WO2004004790A1 - Verfahren und anordnung zur dekontamination eines reinraums - Google Patents

Verfahren und anordnung zur dekontamination eines reinraums Download PDF

Info

Publication number
WO2004004790A1
WO2004004790A1 PCT/CH2003/000418 CH0300418W WO2004004790A1 WO 2004004790 A1 WO2004004790 A1 WO 2004004790A1 CH 0300418 W CH0300418 W CH 0300418W WO 2004004790 A1 WO2004004790 A1 WO 2004004790A1
Authority
WO
WIPO (PCT)
Prior art keywords
clean room
gaseous agent
clean
room
ammonia
Prior art date
Application number
PCT/CH2003/000418
Other languages
English (en)
French (fr)
Inventor
Claude Moirandat
Volker Sigwarth
Original Assignee
Skan Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skan Ag filed Critical Skan Ag
Priority to EP03729776A priority Critical patent/EP1519758A1/de
Priority to US10/519,888 priority patent/US20050226764A1/en
Priority to AU2003240360A priority patent/AU2003240360A1/en
Publication of WO2004004790A1 publication Critical patent/WO2004004790A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/208Hydrogen peroxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the present invention relates to a process for the decontamination of a clean room in which the clean room is supplied with gaseous H 2 0 2, as well as to an arrangement for decontamination of a clean room having a H 2 0 2 - urging means for urging the clean room with H 2 0 2 includes.
  • decontamination is also understood to mean sterilization and disinfection.
  • Clean room stands for all tightly lockable rooms such as Isolators, locks, microbiological safety cabinets, sterilizers and transfer containers for the pharmaceutical industry, cosmetics, chemistry, food technology, electronics, nuclear industry, laboratory animals, medicine, etc.
  • H 2 0 2 hydrogen peroxide in liquid form has been used as a decontamination agent for many years. Since it can have a corrosive effect on various materials in high concentrations (> 3%), it was initially not used in clean room technology.
  • H 2 0 2 has therefore been used for the quick and safe decontamination of cleanrooms in recent years.
  • An arrangement for the decontamination of a clean room having a H 2 0 2 comprises -Beetzschlagungs adopted for pressurizing the clean room with H 2 0 is, for example disclosed in CH-A-689 178th
  • this arrangement has an evaporator unit, an H 2 0 2 storage container and a conveying device for conveying liquid H 2 0 2 from the H 2 0 2 storage container to the evaporator unit.
  • the H 2 0 2 storage container is arranged outside the clean room and connected via a hose to the evaporator unit arranged inside the clean room.
  • liquid H 2 0 2 is conveyed from the H 2 0 2 storage tank to the evaporator unit and evaporated there, after which it is distributed in the clean room. This continues until the decontamination concentration is reached. At H 2 0 2, this is approximately 100-5000 ppm and is normally maintained for approximately 10 to 120 minutes.
  • an exhaust air flap is opened and the exhaust air containing H 2 0 2 is flushed out of the clean room and discharged via an exhaust air duct, a catalyst which can decompose the H 2 0 2 , for example in H 2 , being present in the exhaust air duct to reduce emissions 0 and 0 2 .
  • a recirculation of the H 2 0 -energized air via a catalyst is also known.
  • a disadvantage of this decontamination process is that the excess H 2 0 2 - if at all - is broken down with a catalyst. In order to achieve sufficiently rapid breakdown times, relatively large amounts of catalyst are required, which is very expensive. Another disadvantage is that the catalysts used have to be regenerated. In addition, any H 2 0 2 degradation takes place outside the clean room, ie the H 2 0 2 must first be flushed out of the clean room. Completely flushing H 2 0 2 out of the clean room is relatively difficult since it partially condenses in the clean room and adheres to surfaces. liable. In order to achieve a desired residual concentration of normally 5 to 0.05 ppm, a rinsing time of at least one hour is generally necessary, even if the clean room is heated to evaporate the condensed H 2 O 2 .
  • the invention is based on the following object.
  • a method and an arrangement for decontamination of a clean room are to be created which enable decontamination with H 2 0 2 in the most cost-effective manner possible and then the desired residual concentration for H 2 0 2 to be reached as quickly as possible.
  • Claim 15 relates to an H 2 0 2 dismantling device according to the invention for such an arrangement. Preferred design variants result from the dependent patent claims.
  • the essence of the invention is that in a method for decontamination of a clean room, the clean room is charged with gaseous H 2 0 2 and, at a later point in time, H 2 0 2 still present in the clean room without catalyst by adding at least one gaseous agent which with which H 2 0 2 reacts, is broken down chemically.
  • H 2 0 2 residues in a product located in the clean room are advantageously subsequently broken down in a targeted manner on the product. This is important, for example, if a lower H 2 0 2 concentration is desired for the product than is present in the clean room after the H 2 0 2 breakdown, and can be done using the same means.
  • the at least one gaseous agent is preferably metered in such a way that after the chemical degradation of the H 2 0 2 in the clean room, at most 1 ppm of H 2 0 2 remain. Such a residual concentration is not a problem.
  • the at least one gaseous agent preferably comprises ammonia (NH 3 ). This reacts with the H 2 0 2 as follows:
  • the ammonia reduces the H 2 0 2 , whereby only N 2 and water, which is primarily gaseous, is formed, harmful, environmentally friendly reaction products. Since there is no precipitation, these degradation products can be easily flushed out of the clean room into the exhaust air duct, which does not have to meet any special requirements with regard to chemical resistance. In addition, the exhaust air, which can also contain ammonia residues, can be released outdoors without further treatment, since in addition to the degradation products, the ammonia itself is environmentally friendly.
  • ammonia is a gas, it is easy to dose and is freely available on the market.
  • the usual quality > 99.7%
  • only small amounts of ammonia are required, namely about 0.5 1 NH 3 gas per g of pure H 2 0 2 .
  • the amount of H 2 0 2 and ammonia used naturally depends on the volume of the clean room and can therefore be very different.
  • the space and power requirements for storing and introducing the ammonia into the clean room are low. Overall, the use of ammonia is therefore significantly cheaper than the use of catalysts, particularly in terms of purchase, but also in terms of consumption.
  • ammonia has the advantage that, like H 2 0 2, it has a great affinity for water and is very easy to borrow. Condensed H 2 0 2 absorbs NH 3 gas very well and is rapidly broken down.
  • ammonia Another advantage of ammonia is that it can also be used very well in large clean rooms.
  • ammonia is environmentally friendly and the MAK value (maximum workplace concentration) is 50 ppm, which is significantly higher than H 2 0 2 . Ammonia residues are therefore less problematic than H 2 0 2 residues. In addition, the smell of ammonia is characteristic and warns. Ammonia gas is therefore also used, for example, to test the tightness of the isolator containing the clean room and any gloves that may be present. With the method according to the invention, these tests can be carried out at the end of the cycle directly before flushing the clean room.
  • the regulation of the introduction of ammonia is simple. It can be based on the detection of an excess of ammonia or H 2 0 2 in the clean room with chemical indicators or with sensors.
  • An excess of ammonia is preferably introduced into the clean room so that the degradation reaction takes place quickly and as completely as possible.
  • ammonia is flammable.
  • concentration required in the process according to the invention is low and the ammonia is largely immediately degraded by the H 2 O. Just an all due ammonia excess is critical. This is therefore advantageously kept so low that the ignition limit of 15% is not reached.
  • the dosage is such that the excess of ammonia is at most 500 ppm.
  • hydrazine N 2 H 4
  • H 2 0 2 H 2 0 2
  • the at least one gaseous agent can also comprise ozone (0 3 ). This reacts with the H 2 0 2 as follows:
  • ozone is not used to accelerate the sterilization, but to break down the H 2 O 2 .
  • gaseous hydrazine or ozone to decompose the H 2 0 2 has similar advantages as the use of ammonia.
  • H 2 0 2 that is still present can be degraded photochemically by means of UV radiation. This normally happens as follows:
  • the UV light is preferably generated in the clean room by a UV lamp arranged in the clean room. It preferably has a wavelength of 254 nm.
  • the inventive arrangement for decontamination of a clean room comprising an H 2 0 2 -Beetzschlagungs adopted for pressurizing the clean room with H 2 0 2 and H 2 0 2 -Abbauein- direction for effecting a chemical degradation of H0 2 without Catalyst in the clean room, which has means for introducing at least one gaseous agent, in particular ammonia, hydrazine or ozone, into the clean room.
  • This arrangement enables the above-mentioned method according to the invention to be carried out, which is associated with the advantages described.
  • the means for introducing at least one gaseous agent comprise a storage container filled with gaseous agent, e.g. a gas bottle, or a generator for generating gaseous agent, a gas line from the storage container or generator to the clean room and a valve for regulating the amount of the gaseous agent flowing through the gas line.
  • gaseous agent e.g. a gas bottle, or a generator for generating gaseous agent
  • a gas line from the storage container or generator to the clean room
  • a valve for regulating the amount of the gaseous agent flowing through the gas line The amount of the gaseous agent introduced into the clean room can thus be regulated via the valve.
  • Gas cartridges can also be used which contain the required amount of gaseous agent. A valve and a control device can then be dispensed with.
  • the H 2 0 2 dismantling device additionally has means for generating UV light in the clean room.
  • These means include, for example, a UV lamp that generates UV light within the clean room.
  • UV lamps are part of the prior art.
  • the arrangement according to the invention advantageously has a sensor for measuring the concentration of the gaseous agent in the clean room, the measured values of which are used to regulate the H 2 0 2 degradation device. If an excess of gaseous agent is measured, which is not broken down by reaction with H 2 0 2 , the introduction of gaseous agent into the clean room is normally stopped.
  • the arrangement according to the invention has a sensor for measuring the H 2 0 2 concentration in the clean room, the measured values of which are used to regulate the H 2 0 2 degradation device. If the sensor measures an H 2 0 2 concentration in the clean room that is smaller than the desired residual concentration, for example 1 ppm, the decomposition of H 2 0 2 need not be pushed any further. This means that no additional gaseous agent has to be introduced into the clean room and no additional UV light has to be generated in the clean room.
  • H 2 0 2 application device To control or regulate the H 2 0 2 application device and the H 2 0 2 removal device, separate control and regulating devices are preferably provided, which means that the H 2 0 2 removal device is retrofitted into an existing arrangement with H 2 0 2 - Application device made possible.
  • the H 2 0 degradation device can either be designed as a separate device which introduces or generates gaseous agent into the clean room independently of the H 2 0 2 loading device, or it and the H 2 0 2 loading device can be integrated in a periphery of the clean room.
  • the integration of the H 2 0 2 dismantling device and the H 2 0 2 application device into the periphery of the clean room is generally preferable, while existing ones
  • Decontamination devices are easier to retrofit with a separate H 2 0 2 dismantling device.
  • FIG. 1 shows schematically a first exemplary embodiment of the arrangement according to the invention with a separate one
  • FIG. 2 shows schematically a second exemplary embodiment of the arrangement according to the invention with H 2 0 2 application device and H 2 0 2 removal device integrated into a periphery of the clean room.
  • first embodiment of an inventive arrangement for the decontamination of a clean room 1 is an H 2 0 2 2 -BeaufSchlagungs adopted arranged outside a periphery 3 of the clean room 1.
  • the conditions in the clean room 1 are controlled and regulated with a control and regulating device 31, in particular the pressure conditions and the air conditions.
  • the H 2 0 2 loading device 2 comprises, for example, as described in CH-A-689 178, at least one H 2 0 storage container filled with liquid H 2 0 2 , at least one evaporator unit in the form of a heating plate for evaporating the H 2 0 2 and at least one H 2 0 2 line between the at least one H 2 0 2 storage container and the at least one heating plate.
  • the at least one heating plate is arranged in the clean room 1, so that the at least one of H 2 0 2 -Vorrats- container via the at least one H 2 0 2 -Leitung supplied H 2 0 2 directly in the clean room 1 on the at least one heating plate is evaporated.
  • the application of H 2 0 2 to the clean room 1 is controlled and regulated by a control and regulating device 21, which preferably comprises a programmable logic controller. So much H 2 0 2 is normally evaporated in clean room 1 that an H 2 0 2 concentration in clean room 1 concentration of approx. 100-5000 ppm for approx. 10 to 120 minutes.
  • H 2 0 2 After decontamination with H 2 0 2 still present in the clean room 1 H 2 0 2, ie, the H 2 0 2, which has not reacted • and has not been consumed, degraded with a gaseous agent, which via a gas line 13 in the clean room
  • the arrangement has a separately designed " H 2 0 2 removal device 10, which has a storage container
  • the II comprises, in which the gaseous agent is stored.
  • the supply of gaseous agent in the storage container 11 is monitored by a control unit 14.
  • the gaseous agent stored in the storage container 11 reaches the clean room 1 via the gas line 13, it being possible for one or more nozzles to be provided at the end of the gas line 13 on the clean room side, which distribute the gaseous agent in the clean room 1.
  • a valve 12 is arranged in the gas line 13, with which the amount of the gaseous agent introduced into the clean room 1 can be controlled or regulated.
  • the valve 12 is controlled by a control and regulating device 15, which has a sensor 4 for measuring the concentration of the gaseous agent and a sensor 5 for measuring the
  • H 2 0 2 concentration is related.
  • the sensors 4 and 5 are arranged in the clean room 1 and measure the concentration of the gaseous agent and the H 2 0 concentration in the clean room 1.
  • gaseous agent is supplied to clean room 1.
  • a small excess of gaseous agent is introduced into the clean room 1 so that the H 2 0 2 is broken down quickly and as completely as possible.
  • the air change is ensured again in the clean room 1, and for this purpose a supply air duct, a supply air flap, an exhaust air flap and an exhaust air duct can be provided in a known manner.
  • the arrangement can also have further elements that are known from arrangements for decontaminating a clean room of the prior art.
  • the H 2 0 2 removal device and the H 2 0 2 application device 102 are integrated into the periphery 103 of the clean room 101.
  • the H0 2 removal device comprises a gas generator 111 which generates the gaseous agent directly.
  • the gas generator 111 is controlled by a control unit 114.
  • the gaseous agent generated is supplied to the clean room 101 via a gas line 113, the amount of agent supplied being controlled or regulated by a valve 112 arranged in the gas line 113.
  • the valve 112 is controlled by a control and regulating device 115 2 0 2 concentration is connected to a sensor 104 for measuring the concentration of the gaseous agent and a sensor 105 for measuring the H in connection.
  • the sensors 104 and 105 are arranged in the clean room 101 and measure the concentration of the gaseous agent and the H 2 0 2 concentration in the clean room one hundred and first
  • the control and regulating device 115 is also connected to the control unit 114 and uses it to ensure that, according to the measured values of the sensors 104 and 105, gaseous agent is generated or not.
  • the application of the clean room 101 with H 2 0 2 is controlled and regulated by a control and regulating device 121, which preferably comprises a programmable logic controller.
  • the conditions in the clean room 101 are controlled and regulated with a control and regulating device 131, in particular those
  • the control and regulating device 121 is here connected to the control and regulating device 115 via the control and regulating device 131, so that the measured values of the sensors 104 and 105 can also be used to control the H 2 0 2 supply.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

Eine Anordnung zur Dekontamination eines Reinraums (1) umfasst eine H2O2-Beaufschlagungseinrichtung (2) zum Beaufschlagen des Reinraums (1) mit H2O2 und eine H2O2-Abbaueinrichtung (10) zum Bewirken eines chemischen Abbaus von H2O2 ohne Katalysator im Reinraum (1). Die H2O2-Abbaueinrichtung (10) umfasst einen Vorratsbehälter (11), in dem gasförmiges Agens gespeichert ist, das über eine Gasleitung (13) in den Reinraum (1) einbringbar ist, wo es mit dem H2O2 reagiert. In der Gasleitung (13) ist ein Ventil (12) angeordnet, mit dem die Menge des in den Reinraum (1) eingebrachten gasförmigen Agens gesteuert bzw. reguliert werden kann. Dadurch, dass das überschüssige H2O2, d.h. das H2O2, das während der Dekontamination im Reinraum (1) nicht mit anderen Stoffen reagiert hat, im Reinraum (1) selbst abgebaut wird, muss es nicht zuerst vollständig aus dem Reinraum (1) herausgespült und danach abgebaut werden.

Description

Verfahren und Anordnung zur Dekontamination eines Reinraums
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Dekontamination eines Reinraums, bei dem der Reinraum mit gasförmigem H202 beaufschlagt wird, sowie auf eine Anordnung zur Dekontamination eines Reinraums, die eine H202- BeaufSchlagungseinrichtung zum Beaufschlagen des Reinraums mit H202 umfasst.
Im Rahmen dieser Beschreibung und der Patentansprüche wird unter Dekontamination auch Sterilisation und Desinfektion verstanden. Reinraum steht für alle dicht abschliessbaren Räume wie z.B. Isolatoren, Schleusen, mikrobiologische Sicherheitswerkbänke, Sterilisatoren und Transfercontainer für die Pharmaindustrie, Kosmetik, Chemie, Lebensmitteltechnologie, Elektronik, Nuklearindustrie, Versuchstierhaltung, Medizin usw.
In der Lebensmitteltechnologie wird schon seit vielen Jah- ren Wasserstoffperoxid (H202) in flüssiger Form als Dekontaminationsmittel eingesetzt. Da es in hohen Konzentrationen (> 3%) auf verschiedene Materialien korrosiv wirken kann, hat es in der Reinraumtechnologie zunächst keinen Eingang gefunden. Seit Beginn der 80er Jahre wurden die mikrobiozi- den Eigenschaften von H202 in geringen Konzentrationen eingehend untersucht. Dabei kam zu Tage, dass H202 in Dampfform bereits in niedriger Konzentration (100-5000 ppm) sowohl Bakterien und deren Sporen als auch Pilze, Hefen und Viren abtöten kann. Da H202 nicht selektiv wirkt, ist es breit einsetzbar. Neben Formalin und Peressigsäure wurde daher H202 in den vergangenen Jahren zur raschen und sicheren Dekontamination von Reinräumen verwendet. Eine Anordnung zur Dekontamination eines Reinraums, die eine H202-Beaufschlagungseinrichtung zum Beaufschlagen des Reinraums mit H20 umfasst, ist beispielsweise in der CH-A-689 178 offenbart. Diese Anordnung weist in einer Aus- führungsvariante eine Verdampfereinheit, einen H202-Vorrats- behälter und eine Fördereinrichtung zur Förderung von flüssigem H202 vom H202-Vorratsbehälter zur Verdampfereinheit auf. Der H202-Vorratsbehälter ist ausserhalb des Reinraums angeordnet und über einen Schlauch mit der innerhalb des Reinraums angeordneten Verdampfereinheit verbunden. Zur Beaufschlagung des Reinraums mit H20 wird flüssiges H202 vom H202-Vorratsbehälter zur Verdampfereinheit gefördert und dort verdampft, wonach es sich im Reinraum verteilt. Dies erfolgt solange, bis die Dekontaminationskonzentration er- reicht ist. Diese beträgt bei H202 ca. 100-5000 ppm und wird normalerweise ca. 10 bis 120 Minuten beibehalten. Nach der Dekontamination wird eine Abluftklappe geöffnet und die H202 enthaltende Abluft aus dem Reinraum gespült und über einen Abluftkanal abgeleitet, wobei im Abluftkanal zum Reduzieren der Emissionen ein Katalysator vorhanden sein kann, der das H202 zersetzt, z.B. in H20 und 02. Bekannt ist auch eine Re- zirkulation der H20-beaufschlagten Luft über einen Katalysator.
Nachteilhaft bei diesem Dekontaminationsverfahren ist, dass das überschüssige H202 - wenn überhaupt - mit einem Katalysator abgebaut wird. Um genügend schnelle Abbauzeiten zu erreichen, werden relativ grosse Mengen an Katalysator benötigt, was sehr teuer ist. Ein weiterer Nachteil besteht darin, dass die verwendeten Katalysatoren regeneriert werden müssen. Ausserdem erfolgt der allfällige H202-Abbau erst ausserhalb des Reinraums, d.h., das H202 muss zuerst aus dem Reinraum herausgespült werden. Ein vollständiges Herausspülen von H202 aus dem Reinraum ist relativ schwierig, da es teilweise im Reinraum kondensiert und auf Oberflächen an- haftet. Damit eine gewünschte Restkonzentration von normalerweise 5 bis 0,05 ppm erreicht werden kann, ist im Allgemeinen eine Ausspülzeit von mindestens einer Stunde notwendig, sogar wenn ein Aufheizen des Reinraums zum Verdunsten des kondensierten H202 erfolgt.
Angesichts der Nachteile der bisher bekannten, oben beschriebenen Verfahren und Anordnungen zur Dekontamination eines Reinraums liegt der Erfindung die folgende Aufgabe zugrunde. Zu schaffen sind ein Verfahren und eine Anordnung zur Dekontamination eines Reinraums, die auf möglichst kostengünstige Weise eine Dekontamination mit H202 und an- schliessend ein möglichst rasches Erreichen der gewünschten Restkonzentration für H202 ermöglichen.
Diese Aufgabe wird durch das erfindungsgemässe Verfahren und die erfindungsgemässe Anordnung gelöst, wie sie in den unabhängigen Patentansprüchen 1 und 8 definiert sind. Patentanspruch 15 bezieht sich auf eine erfindungsgemässe H202-Abbaueinrichtung für eine solche Anordnung. Bevorzugte Ausführungsvarianten ergeben sich aus den abhängigen Patentansprüchen.
Das Wesen der Erfindung besteht darin, dass bei einem Ver- fahren zur Dekontamination eines Reinraums der Reinraum mit gasförmigem H202 beaufschlagt wird und zu einem späteren Zeitpunkt im Reinraum noch vorhandenes H202 ohne Katalysator durch Zufügung mindestens eines gasförmigen Agens, das mit dem H202 reagiert, chemisch abgebaut wird.
Dadurch, dass das überschüssige H202, d.h. das H20 , das während der Dekontamination im Reinraum nicht mit anderen Stoffen reagiert hat, im Reinraum selbst abgebaut wird, muss es nicht zuerst vollständig aus dem Reinraum herausge- spült werden. Ausserdem braucht im Reinraum kondensiertes H202 nicht zuerst verdunstet zu werden, wodurch ein Aufheizen des Reinraums entfallen kann. Die Zeit zum Ausspülen der Abluft kann so auf wenige Minuten reduziert werden. Es sind daher Zykluszeiten von weniger als 60 Minuten für das Dekontaminieren und Ausspülen erreichbar, was im Vergleich zum Stand der Technik einer erheblichen Reduktion entspricht.
Durch die Gasform des Agens verteilt sich dieses gut im Reinraum und kommt auch mit dem auf Oberflächen kondensierten H202 in Kontakt, so dass es rasch mit dem H20 reagiert und dieses abbaut.
Schliesslich werden dadurch, dass das H202 ohne Katalysator chemisch abgebaut wird, keine teuren Katalysatoren für den Abbau des H0 im Reinraum oder in der Abluft benötigt.
Mit Vorteil werden H202-Reste in einem sich im Reinraum befindlichen Produkt nachträglich gezielt am Produkt abge- baut. Dies ist beispielsweise dann von Bedeutung, wenn für das Produkt eine tiefere H202-Konzentration gewünscht wird, als im Reinraum nach dem H202-Abbau vorhanden ist, und kann mit gleichen Mitteln erfolgen.
Bevorzugt wird das mindestens eine gasförmige Agens so dosiert, dass nach dem chemischen Abbau des H202 im Reinraum höchstens noch 1 ppm H202 übrig bleibt. Eine solche Restkonzentration ist unproblematisch.
Vorzugsweise umfasst das mindestens eine gasförmige Agens Ammoniak (NH3) . Dieses reagiert mit dem H202 wie folgt:
3 H202 4- 2 NH3 → N2 + 6 H20
Das Ammoniak reduziert das H202, wobei ausschliesslich N2 und Wasser, das primär gasförmig ist, entsteht, also un- schädliche, umweltverträgliche Reaktionsprodukte. Da kein Niederschlag entsteht, können diese Abbauprodukte problemlos aus dem Reinraum in den Abluftkanal ausgespült werden, der bezüglich der chemischen Beständigkeit keinen speziel- len Anforderungen genügen muss. Ausserdem kann die Abluft, die auch Ammoniak-Rückstände enthalten kann, ohne weitere Behandlung ins Freie abgegeben werden, da neben den Abbauprodukten auch das Ammoniak selbst umweltverträglich ist.
Ammoniak ist bei normalen ümgebungsbedingungen ein Gas, es ist leicht dosierbar und auf dem Markt frei erhältlich. Die übliche Qualität (> 99.7 %) genügt für die erfindungsgemässe Anwendung. Es werden ausserdem nur geringe Mengen Ammoniak benötigt, nämlich etwa 0,5 1 NH3-Gas pro g reinem H202. Die eingesetzte Menge von H202 und Ammoniak hängt natürlich vom Volumen des Reinraums ab und kann daher sehr unterschiedlich sein. Der Platz- und Leistungsbedarf für das Lagern und Einbringen des Ammoniaks in den Reinraum ist gering. Insgesamt ist daher die Verwendung von Ammoniak be- deutend billiger als die Verwendung von Katalysatoren, insbesondere in der Anschaffung, aber auch im Verbrauch.
Ausserdem hat Ammoniak den Vorteil, dass es wie H202 eine grosse Affinität zu Wasser hat und darin sehr leicht lös- lieh ist. Kondensiertes H202 nimmt NH3-Gas sehr gut auf und wird rasch abgebaut.
Ein weiterer Vorteil des Ammoniaks besteht darin, dass es auch bei grossen Reinräumen sehr gut eingesetzt werden kann.
Ausserdem kann bei optimalem Einsatz von Ammoniak auf ein Ausspülen des Reinraums verzichtet werden, da die entstehende Atmosphäre im Reinraum den gewünschten Bedingungen entspricht. Die Reaktion von Ammoniak mit H202 erfolgt allgemein sehr rasch. Praktische Versuche haben gezeigt, dass bei 25-35°C die Reaktionszeit etwa 1-2 Minuten beträgt. Da eventuell störende Restprodukte in Gasform vorhanden sein werden, können sie auch schnell aus dem Reinraum herausgespült werden. Die Zykluszeit für die Dekontamination des Reinraums, den Abbau des H202 und die allfällige Spülung des Reinraums kann so bis unter 60 Minuten gesenkt werden.
Ein Vorteil des Ammoniaks besteht darin, dass es umweltverträglich ist und der MAK-Wert (maximale Arbeitsplatzkonzentration) bei 50 ppm liegt, was im Vergleich zu H202 deutlich höher ist. Ammoniakrückstände sind daher weniger problema- tisch als H202-Rückstände. Ausserdem ist der Geruch von Ammoniak charakteristisch und warnt. Ammoniakgas wird daher beispielsweise auch zur Prüfung der Dichtheit des den Reinraum enthaltenden Isolators und allenfalls vorhandener Handschuhe eingesetzt. Diese Prüfungen können bei dem er- findungsgemässen Verfahren am Ende des Zyklus direkt vor der Spülung des Reinraums durchgeführt werden.
Die Regelung des Einbringens des Ammoniaks ist einfach. Sie kann auf einer Detektierung eines Überschusses des Ammoni- aks oder des H202 im Reinraum mit chemischen Indikatoren oder mit Sensoren basieren.
Vorzugsweise wird Ammoniak im Überschuss in den Reinraum eingebracht, damit die Abbaureaktion rasch und möglichst vollständig stattfindet.
Ein Nachteil von Ammoniak besteht darin, dass es brennbar ist. Die beim erfindungsgemässen Verfahren notwendige Konzentration liegt aber tief und das Ammoniak wird grössten- teils umgehend durch das H20 abgebaut. Lediglich ein all- fälliger Ammoniak-Überschuss ist kritisch. Dieser wird daher mit Vorteil so gering gehalten, dass die Zündgrenze von 15 % nicht erreicht wird. Die Dosierung ist so, dass der Überschuss von Ammoniak höchstens 500 ppm beträgt.
Als Alternative zu oder in Kombination mit Ammoniak kann als gasförmiges Agens Hydrazin (N2H4) verwendet werden. Dieses reagiert mit dem H202 wie folgt:
2 H202 + N2H -» N2 + 4 H20
Das mindestens eine gasförmige Agens kann auch Ozon (03) umfassen. Dieses reagiert mit dem H202 wie folgt:
H202 + 03 -» 2 02 + H20
Ozon wird beim erfindungsgemässen Verfahren nicht zur Beschleunigung der Sterilisation eingesetzt, sondern zum Abbau des H202.
Die Verwendung von gasförmigem Hydrazin oder Ozon zum Abbau des H202 ist mit ähnlichen Vorteilen verbunden wie die Verwendung von Ammoniak.
Zusätzlich kann das noch vorhandene H202 mittels UV-Strahlung photochemisch abgebaut werden. Dies geschieht im Nor- malfall wie folgt:
2 H202 uv ) 02 + 2 H20
Das UV-Licht wird vorzugsweise durch eine im Reinraum angeordnete UV-Lampe im Reinraum erzeugt. Es weist vorzugsweise eine Wellenlänge von 254 nm auf.
Die erfindungsgemässe Anordnung zur Dekontamination eines Reinraums umfasst eine H202-Beaufschlagungseinrichtung zum Beaufschlagen des Reinraums mit H202 und eine H202-Abbauein- richtung zum Bewirken eines chemischen Abbaus von H02 ohne Katalysator im Reinraum, die Mittel zum Einbringen mindestens eines gasförmigen Agens, insbesondere Ammoniak, Hydrazin oder Ozon, in den Reinraum aufweist. Diese Anordnung ermöglicht das Durchführen des oben erwähnten erfindungsge- mässen Verfahrens, welches mit den beschriebenen Vorteilen verbunden ist.
Bei einer bevorzugten Ausführungsvariante umfassen die Mittel zum Einbringen mindestens eines gasförmigen Agens einen mit gasförmigem Agens gefüllten Vorratsbehälter, z.B. eine Gasflasche, oder einen Generator zur Erzeugung von gasförmigem Agens, eine Gasleitung vom Vorratsbehälter oder Generator zum Reinraum und ein Ventil zum Regulieren der Menge des durch die Gasleitung strömenden gasförmigen Agens. Über das Ventil kann so die Menge des in den Reinraum eingebrachten gasförmigen Agens reguliert werden. Weiter können auch Gaspatronen eingesetzt werden, die die benötigte Menge an gasförmigem Agens beinhalten. Auf ein Ventil und eine Regeleinrichtung kann dann verzichtet werden.
Bei einer vorteilhaften Ausführungsvariante weist die H202- Abbaueinrichtung zusätzlich Mittel zur Erzeugung von UV- Licht im Reinraum auf. Diese Mittel umfassen beispielsweise eine UV-Lampe, die innerhalb des Reinraums UV-Licht er- zeugt. Solche UV-Lampen gehören zum Stand der Technik.
Mit Vorteil weist die erfindungsgemässe Anordnung einen Sensor zum Messen der Konzentration des gasförmigen Agens im Reinraum auf, dessen Messwerte zur Regelung der H202-Ab- baueinrichtung dienen. Wird ein Uberschuss an gasförmigem Agens gemessen, der nicht durch Reaktion mit H202 abgebaut wird, wird das Einbringen von gasförmigem Agens in den Reinraum im Normalfall gestoppt.
Anstelle des erwähnten quantitativen Sensors ist auch ein qualitativer Indikator, z.B. Farbindikator, denkbar. Der Abbauprozess kann so auch manuell gesteuert werden.
Alternativ oder zusätzlich weist die erfindungsgemässe An- Ordnung einen Sensor zum Messen der H202-Konzentration im Reinraum auf, dessen Messwerte zur Regelung der H202-Abbau- einrichtung dienen. Misst der Sensor eine H202-Konzentration im Reinraum, die kleiner ist als die angestrebte Restkonzentration, beispielsweise 1 ppm, braucht der Abbau von H202 nicht weiter vorangetrieben zu werden. Dies bedeutet, dass kein zusätzliches gasförmiges Agens in den Reinraum eingebracht bzw. kein zusätzliches UV-Licht im Reinraum erzeugt zu werden braucht.
Zur Steuerung bzw. Regelung der H202-Beaufschlagungseinrich- tung und der H202-Abbaueinrichtung sind vorzugsweise separate Steuer- und Regeleinrichtungen vorgesehen, was den nachträglichen Einbau der H202-Abbaueinrichtung in eine bestehende Anordnung mit H202-Beaufscnlagungseinrichtung er- möglicht.
Die H20-Abbaueinrichtung kann entweder als separate Einrichtung ausgebildet sein, die unabhängig von der H202-Be- aufschlagungseinrichtung gasförmiges Agens in den Reinraum einbringt bzw. in diesem erzeugt, oder sie und die H202-Be- aufSchlagungseinrichtung können in eine Peripherie des Reinraums integriert sein. Bei neuen Dekontaminationsvorrichtungen ist in der Regel die Integration der H202-Abbau- einrichtung und der H202-BeaufSchlagungseinrichtung in die Peripherie des Reinraums vorziehen, während bestehende
Dekontaminationsvorrichtungen einfacher mit einer separaten H202-Abbaueinrichtung nachrüstbar sind.
Im Folgenden wird die erfindungsgemässe Anordnung zur De- kontamination eines Reinraums unter Bezugnahme auf die bei- gefügten Zeichnungen anhand von zwei Ausführungsbeispielen detaillierter beschrieben. Es zeigen:
Fig. 1 - schematisch ein erstes Ausführungsbeispiel der er- findungsgemässen Anordnung mit einer separaten
H202-Abbaueinrichtung; und
Fig. 2 - schematisch ein zweites Ausführungsbeispiel der erfindungsgemässen Anordnung mit in eine Periphe- rie des Reinraums integrierter H202-Beaufschlagungsemrichtung und H202-Abbaueinrichtung.
Bei dem in Fig. 1 dargestellten ersten Ausführungsbeispiel einer erfindungsgemässen Anordnung zur Dekontamination eines Reinraums 1 ist eine H202-BeaufSchlagungseinrichtung 2 ausserhalb einer Peripherie 3 des Reinraums 1 angeordnet. Mit einer Steuer- und Regeleinrichtung 31 werden die Bedingungen im Reinraum 1 gesteuert und geregelt, insbesondere die Druckverhältnisse und die Luftkonditionen. Die H202-Be- aufSchlagungseinrichtung 2 umfasst beispielsweise, wie in der CH-A-689 178 beschrieben, mindestens einen mit flüssigem H202 gefüllten H20-Vorratsbehälter, mindestens eine Verdampfereinheit in Form einer Heizplatte zum Verdampfen des H202 und mindestens eine H202-Leitung zwischen dem min- destens einen H202-Vorratsbehälter und der mindestens einen Heizplatte. Die mindestens eine Heizplatte ist im Reinraum 1 angeordnet, so dass das vom mindestens einen H202-Vorrats- behälter über die mindestens eine H202-Leitung zugeführte H202 direkt im Reinraum 1 auf der mindestens einen Heizplat- te verdampft wird. Die Beaufschlagung des Reinraums 1 mit H202 wird von einer Steuer- und Regeleinrichtung 21 gesteuert und geregelt, die vorzugsweise eine speicherprogrammierbare Steuerung umfasst. Normalerweise wird soviel H202 im Reinraum 1 verdampft, dass im Reinraum 1 eine H202-Kon- zentration von ca. 100-5000 ppm während ca. 10 bis 120 Minuten vorhanden ist.
Nach der Dekontamination mit H202 wird das im Reinraum 1 noch vorhandene H202, d.h. das H202, das nicht reagiert hat und nicht verbraucht worden ist, mit einem gasförmigen Agens abgebaut, das über eine Gasleitung 13 in den Reinraum
I eingebracht wird. Als gasförmiges Agens wird vorzugsweise entweder Ammoniak, Hydrazin oder Ozon verwendet.
Zu diesem Zweck weist die Anordnung eine separat ausgebildete " H202-Abbaueinrichtung 10 auf, die einen Vorratsbehälter
II umfasst, in dem das gasförmige Agens gespeichert ist. Der Vorrat an gasförmigem Agens im Vorratsbehälter 11 wird von einer Kontrolleinheit 14 überwacht. Das im Vorratsbehälter 11 gespeicherte gasförmige Agens gelangt über die Gasleitung 13 in den Reinraum 1, wobei am reinraumseitigen Ende der Gasleitung 13 eine oder mehrere Düsen vorgesehen sein können, die das gasförmige Agens im Reinraum 1 vertei- len. In der Gasleitung 13 ist ein Ventil 12 angeordnet, mit dem die Menge des in den Reinraum 1 eingebrachten gasförmigen Agens gesteuert bzw. reguliert werden kann. Das Ventil 12 wird von einer Steuer- und Regeleinrichtung 15 gesteuert, die mit einem Sensor 4 zum Messen der Konzentration des gasförmigen Agens und einem Sensor 5 zum Messen der
H202-Konzentration in Verbindung steht. Die Sensoren 4 und 5 sind im Reinraum 1 angeordnet und messen die Konzentration des gasförmigen Agens und die H20-Konzentration im Reinraum 1.
Je nach den von den Sensoren 4 und 5 gemessenen Werten wird dem Reinraum 1 mehr oder weniger gasförmiges Agens zugeführt. Im Allgemeinen wird ein kleiner Uberschuss an gasförmigem Agens in den Reinraum 1 eingebracht, damit das H202 schnell und möglichst vollständig abgebaut wird. Nach dem Abbau des H202 wird im Reinraum 1 der Luftwechsel wieder gewährleistet, wobei zu diesem Zweck in bekannter Weise ein Zuluftkanal, eine Zuluftklappe, eine Abluftklappe und ein Abluftkanal vorgesehen sein können. Die Anordnung kann ausserdem weitere Elemente aufweisen, die von Anordnungen zur Dekontamination eines Reinraums des Standes der Technik bekannt sind.
Bei dem in Fig. 2 dargestellten zweiten Ausführungsbeispiel einer erfindungsgemässen Anordnung zur Dekontamination eines Reinraums 101 sind die H202-Abbaueinrichtung und die H202-Beaufschlagungseinrichtung 102 in die Peripherie 103 des Reinraums 101 integriert. Die H02-Abbaueinrichtung um- fasst anstelle eines Vorratsbehälters für gasförmiges Agens einen Gasgenerator 111, der das gasförmige Agens direkt erzeugt. Der Gasgenerator 111 wird von einer Steuereinheit 114 gesteuert. Das erzeugte gasförmige Agens wird über eine Gasleitung 113 dem Reinraum 101 zugeführt, wobei die zuge- führte Agensmenge über ein in der Gasleitung 113 angeordnetes Ventil 112 gesteuert bzw. reguliert wird. Das Ventil 112 wird von einer Steuer- und Regeleinrichtung 115 gesteuert, die mit einem Sensor 104 zum Messen der Konzentration des gasförmigen Agens und einem Sensor 105 zum Messen der H202-Konzentration in Verbindung steht. Die Sensoren 104 und 105 sind im Reinraum 101 angeordnet und messen die Konzentration des gasförmigen Agens und die H202-Konzentration im Reinraum 101.
Die Steuer- und Regeleinrichtung 115 steht auch mit der Steuereinheit 114 in Verbindung und stellt über diese sicher, dass entsprechend den Messwerten der Sensoren 104 und 105 gasförmiges Agens erzeugt wird oder eben nicht.
Wie beim ersten Ausführungsbeispiel wird die Beaufschlagung des Reinraums 101 mit H202 von einer Steuer- und Regeleinrichtung 121 gesteuert und geregelt, die vorzugsweise eine speicherprogrammierbare Steuerung umfasst. Mit einer Steuer- und Regeleinrichtung 131 werden die Bedingungen im Reinraum 101 gesteuert und geregelt, insbesondere die
Druckverhältnisse und die Luftkonditionen. Die Steuer- und Regeleinrichtung 121 steht hier über die Steuer- und Regeleinrichtung 131 mit der Steuer- und Regeleinrichtung 115 in Verbindung, so dass die Messwerte der Sensoren 104 und 105 auch zur Steuerung der H202-Zuführung verwendet werden können.
Im Weiteren gilt entsprechend das zum ersten Ausführungsbeispiel Gesagte.
Zu den vorbeschriebenen Anordnungen zur Dekontamination eines Reinraums sind weitere konstruktive Variationen realisierbar. Hier ausdrücklich erwähnt sei noch, dass die H2θ2-Bea.ü'fschlagungseinrichtung auch anders als beschrieben ausgebildet sein kann. Beispielsweise könnte bereits gasförmiges H202 von aussen in den Reinraum 1 bzw. 101 eingeführt werden. Prinzipiell sind alle H202-Beaufschlagungs- einrichtungen des Standes der Technik denkbar.

Claims

Patentansprüche
1. Verfahren zur Dekontamination eines Reinraums (1; 101), bei dem der Reinraum (1; 101) mit gasförmigem H202 beaufschlagt wird und zu einem späteren Zeitpunkt im Reinraum (1; 101) noch vorhandenes H2O2 ohne Katalysator durch Zufügung mindestens eines gasförmigen Agens, das mit dem H202 reagiert, chemisch abgebaut wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass H202-Reste in einem sich im Reinraum (1; 101) befindlichen Produkt nachträglich gezielt am Produkt abgebaut werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das mindestens eine gasförmige Agens so dosiert wird, dass nach dem chemischen Abbau des H202 im Reinraum höchstens noch 1 ppm H202 übrig bleibt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mindestens eine gasförmige Agens Ammoniak umfasst.
5. Verfahren nach Anspruch 4, dadurch gekennzeich- net, dass das Ammoniak abhängig vom H202 so dosiert wird, dass der Uberschuss von Ammoniak höchstens 500 ppm beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine gasförmige Agens Hydrazin umfasst.
7. Verfahren nach einem der Ansprüche 1 bis 6, da- durch gekennzeichnet, dass das mindestens eine gasförmige Agens Ozon umfasst.
8. Anordnung zur Dekontamination eines Reinraums (1; 101), mit einer H202-BeaufSchlagungseinrichtung (2; 102) zum Beaufschlagen des Reinraums (1; 101) mit H202, dadurch gekennzeichnet, dass sie eine H202-Abbaueinrichtung (10; 111-115) zum Bewirken eines chemischen Abbaus von H20 ohne Katalysator im Reinraum (1; 101) umfasst, die Mittel zum Einbringen mindestens eines gasförmigen Agens in den Reinraum (1; 101) aufweist.
9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Mittel zum Einbringen mindestens eines gas- förmigen Agens ausgebildet sind, um Ammoniak, Hydrazin oder Ozon in den Reinraum (1; 101) einzubringen.
10. Anordnung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Mittel zum Einbringen mindestens eines gasförmigen Agens in den Reinraum (1; 101) einen mit gasförmigem Agens gefüllten Vorratsbehälter (11) oder einen Generator (111) zur Erzeugung von gasförmigem Agens, eine Gasleitung (13; 113) vom Vorratsbehälter (11) oder Generator (111) zum Reinraum (1; 101) und ein Ventil (12, 112) zum Regulieren der Menge des durch die Gasleitung (13; 113) strömenden gasförmigen Agens aufweisen.
11. Anordnung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass sie einen Sensor zum Messen der Konzentration des gasförmigen Agens (4; 104) im Reinraum (1; 101) aufweist, dessen Messwerte zur Steuerung der H202-Abbaueinrichtung (10; 111-115) dienen.
12. Anordnung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass sie einen Sensor zum Messen der H02-Konzentration (5; 105) im Reinraum (1; 101) aufweist, dessen Messwerte zur Steuerung der H202-Abbaueinrich- tung (10; 111-115) dienen.
13. Anordnung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die H202-Abbaueinrichtung Mittel zur Erzeugung von UV-Licht im Reinraum (1; 101) aufweist .
14. Anordnung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die H202-Abbaueinrichtung (111- 115) und die H202-BeaufSchlagungseinrichtung (102) in eine Peripherie (103) des Reinraums (101) integriert sind.
15. H202-Abbaueinrichtung (10; 111-115) für eine Anordnung zur Dekontamination eines Reinraums (1; 101) gemäss einem der Ansprüche 8 bis 14.
PCT/CH2003/000418 2002-07-02 2003-06-25 Verfahren und anordnung zur dekontamination eines reinraums WO2004004790A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03729776A EP1519758A1 (de) 2002-07-02 2003-06-25 Verfahren und anordnung zur dekontamination eines reinraums
US10/519,888 US20050226764A1 (en) 2002-07-02 2003-06-25 Method and system for decontaminating a clean-room
AU2003240360A AU2003240360A1 (en) 2002-07-02 2003-06-25 Method and system for decontaminating a clean-room

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01156/02A CH700121B1 (de) 2002-07-02 2002-07-02 Verfahren und Anordnung zur Dekontamination eines Reinraums.
CH1156/02 2002-07-02

Publications (1)

Publication Number Publication Date
WO2004004790A1 true WO2004004790A1 (de) 2004-01-15

Family

ID=30005578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000418 WO2004004790A1 (de) 2002-07-02 2003-06-25 Verfahren und anordnung zur dekontamination eines reinraums

Country Status (5)

Country Link
US (1) US20050226764A1 (de)
EP (1) EP1519758A1 (de)
AU (1) AU2003240360A1 (de)
CH (1) CH700121B1 (de)
WO (1) WO2004004790A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699032B1 (de) * 2006-05-15 2010-01-15 Skan Ag Verfahren und Anordnung zur Dekontamination eines Reinraums und von temporär darin eingebrachtem Behandlungsgut.
ES2390429A1 (es) * 2010-06-11 2012-11-13 Hispano Vema, S.L. Sistema integrado independiente de descontaminacion
WO2014079779A1 (de) * 2012-11-20 2014-05-30 Metall + Plastic Gmbh Isolator mit katalytischem desinfektionsmittelabbau
DE102022100598A1 (de) 2022-01-12 2023-07-13 Syntegon Technology Gmbh Isolator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2735739C (en) * 2009-07-06 2011-11-22 Medizone International Inc. Healthcare facility disinfecting process and system with oxygen/ozone mixture
US9616145B2 (en) 2009-07-06 2017-04-11 Medizone International, Inc. Healthcare facility disinfecting system
AR078060A1 (es) * 2009-07-14 2011-10-12 Novartis Ag Descontaminacion de superficie de contenedores previamente llenados en empaque secundario
EP2525838B1 (de) 2010-01-18 2016-04-27 Medizone International Inc. Massnahme gegen bioterrorismus mit ozon und wasserstoffperoxid
CA2846257A1 (en) * 2010-09-08 2012-03-15 Medizone International Inc. Combating insect infestations
CA2846259A1 (en) 2010-09-08 2012-03-15 Medizone International Inc. Food-handling facility disinfection treatment
WO2012031364A1 (en) 2010-09-08 2012-03-15 Medizone International Inc. Sports equipment and facility disinfection
JP6761563B2 (ja) * 2015-02-20 2020-09-30 三浦工業株式会社 除染装置および除染方法
WO2016172223A1 (en) * 2015-04-20 2016-10-27 Synexis Llc Clean rooms having dilute hydrogen peroxide (dhp) gas and methods of use thereof
IL267915B2 (en) 2017-01-09 2024-03-01 Synexis Llc Application of dry hydrogen peroxide gas (DHP) in poultry production methods
CN110833458A (zh) * 2019-09-29 2020-02-25 陆远强 医院内化学救援分通道洗消中心

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3133192A1 (de) * 1980-09-05 1982-04-01 Jujo Paper Co. Ltd., Tokyo "verfahren zur entfernung von restwasserstoffperoxid auf verpackungsmaterialien fuer die nahrungsmittelindustrie und verwendung von oxidationsinhibitoren und reduktionsmitteln in diesem verfahren"
DE3433501A1 (de) * 1984-09-12 1986-04-10 Fred R. Dr. 8913 Schondorf Kohlbach Verfahren zur sterilisation von behaeltern oder hohlraeumen
US4756882A (en) * 1985-06-21 1988-07-12 Surgikos Inc. Hydrogen peroxide plasma sterilization system
US5820841A (en) * 1996-09-19 1998-10-13 Ethicon, Inc. Hydrogen peroxide complexes of inorganic salts and synthesis thereof
US5837193A (en) * 1992-11-12 1998-11-17 American Sterilizer Company Method of decontaminating freeze dryers
CH689178A5 (de) * 1996-11-18 1998-11-30 Skan Ag Vorrichtung zur gasfoermigen Dekontamination von Reinraeumen.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087418A (en) * 1987-02-25 1992-02-11 Adir Jacob Process for dry sterilization of medical devices and materials
US5645796A (en) * 1990-08-31 1997-07-08 Abtox, Inc. Process for plasma sterilizing with pulsed antimicrobial agent treatment
TW343923B (en) * 1996-01-22 1998-11-01 Duskin Co Ltd Deodorization/odor-removal/disinfection method and deodorization/odor-removal/disinfection apparatus
US6365102B1 (en) * 1999-03-31 2002-04-02 Ethicon, Inc. Method of enhanced sterilization with improved material compatibility
US6458321B1 (en) * 2000-10-02 2002-10-01 Ethicon, Inc. Sterilization system employing low frequency plasma

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3133192A1 (de) * 1980-09-05 1982-04-01 Jujo Paper Co. Ltd., Tokyo "verfahren zur entfernung von restwasserstoffperoxid auf verpackungsmaterialien fuer die nahrungsmittelindustrie und verwendung von oxidationsinhibitoren und reduktionsmitteln in diesem verfahren"
DE3433501A1 (de) * 1984-09-12 1986-04-10 Fred R. Dr. 8913 Schondorf Kohlbach Verfahren zur sterilisation von behaeltern oder hohlraeumen
US4756882A (en) * 1985-06-21 1988-07-12 Surgikos Inc. Hydrogen peroxide plasma sterilization system
US5837193A (en) * 1992-11-12 1998-11-17 American Sterilizer Company Method of decontaminating freeze dryers
US5820841A (en) * 1996-09-19 1998-10-13 Ethicon, Inc. Hydrogen peroxide complexes of inorganic salts and synthesis thereof
CH689178A5 (de) * 1996-11-18 1998-11-30 Skan Ag Vorrichtung zur gasfoermigen Dekontamination von Reinraeumen.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699032B1 (de) * 2006-05-15 2010-01-15 Skan Ag Verfahren und Anordnung zur Dekontamination eines Reinraums und von temporär darin eingebrachtem Behandlungsgut.
ES2390429A1 (es) * 2010-06-11 2012-11-13 Hispano Vema, S.L. Sistema integrado independiente de descontaminacion
WO2014079779A1 (de) * 2012-11-20 2014-05-30 Metall + Plastic Gmbh Isolator mit katalytischem desinfektionsmittelabbau
EP3017830A1 (de) 2012-11-20 2016-05-11 Metall + Plastic GmbH Isolator mit katalytischem desinfektionsmittelabbau
DE202013012549U1 (de) 2012-11-20 2017-06-20 Metall + Plastic Gmbh Dekontaminationsanordnung
DE102022100598A1 (de) 2022-01-12 2023-07-13 Syntegon Technology Gmbh Isolator

Also Published As

Publication number Publication date
US20050226764A1 (en) 2005-10-13
EP1519758A1 (de) 2005-04-06
AU2003240360A1 (en) 2004-01-23
CH700121B1 (de) 2010-06-30

Similar Documents

Publication Publication Date Title
WO2004004790A1 (de) Verfahren und anordnung zur dekontamination eines reinraums
DE60006142T2 (de) Methode und apparat zur dampfphasensterilisation
DE60033802T2 (de) Sterilisation von abgeschlossenen räumen
DE102006006095B4 (de) Verfahren und Apparatur zur Verdampfung flüssiger Oxidationsmittel oder Oxidationsmittellösungen bei niedrigem Energieaufwand
DE102010026104B3 (de) Verfahren zur Sterilisation wenigstens eines Gegenstandes, Sterilisationsvorrichtung sowie Verwendung hierzu
EP2181374B1 (de) Dosier- und versorgungssystem für vorrichtungen zum h2o2-sterilisieren von packmitteln sowie vorrichtung mit einem solchen dosier- und versorgungssystem
DE3937578A1 (de) Dentaleinheit
EP1607106A1 (de) Gefässbehandlungsmaschine zur Sterilisation von Behältern mittels H202
EP2049275A1 (de) Verfahren zur sterilisation von reinräumen für die behandlung und/oder das füllen und verschliessen von behältern
DE69834835T2 (de) Dynamische reduzierung von biologischer beladung durch o(x)
DE60120818T2 (de) Gerät zur Vergasung von Sterilisationsflüssigkeiten
EP3470364A1 (de) Verfahren zur desinfektion von komponenten einer abfüllanlage und abfüllanlage
WO2009013226A2 (de) Verdampfer zum sterilisieren von kunststoffbehältern
CH689178A5 (de) Vorrichtung zur gasfoermigen Dekontamination von Reinraeumen.
WO2018115070A1 (de) Vorrichtung zum behandeln von anlagenkomponenten und/oder packmitteln mit verdampftem wasserstoffperoxid
EP3079993B1 (de) Verfahren zum entkeimen von packmitteln
CH696801A5 (de) Vorrichtung zum Vergasen eines Dekontaminationsmittel.
WO2008043437A2 (de) Behälterentkeimung mit uvc-strahlung
DE3932341A1 (de) Verfahren und vorrichtung zum sterilisieren von getraenkeflaschen, insbesondere weinflaschen, mit einem fluessigen sterilisationsmittel
DE102017123871A1 (de) Verfahren zur Oberflächendesinfektion und zur Desinfektion von Komponenten einer Abfüllanlage
DE102008047148A1 (de) Verfahren und Einrichtung zur Reinigung und Desinfektion eines Behälters
DE10346843A1 (de) Vorrichtung zum Vergasen eines Dekontaminationsmittels
WO2019219959A1 (de) Desinfektionsverfahren mit einem durch reaktion von h2o2 und no2– in situ gebildetem desinfektionswirkstoff
DE10019047A1 (de) Vorrichtung zum Sterilisieren von Packungen
WO2023110574A1 (de) Vorrichtung und verfahren zum reinigen einer behältnisfüllanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10519888

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003729776

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003729776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP