WO2003103830A1 - Catalyseur et procede d'hydrogenation de composes aromatiques - Google Patents

Catalyseur et procede d'hydrogenation de composes aromatiques Download PDF

Info

Publication number
WO2003103830A1
WO2003103830A1 PCT/EP2003/004386 EP0304386W WO03103830A1 WO 2003103830 A1 WO2003103830 A1 WO 2003103830A1 EP 0304386 W EP0304386 W EP 0304386W WO 03103830 A1 WO03103830 A1 WO 03103830A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogenation
subgroup
metal
esters
Prior art date
Application number
PCT/EP2003/004386
Other languages
German (de)
English (en)
Inventor
Michael Grass
Alfred Kaizik
Wilfried Büschken
Axel Tuchlenski
Dietrich Maschmeyer
Kurt-Alfred Gaudschun
Frank Brocksien
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Priority to EP03725106.3A priority Critical patent/EP1511562B1/fr
Priority to US10/511,595 priority patent/US7361714B2/en
Priority to AU2003227684A priority patent/AU2003227684A1/en
Priority to ES03725106T priority patent/ES2705164T3/es
Publication of WO2003103830A1 publication Critical patent/WO2003103830A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution

Definitions

  • the invention relates to the hydrogenation of aromatic compounds, in particular the production of alicyclic polycarboxylic acids or their esters by core hydrogenation of the corresponding aromatic polycarboxylic acids or their esters, and catalysts suitable for this.
  • Alicyclic polycarboxylic acid esters such as the esters of cyclohexane-1,2-dicarboxylic acid, are used as a lubricating oil component and as an aid in metalworking. They are also used as plasticizers for polyolefms and for PVC.
  • esters of phthalic acid such as, for example, dibutyl, dioctyl, dinonyl or didecyl esters, are predominantly used for plasticizing PVC. Since the use of these phthalates has recently become increasingly controversial, it must be feared that their use in plastics could be restricted. Alicyclic polycarboxylic acid esters, some of which have already been described in the literature as plasticizers for plastics, could then be available as suitable substitutes.
  • No. 3,027,398 discloses the hydrogenation of dimethyl terephthalate over supported Ru catalysts at 110 to 140 ° C. and 35 to 105 bar.
  • DE 28 23 165 describes aromatic carboxylic acid esters on supported Ni, Ru, Rh and / or Pd Hydrogenated catalysts to the corresponding alicyclic carboxylic acid esters at 70 to 250 ° C and 30 to 200 bar.
  • a macroporous support with an average pore size of 70 nm and a BET surface area of approximately 30 m 2 / g is used.
  • WO 99/32427 and WO 00/78704 disclose processes for the hydrogenation of benzene polycarboxylic acid esters to give the corresponding alicyclic compounds.
  • Supported catalysts are used which contain a metal from subgroup VIII alone or together with at least one metal from subgroup I or VII of the periodic table and have macropores. Ruthenium is used as the preferred metal of subgroup VIII.
  • Three different types of catalysts are used for the hydrogenation, which differ essentially in their average pore diameter and their BET surface area.
  • Catalyst I average pore diameter greater than 50 nm and BET surface area less than 30 m 2 / g
  • Catalyst II average pore diameter 5 to 20 nm and BET surface area greater
  • catalyst III average pore diameter greater than 100 nm and BET surface area less than 15 m 2 / g
  • the catalysts used for the core hydrogenation of aromatic carboxylic acids or their esters should enable a high reaction rate, generate only a small proportion of by-products and have a long service life.
  • the activity and selectivity of hydrogenation catalysts depends on their surface properties such as pore size, BET surface area or surface concentration of the active metals.
  • a catalyst In a continuously operated process, a catalyst is now exposed to mechanical, thermal and chemical loads which change the pore size or the BET surface area and thus reduce the activity and selectivity of this catalyst.
  • Aromatic polycarboxylic acid esters often contain small amounts of carboxylic acids. In addition, traces of acid are formed during the core hydrogenation of esters. Partial esters of polycarboxylic acids or polycarboxylic acids as such are acidic due to their structure. Therefore, a hydrogenation catalyst suitable for a continuous process should be resistant to acid even at higher temperatures under the hydrogenation conditions.
  • the known catalysts do not yet meet the desired requirements in terms of activity, selectivity or stability.
  • ⁇ -Al 2 -O 3 in contrast to ⁇ -Al -O 3, is not sufficiently acid-stable.
  • the task was therefore to develop the catalysts for the core hydrogenation of aromatic carboxylic acids and / or their esters with improved property profiles.
  • catalysts which contain at least one metal from the eighth subgroup and consist of a support material with an average pore diameter of 25 to 50 nm and a specific surface area of greater than 30 m 2 / g, aromatic carboxylic acids and / or their esters Hydrogenate (full or partial esters) in high selectivity and space-time yield without significant side reactions to the corresponding alicyclic polycarboxylic acids or their esters.
  • the present invention therefore relates to a catalyst for the hydrogenation of aromatic compounds to the corresponding alicyclic compounds, which contains at least one metal from the eighth subgroup of the Periodic Table on or in a support material, the support material having an average pore diameter of 25 to 50 nm and a specific surface area larger 30 m 2 / g.
  • Catalysts of this type can be used in particular for the hydrogenation of aromatic compounds.
  • a process for the catalytic hydrogenation of aromatic compounds can be used in particular for the hydrogenation of aromatic compounds.
  • the catalysts can contain all metals of the eighth subgroup of the periodic table. Platinum, rhodium, palladium, cobalt, nickel or ruthenium or a mixture of two or more thereof are preferably used as active metals, ruthenium in particular being used as the active metal.
  • At least one metal from the first and / or seventh subgroup of the periodic table of the elements can additionally be present in the catalysts.
  • Rhenium and / or copper is preferably used.
  • the content of the active metals i.e. H. the metals of the first and / or seventh and / or eighth subgroup is generally 0.1 to 30% by mass.
  • the metals of the eighth subgroup (more precisely: the fifth and sixth period), calculated as metal, are in the range from 0.1 to 10% by mass, in particular in the range from 0.8 to 5% by mass, very particularly between 1 and 3 mass%.
  • Support materials with an average pore diameter in the range from 25 to 50 nm are used to produce the catalysts according to the invention.
  • the average pore diameter is determined by mercury porosimetry, in particular according to DIN 66133.
  • micropores pore diameter smaller than 2 nm
  • mesopores pore diameter 2 to 50 nm
  • macropores pore diameter larger than 50 nm
  • carrier materials with the following combinations of pores can be used. a) only mesopores b) micropores and mesopores c) mesopores and macropores d) micropores and mesopores and macropores e) micropores and macropores.
  • the average pore diameter of the support material is between 25 and 50 nm.
  • the average pore diameter is preferably 25 to 40 nm, very particularly preferably 30 to 40 nm.
  • carrier materials with a high proportion of macropores can also be used, provided that the average pore diameter is between 25 and 50 nm, preferably between 25 and 40 nm, very particularly preferably between 30 and 40 nm.
  • the specific surface area of the support (determined by the BET method by nitrogen adsorption, in accordance with DIN 66131 is greater than 30 m 2 / g, the specific surface area is preferably 30 to 90 m 2 / g or 35 to 90 m 2 / g , in particular between 40 to 60 m 2 / g.
  • support materials are used for the production of the catalysts, in which over 90%, in particular over 95% of the total pore volume on micro and mesopores, i. H. Pores with a diameter between 0.1 and 50 nm, preferably between 0.1 and 20 nm, are eliminated.
  • Solids are used as carriers for the production of the catalysts according to the invention, their average pore diameter and their specific surface area are in the ranges mentioned above.
  • the following substances can be used as carriers: activated carbon, silicon carbide, aluminum oxide, silicon oxide, aluminosilicate, titanium dioxide, zirconium dioxide, magnesium oxide and / or zinc oxide or mixtures thereof.
  • Carriers which are resistant to carboxylic acids under hydrogenation conditions are preferably used for the preparation of the catalysts according to the invention. These are, for example, activated carbon, silicon carbide, silicon dioxide, titanium dioxide and / or zirconium dioxide or mixtures of these compounds.
  • Titanium dioxides are very particularly preferably used as carrier materials. Titanium dioxide occurs in three modifications (anatase, rutile, brookite), of which anatase and rutile are the most common.
  • all titanium dioxide modifications, titanium dioxides in which at least two modifications are present side by side, or mixtures of different titanium dioxides can be used if they are in the range according to the invention with regard to the average pore diameter and specific surface area.
  • a preferred carrier material is Aerolyst 7711 ® (sales product from Degussa AG, Düsseldorf). This carrier consists of 15-20% by mass of rutile and 80-85% by mass of anatase.
  • Further titanium dioxide supports which are suitable for the preparation of the catalysts according to the invention are, for example, supports which are produced on the basis of titanium oxides from a sulfuric acid process. They usually contain> 98% anatase.
  • the catalysts of the invention can be obtained by applying at least one metal of the eighth subgroup of the periodic table and optionally at least one metal of the first and / or seventh subgroup of the periodic table on a suitable support. It is also possible to produce the active metals and the carrier simultaneously, i.e. H. use a full catalyst.
  • the application can be carried out by soaking the support in aqueous metal salt solutions, such as. B. aqueous ruthenium salt solutions, by spraying appropriate metal salt solutions onto the support or by other suitable methods.
  • aqueous metal salt solutions such as. B. aqueous ruthenium salt solutions
  • Suitable metal salts of the first, seventh or eighth subgroup of the periodic table are the nitrates, nitrosyl nitrates, halides, carbonates, carboxylates, acetylacetonates, chloro complexes, nitrito complexes or amine complexes of the corresponding metals, with the nitrates and nitrosyl nitrates being preferred.
  • the metal salts or metal salt solutions can be applied simultaneously or in succession.
  • the supports coated or impregnated with metal salt solution are then dried, preferably at temperatures from 80 to 150 ° C., and optionally at Temperatures of 200 to 600 ° C calcined. If the impregnation is carried out separately, the catalyst is dried after each impregnation step and optionally calcined, as described above. The order in which active components are applied is freely selectable.
  • the active component (s), drying and calcination can be applied in one operation, for example by spraying an aqueous metal salt solution onto the support at temperatures above 200 ° C.
  • the catalysts according to the invention are expediently brought into a form which offers a low flow resistance during the hydrogenation, such as tablets, cylinders, extrudates or rings.
  • the shaping can optionally take place at different points in the catalyst production.
  • the hydrogenation is carried out in the liquid phase or in the gas phase.
  • the hydrogenation can be carried out continuously or batchwise over suspended or particulate fixed-bed catalysts.
  • continuous hydrogenation over a catalyst arranged in a fixed bed, in which the product / starting material phase is mainly in the liquid state under reaction conditions, is preferred.
  • the hydrogenation is carried out continuously on a catalyst arranged in a fixed bed, it is expedient to convert the catalyst into the active form before the hydrogenation. This can be done by reducing the catalyst with hydrogen-containing gases according to a temperature program. The reduction can optionally be carried out in the presence of a liquid phase which trickles over the catalyst. A solvent or the hydrogenation product can be used as the liquid phase.
  • Different process variants can be selected for the process according to the invention. It can be carried out in an adiabatic, polytropic or practically isothermal manner, ie with a temperature rise of typically less than 10 ° C., in one or more stages. In the latter case, all reactors, expediently tubular reactors, can be adiabatically or practically isothermal, and one or more adiabatic and the others practically operate isothermally. It is also possible to hydrogenate the aromatic compounds in a single pass or with product recycling.
  • the process according to the invention is preferably carried out in the liquid / gas mixed phase or liquid phase in three-phase reactors in cocurrent, the hydrogenation gas being distributed in a manner known per se in the liquid educt / product stream.
  • the reactors are preferably operated with high liquid loads of 15 to 120, in particular 25 to 80 m 3 per m 2 cross section of the empty reactor and hour. If a reactor is operated in a single pass, the specific catalyst load (LHSV) can assume values between 0.1 and 10 h "1 .
  • the hydrogenation can be carried out in the absence or, preferably, in the presence of a solvent. All liquids can be used as solvents which form a homogeneous solution with the starting material and product, are inert under hydrogenation conditions and can easily be separated from the product.
  • the solvent can also be a mixture of several substances and optionally contain water.
  • solvents straight-chain or cyclic ethers, such as tetrahydrofuran or dioxane, and aliphatic alcohols in which the alkyl radical has 1 to 13 carbon atoms.
  • Alcohols which can preferably be used are isopropanol, n-butanol, isobutanol, n-pentanol, 2-ethylhexanol, nonanols, technical nonanol mixtures, decanol, technical decanol mixtures, tridecanols.
  • alcohols As solvents, it may be expedient to use the alcohol or alcohol mixture that would be formed during the saponification of the product. This would preclude by-product formation through transesterification.
  • Another preferred solvent is the hydrogenation product itself.
  • the aromatic concentration in the reactor feed can be limited, whereby a better temperature control in the reactor can be achieved. This can result in a minimization of side reactions and thus an increase in the product yield.
  • the aromatic content in the reactor feed is preferably between 1 and 35%, in particular between 5 and 25%.
  • the desired concentration range can be set by means of the cycle ratio (quantitative ratio of recycled hydrogenation output to starting material).
  • the process according to the invention is carried out in a pressure range from 3 to 300 bar, in particular between 15 and 200 bar, very particularly between 50 and 200 bar.
  • the hydrogenation temperatures are between 50 and 250, in particular between 100 and 200 ° C.
  • Any hydrogen-containing gas mixtures which do not contain any harmful amounts of catalyst poisons such as carbon monoxide or hydrogen sulfide can be used as hydrogenation gases.
  • the use of inert gases is optional; hydrogen in a purity of greater than 95%, in particular greater than 98%, is preferably used.
  • Inert gas components can be nitrogen or methane, for example.
  • the individual reactors can be charged with fresh hydrogen.
  • the exhaust gas of one reactor is advantageous to feed fresh hydrogen into the second reactor and to guide the waste gas from the second reactor into the first reactor.
  • feed and hydrogen gas flow through the reactors in the opposite order. It is expedient to keep the excess hydrogen, based on the stoichiometrically necessary amount, below 30%, in particular below 10%, very particularly below 5%.
  • the hydrogenation is preferably carried out in the
  • the first reactor is operated in a loop mode, ie part of the Hydrogen discharge from the first reactor is passed together with fresh educt to the top of the first recator.
  • the other part of the discharge from the first reactor is hydrogenated in a second reactor in a single pass.
  • the concentration of the starting material is between 5 and 30% by mass, in particular between 8 and 15% by mass.
  • the concentration of the starting material is between 0.3 and 8 mass%, in particular between 1.5 and 4 mass%.
  • the specific catalyst load (LHSV, liters of fresh educt per liter of catalyst per hour) in the loop reactor is 0.1 to 5, h "1, in particular 0.5 to 3 h " 1 .
  • the surface load in the loop reactor is in the range from 25 to 140 m 3 / m 2 / h, in particular in the range from 50 to 90 m 3 / m 2 h.
  • the average hydrogenation temperatures in the loop reactor are 70 to 150 ° C, in particular 80 to 120 ° C.
  • the hydrogenation pressure in the loop reactor is 25 to 200 bar, in particular 80 to 110 bar.
  • the concentration of educt is less than 0.3 mass%, in particular less than 0.1 mass%, very particularly less than 0.05 mass%.
  • the specific catalyst load in the second reactor (liters of nonyl phthalate per liter Catalyst per hour) is 1 to 8 h "1 , in particular 2 to 5 h " 1 .
  • the average temperature in the second reactor is between 70 and 150 ° C., in particular 80 and 120 ° C.
  • the hydrogenation pressure in the second reactor is 25 to 200 bar, in particular 80 to 100 bar.
  • the process variants are particularly suitable for the hydrogenation of phthalic acid esters, particularly for nonyl phthalates (as an isomer mixture “isononyl phthalate”, for example VESTINOL 9 from OXENO GmbH).
  • Aromatic compounds such as aromatic poly- and / or monoarboxylic acids or their derivatives, in particular their alkyl esters, can be converted into the corresponding alicyclic polycarboxylic acid compounds by the process according to the invention. Both full esters and partial esters can be hydrogenated.
  • the full ester is understood as a compound in which all acid groups are esterified.
  • Partial esters are compounds with at least one free acid group (or possibly an anhydride group) and at least one ester group.
  • polycarboxylic acid esters are used in the process according to the invention, they preferably contain 2, 3 or 4 ester functions.
  • the aromatic compounds or polycarboxylic acid esters used in the process according to the invention are preferably benzene, diphenyl, naphthalene and / or anthracene polycarboxylic acids, their anhydrides and / or esters such as, for. B. alkyl esters m2 to 15 carbon atoms.
  • the alicyclic polycarboxylic acids or their derivatives obtained in this way consist of one or more C o rings which may be linked or fused on by a CC bond.
  • the alcohol component of the aromatic compounds if used as the carboxylic acid ester
  • Polycarboxylic acid esters may be the same or different, ie they may have the same or different isomers or chain lengths. Of course, isomers can also be used with respect to the substitution pattern of the aromatic system in the form of a mixture, for. B. a mixture of phthalic acid ester and terephthalic acid ester.
  • the present invention relates to a process for hydrogenating the 1,2-; 1,3- or 1,4-benzenedicarboxylic acid ester, and / or the 1,2,3-; 1,2,4- or 1,3,5-benzenetricarboxylic acid esters, i.e. H. the isomers of 1,2-; 1,3- or 1,4-cyclohexanedicarboxylic acid ester, or the 1,2,3-; Obtained 1,3,5- or 1,2,4-cyclohexane tricarboxylic acid esters.
  • esters of the following aromatic carboxylic acids can be used in the process according to the invention: 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1 , 8-naphthalenedicarboxylic acid, phthalic acid (benzene-1,2-dicarboxylic acid), isophthalic acid (benzene-1, 3-dicarboxylic acid), terephthalic acid (benzene-1,4-dicarboxylic acid), benzene-l, 2,3-tricarboxylic acid, benzene- 1,2,4-tricarboxylic acid (trimellitic acid), benzene-1,3,5-tricarboxylic acid (trimesic acid), benzene-l, 2,3,4-tetracar
  • alkyl, cycloalkyl and alkoxyalkyl esters e.g. B. the acids mentioned above, these radicals independently of one another comprise 1 to 25, in particular 3 to 15, very particularly 8 to 13 carbon atoms, in particular 9 carbon atoms.
  • these residues can be linear or branched. If a feed product has more than one ester group, these residues can be the same or different.
  • esters of an aromatic polycarboxylic acid in the process according to the invention: monomethyl terephthalate,
  • Terephthal Acidmonocyclohexylester Monomethyl phthalate, dimethyl phthalate, di-n-propyl phthalate, di-n-butyl phthalate, diisobutyl phthalate,
  • Di-tert-butyl phthalate monoglycol phthalate, diglycol phthalate, di-n-octyl phthalate, di-isooctyl phthalate, di-2-ethylhexyl phthalate, di-n-naphthalate phthalate, diisononate phthalate, diisocyanate phthalate
  • isophthalic acid monoglycol ester isophthalic acid diglycol esters, isophthalic acid di-n-octyl ester, isophthalic acid diisooctyl ester, isophthalic acid di-2-ethylhexyl ester, isophthalic acid di-n-nonyl ester, isophthalic acid diisononyl ester, isophthalic acid di-n-decyl ester,
  • Isophthalic acid di-n-octadecyl ester isophthalic acid diisooctadecyl ester, isophthalic acid di-n-eicosyl ester, isophthalic acid monocyclohexyl ester.
  • the process according to the invention can also be applied to benzoic acid and its esters.
  • this also includes benzoates of diols, such as, for example, glycol dibenzoate, diethylene glycol benzoate, triethylene glycol dibenzoate or propylene glycol dibenzoate.
  • the alcohol component of the alkyl benzoate can consist of 1 to 25, preferably 8 to 13 carbon atoms, each linear or branched.
  • Mixtures of two or more polycarboxylic acid esters can also be used. Such mixtures can be obtained, for example, in the following ways: a) a polycarboxylic acid is partially esterified with an alcohol in such a way that full and partial esters are present side by side. b) A mixture of at least two polycarboxylic acids is esterified with an alcohol, a mixture of at least two full esters being formed. c) A polycarboxylic acid is mixed with an alcohol mixture, a corresponding mixture of the full esters being formed. d) A polycarboxylic acid is partially esterified with an alcohol mixture. e) A mixture of at least two carboxylic acids is partially esterified with an alcohol mixture. f) A mixture of at least two polycarboxylic acids is partially esterified with an alcohol mixture.
  • Anhydrides can be used.
  • C ⁇ -alcohol mixtures prepared from a pentene or from a mixture of two or more pentenes, by hydroformylation and subsequent hydrogenation;
  • C 7 alcohol mixtures prepared from triethylene or dipropene or a hexene isomer or another mixture of hexene isomers, by hydroformylation and subsequent
  • Cs-alcohol mixtures such as 2-ethylhexanol (2 isomers), produced by aldol condensation of n-butyraldehyde and subsequent hydrogenation; C 9 alcohol mixtures made from C olefins by dimerization, hydroformylation and
  • the C 4 olefins can be dimerized using various catalysts, such as protonic acids, zeolites, organometallic nickel compounds or solid nickel-containing contacts.
  • the hydroformylation of the C 8 olefin mixtures can be carried out using rhodium or cobalt catalysts. There are therefore a large number of technical C-alcohol mixtures.
  • Cio-alcohol mixtures made from tripropylene by hydroformylation and subsequent hydrogenation; 2-propylheptanol (2 isomers), produced by aldol condensation of valeraldehyde and subsequent hydrogenation;
  • Cio-alcohol mixtures prepared from a mixture of at least two C 5 aldehydes by aldol condensation and subsequent hydrogenation;
  • Polycarboxylic acids and the alcohol mixtures mentioned above can be used.
  • Phthalic anhydride and a mixture of isomeric alcohols with 6 to 13 carbon atoms Phthalic anhydride and a mixture of isomeric alcohols with 6 to 13 carbon atoms.
  • Vestinol C (di-n-butyl phthalate) (CAS # 84-74-2); Vestinol IB (di-i-butyl phthalate) (CAS No. 84-69-5); Jayflex DINP (CAS No. 68515-48-0); Jayflex DIDP (CAS No. 68515-49-1); Palatinol®
  • TM Palatinol N
  • Jayflex DHP CAS No. 68515-50-4
  • Jayflex DIOP CAS No. 27554-26-3
  • Jayflex UDP CAS No. 68515-47-9
  • Jayflex DIUP CAS No. 85507-79-5
  • Jayflex DTDP CAS No. 68515-47-9
  • Jayflex L9P CAS No. 68515-45-7
  • Jayflex L911P CAS No. 68515-43-5
  • Jayflex L11P CAS No. 3648-20-2
  • Witamol 110 CAS No. 68515-51-5
  • Witamol 118 Witamol 118 (di-n-C8-C10 alkyl phthalate) (CAS No.
  • aromatic polycarboxylic acids or their esters can result in at least two stereoisomeric hydrogenation products from each isomer used.
  • the proportions of the resulting stereoisomers to each other depend on the catalyst used and on the hydrogenation conditions.
  • plasticizers are PVC, homopolymers and copolymers based on ethylene, propylene, butadiene, vinyl acetate, glycidyl acrylate, glycidyl methacrylate, acrylates, acrylates with alkyl radicals bonded to the oxygen atom of the ester group of branched or unbranched alcohols having one to ten carbon atoms, styrene , Acrylonitrile, homo- or copolymers of cyclic olefins.
  • plastics may be mentioned as representatives of the above groups: polyacrylates with the same or different alkyl radicals with 4 to 8 carbon atoms, bonded to the oxygen atom of the ester group, in particular with the n-butyl, n-hexyl, n-octyl and 2 - ethylhexyl and isononyl, polymethacrylate, polymethyl methacrylate, methyl acrylate-butyl acrylate copolymers, methyl methacrylate-butyl methacrylate copolymers, ethylene-vinyl acetate copolymers, chlorinated polyethylene, nitrile rubber, acrylonitrile-butadiene-styrene Copolymers, ethylene-propylene copolymers, ethylene-propylene-diene copolymers, styrene-acrylonitrile copolymers, acrylonitrile-butadiene rubber, styrene-butad
  • alicyclic polycarboxylic acid esters produced according to the invention can be used to modify plastic mixtures, for example the mixture of a polyolefin with a polyamide.
  • plastics and the alicyclic polycarboxylic esters produced according to the invention are also the subject of the present invention.
  • Suitable plastics are the compounds already mentioned.
  • Such mixtures preferably contain at least 5% by mass, particularly preferably 20-80% by mass, very particularly preferably 30-70% by mass of the alicyclic polycarboxylic acid esters.
  • plastics in particular PVC, which contain one or more of the alicyclic polycarboxylic acid esters produced according to the invention can be contained, for example, in the following products or used for their production: Housings for electrical appliances, such as kitchen appliances, computer housings, housings and components of phono and television sets, pipelines, apparatus, cables, wire jackets, insulating tapes, window profiles, in interior fittings, in vehicle and furniture construction, plastic insoles, in floor coverings, medical articles, food packaging, seals, foils, composite foils, vinyl records, synthetic leather, toys, packaging containers, adhesive tape foils, Clothing, coatings, as fibers for fabrics.
  • electrical appliances such as kitchen appliances, computer housings, housings and components of phono and television sets, pipelines, apparatus, cables, wire jackets, insulating tapes, window profiles, in interior fittings, in vehicle and furniture construction
  • plastic insoles in floor coverings, medical articles, food packaging, seals, foils, composite foils, vinyl records, synthetic leather, toys, packaging containers, adhesive tape
  • the alicyclic polycarboxylic acid esters produced according to the invention can be used as a lubricating oil component, as a component of cooling liquids and metalworking liquids. They can also be used as components in paints, varnishes, inks and adhesives.
  • the total pore volume was determined from the sum of the pore volumes of the pores with dp> 7.6 nm (determined with the Hg porosimetry) and pores with dp ⁇ 7.6 nm (determined with the N2 adsorption method).
  • the nitric acid Ru solution was diluted with water to a volume corresponding to the pore volume of the carrier.
  • the Ru solution was applied to the carrier material by dripping on, or preferably by uniform spraying, with circulation of the carrier. After drying at 120 ° C. under nitrogen, the support coated with ruthenium salt was activated (reduced) in the hydrogen / nitrogen mixture (ratio 1: 9) at 200 ° C. for 6 hours.
  • the pressure reactor was carefully reduced in a stream of hydrogen according to the above instructions, and 590 g of liquid diisononyl phthalate (Vestinol 9, OXENO Olefinchemie GmbH) were then added.
  • the DINP was hydrogenated with pure hydrogen. After hydrogenation of the feed, the reactor was depressurized and the reaction mixture was analyzed by gas chromatography for its content in the target product cyclohexane-1,2-dicarboxylic acid diisononyl ester (DINCH). Thereafter, sales of DINP were always ⁇ 99.9%.
  • the reactor discharge was transferred to a standard esterification apparatus, mixed with a further 120 g (0.83 mol) of isononanol and about 0.07 g of tetrabutyl titanate and esterified under standard conditions to give diisononylcyclohexane-1,2-dicarboxylate (DINCH).
  • DICH diisononylcyclohexane-1,2-dicarboxylate
  • DINCH After distilling off the excess alcohol, neutralizing and working up the crude product by steam distillation, DINCH could be obtained in a purity of 99.4%.
  • Example 7 Acid stability of a catalyst according to the invention
  • catalyst A 1% Ru
  • a saturated aqueous solution of phthalic acid was hydrogenated at 100 ° C. and 100 bar to 1,2-cyclohexanedicarboxylic acid. After the hydrogenation had ended, the solution was drained off and the reactor and catalyst were rinsed with methanol, isononanol and DINP. DINP was then hydrogenated again under conditions similar to Example 2. It was found that the hydrogenation took place with the same selectivities and with at least the same activity. As can be seen from Table 2, catalysts A and B according to the invention are clearly superior to catalysts C in terms of their activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne l'hydrogénation de composés aromatiques, notamment la production d'acides polycarboxyliques alilcycliques ou de leurs esters, par hydrogénation du noyau aromatique des acides polycarboxyliques aromatiques correspondants ou de leurs esters, ainsi que des catalyseurs appropriés à cet effet.
PCT/EP2003/004386 2002-06-10 2003-04-26 Catalyseur et procede d'hydrogenation de composes aromatiques WO2003103830A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03725106.3A EP1511562B1 (fr) 2002-06-10 2003-04-26 Procede d'hydrogenation de composes aromatiques
US10/511,595 US7361714B2 (en) 2002-06-10 2003-04-26 Catalyst and method for hydrogenating aromatic compounds
AU2003227684A AU2003227684A1 (en) 2002-06-10 2003-04-26 Catalyst and method for hydrogenating aromatic compounds
ES03725106T ES2705164T3 (es) 2002-06-10 2003-04-26 Procedimiento para la hidrogenación de compuestos aromáticos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225565.2 2002-06-10
DE10225565A DE10225565A1 (de) 2002-06-10 2002-06-10 Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen

Publications (1)

Publication Number Publication Date
WO2003103830A1 true WO2003103830A1 (fr) 2003-12-18

Family

ID=29557695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004386 WO2003103830A1 (fr) 2002-06-10 2003-04-26 Catalyseur et procede d'hydrogenation de composes aromatiques

Country Status (8)

Country Link
US (1) US7361714B2 (fr)
EP (1) EP1511562B1 (fr)
AU (1) AU2003227684A1 (fr)
DE (1) DE10225565A1 (fr)
ES (1) ES2705164T3 (fr)
TR (1) TR201821062T4 (fr)
TW (1) TWI273101B (fr)
WO (1) WO2003103830A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046078A1 (fr) * 2002-11-20 2004-06-03 Exxonmobil Chemical Patents Inc. Hydrogenation d'acides polycarboxyliques de benzene ou de leurs derives
WO2011082991A2 (fr) 2009-12-15 2011-07-14 Basf Se Catalyseur et procédé d'hydrogénation de composés aromatiques
WO2011117360A2 (fr) 2010-03-24 2011-09-29 Basf Se Procédé de production de 4-cyclohexyl-2-méthyl-2-butanol
WO2013037737A1 (fr) 2011-09-16 2013-03-21 Basf Se Procédé de préparation de 4-cyclohexyl-2-méthyl-2-butanol
US8450534B2 (en) 2010-03-24 2013-05-28 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
US9056812B2 (en) 2011-09-16 2015-06-16 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
US9340754B2 (en) 2012-11-27 2016-05-17 Basf Se Process for the preparation of cyclohexyl-substituted tertiary alkanols
EP2344443B1 (fr) 2008-10-16 2019-09-18 Hanwha Chemical Corporation Utilisation de composes comme plastifiant pour le pvc
EP3708610B1 (fr) 2018-07-12 2021-09-22 Lg Chem, Ltd. Composition de plastifiant comprenant un matériau à base de polyester de cyclohexane, et composition de résine la comprenant
EP4015079A1 (fr) 2020-12-18 2022-06-22 Evonik Operations GmbH Procédé de régénération des catalyseurs d'hydrogène
EP4023335A1 (fr) 2020-12-18 2022-07-06 Evonik Operations GmbH Procédé de régénération des catalyseurs d'hydrogénation
EP4148038A1 (fr) 2021-09-14 2023-03-15 Evonik Operations GmbH Procédé d'hydrogénation du noyau des dialkyltéréphtalates à faible formation de sous-produits

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058383A1 (de) * 2000-11-24 2002-05-29 Oxeno Olefinchemie Gmbh Neue Phosphininverbindungen und deren Metallkomplexe
BR0212835B1 (pt) * 2001-09-26 2014-02-11 Processos para preparação de misturas de ésteres dialquílicos de ácido ftálico isômeros
DE10149348A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
DE10220801A1 (de) * 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10232868A1 (de) 2002-07-19 2004-02-05 Oxeno Olefinchemie Gmbh Feinporiger Katalysator und Verfahren zur Hydrierung von aromatischen Verbindungen
MXPA05001396A (es) 2002-08-31 2005-04-28 Oxeno Olefinchemie Gmbh Procedimiento para la obtencion de aldehidos mediante la hidroformilacion de compuestos olefinicamente insaturados, catalizado con complejos de metal no modificados en presencia de esteres ciclicos de acido carboxilico.
CN1315767C (zh) 2002-08-31 2007-05-16 奥克森诺奥勒芬化学股份有限公司 烯属不饱和化合物,特别是烯烃在环状碳酸酯存在下的加氢甲酰基化方法
ATE387247T1 (de) * 2003-05-09 2008-03-15 Basf Ag Kosmetische zusammensetzungen enthaltend cyclohexanpolycarbonsäurederivate
DE10329042A1 (de) * 2003-06-27 2005-01-13 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Octen aus Crack-C4
DE10359628A1 (de) * 2003-12-18 2005-07-21 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Herstellung von 1-Olefinen aus 2-Hydroxyalkanen
DE10360772A1 (de) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Organoacylphosphiten
DE10360771A1 (de) * 2003-12-23 2005-07-28 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von dreiwertigen Organophosphor-Verbindungen
DE102004033410A1 (de) * 2004-02-14 2005-09-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Olefinen mit 8 bis 12 Kohlenstoffatomen
DE102004013514A1 (de) * 2004-03-19 2005-10-06 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen
DE102004021128A1 (de) * 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator
DE102004029732A1 (de) 2004-06-21 2006-01-19 Basf Ag Hilfsmittel enthaltend Cyclohexanpolycarbonsäurederivate
DE102005036039A1 (de) 2004-08-28 2006-03-02 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 2,7-Octadienylderivaten
DE102004063637A1 (de) * 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von alicyclischen Carbonsäuren oder deren Derivaten
DE102004063673A1 (de) 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas
DE102005028752A1 (de) 2005-06-22 2007-01-04 Oxeno Olefinchemie Gmbh Gemisch von Diisononylestern der 1,2-Cyclohexandicarbonsäure, Verfahren zu deren Herstellung und Verwendung dieser Gemische
DE102005035816A1 (de) * 2005-07-30 2007-02-01 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Oxo-Aldehyden mit hohen Estergehalten
DE102005042464A1 (de) * 2005-09-07 2007-03-08 Oxeno Olefinchemie Gmbh Carbonylierungsverfahren unter Zusatz von sterisch gehinderten sekundären Aminen
DE102006040432A1 (de) * 2006-08-29 2008-03-20 Oxeno Olefinchemie Gmbh Katalysator und Verfahren zur Herstellung von Isoolefinen
DE102007041380A1 (de) * 2007-08-31 2009-03-05 Evonik Oxeno Gmbh Hydrierkatalysator und Verfahren zur Herstellung von Alkoholen durch Hydrierung von Carbonylverbindungen
TWI400228B (zh) * 2008-01-09 2013-07-01 Kuo Tseng Li 對羧基苯甲醛氫化成對甲基苯甲酸之方法
EP2358637A1 (fr) * 2008-12-17 2011-08-24 Evonik Degussa GmbH Procédé de préparation d'une poudre d'oxyde d'aluminium avec une teneur élevée en alumine alpha
CN105566812A (zh) * 2008-12-18 2016-05-11 埃克森美孚化学专利公司 包含对苯二甲酸酯的聚合物组合物
DE102009027406A1 (de) 2009-07-01 2011-01-05 Evonik Oxeno Gmbh Verfahren zur Herstellung von geruchsarmen n-Butan
DE102009027404A1 (de) 2009-07-01 2011-01-05 Evonik Oxeno Gmbh Herstellung von Isobuten durch Spaltung von MTBE
DE102009045718A1 (de) 2009-10-15 2011-04-21 Evonik Oxeno Gmbh Verfahren zur Herstellung von Decanolen durch Hydrierung von Decenalen
DE102010030990A1 (de) 2010-07-06 2012-01-12 Evonik Oxeno Gmbh Verfahren zur selektiven Hydrierung von mehrfach ungesättigten Kohlenwasserstoffen in olefinhaltigen Kohlenwasserstoffgemischen
WO2012038123A1 (fr) 2010-09-20 2012-03-29 Exxonmobil Chemical Patents Inc. Procédé d'hydrogénation en phase liquide de phtalates
DE102010042774A1 (de) 2010-10-21 2012-04-26 Evonik Oxeno Gmbh Verfahren zur Aufreinigung von MTBE-haltigen Gemischen sowie zur Herstellung von Isobuten durch Spaltung von MTBE-haltigen Gemischen
EP2682380B1 (fr) * 2011-03-01 2018-07-04 Mitsubishi Gas Chemical Company, Inc. Procédé de fabrication d'un acide carboxylique alicyclique et catalyseur utilisé dans ce procédé
EP2500090B1 (fr) 2011-03-16 2016-07-13 Evonik Degussa GmbH Poudre d'oxyde de mélange silicium-aluminium
DE102011005608A1 (de) 2011-03-16 2012-09-20 Evonik Oxeno Gmbh Mischoxidzusammensetzungen und Verfahren zur Herstellung von Isoolefinen
TWI421240B (zh) 2011-12-12 2014-01-01 Ind Tech Res Inst 苯多羧酸或其衍生物形成環己烷多元酸酯之氫化方法
EP2716623A1 (fr) 2012-10-05 2014-04-09 Basf Se Procédé de fabrication de dérivés d'acide de polycarbonate cyclohexane avec part étroite de produits annexes
CN102898309A (zh) * 2012-11-13 2013-01-30 中国海洋石油总公司 一种加氢制备1,2-环己烷二甲酸二异辛酯的方法
CN102924277A (zh) * 2012-11-20 2013-02-13 中国海洋石油总公司 一种加氢制备邻环己烷二甲酸二元酯的方法
CN103130640B (zh) * 2013-01-16 2015-06-10 宁波东来化工有限公司 一种制备1,2-环己烷二甲酸二癸酯的装置及其方法
TWI534131B (zh) 2014-11-27 2016-05-21 財團法人工業技術研究院 氫化4,4’-二胺基二苯甲烷的觸媒與方法
ES2648806T3 (es) 2015-09-28 2018-01-08 Evonik Degussa Gmbh Éster tripentílico del ácido trimelítico
PL3170805T3 (pl) 2015-11-19 2019-02-28 Evonik Degussa Gmbh Wpływanie na lepkość mieszanin estrów bazujących na n-butenach poprzez celowe zastosowanie etenu podczas otrzymywania prekursorów estrów
US9956553B2 (en) 2016-06-28 2018-05-01 Chevron U.S.A. Inc. Regeneration of an ionic liquid catalyst by hydrogenation using a macroporous noble metal catalyst
PL3424901T3 (pl) 2017-07-05 2021-01-11 Basf Se Uwodornianie związków aromatycznych
KR102458721B1 (ko) * 2017-11-29 2022-10-26 한화솔루션 주식회사 프탈레이트 화합물의 수소화 방법
KR102496349B1 (ko) * 2017-11-29 2023-02-03 한화솔루션 주식회사 프탈레이트 화합물의 수소화 방법
KR102238560B1 (ko) 2017-12-29 2021-04-08 한화솔루션 주식회사 고선택 전환이 가능한 탄소 기반의 귀금속-전이금속 촉매 및 이의 제조방법
CN111068724B (zh) * 2018-10-18 2023-05-02 中国石油化工股份有限公司 用于1,4-环己烷二甲酸生产的催化剂和其应用
CN111318278A (zh) * 2018-12-13 2020-06-23 中国石油化工股份有限公司 一种制环己烷-1,2-二甲酸二异辛脂催化剂的制备方法
TWI697479B (zh) 2019-02-15 2020-07-01 台灣中油股份有限公司 製造脂環族多羧酸酯之方法
EP3931175B1 (fr) 2019-02-25 2024-04-10 Basf Se Procédé pour le retraitement d'esters d'acide benzènepolycarboxylique et leur utilisation pour la production d'esters d'acide cyclohexanepolycarboxylique
CN111036279B (zh) * 2019-12-12 2023-02-10 西安近代化学研究所 应用于邻苯二甲酸二异壬酯加氢合成环己烷-1,2-二甲酸二异壬酯的催化剂的制备方法
EP4105272A1 (fr) 2021-06-15 2022-12-21 Evonik Operations GmbH Composition plastifiant comprenant du tripentylester d'acide 1,2,4-cyclohéxantricarbonique

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
DE2909663A1 (de) * 1978-03-13 1979-09-27 Sankio Chemical Co Verfahren zur herstellung von cis-alkylcyclohexanolen
EP0067058A1 (fr) * 1981-06-09 1982-12-15 Monsanto Company Production de cyclohexylamine
EP0324984A1 (fr) * 1988-01-22 1989-07-26 Bayer Ag Procédé de préparation d'un mélange de cyclohexylamine et dicyclohexylamine en utilisant un catalyseur à base de ruthénium
US5202475A (en) * 1990-09-27 1993-04-13 Eastman Kodak Company Process for preparation of cyclohexanedicarboxylic acid
US5578546A (en) * 1993-08-20 1996-11-26 Huels Aktiengesellschaft Catalyst for preparing bis-para-aminocyclohexylmethane containing a low proportion of trans/trans isomer by hydrogenation of methylenedianiline
WO1998057913A1 (fr) * 1997-06-18 1998-12-23 E.I. Du Pont De Nemours And Company Procede de production de 1,3-propanediol par hydrogenation de 3-hydroxypropionaldehyde
WO1999032427A1 (fr) * 1997-12-19 1999-07-01 Basf Aktiengesellschaft Procede d'hydrogenation d'acides polycarboxyliques de benzene ou de leurs derives a l'aide d'un catalyseur a macropores
WO2000078704A1 (fr) * 1999-06-18 2000-12-28 Basf Aktiengesellschaft Esters d'acide 1,3- et 1,4-dicarboxylique cyclohexane selectionnes
DE10054347A1 (de) * 2000-11-02 2002-05-08 Degussa Verfahren zur katalytischen Hydrierung organischer Verbindungen und Trägerkatalysatoren hierfür

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079092A (en) * 1976-05-17 1978-03-14 Uop Inc. Hydroprocessing of aromatics to make cycloparaffins
DE19654340A1 (de) 1996-12-24 1998-08-06 Huels Chemische Werke Ag Verfahren zur Herstellung von höheren Oxo-Alkoholen
DE19842368A1 (de) 1998-09-16 2000-03-23 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von höheren Oxoalkoholen aus Olefingemischen durch zweistufige Hydroformylierung
DE19842370A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur selektiven Hydrierung von Hydroformylierungsgemischen
DE19842371A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur Herstellung von höheren Oxo-Alkoholen aus Olefingemischen
DE19842369A1 (de) 1998-09-16 2000-03-23 Oxeno Oelfinchemie Gmbh Verfahren zur Hydrierung von Hydroformylierungsgemischen
DE19925384A1 (de) 1999-06-02 2000-12-07 Oxeno Olefinchemie Gmbh Verfahren zur katalytischen Durchführung von Mehrphasenreaktionen, insbesondere Hydroformylierungen
AU5008800A (en) * 1999-06-11 2001-01-02 Dow Chemical Company, The Hydrogenated block copolymers and optical media discs produced therefrom
DE19957528A1 (de) 1999-11-30 2001-05-31 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen
DE10009207A1 (de) 2000-02-26 2001-08-30 Oxeno Olefinchemie Gmbh Verbessertes Verfahren zur Hydroformylierung von Olefinen durch Reduzierung der Ameisensäurekonzentration
DE10034360A1 (de) 2000-07-14 2002-01-24 Oxeno Olefinchemie Gmbh Mehrstufiges Verfahren zur Herstellung von Oxo-Aldehyden und/oder Alkoholen
DE10048301A1 (de) 2000-09-29 2002-04-11 Oxeno Olefinchemie Gmbh Stabilisierung von Rhodiumkatalysatoren für die Hydroformylierung von Olefinen
DE10053272A1 (de) 2000-10-27 2002-05-08 Oxeno Olefinchemie Gmbh Neue Bisphosphitverbindungen und deren Metallkomplexe
DE10058383A1 (de) 2000-11-24 2002-05-29 Oxeno Olefinchemie Gmbh Neue Phosphininverbindungen und deren Metallkomplexe
DE10062448A1 (de) 2000-12-14 2002-06-20 Oxeno Olefinchemie Gmbh Verfahren zur Hydrierung von Hydroformylierungsgemischen
DE10100708A1 (de) 2001-01-10 2002-07-11 Oxeno Olefinchemie Gmbh Neue N-Phenylpyrrolbisphosphanverbindungen und deren Metallkomplexe
EP1231194B1 (fr) 2001-02-10 2003-11-12 Oxeno Olefinchemie GmbH Préparation des 1-oléfines
DE10114868C1 (de) 2001-03-26 2002-10-31 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Diphosphinen und deren Verwendung
DE10135906A1 (de) 2001-07-24 2003-02-06 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von höheren Olefinen mit Kobaltverbindungen als Katalysator
DE10140083A1 (de) 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und deren Metallkomplexe
DE10140086A1 (de) 2001-08-16 2003-02-27 Oxeno Olefinchemie Gmbh Neue Phosphitverbindungen und neue Phosphitmetallkomplexe
DE10146869A1 (de) * 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Alicyclische Polycarbonsäureestergemische mit hohem trans-Anteil und Verfahren zu deren Herstellung
DE10146848A1 (de) * 2001-09-24 2003-04-24 Oxeno Olefinchemie Gmbh Gemisch alicyclischer Polycarbonsäureester mit hohem cis-Anteil
BR0212835B1 (pt) 2001-09-26 2014-02-11 Processos para preparação de misturas de ésteres dialquílicos de ácido ftálico isômeros
DE10147776A1 (de) * 2001-09-27 2003-07-03 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von alicyclischen Polycarbonsäureestern aus Partialestern aromatischer Polycarbonsäuren
DE10149348A1 (de) 2001-10-06 2003-04-10 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefin mit Palladiumcarbenverbindungen
BR0308432A (pt) 2002-03-15 2006-06-06 Oxeno Olefinchemie Gmbh processo para a hidroformilação de olefinas
DE10220801A1 (de) 2002-05-10 2003-11-20 Oxeno Olefinchemie Gmbh Verfahren zur Rhodium-katalysierten Hydroformylierung von Olefinen unter Reduzierung der Rhodiumverluste
DE10220799A1 (de) 2002-05-10 2003-12-11 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von C13-Alkoholgemischen
EP1388528B1 (fr) * 2002-08-06 2015-04-08 Evonik Degussa GmbH Procédé pour l'oligomérisation d'isobutène contenu dans des courants d'hydrocarbures contenant du n-butène
MXPA05001396A (es) 2002-08-31 2005-04-28 Oxeno Olefinchemie Gmbh Procedimiento para la obtencion de aldehidos mediante la hidroformilacion de compuestos olefinicamente insaturados, catalizado con complejos de metal no modificados en presencia de esteres ciclicos de acido carboxilico.
CN1315767C (zh) 2002-08-31 2007-05-16 奥克森诺奥勒芬化学股份有限公司 烯属不饱和化合物,特别是烯烃在环状碳酸酯存在下的加氢甲酰基化方法
DE10257499A1 (de) * 2002-12-10 2004-07-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen
DE102004021128A1 (de) 2004-04-29 2005-11-24 Oxeno Olefinchemie Gmbh Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas an einem festen Katalysator
DE102004059292A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von Alkoholen aus Olefinen durch Hydroformylierung und Hydrierung
DE102004059293A1 (de) 2004-12-09 2006-06-14 Oxeno Olefinchemie Gmbh Verfahren zur Hydroformylierung von Olefinen
DE102004063673A1 (de) 2004-12-31 2006-07-13 Oxeno Olefinchemie Gmbh Verfahren zur kontinuierlichen katalytischen Hydrierung von hydrierbaren Verbindungen an festen, im Festbett angeordneten Katalysatoren mit einem wasserstoffhaltigen Gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
DE2909663A1 (de) * 1978-03-13 1979-09-27 Sankio Chemical Co Verfahren zur herstellung von cis-alkylcyclohexanolen
EP0067058A1 (fr) * 1981-06-09 1982-12-15 Monsanto Company Production de cyclohexylamine
EP0324984A1 (fr) * 1988-01-22 1989-07-26 Bayer Ag Procédé de préparation d'un mélange de cyclohexylamine et dicyclohexylamine en utilisant un catalyseur à base de ruthénium
US5202475A (en) * 1990-09-27 1993-04-13 Eastman Kodak Company Process for preparation of cyclohexanedicarboxylic acid
US5578546A (en) * 1993-08-20 1996-11-26 Huels Aktiengesellschaft Catalyst for preparing bis-para-aminocyclohexylmethane containing a low proportion of trans/trans isomer by hydrogenation of methylenedianiline
WO1998057913A1 (fr) * 1997-06-18 1998-12-23 E.I. Du Pont De Nemours And Company Procede de production de 1,3-propanediol par hydrogenation de 3-hydroxypropionaldehyde
WO1999032427A1 (fr) * 1997-12-19 1999-07-01 Basf Aktiengesellschaft Procede d'hydrogenation d'acides polycarboxyliques de benzene ou de leurs derives a l'aide d'un catalyseur a macropores
WO2000078704A1 (fr) * 1999-06-18 2000-12-28 Basf Aktiengesellschaft Esters d'acide 1,3- et 1,4-dicarboxylique cyclohexane selectionnes
DE10054347A1 (de) * 2000-11-02 2002-05-08 Degussa Verfahren zur katalytischen Hydrierung organischer Verbindungen und Trägerkatalysatoren hierfür

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893295B2 (en) 2002-11-20 2011-02-22 Exxon Mobil Chemical Patents Inc. Hydrogenation of benzene polycarboxylic acids or derivatives thereof
US8203017B2 (en) 2002-11-20 2012-06-19 Exxonmobil Chemical Patents Inc. Hydrogenation of benzene polycarboxylic acids or derivatives thereof
WO2004046078A1 (fr) * 2002-11-20 2004-06-03 Exxonmobil Chemical Patents Inc. Hydrogenation d'acides polycarboxyliques de benzene ou de leurs derives
EP2344443B1 (fr) 2008-10-16 2019-09-18 Hanwha Chemical Corporation Utilisation de composes comme plastifiant pour le pvc
US9084983B2 (en) 2009-12-15 2015-07-21 Basf Se Catalyst and process for hydrogenating aromatics
WO2011082991A2 (fr) 2009-12-15 2011-07-14 Basf Se Catalyseur et procédé d'hydrogénation de composés aromatiques
WO2011117360A2 (fr) 2010-03-24 2011-09-29 Basf Se Procédé de production de 4-cyclohexyl-2-méthyl-2-butanol
US8450534B2 (en) 2010-03-24 2013-05-28 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
EP2722323A2 (fr) 2010-03-24 2014-04-23 Basf Se Procédé de production de 2-méthyl-4-phényl-2-pentanol
US9040592B2 (en) 2010-03-24 2015-05-26 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
WO2013037737A1 (fr) 2011-09-16 2013-03-21 Basf Se Procédé de préparation de 4-cyclohexyl-2-méthyl-2-butanol
US9416079B2 (en) 2011-09-16 2016-08-16 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
US9056812B2 (en) 2011-09-16 2015-06-16 Basf Se Process for preparing 4-cyclohexyl-2-methyl-2-butanol
US9340754B2 (en) 2012-11-27 2016-05-17 Basf Se Process for the preparation of cyclohexyl-substituted tertiary alkanols
US9717664B2 (en) 2012-11-27 2017-08-01 Basf Se Composition that includes cyclohexyl-substituted tertiary alkanols
EP3708610B1 (fr) 2018-07-12 2021-09-22 Lg Chem, Ltd. Composition de plastifiant comprenant un matériau à base de polyester de cyclohexane, et composition de résine la comprenant
US11827767B2 (en) 2018-07-12 2023-11-28 Lg Chem, Ltd. Plasticizer composition comprising cyclohexane polyester-based substance and resin composition comprising the same
EP4015079A1 (fr) 2020-12-18 2022-06-22 Evonik Operations GmbH Procédé de régénération des catalyseurs d'hydrogène
EP4023335A1 (fr) 2020-12-18 2022-07-06 Evonik Operations GmbH Procédé de régénération des catalyseurs d'hydrogénation
US11701649B2 (en) 2020-12-18 2023-07-18 Evonik Operations Gmbh Process for regeneration of hydrogenation catalysts
US11918989B2 (en) 2020-12-18 2024-03-05 Evonik Operations Gmbh Process for regeneration of hydrogenation catalysts
EP4148038A1 (fr) 2021-09-14 2023-03-15 Evonik Operations GmbH Procédé d'hydrogénation du noyau des dialkyltéréphtalates à faible formation de sous-produits

Also Published As

Publication number Publication date
EP1511562A1 (fr) 2005-03-09
TW200400939A (en) 2004-01-16
EP1511562B1 (fr) 2018-10-10
US7361714B2 (en) 2008-04-22
TWI273101B (en) 2007-02-11
DE10225565A1 (de) 2003-12-18
US20060183936A1 (en) 2006-08-17
AU2003227684A1 (en) 2003-12-22
TR201821062T4 (tr) 2019-01-21
ES2705164T3 (es) 2019-03-22

Similar Documents

Publication Publication Date Title
EP1511562B1 (fr) Procede d'hydrogenation de composes aromatiques
EP1549603B1 (fr) Catalyseur a micropores et procede d'hydrogenation de composes aromatiques
EP1042273B1 (fr) Procede d'hydrogenation d'acides polycarboxyliques de benzene ou de leurs derives a l'aide d'un catalyseur a macropores
EP1465848B1 (fr) Melange d'esters d'acide polycarboxylique alicycliques a haute teneur en isomeres cis
EP1676829B1 (fr) Procédé continu d'hydrogénation catalytique
EP1463710B1 (fr) Melanges d'esters d'acides polycarboxyliques alicycliques a fraction trans elevee et procede de fabrication
EP1676828B1 (fr) Procédé de préparation d'acides carboxyliques alicycliques ou de leur derivés
EP1430015B1 (fr) Procede de production d'esters d'acides polycarboxyliques alicycliques a partir d'esters partiels d'acides polycarboxyliques aromatiques
EP2903959B1 (fr) Procédé de fabrication de dérivés polycarboxylés du cyclohexane menant a des produits secondaires en faibles quantités
DE19756913A1 (de) Verfahren zur Hydrierung von Benzendicarbonsäureestern unter Verwendung eines Makroporen aufweisenden Katalysators
DE10146847A1 (de) Verfahren zur Herstellung von alicyclischen Polycarbonsäureestergemischen mit hohem trans-Anteil
DE19832088A1 (de) Verfahren zur Hydrierung von Benzolpolycarbonsäuren oder Derivaten davon unter Verwendung eines Makroporen aufweisenden Katalysators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003725106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006183936

Country of ref document: US

Ref document number: 10511595

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003725106

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10511595

Country of ref document: US