cepa silvestre MR-7 (142 U/ml). La
actividad poligalacturonasa fue determinada en el sobrenadante, dializado en tampón acético-acetato durante 24 horas, mediante Somogy-Nelson.
La diferencia de actividad entre ambas cepas demostró la sobreexpresión del gen PGU1 en la cepa USC-1, ya que la producción de enzima es mucho mayor que la cepa parental, lo que pone de manifiesto la correcta transformación.
A continuación se intenta demostrar que la nueva cepa (USC-1) produce los efectos esperados en la vinificación, para lo cual se realizan vinificaciones y se comparan los resultados de las mismas con los resultados obtenidos cuando se utilizan enzimas comerciales. Ensayos de vinificación con la cepa recombinante USC1 en comparación con la utilización de enzimas pectolíticos:
Los ensayos de vinificación se realizaron en recipientes de vidrio de 10 litros. Estos recipientes se llenaron con mosto estéril de la variedad Albariño (variedad blanca autóctona de Galicia)._Se prepararon los preinóculos con las cepas a estudiar en mosto de Albariño y se incubaron 24 horas a 30°C con 160 rpm. Posteriormente se inocularon adicionando el volumen adecuado de estos cultivos, hasta obtener una densidad celular de 106 cel/mL. Las fermentaciones se realizan a una temperatura de 18°C.
En los casos donde fue necesario se utilizaron también dos enzimas de la empresa Novo Nordisk: A (Novoclair FCE G) que es un preparado enzimático pectolítico purificado procedente de Aspergillus niger, especialmente seleccionado para la clarificación de mostos blancos por su actividad pectin metil-esterasa; y B (Vinozym FCE G) que también procede de Aspergillus niger y contiene actividades pectolíticas y actividades secundarias como hemicelulasas y celulasas. A se utilizó en una dosis de lg/hL y B en 3g/hL. Control de implantación de S. cerevisiae en fermentaciones:
Para comprobar la dominancia de la cepa inoculada sobre la microbiota del mosto en las distintas fases de la fermentación, se extrajeron muestras cada 24 horas y se sembraron en medio YEPD para S. cerevisiae MR-7 y en YEPD+geneticina (0.5 mg/mL) para la cepa USC-1. Posteriormente, se realizaron estudios de PCR y Electroforesis en Campo Pulsante de 20 colonias al azar, para comparar los perfiles y cariotipos de las cepas encontradas con los de las cepas inoculadas. Los resultados ponen de manifiesto la dominancia de la cepa USC-1, frente a la microbiota propia del mosto.
La PCR para ver la implantación de las cepas se realizó a partir de células enteras de S. cerevisiae siguiendo el método de Bellis y col, (Bellis y col, 1987. Nucleic. Acids.
Research. 15, 16:6749). Los oligonucleótidos utilizados fueron diseñados por Ness y col, (Nessy coL, 1992. J. Sci. Food Agrie. 62: 89-94): delta 1 (5 'CAAAATTCACCTATA/TTCTCA3 ') delta 2 (5 'GTGGATTTTTATTCCAACA3 ') La reacción se realizó en un volumen final de 100 μL conteniéndolo μL (4 xlO6 células/mL), 10 μL de tampón 10X de la Taq DNA polimerasa (Promega), 1 μM de cada oligonucleótido, 200 μM de cada dNTP (dATP, dCTP, dGTP, dTTP), 2.5 unidades de Taq DNA polimerasa (Promega). Los ciclos de amplificación fueron realizados en un equipo Bio-Rad Gene Cycler. La amplificación se desarrolla de la manera siguiente: - 4 ciclos: desnaturalización 95°C durante 30 s, hibridación 45°C durante 30 s, síntesis 72°C durante 2 min
- 30 ciclos: desnaturalización 95°C durante 30 s, hibridación 42°C durante 30 s, síntesis: 72°C durante 2 min.
La Electroforesis en Campo Pulsante para comprobar la implantación de las cepas: Las cepas de levaduras se prepararon según el método de Bellis y col, (Bellis y col, 1987. Nucleic. Acids. Research. 15, 16:6749). Las levaduras (50 μL) se crecieron en 150 mL de YEPD estéril durante una noche a 30°C y con agitación (100 rpm). Al día siguiente se recogieron por centrifugación (10 min a 3000 rpm), se lavaron dos veces en una disolución de EDTA 0.05 M, pH 8.5 y se resuspendieron en 2 mL de EDTA 0.05 M. A continuación se mezcló 1 mL de esta solución con 1 mL de agarosa 1 % en EDTA 0.05 M y se colocó en pequeños moldes dando lugar a unos bloques.
Después de su solidificación, los bloques se incubaron en un tampón de lisis, durante 6 horas a 37°C, para destruir las paredes celulares de las levaduras (NaCl 0.5 M, EDTA 0.25 M, Tris HC1 0.125 M, pH 7.5, β-mercaptoetanol 0.5 M). Posteriormente el tampón de lisis se sustituyó por otra solución durante 36 horas a 42°C para destruir las proteínas celulares (Pronasa E de Streptomyces griseus 1 mg/mL, sarcosyl 1%, EDTA 0.45 M). Los bloques se lavaron tres veces durante 30 min en tampón TE a 50°C (Tris 10 mM, pH 8, EDTA 1 mM), y otras tres veces durante 30 min en el mismo tampón a temperatura ambiente. Los cromosomas de la levadura se separan según su tamaño por electroforesis en gel de agarosa. La agarosa se preparó a una concentración de 0.8 % en tampón IX TBE (Tris base 50 mM, ácido bórico 50 mM y EDTA 1 mM, pH=8).
La técnica empleada se llama CHEF (Countour Clamped Homogeneous Electric Field), que utiliza campos eléctricos alternativos homogéneos orientados a 120°C. Se utilizó un aparato de la marca Pharmacia realizando la migración a voltaje constante (165
V) y a una temperatura de 10°C. Las condiciones de electroforesis son las siguientes: pulsadas de 90 s durante 20 h, pulsadas 100 s durante 12 h, pulsadas 120 s durante 12 h, pulsadas 30 s durante 4 h. Los cromosomas de levadura utilizados como marcadores de tamaño provienen de una cepa de S. cerevisiae (YNN 295).
Actividad enzimática y tiempos de filtración del vino elaborado:
Como ya se dijo anteriormente; la finalidad del uso de enzimas comerciales durante la fermentación alcohólica de los mostos para producir vino, es provocar una buena clarificación, lo que conlleva a una rápida y económica filtración de dichos vinos. Por ello se realizó la medida de actividad enzimática en los vinos elaborados y se midieron los tiempos de filtración, para así poder comparar nuestra cepa con los enzimas comerciales.
La medida de la actividad enzimática en el vino elaborado con USC-1 muestra un valor elevado si lo comparamos con la cepa silvestre MR-7, como era de esperar.
Si comparamos el valor de actividad en el vino elaborado con la cepa USC-1 respecto a las fermentaciones suplementadas con enzimas pectolíticas, se pudo apreciar que los dos últimos casos (Enzimas A y B) la actividad es mayor. Sin embargo, si comparamos los tiempos de filtración de los vinos elaborados, observamos diferencias muy significativas, descritas en la Tabla 2.
Tabla 2.- Efecto de la actividad pectolítica en los tiempos de filtración de los vinos.
Según lo expuesto, la adición de enzimas pectolíticos comerciales no sería necesaria en fermentaciones llevadas a cabo con la cepa USC-1 o con cualquier otra cepa seleccionada portando el mencionado gen PGU1 en sobreexpresión plasmídica.
Una vez demostrado lo que se pretendía desde el principio, se estudiaron otras facetas en los vinos para ver si con la cepa USC-1 se evitaban los efectos perjudiciales de los enzimas comerciales. Para ello, se estudió la producción de metanol y de compuestos
aromáticos durante la fermentación, ya que los enzimas comerciales dan lugar a contenidos elevados en metanol (alcohol tóxico) y dan lugar también a cambios en los aromas típicos de la variedad de uva, tan valorados en los vinos protegidos con denominación de origen. Metanol y compuestos aromáticos de los vinos elaborados: Como fase final, se estudió la producción de metanol y se hizo un estudio del perfil aromático de los vinos elaborados con la cepa silvestre MR-7 de Saccharomyces cerevisiae, con la recombinante USC-1 y con enzimas pectolíticos comerciales (A y B). Se realiza un análisis químico por cromatografía en fase gaseosa y análisis organoléptico de los vinos elaborados. En cuanto al metanol las diferencias fueron importantes, ya que la cantidad de metanol se duplicaba cuando se utilizaban enzimas pectolíticos comerciales.
Con respecto al perfil aromático de los vinos, realizado por un comité de catadores profesionales, se observó que el vino elaborado con la cepa USC-1 presentaba los aromas más típicos de la variedad de uva, en este caso el aroma a manzana considerado el aroma de la variedad de uva albariño. Cuando se realizó cromatografía de gases para el estudio aromático, se comprobó que la mayor concentración de terpenos se encontraba en los vinos elaborados con las cepas MR-7 (silvestre) y USC-1 (recombinante para el gen PGU1), concretamente el linalol y el citronelol, compuestos considerados más importantes en la variedad de uva albariño, corroborándose así la tipicidad.
Claims
1.- Procedimiento de construcción de una cepa de levadura enológica de Saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa mediante expresión del plásmido pBEJ16-PGUl, caracterizado por: a) Transformación de la levadura con el plásmido pBEJl 6-PGU1. b) Expresión del plásmido pBEJl 6-PGU1 en dicha levadura.
2.- Cepa recombinante de Saccharomices cerevisiae, USC-1, según la reivindicación 1, para el gen PGUl, depositada en la Colección Española de Cultivos Tipo (CECT) con el número de orden CECT 11777.
3.- Uso de la cepa recombinante USC-1, según las reivindicaicones anteriores, para la industria enológica.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200201596A ES2223231B1 (es) | 2002-07-08 | 2002-07-08 | Construccion de una cepa de levadura enologica de saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa. |
ESP200201596 | 2002-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004005519A1 true WO2004005519A1 (es) | 2004-01-15 |
Family
ID=30011358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2003/000324 WO2004005519A1 (es) | 2002-07-08 | 2003-07-01 | Construcción de una cepa de levadura enológica de saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa, para ser utilizada en la elaboracion de vinos |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2223231B1 (es) |
WO (1) | WO2004005519A1 (es) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2880896A1 (fr) * | 2005-01-18 | 2006-07-21 | Univ Reims Champagne Ardenne | Procede pour transformer une souche de levure non productrice d'endopolygalacturonase en une souche la produisant |
US7964771B2 (en) | 2005-01-05 | 2011-06-21 | Bayer Crop Science Ag | Transplastomic plants free of the selectable marker gene |
CN114134059A (zh) * | 2021-11-17 | 2022-03-04 | 天津大学 | 生产毛喉素的重组酿酒酵母菌及构建方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2328323B1 (es) * | 2007-12-05 | 2010-10-18 | Universidad De Castilla-La Mancha | Cepa de levadura saccharomyces cerevisiae cect 11783, modificada geneticamente con actividad pectinolitica: su metodo de obtencion y aplicacion. |
WO2017113024A1 (es) | 2015-12-30 | 2017-07-06 | Universidad De Chile | Novedosa poligalacturonasa activa a baja temperatura |
-
2002
- 2002-07-08 ES ES200201596A patent/ES2223231B1/es not_active Expired - Fee Related
-
2003
- 2003-07-01 WO PCT/ES2003/000324 patent/WO2004005519A1/es active Application Filing
Non-Patent Citations (5)
Title |
---|
BLANCO P. ET AL.: "Cloning, molecular characterization and expression of an endo-polygalacturonase-encoding gene from saccharomyces cerevisiae IM1-8b", FEMS MICROBIOLOGY LETTERS, vol. 164, 1998, pages 249 - 255, XP002084849, DOI: doi:10.1016/S0378-1097(98)00220-1 * |
BLANCO P. ET AL.: "Production of pecticenzymes in yeasts", FEMS MICROBIOLOGY LETTERS, vol. 175, 1999, pages 1 - 9 * |
GOGNIES S. ET AL.: "Cloning, sequence analysis and overexpression of a saccharomyces cerevisiae endopolygalacturonase-encoding gene (PGL1)", YEAST, vol. 15, 1999, pages 11 - 22, XP002341866, DOI: doi:10.1002/(SICI)1097-0061(19990115)15:1<11::AID-YEA336>3.0.CO;2-O * |
JIANHUA JIA ET AL.: "Endopolyglacturonase genes and enzymes from saccharomyces cerevisiae and kluveromvces marxianus", CURR. GENET., vol. 38, 2000, pages 264 - 270 * |
VILANOVA M. ET AL.: "Use of a PGU1 recombinant saccharomyces cerevisiae strain in oenological fermentations", JOURNAL OF APPLIED MICROBIOLOGY, vol. 89, 2000, pages 876 - 883, XP002341872, DOI: doi:10.1046/j.1365-2672.2000.01197.x * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964771B2 (en) | 2005-01-05 | 2011-06-21 | Bayer Crop Science Ag | Transplastomic plants free of the selectable marker gene |
FR2880896A1 (fr) * | 2005-01-18 | 2006-07-21 | Univ Reims Champagne Ardenne | Procede pour transformer une souche de levure non productrice d'endopolygalacturonase en une souche la produisant |
CN114134059A (zh) * | 2021-11-17 | 2022-03-04 | 天津大学 | 生产毛喉素的重组酿酒酵母菌及构建方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2223231B1 (es) | 2005-11-01 |
ES2223231A1 (es) | 2005-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pretorius | Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking | |
Mehlomakulu et al. | Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. | |
Blanco et al. | Production of pectic enzymes in yeasts | |
Fernández-González et al. | Evaluation of polygalacturonase activity in Saccharomyces cerevisiae wine strains | |
Esteve-Zarzoso et al. | The role of non-Saccharomyces yeasts in industrial winemaking | |
Querol et al. | The application of molecular techniques in wine microbiology | |
Gognies et al. | Cloning, sequence analysis and overexpression of a Saccharomyces cerevisiae endopolygalacturonase‐encoding gene (PGL1) | |
JP3655303B2 (ja) | 新規酵素及びdna配列 | |
Fernandez-Gonzalez et al. | Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine | |
CA2866238C (en) | Solution containing components of starting plant raw material, beverage, and method relating thereto | |
ES2223231B1 (es) | Construccion de una cepa de levadura enologica de saccharomyces cerevisiae recombinante que sobreexpresa una endopoligalacturonasa. | |
Sahay | Wine enzymes: Potential and practices | |
EP0571475B1 (en) | Sg(beta)-1,4-GALACTANASE AND A DNA SEQUENCE | |
ES2219752T3 (es) | Enzima con actividad pectina esterasa. | |
CN114231514B (zh) | 一种重组褐藻胶裂解酶AlyL7及其应用 | |
Byaruagaba-Bazirake et al. | Characterisation of banana wine fermented with recombinant wine yeast strains | |
Salariato et al. | Extracción y caracterización de poligaracturonasa de Fomes sclerodermeus producida por fermentación en estado sólido | |
Ghosh | Metagenomic Screening of cell wall hydrolases, their anti-fungal activities and potential role in wine fermentation | |
US5108925A (en) | Process for accelerated beer production by integrative expression in the PGK1 or ADC1 genes | |
ES2238119B1 (es) | Procedimiento de obtencion de la enzima endopoligalacturonasa mediante el cultivo de cepas microbianas recombinantes que sobreexpresan el gen epg2 de kluyveromyces marxianus. | |
CN110527633A (zh) | 一种米曲霉及其在制备单宁酶中的应用 | |
Ramon et al. | Improvement of wine yeasts by genetic engineering | |
CN109385416B (zh) | 果胶酸裂解酶pl1w及其基因和应用 | |
JPH10243783A (ja) | 耐ストレス性酵母の作出方法 | |
FR2705687A1 (fr) | Identification clonage et expression de l'enzyme malolactique. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |