WO2004001222A1 - Schaufelrad für kompakte strömungsmaschinen - Google Patents

Schaufelrad für kompakte strömungsmaschinen Download PDF

Info

Publication number
WO2004001222A1
WO2004001222A1 PCT/EP2003/006442 EP0306442W WO2004001222A1 WO 2004001222 A1 WO2004001222 A1 WO 2004001222A1 EP 0306442 W EP0306442 W EP 0306442W WO 2004001222 A1 WO2004001222 A1 WO 2004001222A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
flow
blades
rotation
pressure
Prior art date
Application number
PCT/EP2003/006442
Other languages
English (en)
French (fr)
Inventor
Martin Ziegler
Original Assignee
Martin Ziegler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin Ziegler filed Critical Martin Ziegler
Priority to AU2003250839A priority Critical patent/AU2003250839A1/en
Publication of WO2004001222A1 publication Critical patent/WO2004001222A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/12Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines with repeated action on same blade ring
    • F01D1/14Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines with repeated action on same blade ring traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/02Buckets; Bucket-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a paddle wheel for single-stage or multi-stage turbomachines which can be used as power machines (turbines) or work machines (pumps, compressors) or in combination (turbochargers, pump turbines).
  • Turbomachines are energy converters that change the angular momentum of a flow and thus its pressure. Turbines use a pressure drop to remove useful work from the flow, pumps and compressors deliver fluids to a higher pressure level. The pressure difference between the inflow and outflow of a machine is impressed or extracted using one or more stages. Each stage has its own impeller, which is flowed through radially, axially or diagonally. The specific theoretical blade work Y of such an impeller is determined according to the well-known Euler equation for turbomachines (Herbert Sigioch, Turbomachines, Hanser Verlag 1993, page 61):
  • Impeller material depends.
  • the load on the impeller increases as a result of centrifugal forces from a high peripheral speed Strength limit, a turbomachine must always be designed in several stages.
  • the object of the invention is to increase the maximum step work of a single step at the same speed without increasing the material load. In many cases, this means that there is no need for multiple stages, or fewer stages are required than before.
  • Figure 1 shows the flow path through the impeller for the application of a turbine.
  • Figure 2 shows the example of a design for an impeller according to the invention.
  • the peripheral speed of the suction edge must be as large as possible.
  • the impeller consists of two separate sets of blades, one on the pressure side (1) and one on the suction side (2), side by side with the same outside diameter. Both vane sets are connected in the interior of the impeller via an unbladed fillet, which deflects the fluid from the pressure-side vane set into the suction-side vane set. On the pressure side, the fluid flows in radially or diagonally to the axis of rotation, and also on the suction side.
  • EP 0 984 136 A1 describes a turbine, the impeller of which has two sets of blades which are first flowed through from inside to outside and then from outside to inside, the flow between the two sets of blades being guided through a fixed guide vane. This corresponds to a conventional two-stage turbine, with the fixed guide vane generating additional losses between the stages. Bladed and non-bladed fillets are known from DE-PS 148 390 and DE-PS 174 673.
  • DE-PS 148 390 already has two sets of blades, but the fillet is divided by intermediate webs to prevent the passage of steam from one blade chamber into the other, so that the peripheral speed of the fluid matches that of the wheel. This means that the desired effect to increase step work cannot be achieved.
  • a non-bladed fillet is described in DE-PS 174 673, but there is no second set of blades in the impeller, so that its step work is also not increased.
  • US-PS 1 076 952 an impeller with two sets of blades is described, however flow through in parallel, a multi-flow impeller. This means that a higher volume flow can be processed, but the specific step work is not increased.
  • the new impeller increases the specific work of a single step.
  • Figure 1.1 shows a section through the impeller parallel to the axis of rotation.
  • the fluid flows into the impeller on the pressure side (1), is turned between X1 and X2 in the fillet, and flows out again at (2) on the suction side.
  • Figure 1.2 shows a section through the impeller perpendicular to the axis of rotation with the flow path and the speed triangles of the
  • Pressure side (1) and the suction side (2) One blade of each of the two blade sets is shown.
  • the velocity triangles of the flow show the vectors with absolute speed c, circumferential speed u, and relative speed w.
  • the pressure-side vane (1) reverses the swirl direction of the flow against the direction of rotation of the impeller.
  • the flow leaves the set of blades on the pressure side and follows a helical path in the fillet.
  • it flows into the suction-side blade set (2) and leaves it with a very high counter-swirl at the suction edge.
  • Figure 1.3 shows the components of the pressure-side absolute flow in the radial direction and circumferential direction.
  • Figure 1.4 shows the components of the absolute flow on the suction side.
  • the step work per impeller can be determined from the example with previously known suction-side swirl freedom (Y.ALT) and high suction-side counter-swirl (Y.NEU) according to the invention:
  • the step work of the impeller increases by a factor of 3 because the suction and pressure edges are at the same distance from the axis of rotation and the fluid flows out with a high counter-swirl.
  • Figure 2 shows an example of the design of a single-flow radial impeller for a turbine.
  • Figure 2.1 shows the example in an isometric view.
  • Figure 2.2 shows a turbine impeller with sectional views showing the blading on the pressure side (A-A), the blading on the suction side (B-B) and the fillet (C-C). It is obvious that the geometry and number of blades must be different on the pressure side and the suction side: on the pressure side, the example has 36 short and steep blades, on the suction side there are only 12, but elongated and flat blades.
  • Multi-flow impellers are created by putting mirror-symmetrical wheels together, whereby the common central web can then be omitted, and the adjacent blade sets of two wheels can be combined to form a common blade set that is twice as wide (without separate illustration).
  • turbomachines can be built smaller and lighter than before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein radial oder diagonal angeströmtes Laufrad für Strömungsmaschinen, die als Kraftmaschinen (Turbine) oder Arbeitsmaschine (Pumpe, Verdichter) oder in Kombination eingesetzt werden können (Turbolader, Pumpenturbine). Das Laufrad besitzt saugseitig und druckseitig jeweils einen eigenen Schaufelsatz, der in Anzahl und Geometrie der Schaufeln verschieden ist. Beide Schaufelsätze stehen im Inneren des Laufrades über eine unbeschaufelte Hohlkehle in Verbindung und werden nacheinander durchströmt. Druckkante und Saugkante haben den gleichen Abstand zur Drehachse. Das Laufrad erhält saugseitig einen hohen Gegendrall und wendet die Drallrichtung der Strömung zwischen Saugseite und Druckseite. Damit lässt sich die spezifische Schaufelarbeit des Laufrades erheblich steigern. Strömungsmaschinen können damit kleiner und leichter gebaut werden als bisher.

Description

Schaufelrad für kompakte Strömungsmaschinen
Die Erfindung betrifft ein Schaufelrad für ein- oder mehrstufige Strömungsmaschinen, die als Kraftmaschinen (Turbine) oder Arbeitsmaschinen (Pumpe, Verdichter) oder in Kombination eingesetzt werden können (Turbolader, Pumpenturbine).
Strömungsmaschinen sind Energiewandler, die den Drehimpuls einer Strömung ändern und damit deren Druck. Turbinen nutzen ein Druckgefälle um der Strömung Nutzarbeit zu entziehen, Pumpen und Verdichter fördern Fluide auf ein höheres Druckniveau. Der Druckunterschied zwischen Zufluß und Abfluß einer Maschine wird mittels einer oder mehrerer Stufen aufgeprägt oder entzogen. Jede Stufe besitzt dabei ein eigenes Laufrad, das radial, axial oder diagonal durchströmt wird. Die spezifische theoretische Schaufelarbeit Y eines solchen Laufrades ermittelt sich nach der bekannten Euler'schen Gleichung für Strömungsmaschinen (Herbert Sigioch, Strömungsmaschinen, Hanser Verlag 1993, Seite 61):
Y = c2u u2 - Ciu Ui
Bekannte Maschinen werden mit der Forderung nach Drallfreiheit der Saugseitenströmung entworfen (s.o., Seite 62), wodurch einer der beiden Terme in der Euler'schen Gleichung den Wert NULL annimmt (Pumpen: du = 0; Turbinen: c2u = 0), und die Stufenarbeit nur durch die Druckseite beeinflußt wird.
Der Nachteil dieser Vorgehensweise ist, daß die maximale Schaufelarbeit einer Stufe im wesentlichen durch die Umfangsgeschwindigkeit der Druckkante bestimmt wird, welche von der Zugfestigkeit des
Laufradwerkstoffes abhängt. Steigt die Belastung des Laufrades infolge von Zentrifugalkräften aus hoher Umfangsgeschwindigkeit über die Festigkeitsgrenze, so ist eine Strömungsmaschine immer mehrstufig auszuführen.
Aufgabe der Erfindung ist es, die maximale Stufenarbeit einer einzigen Stufe bei gleicher Drehzahl zu steigern, ohne die Werkstoffbelastung zu erhöhen. Dadurch kann in vielen Fällen auf Mehrstufigkeit verzichtet werden, oder es werden weniger Stufen benötigt als bisher.
Die Erfindung wird in Bezug auf zwei Figuren beschrieben. Figur 1 zeigt den Strömungsweg durch das Laufrad für den Anwendungsfall einer Turbine. Figur 2 zeigt das Beispiel einer konstruktiven Ausführung für ein erfindungsgemäßes Laufrad.
Das Prinzip zur Steigerung der Stufenarbeit läßt sich einfach aus der Euler'schen Hauptgleichung ableiten:
1. Die Forderung nach Drallfreiheit der Saugseitenströmung muß ersetzt werden durch eine Forderung nach möglichst hohem GEGENDRALL in der Saugseitenströmung.
2. Die Umfangsgeschwindigkeit der Saugkante muß möglichst GROSS werden.
Wie man leicht erkennen kann, erhält der bisher zu Null gesetzte Term der Euler'schen Hauptgleichung damit einen sehr großen Wert mit entgegengesetztem Vorzeichen zum anderen Term, und die spezifische Stufenarbeit wächst um diesen Betrag.
Beide Forderungen werden erfüllt durch das erfindungsgemäße radial oder diagonal angeströmte Laufrad, in dem die Saugkante und die Druckkante den gleichen Abstand von der Drehachse haben, und die Drallrichtung der Strömung im Laufrad gewendet wird. Das Prinzip wird anhand Figur 1 erläutert, in dem der Strömungspfad durch ein einflutiges radiales Laufrad einer Turbine dargestellt ist. Für den Anwendungsfall der Pumpe sind Drehrichtung und Strömungsrichtung umzukehren.
Das Laufrad besteht aus zwei getrennten Schaufelsätzen, einem druckseitigen (1) und einem saugseitigen (2), parallel nebeneinander mit gleichem Außendurchmesser. Beide Schaufelsätze stehen im Inneren des Laufrades über eine unbeschaufelte Hohlkehle in Verbindung, welche das Fluid vom druckseitigen Schaufelsatz in den saugseitigen Schaufelsatz umlenkt. Druckseitig strömt das Fluid radial oder diagonal zur Drehachse zu, saugseitig ebenso wieder ab.
Radiale Laufräder sind nach EP 0 984 136 A1 , DE-PS 148 390, DE PS 174 673 und US-PS 1 076 952 bereits bekannt. EP 0 984 136 A1 beschreibt eine Turbine, deren Laufrad zwei Schaufelsätze besitzt, die zuerst von innen nach außen und dann von außen nach innen durchströmt werden, wobei die Strömung zwischen beiden Schaufelsätzen durch ein feststehendes Leitgitter geführt wird. Das entspricht einer herkömmlichen zweistufigen Turbine, wobei das feststehende Leitgitter zwischen den Stufen zusätzliche Verluste erzeugt. Beschaufelte und unbeschaufelte Hohlkehlen sind aus DE-PS 148 390 und DE-PS 174 673 bekannt. DE-PS 148 390 besitzt schon zwei Schaufelsätze, aber die Hohlkehle ist durch Zwischenstege unterteilt um den Übertritt von Dampf von einer Schaufelkammer in die andere zu verhindern, so daß die Umfangsgeschwindigkeit des Fluides mit der des Rades übereinstimmt. Damit läßt sich der gewünschte Effekt zur Steigerung der Stufenarbeit nicht erzielen. Eine unbeschaufelte Hohlkehle ist in DE-PS 174 673 beschrieben, allerdings fehlt dort der zweite Schaufelsatz im Laufrad, so daß dessen Stufenarbeit ebenfalls nicht gesteigert wird. In US-PS 1 076 952 wird ein Laufrad mit zwei Schaufelsätzen beschrieben, die allerdings parallel durchströmt werden, ein mehrflutiges Laufrad. Damit kann ein höherer Volumenstrom verarbeitet werden, aber die spezifische Stufenarbeit wird nicht gesteigert.
Im Gegensatz zu den bekannten Laufrädern, wird mit dem neuen Laufrad die spezifische Arbeit einer einzigen Stufe gesteigert.
Figur 1.1 zeigt einen Schnitt durch das Laufrad parallel zur Drehachse. Das Fluid strömt druckseitig (1) in das Laufrad, wird in der Hohlkehle zwischen X1 und X2 gewendet, und strömt saugseitig bei (2) wieder ab.
Figur 1.2 zeigt einen Schnitt durch das Laufrad senkrecht zur Drehachse mit dem Strömungspfad und den Geschwindigkeitsdreiecken der
Druckseite (1) und der Saugseite (2). Jeweils eine Schaufel der beiden Schaufelsätze ist dargestellt. Die Geschwindigkeitsdreiecke der Strömung zeigen die Vektoren mit Absolutgeschwindigkeit c, Umfangsgeschwindigkeit u, und Relativgeschwindigkeit w. Die druckseitige Schaufel (1) wendet die Drallrichtung der Strömung gegen die Drehrichtung des Laufrades. Bei X1 verläßt die Strömung den druckseitigen Schaufelsatz und folgt in der Hohlkehle einer schraubenförmigen Bahn. Bei X2 fließt sie in den saugseitigen Schaufelsatz (2) und verläßt diesen mit sehr hohem Gegendrall an der Saugkante.
Figur 1.3 zeigt die Komponenten der druckseitigen Absolutströmung in radialer Richtung und Umfangsrichtung. In dem Beispiel ist die Umfangsgeschwindigkeit der Strömung identisch mit der Umfangsgeschwindigkeit der Druckkante (cιu= Ui = u).
Figur 1.4 zeigt die Komponenten der saugseitigen Absolutströmung. In dem Beispiel ist die Umfangsgeschwindigkeit der Strömung doppelt so hoch wie die des Laufrades, aber entgegengesetzt (C2U= -2u2 = -2u). Aus dem Beispiel läßt sich die Stufenarbeit pro Laufrad bei bisher bekannter saugseitiger Drallfreiheit (Y.ALT) und erfindungsgemäß hohem saugseitigen Gegendrall (Y.NEU) ermitteln:
Y.ALT = 0 - u = -u2
Y.NEU = -2u2 - u2 = -3u2 = 3 Y.ALT
In diesem Beispiel wächst die Stufenarbeit des Laufrades um Faktor 3, weil Saug- und Druckkante den gleichen Abstand von der Drehachse haben, und das Fluid mit hohem Gegendrall abströmt.
Figur 2 zeigt als Beispiel die konstruktive Ausführung eines einflutigen radialen Laufrades für eine Turbine.
Figur 2.1 zeigt das Beispiel in isometrischer Ansicht.
Figur 2.2 zeigt ein Turbinenlaufrad mit Schnittansichten zur Darstellung der druckseitigen Beschaufelung (A-A), der saugseitigen Beschaufelung (B-B) und der Hohlkehle (C-C). Es ist einleuchtend, daß Geometrie und Anzahl der Schaufeln druckseitig und saugseitig verschieden sein müssen: Druckseitig besitzt das Beispiel 36 kurze und steile Schaufeln, saugseitig sind es nur 12, aber lang gezogene und flache Schaufeln.
Mehrflutige Laufräder entstehen durch Aneinandersetzen spiegelsymmetrischer Räder, wobei der gemeinsame Mittelsteg dann entfallen kann, und die benachbarten Schaufelsätze zweier Räder zu einem gemeinsamen, doppelt so breiten Schaufelsatz vereinigt werden können (ohne gesonderte Darstellung).
Mit dem neuen Schaufelrad können Strömungsmaschinen kleiner und leichter gebaut werden als bisher.

Claims

PATENTANSPRÜCHE
1. Radial oder diagonal von außen nach innen zur Drehachse angeströmtes Laufrad für Strömungsmaschinen, dadurch gekennzeichnet, daß Druck- und Saugseite je einen eigenen Schaufelsatz mit verschiedener Geometrie und Schauf elanzahl haben, die über eine unbeschaufelte Hohlkehle in Verbindung stehen und nacheinander durchströmt werden, wobei die Umfangsgeschwindigkeit der Strömung innerhalb der Hohlkehle gegen die Drehrichtung des Laufrades gerichtet ist.
2. Laufrad nach Anspruch 1 , dadurch gekennzeichnet, daß die Umfangsgeschwindigkeit der Strömung saugseitig gegen die Drehrichtung des Laufrades gerichtet ist, und druckseitig die gleiche Drehrichtung wie das Laufrad besitzt.
3. Laufrad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der jeweilige druck- oder saugseitige
Schaufelsatz des Laufrades den gleichen Abstand zur Drehachse hat.
4. Laufrad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwei spiegelsymmetrische Laufräder zu einem mehrflutigen Laufrad vereinigt werden.
5. Laufrad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es von Flüssigkeiten oder von Gasen oder von Mehrphasenströmungen durchströmt wird.
6. Laufrad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es in einstufigen oder mehrstufigen Strömungsmaschinen, wie Pumpen, Turbinen, Verdichter oder beliebige Kombinationen, einflutig oder mehrflutig verwendet wird.
PCT/EP2003/006442 2002-06-20 2003-06-18 Schaufelrad für kompakte strömungsmaschinen WO2004001222A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003250839A AU2003250839A1 (en) 2002-06-20 2003-06-18 Impeller for compact turbo machines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10227426A DE10227426C1 (de) 2002-06-20 2002-06-20 Schaufelrad für kompakte Strömungsmaschinen
DE10227426.6 2002-06-20

Publications (1)

Publication Number Publication Date
WO2004001222A1 true WO2004001222A1 (de) 2003-12-31

Family

ID=7714686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006442 WO2004001222A1 (de) 2002-06-20 2003-06-18 Schaufelrad für kompakte strömungsmaschinen

Country Status (3)

Country Link
AU (1) AU2003250839A1 (de)
DE (1) DE10227426C1 (de)
WO (1) WO2004001222A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261790B4 (de) * 2002-12-23 2006-09-07 Robert Bosch Gmbh Strömungsmaschinenanordnung
DE102005032002A1 (de) * 2005-07-08 2007-01-18 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine und Brennkraftmaschine mit einem Abgasturbolader
IT1396927B1 (it) 2009-11-13 2012-12-20 Alfonsi Turbina ad elevate prestazioni, particolarmente a potenza specifica incrementata.
FR2954801A1 (fr) * 2009-12-31 2011-07-01 Gilbert Ly Propulseur sans emission de co2 ni de dechets radioactifs, necessitant un couple minimal, base sur la theorie du vide paradoxal
US20140186170A1 (en) * 2012-12-27 2014-07-03 Ronald E. Graf Centrifugal Expanders And Compressors Each Using Rotors In Both Flow Going From Periphery To Center And Flow Going From Center To Periphery Their Use In Engines Both External Heat And Internal Combustion. Means to convert radial inward flow to radial outward flow with less eddy currents
DE102013220717B4 (de) * 2013-10-14 2016-04-07 Continental Automotive Gmbh Pumpe
IT201600105432A1 (it) * 2016-10-20 2017-01-20 Algerino Patrignani Cilindro turbina

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE170176C (de) *
GB191000279A (en) * 1910-01-05 1910-10-20 Josef Novak Improvements in Turbines and the like.
FR843638A (fr) * 1938-03-12 1939-07-06 Materiel Electrique S W Le Turbo-pompe
US2429978A (en) * 1945-03-28 1947-11-04 Blanchard Richard Centripetal-centrifugal pump
WO2001094753A2 (de) * 2000-06-06 2001-12-13 Martin Ziegler Strömungskraftmaschine zur nutzung geringer druckdifferenzen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE148390C (de) *
DE174673C (de) *
US1076952A (en) * 1909-10-29 1913-10-28 Benjamin S Church Expansible-fluid turbine.
EP0984136A1 (de) * 1998-09-01 2000-03-08 SCHMID & WEZEL GmbH & Co. Doppelseitige Zentrifugal- Zentripedalturbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE170176C (de) *
GB191000279A (en) * 1910-01-05 1910-10-20 Josef Novak Improvements in Turbines and the like.
FR843638A (fr) * 1938-03-12 1939-07-06 Materiel Electrique S W Le Turbo-pompe
US2429978A (en) * 1945-03-28 1947-11-04 Blanchard Richard Centripetal-centrifugal pump
WO2001094753A2 (de) * 2000-06-06 2001-12-13 Martin Ziegler Strömungskraftmaschine zur nutzung geringer druckdifferenzen

Also Published As

Publication number Publication date
AU2003250839A1 (en) 2004-01-06
DE10227426C1 (de) 2003-07-31

Similar Documents

Publication Publication Date Title
DE69506297T2 (de) Axialpumpen
EP3408503B1 (de) Strömungsmaschine mit beschaufeltem diffusor
DE1428191A1 (de) Kreiselgeblaese
EP2275643B1 (de) Triebwerkschaufel mit überhöhter Vorderkantenbelastung
EP3225781B1 (de) Schaufelkanal, schaufelgitter und strömungsmaschine
WO2008046389A1 (de) Anordnung zur strömungsbeeinflussung mittels grenzschichtbeeinflussender geometrien
EP3404269A1 (de) Gebläseanordnung mit strömungsteilungsdüse
WO2016110373A1 (de) Seitenkanalgebläse für eine verbrennungskraftmaschine
CH678352A5 (de)
DE10227426C1 (de) Schaufelrad für kompakte Strömungsmaschinen
EP1937980B1 (de) Rotor für eine strömungsmaschine und eine strömungsmaschine
EP1591624A1 (de) Verdichterschaufel und verdichter
DE2113514B2 (de) Überschall-Axialverdichter mit einem zylindrischen oder konischen divergierenden die Einlauföffnung hinten verlängernden Körper
EP2113637A2 (de) Rotierende Einheit für einen Axialkompressor
EP0363503A1 (de) Pumpenstufe für eine Hochvakuumpumpe
EP0684386A1 (de) Verfahren und Vorrichtung zur Förderung eines Fluides
EP3682119A1 (de) Diffusor für einen radialverdichter
WO2016046036A1 (de) Radialverdichterlaufrad und zugehöriger radialverdichter
WO2016079222A1 (de) Rückführstufe
DE102017200754A1 (de) Einströmleitgitter, Einströmungsanordnung, Turbomaschine
WO2001011240A1 (de) Reibungsvakuumpumpe mit pumpaktiven elementen
EP2587065B1 (de) Flüssigkeitsringverdichter
EP0985803B1 (de) Turbinenstufe mit radialer Zuströmung und axialer Abströmung
DE102016115710B3 (de) Radialverdichter mit gegenläufigen Verdichterlaufrädern
WO2018158241A1 (de) Diffusor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP