WO2004002658A1 - アルミニウム合金の真空ダイカスト鋳造方法及び鋳造装置並びにアルミニウム合金製品 - Google Patents

アルミニウム合金の真空ダイカスト鋳造方法及び鋳造装置並びにアルミニウム合金製品 Download PDF

Info

Publication number
WO2004002658A1
WO2004002658A1 PCT/JP2003/008072 JP0308072W WO2004002658A1 WO 2004002658 A1 WO2004002658 A1 WO 2004002658A1 JP 0308072 W JP0308072 W JP 0308072W WO 2004002658 A1 WO2004002658 A1 WO 2004002658A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
cavity
aluminum alloy
vacuum
cover
Prior art date
Application number
PCT/JP2003/008072
Other languages
English (en)
French (fr)
Inventor
Hirotaka Kurita
Hiroshi Yamagata
Toshikatsu Koike
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to AU2003244075A priority Critical patent/AU2003244075A1/en
Priority to JP2004517281A priority patent/JP4224024B2/ja
Publication of WO2004002658A1 publication Critical patent/WO2004002658A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • B22D17/145Venting means therefor

Definitions

  • the present invention relates to an aluminum alloy vacuum die casting method and apparatus, and to an aluminum alloy product such as a cylinder opening of a cylinder of an engine.
  • a cylinder bore with a piston on the sliding surface of the piston or a bore surface coated with Ni to enhance wear resistance and strength during high-temperature sliding has been adopted. ing.
  • a direct-sliding type cylinder block that forms a sliding surface with machined parts without using such a sleeve or Ni plating can simplify the manufacturing process and cool down. It is thought that the capacity will be improved and the cost will be reduced.
  • a direct-sliding type cylinder block a cylinder block made of a single material of a hypereutectic A 1 (aluminum) —Si (silicon) alloy has been put to practical use.
  • the conventional direct-sliding type cylinder block made of a single material of A1-Si alloy is formed by low-pressure fabrication, which requires a long fabrication time, lowers productivity and reduces costs. Disadvantageous.
  • the A1-Si alloy for low-pressure sintering has a reduced Fe content to avoid formation of a coarse compound phase during cooling. . Fe prevents seizure with the mold and has an effect, but low pressure In the structure, seizure does not occur because the ceramic coating is performed repeatedly.
  • seizure due to insufficient Fe becomes a problem.
  • the aluminum alloy itself forms the sliding surface of the bore, so that defects such as voids must be minimized.
  • gases hydrogen, air or mold release materials, carbon-based gas generated from lubricants, etc.
  • the gas in the mold cavity is evacuated with a vacuum pump with the gap between the mold mating surfaces, etc., when the mold (fixed mold and movable mold) is assembled during production, sealed.
  • a method was used to carry out construction.
  • a slide die is used for that part.
  • a gap is formed on the sliding surface of the slide mold, and the sealing performance is reduced, so that a sufficient degree of vacuum cannot be obtained, and the gas can be reliably removed.
  • the present invention has been made in consideration of the above-mentioned conventional technology, It is an object of the present invention to provide a method and apparatus for vacuum die casting of an aluminum alloy which can ensure sufficient wear resistance and seizure resistance at a low cost, and an aluminum alloy product such as an engine cylinder block piston. Disclosure of the invention
  • a first mold and a second mold that can move relative to each other in one direction, and are sandwiched between the first mold and the second mold in a direction different from the one direction.
  • Aluminum comprising: a step of forming a cavity by combining a plurality of movable slide dies; a step of depressurizing the inside of the cavity; and a step of supplying a molten aluminum alloy into the cavity.
  • An alloy vacuum vacuum casting method wherein the step of forming the cavity additionally includes a step of covering a whole or a part of a periphery of a mating surface of the dies with a cover via a space.
  • the present invention provides a vacuum die casting method for an aluminum alloy, which is characterized in that:
  • the cavity in the mold can be depressurized without applying a sealing material to the mating surface of the mold itself.
  • the mold structure is such that the sealing performance of the mold, the mating surface of the slide mold, etc., the sliding surface is likely to be uncertain
  • the mold itself is sealed with a cover that covers it without applying a seal.
  • the degree of vacuum in the cavity in the mold can be sufficiently increased, and the gas can be reliably removed to eliminate the occurrence of voids, and welding and heat treatment can be performed. You can get toys.
  • the seal material is provided at a position separated from the high-temperature mold by a space.
  • the thermal effect of the sealing material is reduced, the deterioration of the sealing material is prevented, and high sealing performance is maintained.
  • the mold is depressurized by depressurizing the space between the cover part and the mold.
  • the cavity in the mold can be depressurized through the gap between the peripheral surfaces of the mold mating surface. Gas can be reliably discharged. This makes it possible to improve the flow of hot water into the cavity and to obtain a high-quality die-cast product with no molten metal, even in a cavity for forming a thin wall, in which the molten metal is surely filled in every corner.
  • the step of forming the cavity and the step of covering the whole or a part of the periphery of the mating surface of the molds with a cover via a space are performed simultaneously.
  • the mold is covered with a part of the cover at the same time as the mold is formed by combining the molds, thereby increasing the manufacturing cycle time by increasing the step of covering the mold with the part of the cover. I can't.
  • a step of covering the whole or a part of the periphery of the mating surface of the molds via a space is performed.
  • the step of covering with a part of the cover is performed after confirming the mold clamping, so that the reliability of space formation and sealing is improved.
  • the step of depressurizing the inside of the cavity and the step of depressurizing the space between the cover part and the mold are performed almost simultaneously. It is characterized by. -According to this configuration, the space between the cover part and the mold is decompressed almost simultaneously with the decompression inside the cavity, so the structure by increasing the process of decompressing the space between the cover and the mold is increased. Cycle time does not increase.
  • the step of depressurizing the inside of the cavity and the step of depressurizing the space between the cover part and the mold are performed with a time lag.
  • the evacuation time of the space and the evacuation time of the cavity are shifted in consideration of the intricate shape of the slide die and the exhaust passage resistance, so that the vacuum evacuation can be efficiently performed in order for the entire die. By doing so, the gas in the cavity can be exhausted reliably.
  • a step of depressurizing a space between the cover portion and the mold is performed before the step of depressurizing the inside of the cavity.
  • the aluminum alloy contains Fe, and contains 18 to 22 wt% of Si.
  • the aluminum alloy contains Fe in a range of 0.4 to 1.5 wt%.
  • a preferred configuration example is characterized by including a step of rapidly cooling the structure taken out of the mold.
  • rapid cooling is represented by water-cooling quenching treatment, but is not limited to water cooling, but includes all cooling methods other than natural cooling, in which the product is actively cooled.
  • the aluminum alloy is manufactured by the vacuum die casting method of an aluminum alloy according to the method of the present invention.
  • the aluminum alloy product is a cylinder plug or a piston of an engine.
  • the cylinder block is a cylinder portion of the engine including the cylinder bore, and includes a case where the crankcase and a part of the cylinder head are integrally formed.
  • the piston is fitted with a piston that slides in the cylinder bore.
  • the aluminum alloy product is a cylinder block of an engine, wherein silicon crystals protrude from a surface of a cylinder bore.
  • the Si crystal particles are raised and protruded from the aluminum base material surface of the cylinder bore made of the aluminum alloy, the raised Si crystal particles contact the piston and form a sliding surface.
  • the lubricating oil spreads on the surface of the concave aluminum base material around it, and a stable and highly wear-resistant cylinder block can be obtained.
  • the first and second molds that can move relative to each other in one direction, and the slide that is sandwiched between the first and second molds and that can move relatively in a direction different from the one direction.
  • a plurality of molds are combined to form a cavity, and the inside of the cavity is depressurized by a vacuum pump to supply a molten aluminum alloy into the cavity.
  • a part of the cover is provided integrally with that of the first and second molds, and at the time of forming the cavity, the parts of the cover come into contact with each other via a sealing material to form a mating surface between the molds.
  • a vacuum pipe connecting the cavity and the space to a vacuum pump is provided.
  • the vacuum evacuation is started in conjunction with the forward movement of the furnace, and the pressure in the cavity and the space is reduced through the vacuum pipe.
  • the plunger tip is moved near the inlet of the tee, the molten metal is rapidly supplied into the cavity, and the flow rate of cooling water to the mold is adjusted during this time.
  • the inside of the part of the mold is suctioned and evacuated by the vacuum pump without applying a sealing material to the mating surface of the mold itself.
  • the cavity inside the mold can be decompressed, and even if the mold has a complicated shape, the sealing surface of the sliding mold, etc.
  • the vacuum in the mold cavity can be sufficiently increased, and the gas can be reliably removed. Welding and nesting are eliminated Can be processed can be obtained a high-quality die cast ⁇ products.
  • the part of the cover covers the entire periphery of the mating surface of the dies through a space and is separately fixed to the first and second dies.
  • the present invention can be implemented using an existing mold.
  • the part of the cover covers the entire periphery of the mating surface of the dies through a space, and is formed integrally with the first and second dies.
  • the cover portion has a mounting portion for mounting an actuator for driving at least a part of the molds.
  • the mold can be driven by attaching the actuator to the force bar side, and the configuration of the mold is simplified, and the degree of freedom in layout is increased.
  • a fixing portion for fixing the cover portion to the mold is formed on an inner surface of the cover portion.
  • the cover part is fixed to the mold on the inner surface side of the force part, so that the outer shape of the cover part is simplified, and the mounting bolts and the like do not protrude to the outside.
  • the structure is simple.
  • the other end of the vacuum pipe connected to a common vacuum pump is connected to the space, and the cavity is connected to the vacuum pump via the space.
  • the cavity is connected to a common vacuum pump without passing through the space.
  • the configuration can be simplified using the common vacuum pump, and the space and the cavity can be evacuated with separate pipes, so that the interior of the cavity can be evacuated efficiently and reliably.
  • the cavity and the space are connected to a vacuum pump of another system via a vacuum pipe of another path.
  • FIG. 1 is an explanatory diagram of a flow of a manufacturing process according to the present invention.
  • FIG. 2 is a configuration diagram of the fabrication device according to the present invention.
  • FIG. 3 is a time chart of a manufacturing process by the manufacturing apparatus of FIG.
  • FIG. 4 is a configuration diagram of a fabrication device according to a second embodiment of the present invention.
  • FIG. 5 is a configuration diagram of the third embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a fourth embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a fifth embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a movable mold according to a sixth embodiment of the present invention.
  • FIG. 9 is a configuration diagram of a fixed type paired with the movable type of FIG.
  • FIG. 10 is a configuration diagram of a movable mold according to the seventh embodiment of the present invention.
  • FIG. 11 is a configuration diagram of a fixed type that is paired with the movable type of FIG.
  • FIG. 12 is an explanatory view of a honing step in a fabrication process according to the present invention.
  • FIG. 13 is a top view of a cylinder block according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION ''
  • Table 1 is a table showing material components of the Al—Si alloy according to the present invention. ⁇ table 1 ⁇
  • This aluminum alloy is formed by melting the base metal of a reclaimed aluminum alloy base. However, it can also be formed from new lump-based ingots using new aluminum metal. Using such an aluminum alloy, a cylinder block of the engine is formed by die casting described later.
  • Si increases the wear resistance of the sliding surface of the cylinder bore, and also improves the seizure resistance in the manufacturing process.
  • Fe is added to prevent seizure with the mold.
  • Cu and Mg increase the base metal strength by heat treatment.
  • Mn, Zn, Ni, Sn, Ca, and Na are impurities originally contained in recycled aluminum. P is added to make the particle size and dispersion of Si particles uniform.
  • Figure 1 shows the die casting process using the aluminum alloys in Table 1.
  • a metal of aluminum alloy having a predetermined alloy composition is melted in a melting furnace to form a molten metal.
  • the melt is heated to a certain temperature or higher.
  • the temperature of the molten metal is kept at a predetermined temperature equal to or lower than the above-mentioned superheat temperature.
  • the Si particles in the alloy are uniformly dispersed.
  • the mold set in the cover described later is manufactured while reducing the pressure.
  • the entire mold is suctioned and evacuated to increase the degree of vacuum inside the mold without setting a seal on the mold itself. The gas can be reliably removed to prevent the occurrence of nests.
  • T6 or T7 heat treatment is applied to the cylinder block removed from the mold after fabrication.
  • T5 treatment immediately after the mirror product is removed from the mold, it is quenched by water cooling or the like, and then artificially aged for a predetermined time at a predetermined temperature and then air-cooled to improve mechanical properties and dimensional stability.
  • the T6 treatment is a process of taking out a manufactured product from a mold, performing a solution treatment at a predetermined temperature for a predetermined time, cooling with water, then performing an artificial aging process at a predetermined temperature for a predetermined time, and then air cooling.
  • the T7 treatment is a treatment for overaging as compared with the T6 treatment, and dimensional stabilization is achieved, but hardness is lower than T6 treatment.
  • Processing such as grinding and turning of the mating surface with the cylinder head, the mating surface with the crankcase, and the inner surface of the cylinder bore.
  • Honing the inner surface of the cylinder bore This honing is performed in three steps: (1) rough honing, (2) semi-finishing honing, and (3) finishing honing, as described later (Fig. 12).
  • FIG. 2 is a configuration diagram of a fabrication device used in the fabrication process S2.
  • the mold 1 includes a fixed mold 2 and a movable mold 3, and the movable mold 3 includes a base mold 4 and a slide mold 5.
  • the slide mold 5 is divided into four at 90-degree intervals, each of which is provided with a cylinder 6 (only the upper and lower parts are shown), and the surface of the base mold 4 (between the base mold 4 and the slide mold 5).
  • the cylinder 6 is an actuator for driving a slide mold described in the claims.
  • 7a and 7b are cylinder bore forming parts, and 7c is an air cooling fin forming part.
  • the base mold 4 is provided with an extrusion pin 8 ′, and for each construction shot, the construction is extruded with the slide mold 5 opened to be taken out of the mold.
  • 3 1 is a mating surface between the fixed mold 2 and the movable mold 3.
  • the stationary mold 2 is provided with an injection sleeve 9.
  • the plunger tip 11 provided at the tip of the port 10 in the injection sleeve 9 reciprocates.
  • a hot water supply port 12 is formed in the injection sleeve 9, and one shot of molten metal is injected with the plunger tip 11 in the original position (position behind the hot water supply port 12 (right side in the figure)). I do.
  • a chip sensor 13 is provided in front of the hot water supply port 12. The tip sensor 13 is for detecting that the plunger tip 11 has passed through the hot water supply port 12.
  • the whole mold 1 is covered with a part 14 of a hippopotamus.
  • the cover part 14 is composed of a fixed-side cover part 14 a that houses the fixed mold 2 and a movable-side cover part 14 b that houses the movable mold 3. 5 is attached ⁇
  • a sealing material 15 such as an O-ring is attached. Keep the airtight inside.
  • a leak valve 16 is provided on the movable side cover 14 b (or a part of the fixed side cover 14 a) of the cover 14.
  • An exhaust passage 17 communicating with the cavity 7 is formed in the fixed mold 2.
  • the exhaust passage 17 may be formed on the movable mold side.
  • the exhaust passage 17 has a bypass passage 17a, and an on / off valve 18 for opening and closing the bypass passage 1a.
  • By-pass passage 1 ⁇ a is used to bypass the exhaust passage 17 where the on / off valve 18 is installed and vacuum the exhaust passage 17 when vacuuming the inside of the mold during manufacturing (as shown). This is for communication with the outside of the mold.
  • the on / off valve 18 is, for example, a metal switch valve.
  • a valve configuration that detects the position of the plunger tip 11 and closes the exhaust passage 17 via the actuator at the position where one shot of molten metal has been pushed in is completed. Is also good.
  • a zigzag long narrow passage communicating with the cavity is formed, and the molten metal overflowing from the cavity is solidified in the middle by passing through this passage.
  • a chill vent structure for preventing outflow to the outside may be used.
  • One or more (two in this example) vacuum pipes 20 communicating with the vacuum tank 19 are connected to the cover part 14 (in this example, the fixed-side cover part 14a).
  • the vacuum tank 19 is maintained at a predetermined vacuum pressure by a vacuum pump 21.
  • the vacuum pump 21 is controlled to be turned on and off by the control device 22 at the start and end timings of the cavity depressurization based on the detection signal of the stroke position of the plunger tip 11 or the evening signal of the stroke time.
  • a part of the cover 14 covers the entire mold 1, but locally (for example, the outer periphery of the mold 1 is connected along the peripheral edges 30 a and 3 la of the mating surface 30.3 1). May be covered).
  • a cover part 14 having a shape covering the cylinder 6 for driving the slide die 5 may be provided (see FIGS. 6 and 7). In this way, the cover part 14 covering the mold 1 is provided, and the cover part 14 is evacuated to vacuum and the inside of the cavity 7 is depressurized to produce the slide mold 5 in many cases. Even in the case of vacuum, vacuum is applied to the entire mold without applying a seal to the mold itself, and the cavity is also suctioned through the gap between the mating surfaces 30 and 31 to increase the degree of vacuum.
  • the sealing material 15 on the mating surface of the fixed cover part 14a of the cover part 14 and the movable cover part 14b is mounted at a position separated from the high-temperature mold 1, so that thermal When the influence is reduced, deterioration of the sealing material is prevented and durability is improved.
  • the cooling water flow rate adjusting unit 60 controls the cooling of the mold 1 in the manufacturing process as shown in the figure.
  • the timing of high-speed injection by the plunger tip 11 (see FIG. 3)
  • a valve (not shown) can be opened and a timer can be used to flow cooling water for a certain period of time.
  • the fixed time is, for example, the time it takes for the product to be taken out by mold separation.
  • the cooling effect may be confirmed by monitoring the cooling water temperature or the mold temperature using a temperature sensor.
  • feedback control can be performed by a temperature sensor.
  • cooling If cooling is insufficient, it takes a long time for the whole to solidify, and the unsolidified part is pulled by the solidified part, making it easier for nests to form. Conversely, if the cooling is too high, the solidification rate increases, the Si precipitation decreases, and the wear resistance decreases.
  • FIG. 3 is a time chart showing the degree of vacuum in the mold when the fabrication step S2 in FIG. 1 is performed using the mold 1 having the cover part 14 in FIG. 2 described above.
  • the horizontal axis indicates time, and the vertical axis indicates the degree of vacuum.
  • slide mold 5 of mold 1 shown in FIG. 2 is placed at a predetermined position.
  • Time t 0 The plunger tip 11 is at the original position (behind the hot water supply port 12), the hot water supply port 12 is open, and the inside of the mold 1 is large through this hot water supply port 12. Atmospheric pressure. In this state, 1 shot of the aluminum alloy melt is injected from the hot water supply port 12. When the molten metal is injected, move the plunger tip 1 1 forward at a low speed and push the molten metal in the injection sleeve 9.
  • Time t 1 Chip sensor 13 (FIG. 2) detects plunger tip 11. In this state, since the plunger tip 11 is located in front of the hot water supply port 12, the inside of the cover part 14 is completely hermetically sealed. At this point, the vacuum pump 21 is driven to evacuate the cover 14.
  • the space 33 between the mold 1 and the cover part 14 and the evacuation of the cavity 7 are simultaneously performed.
  • the depressurization process is performed efficiently, and the cycle time of manufacturing is reduced.
  • the vacuum evacuation path of the cavity 7 and the vacuum evacuation path of the space 33 between the mold 1 and the cover part 14 can be separately evacuated and evacuated at different times.
  • the space is evacuated prior to the cavity, the liquid release agent adhering to the gap between the mating surface of the mold and the sliding surface of the slide mold will be sucked into the cavity. Is sucked directly into the space 3 3 without Therefore, it is possible to prevent the excessive release agent from flowing into the cavity and mixing with the molten metal, thereby causing defects in the cavity and the like.
  • the pressure in the cavity 7 in the mold 1 is reduced by the suction process by the vacuum evacuation, and the degree of vacuum gradually increases.
  • the plunger tip 1 1 continues to move forward at low speed, pushing the molten metal into the cavity.
  • the formation of cavities is more reliably prevented, and local cooling of the molten metal surface by air is prevented, whereby a product having uniform and stable quality can be obtained.
  • Time t 2 When the molten metal reaches the cavity entrance, the plunger 11 is switched from low speed to high speed, and the molten metal is rapidly supplied into the cavity.
  • Time t 3 The cavity is completely filled with the molten metal and injection is completed. At this time, the molten metal pushes up the on / off valve 18 (FIG. 2) of the exhaust passage 17 to prevent the molten metal from being ejected from the exhaust passage 17.
  • Time t 4 The vacuum pump 21 is stopped to end the decompression by evacuation. At this point, the inside of the hippo part 14 is still in a decompressed state.
  • Time t 5 Open the leak valve 16 and open the inside of the cover 14 to the atmosphere. A part of the force bar approaches the atmospheric pressure with time through the leak valve 16.
  • Time t 6 The inside of the hippo part 14 returns completely to atmospheric pressure. At this point, open the mold and remove the product. By opening the cover part 14 together with the mold after returning to atmospheric pressure, the ring attached to the mating surface 32 of the cover is prevented from falling off.
  • the vacuum pump may be constantly turned on, and the timing of evacuation may be controlled by turning on / off the electromagnetic valve 61 provided on the vacuum pipe.
  • the chip sensor 13 detects the plunger chip 11 ( Open the solenoid valve at t 1). Then, at the end of injection, for example, when the sensor (for example, a mouth sensor for detecting the position of the rod of the plunger tip) detects that the plunger tip has reached the leading end position of the stroke, the electromagnetic valve is closed (t 4). .
  • the opening / closing timing of this electromagnetic valve can be made variable by making the position of the chip sensor 13 ⁇ rod sensor adjustable back and forth.
  • FIG. 4 is a configuration diagram of a fabrication device according to a second embodiment of the present invention.
  • the manufacturing apparatus of this embodiment is different from the embodiment of FIG. 2 in that a lid 23 is provided on a hot water supply port 12.
  • the lid 23 is closed around the hot water supply port 12 via a sealing material (not shown).
  • a sealing material not shown.
  • the inside of the cover part 14 is evacuated to a vacuum, the pressure in the injection sleep 9 is reduced. This negative pressure sucks the lid 23 and securely seals the hot water supply port 12. Therefore, the lid 23 is closed immediately after the molten metal is poured from the hot water supply port 12, and the pressure can be started from that point.
  • Reference numeral 24 denotes a lid sensor which detects that the hot water supply port 12 is closed by the lid 23 and sends a detection signal to the control device 22.
  • the control device 22 drives the vacuum pump 21 immediately to reduce the pressure in the cover 14.
  • FIG. 5 is a configuration diagram of the third embodiment of the present invention.
  • This embodiment shows a die casting device for producing a piston in place of the above-mentioned cylinder block.
  • a cavity 34 for biston is formed between the fixed mold 2 and the movable mold 3.
  • Fixed type 2 Empty inside the biston on the side
  • a convex portion 36 for the sinus is formed.
  • the protrusions 35 for the biston pins are formed on the upper and lower slide dies 5.
  • FIG. 6 is a configuration diagram of a fourth embodiment of the present invention.
  • the cover part 14 is integrally formed with the mold 1.
  • a fixed cover part 14 a is molded into the fixed mold 2, and a part 14 b of the movable cover is molded into the base mold 4 of the movable mold 3.
  • a part 14 a of the fixed side cover and a part 14 b of the movable side are hermetically sealed with a mating surface 32 via a sealing material 15, so that a space 33 is formed between the part 1 a and the mold 1.
  • the cover part 14 is formed so as to cover a cylinder 6 that drives the slide mold 5.
  • the other configuration and operation and effect are the same as those in the above-described example of FIG.
  • FIG. 7 is a configuration diagram of a fifth embodiment of the present invention.
  • the cover part 14 is formed separately from the mold 1, the fixed cover part 14 a is attached to the fixed mold 2, and the movable cover part 14 b is attached to the movable mold 3. Each of them is attached to a metal mold 4 via a sealing material 15.
  • the cover part 14 is formed so as to cover the periphery 30 a and 31 a of the mating surface 30 of the base mold 4 and the slide mold 5 and the mating surface 31 of the fixed mold 2 and the movable mold 3. You.
  • the exhaust passage 17 communicating with the cavity 7 is sucked and evacuated from the outside of the cover 14 through a vacuum pipe 37 different from the space 33 in the cover 14.
  • An electromagnetic valve 62 is provided on the vacuum pipe 37 similarly to the vacuum pipe 20.
  • This vacuum pipe 37 may be connected to the vacuum pipe 20 of the cover part 14 and decompressed by the same vacuum pump 21 or connected to a vacuum pump of another system. You may.
  • the exhaust passage 17 may be opened in the space 33 of the cover part 14 and the pressure may be reduced by the same vacuum pipe 20 as in the example of FIG.
  • the other configurations, functions, and effects are the same as those in the above-described example of FIG.
  • FIGS. 8A and 8B show a movable die of a die casting apparatus according to a sixth embodiment of the present invention, wherein FIG. 8A is a longitudinal sectional view at the center, and FIG. Note that parts corresponding to those in the above-described embodiment such as FIG. 2 are given the same numbers.
  • the movable mold 3 includes a base mold 4 and four slide molds 5 in the cross direction.
  • a splitter 39 is formed in the lower slide die 5.
  • the shunt 3.9 is fitted into the injection sleeve 9 (FIG. 9) on the fixed mold side to form a flow path for flowing the molten metal smoothly.
  • An exhaust passage 17 is provided with an on / off valve 18 of a metal switch type, and an actuator 38 comprising a hydraulic cylinder for returning the on / off pulp 18 is provided.
  • the movable mold 3 is entirely covered with a part 14 b of the movable cover.
  • a recess 42 is formed on the inner surface side of the base mold 4 of the movable mold 3, and a bolt 43 is inserted from the recess 42 to move the movable cover portion 14 b to the base mold 4.
  • the bolts 43 are fastened at four locations, for example, corresponding to the positions of four slide dies 5 (only one is shown in the figure).
  • a screw bolt is provided on the inner surface of a part of the cover, and a through hole corresponding to this is formed in the base mold 4, and the bolt is fixed to the bolt. It may be fixed by passing it through and fastening with a nut.
  • the base mold 4 is It is also possible to fix with bolts 4 4.
  • a continuous seal groove 40 is formed along the entire circumference of the mating surface 32 of the movable cover part 14b with the fixed cover part 14a (Fig. 9), and the sealing material 15 is fitted. .
  • a recess 41 is also formed in a part 14 b of the movable side facing the flange 6 a of the cylinder (actuator) 6 for driving the slide die 5, and a seal material 15 is formed in the recess. Be attached.
  • FIG. 9 shows a fixed type corresponding to the movable type shown in FIG. 8, (A) is a front view, and (B) is a central sectional view.
  • a cylinder bore forming portion 7b is provided at the center of the fixed mold 2, and a through hole 45 for mounting the injection sleeve 9 is formed below the cylinder bore forming portion 7b.
  • the fixed mold 2 is entirely covered with a fixed cover part 14a.
  • the fixed side cover part 14a is fixed to the fixed mold 2 by bolts (not shown) from the inside similarly to the movable side cover part 14b described above.
  • the mating surface 3 2 of the fixed side cover 1 4 a facing the mating surface 3 2 (Fig. 8) formed on the movable side cover 1 4 b is a flat surface, and the movable side cover 1 4 Receive the sealing material 15 (Fig. 8) of b.
  • the cover portions 14a are hermetically sealed to form a part of a cover integrally formed with the two.
  • FIGS. 10A and 10B show a movable mold according to a seventh embodiment of the present invention, wherein FIG. 10A is a central sectional view and FIG. 10B is a front view.
  • the movable mold 46 of this embodiment includes a base mold 47 and one slide mold 48, and for example, a cavity 49 for forming a cylinder of a water-cooled engine is formed.
  • a part 50 b of the movable side cover is locally attached so as to cover the mating surface (sliding surface) 30 of the base die 47 and the slide die 48.
  • Solid A sealing groove (not shown) is formed on the mating surface 32 with the fixed side cover part 50a (FIG. 11) as in the example of FIG. 8, and the sealing material 15 is mounted.
  • the sealing material 15 is provided continuously around the cavity 49 and on the mating surface 31 of the fixed mold 52 (FIG. 11) and the movable mold 46.
  • a recess (not shown) is also formed in the movable-side cover portion 5 Ob facing the flange 6 a of the cylinder (actuator) 6 for driving the slide die 4 8, and a sealing material 15 is formed therein. Is attached.
  • a recess (not shown) is formed in the movable cover part 5 O b and the inside thereof is formed. Seal material 1 5 is attached ⁇
  • FIG. 11 shows a fixed mold 52 corresponding to the movable mold 46 of FIG. 10, wherein (A) is a front view and (B) is a central sectional view.
  • a through hole 45 for mounting the injection sleeve 9 is formed.
  • the upper part of the fixed mold 2 is locally covered with a fixed cover part 50a corresponding to the movable cover 5Ob (FIG. 10). Similar to the movable cover part 50b, the fixed cover part 50a is provided with a recess (not shown) on the mating surface 51, and the seal material 15 attached to this recess is provided through the seal material 15 Fixed to the fixed mold 52.
  • the mating surface 32 of the fixed side cover 50a facing the mating surface 3 2 (FIG. 10) formed on the movable side cover 5Ob is a flat surface, and the movable side cover portion is formed by this plane.
  • Receive 50 b of sealing material 15 (Fig. 10).
  • the sealing material 15 is pressed by pressing the mating surface 3 2 of the movable cover part 50 b and the fixed cover part 50 a together, and the mating surface 31 of the movable mold 46 and the fixed mold 52.
  • the movable-side cover portion 50b and the fixed-side cover portion 50a are hermetically sealed through the airtight portion, and a cover portion is formed integrally with the movable-side cover portion 50b, and the cavity 49 is sealed.
  • FIG. 12 is a sectional view of the cylinder bore honing step S5 in FIG. It is a process explanatory view. Honing is performed in three stages: (1) rough honing, (2) medium finishing honing, and (3) finishing honing. In rough honing (1), the bore diameter and roundness are formed by rough machining. In this rough honing, as shown in (A), the surface of the bore surface is roughened by grinding the surface of the A1 base material and the Si particles dispersed in the base material with a grindstone.
  • the bore surface is mirror-finished as shown in (B).
  • the A1 base material is ground by a predetermined amount, and the surface of the Si particles is raised as shown in (C).
  • an alkali etching treatment that is immersed in an aqueous solution of caustic soda may be applied.
  • FIG. 13 is a top view of a cylinder block for a water-cooled engine.
  • This example shows a three-cylinder open-deck cylinder block 25.
  • a bore 27 is formed on the inner surface of each cylinder 26, and a space for each jacket 28 is formed on the outer periphery.
  • a recess for fitting A1 alloy square bar-shaped reinforcement 29 into this water jacket 28 on the mating surface with the cylinder head is formed.
  • a reinforcement piece 2 is inserted into this recess. Insert 9 and weld.
  • the reinforcing piece 29 is welded to the product.
  • Post-weld heat treatment (T5, T6 or T7) is performed, followed by machining and honing as before.
  • the shape, number, and arrangement position of the reinforcing pieces 29 are not limited to the example shown in the drawing, and an appropriate number can be welded to an appropriate position. By welding such reinforcing pieces 29, the rigidity of each of the open-deck cylinders that cantilevered at the bottom is W
  • the mold cavity can be depressurized without applying a sealing material to the mating surface of the mold itself. Even if the mold has a complicated shape, the mating surface of a slide mold, etc., and the sealability of the sliding surface is likely to be uncertain, the mold itself is not sealed.
  • the degree of vacuum in the mold cavity can be sufficiently increased, and the gas can be reliably removed to eliminate cavities and welding and heat treatment can be performed. Can be obtained.
  • the seal material is provided at a position separated from the high-temperature mold by a space.
  • the influence is reduced, deterioration of the sealing material is prevented, and high sealing performance is maintained.
  • the step of reducing the pressure of the cavity and the step of reducing the pressure between the cover part and the mold are performed, the pressure between the cover and the mold is reduced to reduce the pressure of the mold.
  • the cavity in the mold can be depressurized through the gap between the peripheral edges of the mold mating surface.
  • the vapor in the mold release agent is also removed by suction. It can be discharged reliably. This makes it possible to improve the flow of the molten metal into the cavity and to obtain a high-quality die-cast product having no voids, even if it is a thin-walled cavity.
  • the molds are combined to form the cavity.
  • the mold is covered with the cover Therefore, the number of processes for covering the mold with the cover portion does not increase the cycle time of fabrication.
  • the step of covering with a part of the cover after confirming the mold clamping is performed. Because of this, the reliability of space formation and sealing is improved.
  • the space between a part of the cover and the mold is almost simultaneously depressurized in the cavity. Since the pressure is reduced, the number of processes for reducing the pressure between the cover part and the mold is not increased, so that the number of manufacturing cycles is not increased.
  • the process of depressurizing the inside of the cavity and the process of depressurizing the space between the part of the cover and the mold are carried out at different times, taking into account the interlocking shape of the slide mold and the exhaust passage resistance.
  • rapid cooling is represented by water-quenching quenching treatment, but is not limited to water cooling, but includes all cooling methods that actively cool mirror products other than natural cooling.
  • an aluminum alloy product by the method of the present invention, it is possible to obtain a high-quality product capable of suppressing the generation of cavities and capable of welding and heat-treating.
  • the cylinder block is a cylinder portion of the engine including the cylinder bore, and includes a case where a part of the crankcase / cylinder head is integrally formed.
  • the piston is a piston that slides in the cylinder bore.
  • the aluminum alloy product is a cylinder block made of an aluminum alloy if it is a cylinder block of an engine and silicon crystals project from the surface of the cylinder bore.
  • the raised Si crystal particles come into contact with the biston to form a sliding surface on the surface of the aluminum base material of the aluminum base material.
  • the lubricating oil spreads all over, and a stable cylinder block with excellent wear resistance can be obtained.
  • the cover is provided by a vacuum pump without applying a sealing material to the mating surface of the mold itself. A part of the mold can be sucked and evacuated to reduce the cavity inside the mold, and the mold with complicated shapes, mating surfaces of slide molds, etc.
  • the degree of vacuum in the mold cavity can be sufficiently increased by sealing the part of the cover that covers the mold itself without applying a seal, and reducing the pressure. It is possible to obtain a high quality die cast product by reliably removing the burrs and eliminating welding and heat treatment.
  • the cover part covers the entire periphery of the mating surfaces of the dies through a space and is fixed separately to the first and second dies, the cover part is separate, so existing The present invention can be carried out using the above-mentioned mold.
  • the cover part is configured to cover the entire periphery of the mating surface of the dies through a space and to be integrally formed with the first and second dies, the cover part and the dies are integrated. This eliminates the need for parts for mounting the cover, reducing the number of parts and simplifying the configuration.
  • the cover has a mounting part for mounting at least a part of the mold that drives the mold, the mold can be driven by attaching the part to the power bar.
  • the structure of the mold is simplified, and the layout flexibility is increased.
  • the structure can be simplified by using a common vacuum pump and vacuum pipe, and the inside of the cavity can be efficiently evacuated through space.
  • the structure can be simplified using a common vacuum pump, and the space and the cavity can be evacuated with separate piping. This makes it possible to evacuate the cavity efficiently and reliably.
  • the cavity and the space are connected to a vacuum pump of another system via a vacuum pipe of another path, the space and the cavity are evacuated by another vacuum pipe and another vacuum pump, so that the space is exhausted.
  • a separate vacuum system is provided in consideration of the configuration of the unit and exhaust resistance, etc., so that the cavity can be evacuated efficiently and reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

明 細 書 アルミニウム合金の真空ダイカスト鎵造方法及び鐯造装置並びにアルミ ニゥム合金製品 技術分野
本発明は、 アルミニウム合金の真空ダイカスト鎵造方法及び铸造装置 並びにエンジンのシリンダブ口ヅクゃビストン等のアルミニウム合金製 品に関する。 背景技術
エンジンのシリンダブ口ヅク構造として、 シリンダボアのビストン摺 動面にスリーブを装着したり、 ボア表面に N iめっきを施して高温摺動 時の耐摩耗性や強度等を高めたものが従来より採用されている。
一方、 このようなスリーブや N iめっきを使用することなく、 錶造品 を機械加工した状態で摺動面を形成する直摺動型のシリンダブ口ックと すれば、 製造プロセスが簡素化し冷却能力も向上してコストの低減が図 られるものと考えられる。 このような直摺動型のシリンダブロックとし て、 過共晶の A 1 (アルミニウム) —S i (シリコン) 合金の単一材料 の錄造品からなるシリンダブ口ヅクが実用化されている。
しかしながら、 従来の A 1— S i合金の単一材料からなる直摺動型シ リンダブロックは、 低圧錡造で形成されているため、 錶造時間が長くか かり、 生産性が低下してコスト的に不利となる。
また、 低圧錶造では錶造時間が長くかかることから、 低圧錶造用の A 1一 S i合金は、 F e含有量を少なくして冷却時に粗大化合物相ができ るのを回避している。 F eは金型との焼付きを防く、作用もあるが、 低圧 錶造では、 セラミヅクコーティングを繰り返しながら行うので、 焼付き は起きない。 しかしこの低圧錶造の A 1— S i合金を用いて、 通常の高 圧高速のダイカスト法によりシリンダプロックを鎵造した場合、 この F e不足による焼付きが問題となる。
一方、 通常の高圧ダイカスト用 A 1 — S i合金では、 耐摩耗性を高め る S i含有量が少ない。 低圧錡造であれば冷却速度が遅いので S i含有 量が少なくても S iの結晶が充分成長して粒径が大きくなつて十分な耐 摩耗性が得られるが、 高圧ダイカスト铸造法では冷却速度が速いため、 S i結晶が充分大きく成長せず、 必要な耐摩耗性が得られない。
さらに、 直摺動型シリンダブロックでは、 アルミニウム合金自体がボ ァの摺動面を形成するため、 鎵巣等の欠陥を極力なくさなければならな い。 鎵巣等の欠陥をなくすためには、 錶造時にキヤビティからガス (水 素や空気あるいは離型材ゃ潤滑材等から発生する炭素系ガス等) を除去 する必要がある。 このために、 従来より錶造時に金型 (固定金型と可動 金型) を合わせたときの金型の合せ面等の隙間をシールした状態で金型 のキヤビティ内のガスを真空ポンプで排気しながら鎵造を行う方法が取 られていた。 しかし、 このような真空引き (減圧) を行いながら錡造し ても、 空冷シリンダの空冷フィン等の薄く入り組んだ部分を成形する場 合には、 その部分にスライ ド金型を使用するため、 固定金型と可動金型 の合せ面の他にスライ ド金型の摺動面にも隙間が生じ、 シール性が低下 して充分な真空度が得られず、 ガスを確実に除去することができなかつ た
錶造製品中のガスが多いと、 熱処理や溶接時にブリス夕一と呼ばれる 気孔やふくれが発生するため、 従来の高圧ダイカストでは熱処理や溶接 ができなかった。
本発明は上記従来技術を考慮したものであって、 高圧ダイカストによ り低コス トで十分な耐摩耗性及び耐焼付き性を確保できるアルミニウム 合金の真空ダイカス ト鎵造方法及び錶造装置並びにエンジンのシリンダ プロックゃビス トン等のアルミニウム合金製品の提供を目的とする。 発明の開示
前記目的を達成するため、 本発明では、 互いに一方向に相対移動可能 な第 1及び第 2金型と、 前記第 1及び第 2金型間に挟まれて前記一方向 とは異なる方向に相対移動可能なスライ ド金型からなる複数の金型同士 を合せてキヤビティを形成する工程と、 前記キヤビティ内を減圧するェ 程と、 前記キヤビティ内にアルミニウム合金の溶湯を供給する工程とを 含むアルミニゥム合金の真空ダイカスト錶造方法であって、 前記キヤビ ティを形成する工程は、 前記金型同士の合せ面の周縁の全体又は一部を 空間を介してカバー部で覆う工程を付随して有し、 続いて、 プランジャ チップの低速での前方移動に伴い、 真空排気を開始することにより、 前 記キヤビティ内を減圧する工程と、 前記カバ一部と前記金型との間の空 間を減圧する工程とを行って真空度を徐々に高め、 溶湯がキヤビティ入 口付近に達した時点でプランジャチップを高速移動させて溶湯をキヤビ ティ内に急速供給し、 この間金型への冷却水流量調整を行なうことを特 徴とするアルミニウム合金の真空ダイカスト鎵造方法を提供する。
この構成によれば、 金型の合せ面がカバ一部で覆われるため、 金型の 合せ面自体にシール材を施すことなく金型内キヤビティを減圧すること が可能になり、 複雑な形状の金型ゃスライ ド金型等の合せ面ゃ摺動面の シール性が不確実になりやすい金型構成であっても、 金型自体にはシー ルを施すことなくこれを覆うカバー部でシールして減圧することにより 、 金型内キヤビティの真空度を充分に高めることができ、 ガスを確実に 除去して鎵巣の発生をなく し溶接及び熱処理が可能で高品質のダイカス ト錶造品を得ることができる。
この場合、 可動側と固定側のカバ一部同士の合せ面にシ一ル材を設け る構成とした場合、 シール材は高温の金型から空間を隔てた位置に設け られるため、 金型からの熱的影響が低減し、 シール材の劣化が防止され 高いシール性が維持される。 また、 キヤビティを減圧する工程と、 前記 カバ一部と前記金型との間の空間を減圧する工程が行われるため、 カバ 一部と金型との間の空間を減圧することにより、 金型のキヤビティを直 接減圧することに加えて、 金型合い面の周縁の隙間を通して金型内のキ ャビティを減圧することができ、 また離型剤の蒸発ガスも吸引除去され るため、 キヤビティ内のガスを確実に排出することができる。 これによ り、 キヤビティへの湯廻りがよくなり、 薄肉形成用のキヤビティであつ ても隅々まで確実に溶湯が充填され錡巣のない高品質のダイカスト製品 を得ることができる。 '
好ましい構成例では、 前記キヤビティを形成する工程と、 前記金型同 士の合せ面の周縁の全体又は一部を空間を介してカバー部で覆う工程が 同時に行われることを特徴としている。
この構成によれば、 金型を合せてキヤビティを形成するのと同時に金 型がカパ一部で覆われるため、 金型をカバ'一部で覆う工程を増やすこと による鎵造のサイクルタイムが増加することがない。
好ましい構成例では、 前記キヤビティを形成する工程の後に、 前記金 型同士の合せ面の周縁の全体又は一部を空間を介して覆う工程が行われ ることを特徴としている。
この構成によれば、 金型の型締め確認後にカバ一部で覆う工程が行わ れるため、 空間形成及び密封の信頼感が向上する。
好ましい構成例では、 前記キヤビティ内を減圧する工程と、 前記カバ 一部と前記金型との間の空間を減圧する工程がほぼ同時に行われること を特徴としている。 . - この構成によれば、 キヤビティ内を減圧するのとほぼ同時にカバ一部 と金型間の空間が減圧されるため、 カバー部と金型間の空間を減圧する 工程を増やすことによる鍀造のサイクルタイムが増加することがない。 好ましい構成例では、 前記キヤビティ内を減圧する工程と、 前記カバ 一部と前記金型との間の空間を減圧する工程が時間をずらせて行われる ことを特徴としている。
この構成によれば、 スライ ド金型の入り組み形状や排気通路抵抗等を 考慮して空間部の排気とキヤビティの排気時間をずらせることにより金 型全体に対し効率よく順序立てて真空排気を行い、 キヤビティ内のガス を確実に排気できる。
好ましい構成例では、 前記キヤビティ内を減圧する工程の前に、 前 記カバー部と前記金型との間の空間を減圧する工程が行われることを特 徴としている。
この構成によれば、 キヤビティ内に先がけて空間部を真空排気するた め、 金型の合せ面ゃスライ ド型の摺動面等の隙間に入り込んで付着して いる液状の離型剤がキヤビティ内に吸引されることなく空間 3 3側へ直 接吸い出される。 このため、 余分な離型剤がキヤビティ内に流入して溶 湯に混入して錶巣等に欠陥を引き起こすことが防止される。
好ましい構成例では、 前記アルミニウム合金は、 F eを含み、 S iを 1 8〜2 2 w t %含むことを特徴としている。
この構成によれば、 アルミニウム合金中に、 S iが 1 8〜 2 2 w t % 含まれるため、 冷却速度の速い高圧ダイカスト法で錶造した場合であつ ても、 充分な S i粒子が得られ、 耐摩耗性が高められる。 1 8 %以下で は、 高圧ダイカスト法で鎵造した場合、 S i粒子が大きくならず充分な 耐摩耗性が得られない。 また、 2 2 %以上では、 もろくなつて耐摩耗性 を低下させる。 さらにこのような適度な S iは、 錶造工程で表面に晶出 し、 金型との焼き付きを防止する。
好ましい構成例では、 前記アルミニウム合金は、 F eを 0 . 4〜 1 . 5 w t %含むことを特徴としている。
この構成によれば、 アルミニウム合金中に F eが 0 . 4〜 1 . 5 %含 まれるため、 高圧ダイカスト法で錶造した場合に、 金型との焼付きが防 止される。 この場合、 S iによる焼き付き防止作用と相まって焼き付き 防止効果がさらに高められる。 6が0 . 4 %以下では焼付きを充分に 防止できない。 また、 1 . 5 %以上では金属組織中に F eと A 1との間 で生成された金属間化合物が大きく成長して粗大針状晶となり、 もろく なって伸び性を低下させる。
好ましい構成例では、 前記金型から取り出した錶造体を急冷する工程 を含むことを特徴としている。
この構成によれば、 金型から取り出したダイカスト铸造体を一旦急冷 することにより、 例えば C uや M g等の化合物が均一に分散し、 場所的 に均等で安定した強度が得られる。 なお、 ここで急冷とは、 水冷焼入れ 処理に代表されるが、 水冷に限らず、 自然冷却以外に積極的に銪造品を 冷却するすべての冷却方法を含む。
好ましい構成例では、 アルミニウム合金を上記本発明方法によるアル ミニゥム合金の真空ダイカスト鎵造方法を用いて製造したことを特徴と している。
このように本発明方法によりアルミニウム合金製品を製造することに より、 錶巣の発生を抑え、 高品質で溶接及び熱処理が可能な铸造品が得 られる。
好ましい構成例では、 前記アルミニウム合金製品は、 エンジンのシリ ンダブ口ヅク又はビストンであることを特徴としている。 この適用例によれば、 鎵巣がなく溶接及び熱処理が可能で高品質のシ リンダブロック又はビストンを低コストの高圧ダイカスト法で鎵造でき る。 なお、 シリンダプロヅクは、 シリンダボアを含むエンジンのシリン ダ部分であり、 クランクケースゃシリンダへッ ドの一部を一体に錶造し た場合も含む。 また、 ピストンはシリンダボア内を摺動するピストンで める。
好ましい構成例では、 前記アルミニウム合金製品は、 エンジンのシリ ンダプロヅクであって、 そのシリンダボアの表面にシリコン結晶が突出 していることを特徴としている。
この構成によれば、 アルミニウム合金からなるシリンダボアのアルミ ニゥム母材表面に、 S i結晶粒子を浮き出して突出させるため、 この浮 き上がった S i結晶粒子がビストンに接して摺動面を構成し、 その周囲 の凹んだアルミニウム母材表面に潤滑油が行き渡り、 安定して耐摩耗性 の優れたシリンダブ口ックが得られる。
さらに、 本発明では、 互いに一方向に相対移動可能な第 1及び第 2金 型と、 前記第 1及び第 2金型間に挟まれて前記一方向とは異なる方向に 相対移動可能なスライ ド金型からなる複数の金型同士を合せてキヤビテ ィを形成し、 前記キヤビティ内を真空ポンプで減圧して、 前記キヤビテ ィ内にアルミニウム合金の溶湯を供給するアルミニウム合金の真空ダイ カスト鐯造装置において、 前記第 1及び第 2金型のそれそれに一体的に カバ一部を設け、 前記キヤビティを形成時に、 カバ一部同士がシール材 を介して当接することにより、 前記金型同士の合せ面の周縁の全体又は 一部を空間を介してカバー部で覆うように構成するとともに、 前記キヤ ビティと前記空間とを真空ポンプに接続する真空配管を設け、 前記ブラ ンジャチップの低速での前方移動に伴い、 真空排気を開始し、 前記真空 配管を介して前記キヤビティ内と、 前記空間内を減圧し、 溶湯がキヤビ ティ入口付近に達した時点でプランジャチップを高速移動させて溶湯を キヤビティ内に急速供給し、 この間金型への冷却水流量調整を行なうこ とを特徴とするアルミニウム合金の真空ダイカスト錶造装置を提供する この構成によれば、 金型の合せ面がカバ一部で覆われるため、 金型の 合せ面自体にシ一ル材を施すことなく、 真空ポンプによりカバ一部内を 吸引排気して金型内キヤビティを減圧することが可能になり、 複雑な形 状の金型ゃスライ ド金型等の合せ面ゃ摺動面のシール性が不確実になり やすい金型構成であっても、 金型自体にはシールを施すことなくこれを 覆うカバ一部でシ一ルして減圧することにより、 金型内キヤビティの真 空度を充分に高めることができ、 ガスを確実に除去して鎵巣のの発生を なく し溶接及び熱処理が可能で高品質のダイカスト錶造品を得ることが できる。
好ましい構成例では、 前記カバ一部は、 前記金型同士の合せ面の周縁 全体を空間を介して覆い、 且つ前記第 1及び第 2金型に別体で固着した ことを特徴としている。
この構成によれば、 カバー部が別体であるため、 既存の金型を利用し て本発明を実施できる。
好ましい構成例では、 前記カバ一部は、 前記金型同士の合せ面の周縁 全体を空間を介して覆い、 且つ前記第 1及び第 2金型に一体成形したこ とを特徴としている。
この構成によれば、 カバ一部と金型が一体であるため、 カバ一部取付 け用の部品が不要になり、 部品点数が削減され構成がシンプルになる。 好ましい構成例では、 前記カバー部には少なくとも一部の金型を駆動 するァクチユエ一夕を取付けるための取付部を有することを特徴として いる。 この構成によれば、 力バー部側にァクチユエ一タを取付けて金型を駆 動することができ、 金型の構成が簡単になり、 またレイアウトの自由度 が大きくなる。
好ましい構成例では、 前記カバー部を金型へ固着する固着部をカバ一 部の内面に形成したことを特徴としている。
この構成によれば、 力バ一部の内面側でこのカバ一部を金型に固着す るため、 カバ一部の外面形状がシンプルになり、 また取付けボルト等が 外側に突出しないためシ一ル構造が簡単になる。
好ましい構成例では、 共通の真空ポンプに接続された前記真空配管の 他端を前記空間に接続し、 該空間を介して前記キヤビティを真空ポンプ に接続したことを特徴としている。
この構成によれば、 真空ポンプ及び真空配管を共通化して構成を簡素 化できるとともに、 空間を介して効率よくキヤビティ内を真空排気でき る o
好ましい構成例では、 前記キヤビティを前記空間を介することなく共 通の真空ボンプに接続したことを特徴としている。
この構成によれば、 共通の真空ポンプを用いて構成の簡素化を図ると ともに、 空間部とキヤビティとを別の配管で排気することにより、 効率 よく確実にキヤビティ内を真空排気できる。
好ましい構成例では、 前記キヤビティと前記空間を別経路の真空配管 を介して別系統の真空ポンプに接続したことを特徴としている。
この構成によれば、 空間部とキヤビティとを別の真空配管及び別の真 空ポンプで排気することにより、 空間部の構成や排気抵抗等を考慮して 別々の真空系を設けてキヤビティ内を効率よく確実に真空排気できる。 図面の簡単な説明 図 1は、 本発明に係る鎵造プロセスのフロー説明図である。
図 2は、 本発明に係る鎵造装置の構成図である。
図 3は、 図 2の鍀造装置による錶造プロセスのタイムチャートである。 図 4は、 本発明の第 2の実施形態に係る鎵造装置の構成図である。
図 5は、 本発明の第 3の実施形態の構成図である。
図 6は、 本発明の第 4の実施形態の構成図である。
図 7は、 本発明の第 5の実施形態の構成図である。
図 8は、 本発明の第 6の実施形態の可動型の構成図である。
図 9は、 図 8の可動型と一対になる固定型の構成図である。
図 1 0は、 本発明の第 7の実施形態の可動型の構成図である。
図 1 1は、 図 1 0の可動型と一対になる固定型の構成図である。
図 1 2は、 本発明に錶造プロセスにおけるホーニング工程の説明図であ る
図 1 3は、 本発明の別の実施形態に係るシリンダブ口ックの上面図であ る。 発明を実施するための最良の形態 '
表 1は、 本発明に係る A l— S i合金の材料成分を示す表である。 【表 1】
Figure imgf000013_0001
Ni Sn Ca Na P Al
0.1以下 0.1以下 0.01以下 0.01以下 100 PPHfiiiJh 残部 t このアルミニウム合金は、 再生アルミニウム合金の再生塊べ一スの地 金を溶解して形成する。 ただし、 新規なアルミニウム金属を用いた新塊 ベースの地金から形成することもできる。 このようなアルミニウム合金 を用いて、 後述のダイカスト鎵造により、 エンジンのシリンダブロック が形成される。 表中、 S iは、 シリンダボア摺動面の耐摩耗性を高め、 また錶造工程での耐焼付き性を向上させる。 Feは、 金型との焼付きを 防ぐために添加する。 Cu及び Mgは、 熱処理による母材強度を高める Mn, Zn, N i, Sn, Ca, N aは再生アルミニウムに元々含ま れている不純物である。 Pは S i粒子の粒径及び分散を均一にするため に添加される。
図 1は、 表 1のアルミニウム合金を用いたダイカスト錶造工程を示す
溶解工程 S 1 :
所定の合金組成を有するアルミニウム合金の地金を溶解炉で溶解して 溶湯を形成する。 溶湯中に未溶解の S iが残存することを防止するため に、 溶湯をある所定温度以上に過熱する。 地金が完全に溶解したら溶湯 温度を前記過熱温度以下の所定の温度に保持しておく。 この溶解工程に おいて、 溶湯前の地金あるいは溶湯に Pを 100 p Dm程度添加してお く。 これにより、 合金中の S i粒子が均一に分散する。
錶造工程 S 2 :
高圧ダイカスト錶造法により行う。 この場合、 後述のカバー部内にセ ットした金型を減圧しながら錶造する。 このカバー部を用いて減圧する ことにより、 スライ ド金型が多い金型であっても金型自体にシールを設 けることなく、 金型全体を吸引排気して金型内の真空度を高めることが でき、 ガスを確実に除き錶巣の発生を防止することができる。
熱処理工程 S 3 :
鎵造後金型から取り出したシリンダブロックを T 5 , T 6又は T 7の 熱処理を施す。 T 5処理は、 鏡造品を金型から取り出した直後に水冷等 により急冷し、 その後、 機械的性質の改善や寸法安定化のために、 所定 温度で所定時間だけ人工時効した後空冷する処理である。 T 6処理は、 铸造品を金型から取り出した後、 所定温度で所定時間だけ溶体化処理し 、 その後水冷し、 その後、 所定温度で所定時間だけ人工時効処理した後 空冷する処理である。 T 7処理は、 T 6処理に比べ過時効にする処理で あり、 寸法安定化が図られるが硬度は T 6に比べ低下する。
機械加工工程 S 4 :
シリンダへヅ ドとの合せ面、 クランクケースとの合せ面及びシリンダ ボア内面の研削、 旋削等の加工を行う。
ホーニング工程 S 5 :
シリンダボア内面をホ一ニング加工する。 このホ一ニングは後述 (図 1 2 ) のように、 ①荒ホーニング、 ②中仕上げホーニング、 ③仕上げホ —ニングの 3工程で行う。
図 2は上記鎳造工程 S 2で使用する錡造装置の構成図である。
金型 1は固定型 2と可動型 3とからなり、 可動型 3はベース金型 4と スライ ド金型 5とからなる。 なお、 固定型 2及びべ一ス金型 4が、 請求 項でいう第 1金型及び第 2金型のいずれか一方及び他方の金型を構成す る。 スライ ド金型 5は、 9 0度間隔で 4分割され、 各々にシリンダ 6 ( 上下の 2つのみ示す) が備わり、 ベース金型 4の表面 (ベース金型 4と スライ ド金型 5との間の合せ面 3 0 ) に沿って矢印 Aのようスライ ドし 、 鏡造時に中央にシリンダブロックのキヤビティ 7を形成する。 なお、 このシリンダ 6は、 請求項でいうスライ ド金型を駆動するァクチユエ一 夕である。 7 a, 7 bはシリンダボア形成部であり、 7 cは空冷フィン 形成部を示す。 ベース金型 4には押出ピン 8 'が備わり、 鎵造ショッ トご とに、 スライ ド金型 5が開いた状態で錄造品を押出して金型から取り出 す。 3 1は、 固定型 2と可動型 3との間の合せ面である。
固定型 2には、 射出スリーブ 9が設けられる。 射出スリーブ 9内を口 ヅ ド 1 0の先端に設けられたプランジャチヅプ 1 1が往復動作する。 射 出スリーブ 9には給湯口 1 2が形成され、 プランジャチヅプ 1 1が原位 置 (給湯口 1 2の後方 (図の右側) の位置) の状態で、 1ショッ ト分の 溶湯を注入する。 給湯口 1 2の前方にはチップセンサ 1 3が設けられる 。 このチップセンサ 1 3は、 プランジャチップ 1 1が給湯口 1 2を通過 したことを検出するためのものである。
金型 1全体は、 カバ一部 1 4で覆われる。 カバ一部 1 4は、 固定型 2 を収容する固定側カバー部 1 4 aと、 可動型 3を収容する可動側カバ一 部 1 4 bとからなり、 合せ面に 0リング等のシール材 1 5が装着される ο
カバー部 1 4を貫通するシリンダ 6、 押出ピン 8及び射出スリーブ 9 の各々とカバー部 1 4との間の隙間には、 0リング等からなるシール材 1 5が装着され、 カバ一部 1 4内の気密を保つ。 カバー部 1 4の可動側 カバー部 1 4 b (又は固定側カバ一部 1 4 a ) にリークバルブ 1 6が設 けられる。 固定型 2には、 キヤビティ 7に連通する排気通路 1 7が形成される。 排気通路 1 7は可動型側に形成してもよい。 この排気通路 1 7にバイパ ス通路 1 7 aが備わり、 このバイパス通路 1 Ί aを開閉するオンオフバ ルブ 1 8が備わる。 バイパス通路 1 Ί aは、 錶造時 (図示した状態) で 金型内を真空吸引したときに、 オンオフバルブ 1 8が装着された部分の 排気通路 1 7をバイパスさせて排気通路 1 7を金型外部と連通させるた めのものである。 オンオフバルブ 1 8は、 例えばメタル夕ヅチ式バルブ であって、 キヤビティ アに溶湯が充填されて、 残りの溶湯が排気通路 1 7を通して上昇してきたときに、 溶湯がオンオフバルブ 1 8に接すると 、 これを押上げて排気通路 1 7とともにバイパス通路 1 7 aを閉じて、 溶湯が金型外に噴き出ることを防止する。 このようなメタル夕ツチ式バ ルブに代えて、 プランジャチップ 1 1の位置を検出し、 1ショッ ト分の 溶湯押し込みが終了した位置でァクチユエ一夕を介して排気通路 1 7を 閉じるバルブ構成としてもよい。 また、 このような溶湯の噴出し防止手 段として、 キヤビティに連通するジグザグ状で経路の長い細い通路を形 成し、 キヤビティから溢れる溶湯をこの通路を通すことにより、 途中で 固化させて金型外への流出を防止するチルベント構造を用いてもよい。 カバ一部 1 4 (この例では固定側カバ一部 1 4 a ) に、 真空タンク 1 9に連通する 1本又は複数 (この例では 2本) の真空配管 2 0が接続さ れる。 真空夕ンク 1 9は、 真空ポンプ 2 1により所定の真空圧に維持さ れる。 真空ポンプ 2 1は、 制御装置 2 2により、 プランジャチップ 1 1 のストローク位置の検出信号あるいはストロ一ク時間の夕イマ信号等に 基づいてキヤビティ減圧の開始及び終了のタイミングでオンオフ制御さ れる ο
なお、 カバ一部 1 4は金型 1全体を覆っているが、 局部的に (例えば 金型 1の外周部を合せ面 3 0 . 3 1の周縁 3 0 a , 3 l aに沿ってリン グ状に) 覆ってもよい。 また、 スライ ド金型 5を駆動するためのシリン ダ 6を覆う形状のカバ一部 1 4を設けてもよい (図 6、 図 7等参照)。 このように金型 1を覆うカバ一部 1 4を設け、 このカバ一部 1 4を真 空排気してキヤビティ 7内を減圧しながら錡造を行うことにより、 スラ イ ド金型 5が多くなつた場合であっても、 金型自体にシールを施すこと なく金型全体に対し真空吸引を行い、 合せ面 3 0 , 3 1の隙間からもキ ャビティを真空吸引するため、 真空度が高められ、 金型内からガスを確 実に除去することができる。 また、 カバ一部 1 4の固定側カバー部 1 4 aと可動側カバ一部 1 4 bの合せ面のシール材 1 5は高温の金型 1から 離間した位置に装着されるため、 熱的影響が小さくなつてシール材の劣 化が防止され耐久性が向上する。
図中、 冷却水流量調整ユニッ ト 6 0は、 図示したように、 錶造プロセ スにおける金型 1を冷却制御するものであり、 例えば、 プランジャチッ プ 1 1による高速射出のタイミング (図 3の t 2 ) でバルブ (不図示) を開いてタイマで一定時間冷却水を流す構成とすることができる。 この —定時間は、 例えば、 型割りして製品を取り出すまでの時間とする。 こ のとき、 温度センサにより、 冷却水温あるいは金型温度をモニタして冷 却効果を確認してもよい。 あるいは温度センサによりフィードバック制 御することもできる。 なお、 冷却が不十分であると全体が凝固するまで に時間がかかり未凝固部分が凝固部分に引っ張られて巣ができやすくな る。 逆に冷却しすぎると、 凝固速度が速くなつて S i析出量が少なくな り耐摩耗性が低下する。
図 3は、 前述の図 2のカバ一部 1 4を有する金型 1を用いて、 図 1の 錶造工程 S 2を実施したときの金型内の真空度を示すタイムチヤ一トで ある。 横軸は時間、 縦軸は真空度を示す。
まず、 図 2に示した金型 1のスライ ド金型 5を所定の位置に配置して W
1 6 キヤビティ 7を形成し、 可動型 3を固定型 2に突き合せて型締めする。 このときカバー部 1 4の固定側カバ一部 1 4 aと可動側カバ一部 1 4 b の合せ面 3 2同士がシール材 1 5を介して突き合わされ、 カバ一部 1 4 内が封止される。 すなわち、 固定型 2と可動型 3とを合せてキヤビティ 7を形成する型締め工程と、 この金型 1をカバ一部 1 4で覆って封止す る封止工程が同時に行われる。 これにより錡造のサイクルタイムの短縮 が図られる。 なお、 固定型 2と可動型 3を型締めしてキヤビティを形成 した後に、 この金型 1をカバ一部 1 4で覆って封止することも可能であ る o
時間 t 0 : プランジャチヅプ 1 1は、 原位置 (給湯口 1 2の後方) に あり、 給湯口 1 2が開いた状態であって、 この給湯口 1 2を介して金型 1内は大気圧状態である。 この状態で給湯口 1 2から 1ショッ ト分のァ ルミニゥム合金の溶湯を注入する。 溶湯が注入されたらプランジャチッ プ 1 1を低速で前方に移動し、 射出スリーブ 9内の溶湯を押し込む。 時間 t 1 :チップセンサ 1 3 (図 2 ) がプランジャチヅプ 1 1を検出 する。 この状態では、 プランジャチヅプ 1 1が給湯口 1 2を越えて前方 に位置するため、 カバ一部 1 4内は完全に気密封止される。 この時点で 、 真空ポンプ 2 1を駆動してカバー部 1 4内を真空排気する。
この真空排気により、 金型 1とカバ一部 1 4との間の空間 3 3とキヤ ビティ 7内の真空排気が同時に行われる。 これにより、 減圧プロセスが 効率よく行われ、 錄造のサイクルタイムの短縮が図られる。 なお、 キヤ ビティ 7の真空排気経路と、 金型 1とカバ一部 1 4間の空間 3 3の真空 排気経路とを別にして時間をずらせて真空排気することも可能である。 特に、 キヤビティ内に先がけて空間部を真空排気すると、 金型の合せ 面ゃスライ ド型の摺動面等の隙間に入り込んで付着している液状の離型 剤がキヤビティ内に吸引されることなく空間 3 3側へ直接吸い出される ため、 余分な離型剤がキヤビティ内に流入して溶湯に混入して錶巣等に 欠陥を引き起こすことが防止される。
このような真空排気による吸引プロセスにより金型 1内のキヤビテ ィ 7内が減圧され、 徐々に真空度が高まる。 プランジャチップ 1 1は低 速で前進し続け、 溶湯をキヤビティ側に押し込む。 プランジャチヅプ 1 1が給湯口 1 2を越えてから真空排気を開始することにより、 給湯口 1 2を通してエアが金型内に吸 されることを回避できる。 これにより、 鎵巣の発生をさらに確実に防止するとともに、 エアによる溶湯表面の局 部的冷却を防止し、 均一で安定した品質の鎵造品を得ることができる。 時間 t 2 :溶湯がキヤビティの入口に達した時点でプランジャチヅプ 1 1を低速から高速に切換え、 溶湯を急速にキヤビティ内に供給する。 時間 t 3 :キヤビティ内が溶湯で完全に充填され射出が完了する。 こ のとき溶湯が排気通路 1 7のオンオフバルブ 1 8 (図 2 ) を押上げ排気 通路 1 7からの溶湯の噴き出しが防止される。
時間 t 4 :真空ポンプ 2 1を停止して真空排気による減圧を終了する 。 この時点ではカバ一部 1 4内はまだ減圧された状態である。
時間 t 5 : リークバルブ 1 6を開きカバー部 1 4内を大気開放する。 リークバルブ 1 6を介して力バ一部内が時間とともに大気圧に近づく。 時間 t 6 :カバ一部 1 4内が完全に大気圧に戻る。 この時点で金型を 開き、 錡造品を取り出す。 大気圧に戻してから金型とともにカバ一部 1 4を開くことにより、 カバー部の合い面 3 2に装着した◦リングの脱落 が防止される。
なお、 真空ポンプ 2 1自体をオンオフする代わりに、 真空ポンプは常 時オン状態とし、 真空配管上に設けた電磁バルブ 6 1をオンオフするこ とにより真空引きのタイミング制御を行ってもよい。
例えば、 チヅプセンサ 1 3がプランジャチヅプ 1 1を検出した時点 ( t 1 ) で電磁バルブを開く。 そして射出終了時点、 例えばプランジャチ ヅプがストロ一ク最先端位置に達したことをセンサ (例えばプランジャ チヅプのロッド位置を検出する口ッ ドセンサ) で検出した時点 ( t 4 ) で電磁バルブを閉じる。 この電磁バルブの開閉タイミングは、 チップセ ンサ 1 3ゃロッ ドセンサの位置を前後に調整自在とすることにより可変 とすることができる。
図 4は、 本発明の第 2の実施形態に係る錡造装置の構成図である。 こ の実施形態の錶造装置は、 前述の図 2の実施形態に比べ、 給湯口 1 2に 蓋 2 3が設けられている点が相違する。 蓋 2 3は給湯口 1 2の周囲にシ —ル材 (不図示) を介して閉じられる。 この場合、 カバ一部 1 4内が真 空排気されるため、 射出スリープ 9内が減圧され、 この負圧により、 蓋 2 3が吸引されて給湯口 1 2を確実に気密封止する。 したがって、 給湯 口 1 2から溶湯を注入した後直ちに蓋 2 3を閉じ、 その時点から減圧開 始できる。
2 4は蓋センサであり、 給湯口 1 2が蓋 2 3で閉じられたことを検出 し、 その検出信号を制御装置 2 2に送る。 制御装置 2 2は、 蓋 2 3の検 出信号が入力されると、 直ちに真空ポンプ 2 1を駆動してカバー部 1 4 内を減圧する。
このような蓋 2 3を設けることにより、 プランジャチップ 1 1が給湯 口 1 2を越えるまで待つことなく、 真空排気の開始が可能になり、 射出 スリーブ 9が短い場合であっても、 減圧時間を長くして充分な真空度が 得られる。 その他の構成及び作用効果は図 2の例と同様である。
図 5は、 本発明の第 3の実施形態の構成図である。
この実施形態は、 前述のシリンダブロックに代えてビストンを鎵造す るダイカスト装置を示すものである。 固定型 2と可動型 3との間にビス トン用のキヤビティ 3 4が形成される。 固定型 2側にビストン内部の空 洞部用の凸部 3 6が形成される。 上下のスライ ド金型 5にビストンピン 用の凸部 3 5が形成される。 その他の搆成及び作用効果は前述の図 2の 実施形態と同様である。
図 6は、 本発明の第 4の実施形態の構成図である。
この実施形態は、 カバ一部 1 4を金型 1と一体成形したものである。 固定型 2に固定側カバー部 1 4 aがー体成形され、 可動型 3のべ一ス金 型 4に可動側カバ一部 1 4 bがー体成形される。 固定側カバ一部 1 4 a と可動側カバ一部 1 4 bは合せ面 3 2でシール材 1 5を介して気密封止 され、 金型 1との間に空間 3 3が形成される。 この例では、 カバー部 1 4は、 スライ ド金型 5を駆動するシリンダ 6を覆って形成される。 その 他の構成及び作用効果は前述の図 2の例と同様である。
図 7は、 本発明の第 5の実施形態の構成図である。
この実施形態は、 カバー部 1 4を金型 1と別体で形成し、 固定側カバ 一部 1 4 aを固定型 2に取付け、 可動側カバ一部 1 4 bを可動型 3のべ ース金型 4にそれそれシール材 1 5を介して取付けたものである。 この カバ一部 1 4は、 ベース金型 4とスライ ド金型 5の合せ面 3 0および固 定型 2と可動型 3の合せ面 3 1の周縁 3 0 a , 3 1 aを覆って形成され る。 キヤビティ 7に連通する排気通路 1 7は、 カバー部 1 4の外側から カバー部 1 4内の空間 3 3とは別経路の真空配管 3 7を介して吸引排気 される。 真空配管 3 7上には真空配管 2 0と同様に電磁バルブ 6 2が設 けられる。 真空ポンプ 2 1を駆動したまま、 真空配管 3 7の電磁バルブ 6 2と真空配管 2 0の電磁バルブ 6 1の開閉夕イミングを制御すること により、 空間 3 3とキヤビティ 7の真空排気タイミングをずらせること ができる。
この真空配管 3 7は、 カバー部 1 4の真空配管 2 0に接続して同じ 真空ポンプ 2 1により減圧してもよいし、 別系統の真空ポンプに接続し てもよい。 また、 排気通路 1 7は、 図 6の例と同様に、 カバー部 1 4の 空間 3 3に開口させて、 同一の真空配管 2 0で減圧するようにしてもよ い。 その他の構成及び作用効果は前述の図 6の例と同様である。
図 8は、 本発明の第 6の実施形態に係るダイカスト鎵造装置の可動金 型を示し、 (A ) は中央部縦断面図、 (B ) は正面図である。 なお、 前述 の図 2等の実施形態と対応する部分には同一の番号を付してある。
可動型 3は、 ベース金型 4と十字方向の 4つのスライ ド金型 5とから なる。 下側のスライ ド金型 5に分流子 3 9が形成される。 この分流子 3. 9は、 固定型側の射出スリーブ 9 (図 9 ) に嵌まり込んで溶湯を円滑に 流す流路を形成するものである。 排気通路 1 7にメタル夕ツチ式のオン オフバルブ 1 8が設けられ、 このオンオフパルプ 1 8を元に戻すための 油圧シリンダからなるァクチユエ一夕 3 8が備わる。
可動型 3は、 その全体が可動側カバ一部 1 4 bで覆われる。 可動型 3 のべ一ス金型 4の内面側に凹み 4 2が形成され、 この凹み 4 2からボル ト 4 3を差込んで可動側カバー部 1 4 bをべ一ス金型 4に対し内面側か ら固定する。 ボルト 4 3は、 例えば 4つのスライ ド金型 5の位置に対応 して 4ケ所で締結される (図は 1本のみ示す)。 このように内側から可 動側カバ一部 1 4 bを固定することにより、 ボルト 4 3が外側に突出し ないため、 カバ一部外面のシール構造が不要あるいは簡単になるととも に、 可動側カバ一部 1 4 bの外形が簡素化する。
なお、 ボルト 4 3を内側から螺着する方法に代えて、 カバ一部内面に ス夕ッ ドボルトを設けておいて、 これに対応する貫通孔をベース金型 4 に形成し、 スタツ ドボルトを揷通させてナツ トで締結することにより固 定してもよい。
また、 内側からボルト 4 3で固定する固着方法に代えて、 図の想 ¾線 で示したように、 可動側カバー部 1 4 bの外側からベース金型 4に対し ボルト 4 4で固定することも可能である。
固定側カバ一部 1 4 a (図 9 ) に対する可動側カバ一部 1 4 bの合せ 面 3 2の全周に沿って、 連続したシール溝 4 0が形成され、 シール材 1 5が嵌め込まれる。
スライ ド金型 5を駆動するシリンダ (ァクチユエ一夕) 6のフランジ 6 aに対向する可動側カバ一部 1 4 bにも、 凹み 4 1が形成されその内 部にシ一ル材 1 5が装着される。
図 9は、 上記図 8の可動型に対応する固定型を示し、 (A ) は正面図、 ( B ) は中央断面図である。
固定型 2の中央部にシリンダボア形成部 7 bが設けられ、 その下部に 、 射出スリーブ 9が装着される揷通孔 4 5が形成される。 固定型 2は、 その全体が固定側カバ一部 1 4 aで覆われる。 固定側カバ一部 1 4 aは 、 前述の可動側カバー部 1 4 bと同様に、 内側からボルト (不図示) に より固定型 2に固定される。
可動側カバ一部 1 4 bに形成した合せ面 3 2 (図 8 ) に対向する固定 側カバ一部 1 4 aの合せ面 3 2は平面であり、 この平面で可動側カバ一 部 1 4 bのシール材 1 5 (図 8 ) を受ける。 可動側カバ一部 1 4 bと固 定側カバ一部 1 4 aの合せ面 3 2同士を圧接することにより、 シ一ル材 1 5を介して可動側カバ一部 1 4 bと固定側カバー部 1 4 a同士が気密 封止され両者一体のカバ一部が形成される。
図 1 0は、 本発明の第 7の実施形態に係る可動型を示し、 (A ) は中 央断面図、 (B ) は正面図である。
この実施形態の可動型 4 6はべ一ス金型 4 7と 1つのスライ ド金型 4 8とからなり、 例えば水冷エンジンのシリンダ形成用のキヤビティ 4 9 が形成される。 ベース金型 4 7とスライ ド金型 4 8の合せ面 (摺動面) 3 0の縁部を覆って局部的に可動側カバ一部 5 0 bが取付けられる。 固 定側カバ一部 5 0 a (図 1 1 ) との合せ面 3 2に、 図 8の例と同様に、 シール溝 (不図示) が形成されシール材 1 5が装着される。 このシール 材 1 5は、 キヤビティ 4 9を囲んで固定型 5 2 (図 1 1 ) と可動型 4 6 との合せ面 3 1に連続して設けられる。
スライ ド金型 4 8を駆動するシリンダ (ァクチユエ一夕) 6のフラン ジ 6 aに対向する可動側カバー部 5 O bにも、 凹み (不図示) が形成さ れその内部にシール材 1 5が装着される。 同様に、 可動側カバ一部 5 0 bとべ一ス金型 4 7との間の合せ面 5 1についても、 可動側カバ一部 5 O bに凹み (不図示) を形成してその内部にシール材 1 5が装着される ο
図 1 1は、 上記図 1 0の可動型 4 6に対応する固定型 5 2を示し、 ( A ) は正面図、 (B ) は中央断面図である。
固定型 5 2の下部に、 射出スリーブ 9が装着される揷通孔 4 5が形成 される。 固定型 2の上部が局部的に、 可動側カバー部 5 O b (図 1 0 ) に対応して、 固定側カバ一部 5 0 aで覆われる。 固定側カバ一部 5 0 a は、 前述の可動側カバ一部 5 0 bと同様に、 合せ面 5 1に凹み (不図示 ) を設け、 この凹みに装着したシ一ル材 1 5を介して固定型 5 2に固定 される。
可動側カバ一部 5 O bに形成した合せ面 3 2 (図 1 0 ) に対向する固 定側カバ一部 5 0 aの合せ面 3 2は平面であり、 この平面で可動側カバ —部 5 0 bのシ一ル材 1 5 (図 1 0 ) を受ける。 可動側カバ一部 5 0 b と固定側カバ一部 5 0 aの合せ面 3 2同士及び可動型 4 6と固定型 5 2 の合せ面 3 1同士を圧接することにより、 シール材 1 5を介して可動側 カバー部 5 0 bと固定側カバ一部 5 0 a同士が気密封止され両者一体の カバ一部が形成されるとともにキヤビティ 4 9がシールされる。
図 1 2は、 前述の図 1におけるシリンダボアのホー二ング工程 S 5の 工程説明図である。 ホーニングは①荒ホーニング、 ②中仕上げホ一ニン グ、 ③仕上げホーニングの 3段階で行われる。 ①の荒ホ一ニングでは、 ボアの径ゃ真円度が荒加工で形成される。 この荒ホーニングでは、 ボア 表面は、 (A ) に示すように、 A 1母材と母材中に分散している S i粒 子の表面が砥石研削され、 表面が粗い状態である。
②の中仕上げホーニングでは、 (B ) に示すように、 ボア表面が鏡面 仕上げされる。
③の仕上げホーニングでは、 A 1母材を所定量だけ研削し、 (C ) に 示すように、 S i粒子表面を浮き上らせる。 ③の仕上げホーニングに替 えて苛性ソ一ダ水溶液中に侵漬するアルカリエッチング処理を施しても よい。
図 1 3は、 水冷エンジンの場合のシリンダブロックの上面図である。 この例は 3気筒のオープンデヅキ型のシリンダブ口ック 2 5を示す。 各シリンダ 2 6の内面にボア 2 7が形成され、 外周にゥォ一夕一ジャケ ヅ ト 2 8の空間が形成される。 シリンダへヅ ドとの合い面のこのゥォ一 タージャケット 2 8に A 1合金の角材形状の補強ピ一ス 2 9を嵌め込む 凹部を形成しておき、 鎢造後にこの凹部に補強ピース 2 9を嵌め込んで 溶接する。 本発明のダイカスト錶造においては、 前述のように高真空度 で減圧しながら成形することにより、 鍀造品に含まれるガス量が極めて 少ないため、 錡造品に対し補強ピース 2 9を溶接することが可能になる 溶接後熱処理 (T 5, T 6又は T 7 ) が施され、 その後、 前述と同様 に、 機械加工及びホーニング加工が施される。 なお、 補強ピース 2 9の 形状や数及び配置位置は図の例に限定されず、 適宜な数を適宜な位置に 溶接することができる。 このような補強ピース 2 9を溶接することによ り、 底部で片持ち状に立設されているオープンデッキ型の各気筒の剛性 W
2 4 を高めることができる。 産業上の利用可能性
以上説明したように、 本発明では、 金型の合せ面がカバ一部で覆 われるため、 金型の合せ面自体にシ一ル材を施すことなく金型内キヤビ ティを減圧することが可能になり、 複雑な形状の金型ゃスライ ド金型等 の合せ面ゃ摺動面のシール性が不確実になりやすい金型構成であっても 、 金型自体にはシールを施すことなくこれを覆うカバ一部でシールして 減圧することにより、 金型内キヤビティの真空度を充分に高めることが でき、 ガスを確実に除去して錶巣の発生をなくし溶接及び熱処理が可能 で高品質のダイカスト錶造品を得ることができる。
この場合、 可動側と固定側のカバ一部同士の合せ面にシール材を 設ける構成とした場合、 シール材は高温の金型から空間を隔てた位置に 設けられるため、 金型からの熱的影響が低減し、 シール材の劣化が防止 され高いシール性が維持される。 また、 キヤビティを減圧する工程と、 前記カバ一部と前記金型との間の空間を減圧する工程が行われるため、 カバー部と金型との間の空間を減圧することにより、 金型のキヤビティ を直接減圧することに加えて、 金型合い面の周縁の隙間を通して金型内 のキヤビティを減圧することができ、 また離型剤の蒸発ガスも吸引除去 されるため、 キヤビティ内のガスを確実に排出することができる。 これ により、 キヤビティへの湯廻りがよくなり、 薄肉形成用のキヤビティで あっても隅々まで確実に溶湯が充填され錶巣のない高品質のダイカスト 製品を得ることができる。
また、 キヤビティを形成する工程と、 金型同士の合せ面の周縁の 全体又は一部を空間を介してカバ一部で覆う工程を同時に行うことによ り、 金型を合せてキヤビティを形成するのと同時に金型がカバー部で覆 われるため、 金型をカバー部で覆う工程を増やすことによる鎵造のサイ クルタイムが増加することがない。
また、 キヤビティを形成する工程の後に、 金型同士の合せ面の周 縁の全体又は一部を空間を介して覆う工程を行うことにより、 金型の型 締め確認後にカバ一部で覆う工程が行われるため、 空間形成及び密封の 信頼感が向上する。
また、 キヤビティ内を減圧する工程と、 カバー部と金型との間の 空間を減圧する工程をほぼ同時に行うことにより、 キヤビティ内を減圧 するのとほぼ同時にカバ一部と金型間の空間が減圧されるため、 カバ一 部と金型間の空間を減圧する工程を増やすことによる鎵造のサイクル夕 ィムが増加することがない。
また、 キヤビティ内を減圧する工程と、 カバ一部と金型との間の 空間を減圧する工程を時間をずらせて行うことにより、 スライ ド金型の 入り組み形状や排気通路抵抗等を考慮して空間部の排気とキヤビティの 排気時間をずらせることにより金型全体に対し効率よく順序立てて真空 排気を行い、 キヤビティ内のガスを確実に排気できる。
また、 アルミニウム合金中に、 S iが 1 8〜 2 2 w t %含まれる ため、 冷却速度の速い高圧ダイカスト法で錶造した場合であっても、 充 分な S i粒子が得られ、 耐摩耗性が高められる。 1 8 %以下では、 高圧 ダイカスト法で鎵造した場合、 S i粒子が大きくならず充分な耐摩耗性 が得られない。 また、 2 2 %以上では、 もろくなつて耐摩耗性を低下さ せる。 さらにこのような適度な S iは、 錶造工程で表面に晶出し、 金型 との焼き付きを防止する。
また、 アルミニウム合金中に F eが 0 . 4〜 1 . 5 %含まれるた め、 高圧ダイカスト法で錶造した場合に、 金型との焼付きが防止される 。 この場合、 S iによる焼き付き防止作用と相まって焼き付き防止効果 がさらに高められる。 ? 6が0 . 4 %以下では焼付きを充分に防止でき ない。 また、 1 . 5 %以上では金属組織中に: F eと A 1との間で生成さ れた金属間化合物が大きく成長して粗大針状晶となり、 もろくなつて伸 び性を低下させる。
また、 金型から取り出したダイカスト錶造体を一旦急冷すること により、 例えば C uや M g等の化合物が均一に分散し、 場所的に均等で 安定した強度が得られる。 なお、 ここで急冷とは、 水冷焼入れ処理に代 表されるが、 水冷に限らず、 自然冷却以外に積極的に鏡造品を冷却する すべての冷却方法を含む。
また、 本発明方法によりアルミニウム合金製品を製造することに より、 錶巣の発生を抑え、 高品質で溶接及び熱処理が可能な錶造品が得 られる
また、 アルミニウム合金製品は、 エンジンのシリンダプロック又 はビストンとすれば、 鎵巣がなく溶接及び熱処理が可能で高品質のシリ ンダブ口ヅク又はビストンを低コストの高圧ダイカスト法で錶造できる 。 なお、 シリンダブロックは、 シリンダボァを含むェンジンのシリンダ 部分であり、 クランクケ一スゃシリンダへヅ ドの一部を一体に錡造した 場合も含む。 また、 ピス トンはシリンダボア内を摺動するピス トンであ また、 アルミニウム合金製品は、 エンジンのシリンダブロックで あって、 そのシリンダボアの表面にシリコン結晶が突出する構成とすれ ば、 アルミニウム合金からなるシリンダボアのアルミニウム母材表面に 、 S i結晶粒子を浮き出して突出させるため、 この浮き上がった S i結 晶粒子がビストンに接して摺動面を構成し、 その周囲の凹んだアルミ二 ゥム母材表面に潤滑油が行き渡り、 安定して耐摩耗性の優れたシリンダ ブロックが得られる。 さらに、 本発明に係るアルミニゥム合金の真空ダイカス ト鎵造装 置では、 金型の合せ面がカバ一部で覆われるため、 金型の合せ面自体に シール材を施すことなく、 真空ポンプによりカバ一部内を吸引排気して 金型内キヤビティを減圧することが可能になり、 複雑な形状の金型ゃス ライ ド金型等の合せ面ゃ摺動面のシール性が不確実になりやすい金型構 成であっても、 金型自体にはシールを施すことなくこれを覆うカバ一部 でシールして減圧することにより、 金型内キヤビティの真空度を充分に 高めることができ、 ガスを確実に除去して錶巣のの発生をなくし溶接及 び熱処理が可能で高品質のダイカスト鐯造品を得ることができる。
また、 カバ一部は、 金型同士の合せ面の周縁全体を空間を介して 覆い、 且つ第 1及び第 2金型に別体で固着すれば、 カバー部が別体であ るため、 既存の金型を利用して本発明を実施できる。
また、 カバー部は、 金型同士の合せ面の周縁全体を空間を介して 覆い、 且つ第 1及び第 2金型に一体成形する構成とすれば、 カバ一部と 金型が一体であるため、 カバ一部取付け用の部品が不要になり、 部品点 数が削減され構成がシンプルになる。
また、 カバー部には少なく とも一部の金型を駆動するァクチユエ —夕を取付けるための取付部を有するため、 力バ一側にァクチユエ一夕 を取付けて金型を駆動することができ、 金型の構成が簡単になり、 また レイアウトの自由度が大きくなる。
また、 カバ一部を金型へ固着する固着部をカバー部の内面に形成 する構成とすれば、 カバー部の内面側でこのカバ一部を金型に固着する ため、 カバ一部の外面形状がシンプルになり、 また取付けボルト等が外 側に突出しないためシール構造が簡単になる。 '
また、 共通の真空ポンプに接続された真空配管の他端を空間に接 続し、 該空間を介してキヤビティを真空ポンプに接続する構成とすれば 、 真空ポンプ及び真空配管を共通化して構成を簡素化できるとともに、 空間を介して効率よくキヤビティ内を真空排気できる。
また、 キヤビティを空間を介することなく共通の真空ポンプに接 続する構成とすれば、 共通の真空ポンプを用いて構成の簡素化を図ると ともに、 空間部とキヤビティとを別の配管で排気することにより、 効率 よく確実にキヤビティ内を真空排気できる。
また、 キヤビティ と空間を別経路の真空配管を介して別系統の真 空ポンプに接続する構成とすれば、 空間部とキヤビティ を別の真空配 管及び別の真空ポンプで排気することにより、 空間部の構成や排気抵抗 等を考慮して別々の真空系を設けてキヤビティ内を効率よく確実に真空 排気できる。

Claims

請 求 の 範 囲
1 . 互いに一方向に相対移動可能な第 1及び第 2金型と、 前記第 1及び 第 2金型間に挟まれて前記一方向とは異なる方向に相対移動可能なスラ ィ ド金型からなる複数の金型同士を合せてキヤビティを形成する工程と 、 前記キヤビティ内を減圧する工程と、 前記キヤビティ内にアルミニゥ ム合金の溶湯を供給する工程とを含むアルミニウム合金の真空ダイカス ト鎵造方法であって、 前記キヤビティを形成する工程は、 前記金型同士 の合せ面の周縁の全体又は一部を空間を介してカバー部で覆う工程を付 随して有し、 続いて、 プランジャチップの低速での前方移動に伴い、 真 空排気を開始することにより、 前記キヤビティ内を減圧する工程と、 前 記カバ一部と前記金型との間の空間を減圧する工程とを行って真空度を 徐々に高め、 溶湯がキヤビティ入口付近に達した時点でプランジャチヅ プを高速移動させて溶湯をキヤビティ内に急速供給し、 この間金型への 冷却水流量調整を行なうことを特徴とするアルミニウム合金の真空ダイ カスト錶造方法。
2 . 前記キヤビティを形成する工程と、 前記金型同士の合せ面の周縁の 全体又は一部を空間を介してカバー部で覆う工程が同時に行われること を特徴とする請求項 1に記載のアルミニウム合金の真空ダイカス ト鏡造 方法。
3 . 前記キヤビティを形成する工程の後に、 前記金型同士の合せ面の周 縁の全体又は一部を空間を介して覆う工程が行われることを特徴とする 請求項 1に記載のアルミニウム合金の真空ダイカスト錶造方法。
4 . 前記キヤビティ内を減圧する工程と、 前記カバ一部と前記金型との 間の空間を減圧する工程がほぼ同時に行われることを特徴とする請求項
2又は 3に記載のアルミニウム合金の真空ダイカスト錶造方法。
5. 前記キヤビティ内を減圧する工程と、 前記カバー部と前記金型との 間の空間を減圧する工程が時間をずらせて行われることを特徴とする請 求項 2又は 3に記載のアルミニゥム合金の真空ダイ力スト錶造方法。
6. 前記キヤビティ内を減圧する工程の前に、 前記カバ一部と前記金型 との間の空間を減圧する工程が行われることを特徴とする請求項 5に記 載のアルミニウム合金の真空ダイカスト錶造方法。
7. 前記アルミニウム合金は、 F eを含み、 S iを 18〜22wt %含 むことを特徴とする請求項 1から 6のいずれかに記載のアルミニウム合 金の真空ダイカスト鎵造方法。
8. 前記アルミニウム合金は、 F eを 0. 4〜: L . 5wt%含むことを 特徴とする請求項 7に記載のアルミニウム合金の真空ダイカスト錄造方 法。
9. 前記金型から取り出した铸造体を急冷する工程を含むことを特徴と する請求項 7又は 8に記載のアルミニウム合金の真空ダイカスト鎵造方 法。 '
10. 請求項 7から 9のいずれかに記載のアルミニゥム合金の真空ダイ カスト鎢造方法を用いて製造したことを特徴とするアルミニウム合金製
ΠΡο
1 1. 前記アルミニウム合金製品は、 エンジンのシリンダブロック又は ビストンであることを特徴とする請求項 10に記載のアルミニウム合金 製品。
12. 前記アルミ二ゥム合金製品は、 ェンジンのシリンダブロヅクであ つて、 そのシリンダボアの表面にシリコン結晶が突出していることを特 徴とする請求項 10に記載のアルミニウム合金製品。
13. 互いに一方向に相対移動可能な第 1及び第 2金型と、 前記第 1及 び第 2金型間に挟まれて前記一方向とは異なる方向に相対移動可能なス ライ ド金型からなる複数の金型同士を合せてキヤビティを形成し、 前記 キヤビティ内を真空ポンプで減圧して、 前記キヤビティ内にアルミニゥ ム合金の溶湯を供給するアルミニウム合金の真空ダイカスト鍩造装置に おいて、 前記第 1及び第 2金型のそれそれに一体的にカバ一部を設け、 前記キヤビティを形成時に、 カバ一部同士がシール材を介して当接する ことにより、 前記金型同士の合せ面の周縁の全体又は一部を空間を介し てカバ一部で覆うように構成するとともに、 前記キヤビティ と前記空間 とを真空ポンプに接続する真空配管を設け、 前記プランジャチップの低 速での前方移動に伴い、 真空排気を開始し、 前記真空配管を介して前記 キヤビティ内と、 前記空間内を減圧し、 溶湯がキヤビティ入口付近に達 した時点でプランジャチヅプを高速移動させて溶湯をキヤビティ内に急 速供給し、 この間金型への冷却水流量調整を行なうことを特徴とするァ ルミニゥム合金の真空ダイカスト鎵造装置。
1 4 . 前記カバ一部は、 前記金型同士の合せ面の周縁全体を空間を介し て覆い、 且つ前記第 1及び第 2金型に別体で固着したことを特徴とする 請求項 1 3に記載のアルミニウム合金の真空ダイカスト錶造装置。
1 5 . 前記カバ一部は、 前記金型同士の合せ面の周縁全体を空間を介し て覆い、 且つ前記第 1及び第 2金型に一体成形したことを特徴とする請 求項 1 3に記載のアルミニウム合金の真空ダイカスト錶造装置。
1 6 . 前記カバ一部には少なくとも一部の金型を駆動するァクチユエ一 夕を取付けるための取付部を有することを特徴とする請求項 1 3から 1 5のいずれかに記載のアルミニウム合金の真空ダイカスト鎵造装置。
1 7 . 前記カバ一部を金型へ固着する固着部をカバ一部の内面に形成し たことを特徴とする請求項 1 4に記載のアルミニウム合金の真空ダイ力 スト錶造装置。
1 8 . 共通の真空ポンプに接続された前記真空配管の他端を前記空間に 接続し、 該空間を介して前記キヤビティを真空ポンプに接続したことを 特徴とする請求項 1 3から 1 7のいずれかに記載のアルミニウム合金の 真空ダイカスト錶造装置。
1 9 . 前記キヤビティを前記空間を介することなく共通の真空ポンプに 接続したことを特徴とする請求項 1 3から 1 7のいずれかに記載のアル ミニゥム合金の真空ダイカスト錶造装置。
2 0 . 前記キヤビティと前記空間を別経路の真空配管を介して別系統の 真空ポンプに接続したことを特徴とする請求項 1 3から 1 7のいずれか に記載のアルミニウム合金の真空ダイカスト錶造装置。
PCT/JP2003/008072 2002-06-26 2003-06-26 アルミニウム合金の真空ダイカスト鋳造方法及び鋳造装置並びにアルミニウム合金製品 WO2004002658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003244075A AU2003244075A1 (en) 2002-06-26 2003-06-26 Method and device for vacuum die casting of aluminum alloy, and aluminum alloy product
JP2004517281A JP4224024B2 (ja) 2002-06-26 2003-06-26 アルミニウム合金の真空ダイカスト鋳造方法および鋳造装置並びにアルミニウム合金製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-186320 2002-06-26
JP2002186320 2002-06-26

Publications (1)

Publication Number Publication Date
WO2004002658A1 true WO2004002658A1 (ja) 2004-01-08

Family

ID=29996766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008072 WO2004002658A1 (ja) 2002-06-26 2003-06-26 アルミニウム合金の真空ダイカスト鋳造方法及び鋳造装置並びにアルミニウム合金製品

Country Status (3)

Country Link
JP (1) JP4224024B2 (ja)
AU (1) AU2003244075A1 (ja)
WO (1) WO2004002658A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216612B2 (en) 2005-08-05 2007-05-15 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine having cylinder formed with water jacket and vehicle provided with the same
EP1944495A1 (en) 2004-02-27 2008-07-16 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same
WO2008126637A1 (ja) 2007-04-05 2008-10-23 Yamaha Hatsudoki Kabushiki Kaisha エンジン
JP2011147960A (ja) * 2010-01-20 2011-08-04 Toyota Motor Corp 減圧鋳造装置および減圧鋳造方法
US8047174B2 (en) 2006-12-28 2011-11-01 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine component and method for producing the same
WO2013094132A1 (ja) * 2011-12-20 2013-06-27 日本軽金属株式会社 ダイカスト法を用いたアルミニウム製品の製造方法及びそれを用いたアルミニウム製ブレーキキャリパの製造方法
KR101483717B1 (ko) * 2014-07-10 2015-01-16 고동근 고도의 진공환경에서 금속을 성형하는 금형장치
KR101517571B1 (ko) * 2014-06-26 2015-05-06 고동근 진공환경에서 금속을 용해하고 성형하는 장치 및 방법
WO2016135843A1 (ja) * 2015-02-24 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
JP2016155163A (ja) * 2015-02-26 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
JP2016155152A (ja) * 2015-02-25 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
WO2023112125A1 (ja) 2021-12-14 2023-06-22 ヤマハ発動機株式会社 内燃機関および輸送機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436253B2 (ja) * 2010-02-12 2014-03-05 本田技研工業株式会社 シールプレート付き金型
CN103212690B (zh) * 2013-05-14 2016-03-02 滨州东海龙活塞有限公司 一种内燃机铝活塞的挤压铸造方法
CN114378284B (zh) * 2021-12-31 2023-12-12 江苏凯乐金属科技有限公司 一种金属材料加工用快速冷却设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160561A (en) * 1981-03-30 1982-10-02 Akira Washida Vacuum die casting method
JPH0180255U (ja) * 1987-11-12 1989-05-30
JPH0747457A (ja) * 1993-08-06 1995-02-21 U Mold:Kk ダイカスト用金型
JPH10288079A (ja) * 1997-04-17 1998-10-27 Toyota Autom Loom Works Ltd シリンダブロック並びにその鋳造方法
JP2000042709A (ja) * 1998-05-12 2000-02-15 Daimlerchrysler Ag 過共晶アルミニウム―珪素合金からシリンダライナを製造する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160561A (en) * 1981-03-30 1982-10-02 Akira Washida Vacuum die casting method
JPH0180255U (ja) * 1987-11-12 1989-05-30
JPH0747457A (ja) * 1993-08-06 1995-02-21 U Mold:Kk ダイカスト用金型
JPH10288079A (ja) * 1997-04-17 1998-10-27 Toyota Autom Loom Works Ltd シリンダブロック並びにその鋳造方法
JP2000042709A (ja) * 1998-05-12 2000-02-15 Daimlerchrysler Ag 過共晶アルミニウム―珪素合金からシリンダライナを製造する方法

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944495A1 (en) 2004-02-27 2008-07-16 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same
US7412955B2 (en) 2004-02-27 2008-08-19 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same
US7216612B2 (en) 2005-08-05 2007-05-15 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine having cylinder formed with water jacket and vehicle provided with the same
US8047174B2 (en) 2006-12-28 2011-11-01 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine component and method for producing the same
JP2012057627A (ja) * 2006-12-28 2012-03-22 Yamaha Motor Co Ltd 内燃機関用部品およびその製造方法
WO2008126637A1 (ja) 2007-04-05 2008-10-23 Yamaha Hatsudoki Kabushiki Kaisha エンジン
JP2011147960A (ja) * 2010-01-20 2011-08-04 Toyota Motor Corp 減圧鋳造装置および減圧鋳造方法
CN103998163B (zh) * 2011-12-20 2016-02-03 日本轻金属株式会社 使用压铸的铝制品的制造方法及使用该方法的铝制制动钳的制造方法
US9724754B2 (en) 2011-12-20 2017-08-08 Nippon Light Metal Company, Ltd. Aluminum product manufacturing method using die casting and aluminum brake caliper manufacturing method using the same
CN103998163A (zh) * 2011-12-20 2014-08-20 日本轻金属株式会社 使用压铸的铝制品的制造方法及使用该方法的铝制制动钳的制造方法
EP2796225A4 (en) * 2011-12-20 2015-09-30 Nippon Light Metal Co METHOD FOR MANUFACTURING ALUMINUM PRODUCT USING PRESSURE CASTING METHOD, AND METHOD FOR MANUFACTURING ALUMINUM TYPE BRAKE CALIPER USING THE SAME
JP2013128937A (ja) * 2011-12-20 2013-07-04 Nippon Light Metal Co Ltd ダイカスト法を用いたアルミニウム製品の製造方法及びそれを用いたアルミニウム製ブレーキキャリパの製造方法
WO2013094132A1 (ja) * 2011-12-20 2013-06-27 日本軽金属株式会社 ダイカスト法を用いたアルミニウム製品の製造方法及びそれを用いたアルミニウム製ブレーキキャリパの製造方法
US10086427B2 (en) 2014-06-26 2018-10-02 Dong Keun Go Device and method for melting and forming metal in vacuum environment
KR101517571B1 (ko) * 2014-06-26 2015-05-06 고동근 진공환경에서 금속을 용해하고 성형하는 장치 및 방법
CN105722623A (zh) * 2014-06-26 2016-06-29 高东瑾 在真空环境下把金属熔解并成型的装置及方法
CN105722623B (zh) * 2014-06-26 2018-05-01 高东瑾 在真空环境下把金属熔解并成型的装置及方法
WO2016006828A1 (ko) * 2014-07-10 2016-01-14 고동근 고도의 진공환경에서 금속을 성형하는 금형장치
JP2017517400A (ja) * 2014-07-10 2017-06-29 ゴ ドングンGO, Dong Keun 高度の真空環境で金属を成形する金型装置
US9821370B2 (en) 2014-07-10 2017-11-21 Dong Keun Go Mold device for forming metal in high-level vacuum environment
KR101483717B1 (ko) * 2014-07-10 2015-01-16 고동근 고도의 진공환경에서 금속을 성형하는 금형장치
JPWO2016135843A1 (ja) * 2015-02-24 2017-11-24 日産自動車株式会社 鋳造装置及び鋳造方法
WO2016135843A1 (ja) * 2015-02-24 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
RU2653747C1 (ru) * 2015-02-24 2018-05-14 Ниссан Мотор Ко., Лтд. Литейное устройство и способ литья
EP3263247A4 (en) * 2015-02-24 2018-05-16 Nissan Motor Co., Ltd. Casting device and casting method
US10286449B2 (en) 2015-02-24 2019-05-14 Nissan Motor Co., Ltd. Casting device and casting method
JP2016155152A (ja) * 2015-02-25 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
JP2016155163A (ja) * 2015-02-26 2016-09-01 日産自動車株式会社 鋳造装置及び鋳造方法
WO2023112125A1 (ja) 2021-12-14 2023-06-22 ヤマハ発動機株式会社 内燃機関および輸送機器

Also Published As

Publication number Publication date
JPWO2004002658A1 (ja) 2005-10-27
JP4224024B2 (ja) 2009-02-12
AU2003244075A1 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
WO2004002658A1 (ja) アルミニウム合金の真空ダイカスト鋳造方法及び鋳造装置並びにアルミニウム合金製品
CN101274361B (zh) 低速真空压挤铸造工艺
EP0748264B1 (en) Permanent mold casting of reactive melt
JP2010151139A (ja) エンジン用部品およびその製造方法
CA2119566C (en) Casting process
JP5319893B2 (ja) 高真空吸引鋳造装置
CN114713798B (zh) 一种制备大型铝合金铸件的真空充型置顶激冷加压凝固装置及方法
KR100537493B1 (ko) 가압식 다이캐스팅 장치 및 이를 이용한 다이캐스팅 방법
KR101014482B1 (ko) 원심주조에 의한 자동차 엔진용 알루미늄 실린더 라이너의 제조방법
US20020003033A1 (en) Method of casting and casting machine
KR100293000B1 (ko) 스퀴즈 병용 진공다이캐스팅을 이용한 에어컨용 회전사판 제조 방법
US20030056929A1 (en) Die casting of wrought aluminum alloys
JP2001198659A (ja) アルミニウム製品の製造方法
JP2004322138A (ja) ダイカスト鋳造における新規低圧鋳造法
JP2933255B2 (ja) 吸引差圧鋳造方法
JPH08319523A (ja) 金属素材の半溶融加工法
CN110541095A (zh) 高性能铝合金汽车零部件制备方法
Lampman Permanent mold casting of aluminum alloys
RU2771078C1 (ru) Способ управления процессом производства заготовок поршней ДВС из заэвтектических алюминиевых сплавов
JP3215769B2 (ja) アルミニウム合金製鋳造品の成形方法
JP2010240732A (ja) 鋳造装置および鋳造方法
JP2002331351A (ja) 還元鋳造方法
Butler High-Pressure Die Casting
Hartlieb et al. Die Casting
JP2001009561A (ja) マグネシウム合金のダイカスト鋳造法及びダイカスト製品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004517281

Country of ref document: JP

122 Ep: pct application non-entry in european phase