WO2003100456A1 - Vorrichtung zum senden und empfangen von radarstrahlung - Google Patents

Vorrichtung zum senden und empfangen von radarstrahlung Download PDF

Info

Publication number
WO2003100456A1
WO2003100456A1 PCT/DE2002/004586 DE0204586W WO03100456A1 WO 2003100456 A1 WO2003100456 A1 WO 2003100456A1 DE 0204586 W DE0204586 W DE 0204586W WO 03100456 A1 WO03100456 A1 WO 03100456A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting
mixer
antenna
patch
patch antenna
Prior art date
Application number
PCT/DE2002/004586
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter Miosga
Armin Himmelstoss
Guenter Bertsch
Joachim Hauk
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02795000A priority Critical patent/EP1512029A1/de
Priority to US10/514,676 priority patent/US20060049979A1/en
Priority to JP2004507861A priority patent/JP2005526984A/ja
Publication of WO2003100456A1 publication Critical patent/WO2003100456A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a device for transmitting and receiving radar radiation, in which at least one patch antenna is provided as the transmitting and receiving element and is directly connected to at least one mixer element.
  • a radar transmitting and receiving arrangement in which the microwave power of a frequency-modulated oscillator is output to a transmitting antenna and a mixer input and the microwave power, which was reflected by the target and was received by the antenna, is given to a second mixer input becomes.
  • the transmission and reception signals are separated via two ring line couplers which are connected to one another by means of two connecting lines.
  • the essence of the present invention is to provide a device for transmitting and receiving radar radiation which has simple structures, is easy to manufacture, has low manufacturing costs and shows high phase noise correlation suppression. According to the invention this is solved by the features of the independent claim. Advantageous further developments and refinements result from the subclaims.
  • the transmitting and receiving element which is designed as at least one patch antenna, is connected directly to at least one mixer element, the at least one mixer element being connected to the center of the patch antenna.
  • a mixer element is arranged on each of two opposite edges of the patch antenna.
  • the patch antenna is designed as a rectangle, it is advantageous to attach the two mixer elements to two opposite edges of the rectangle.
  • the patch antenna is designed as a circle or ellipse, it is advantageous to arrange the mixer elements at two edge points of the antenna in such a way that they lie diametrically opposite one another.
  • Patch antennas are in particular arranged approximately on a common straight line and the 2 n patch antennas are connected to the transmission oscillator by means of symmetrical 3 dB power dividers. This makes it possible to achieve a uniform output with the simplest possible means to be distributed over all patch antennas without loss of end oscillator power.
  • the mixer elements are diodes.
  • Microwave radiation for the frequency range between 75 and 80 GHz are dimensioned.
  • the device for transmitting and receiving radar radiation is used in a motor vehicle radar system for adaptive distance and speed control.
  • a system for adaptive distance and speed control in a motor vehicle measures the distance and the
  • FIG. 1 shows a possible embodiment of the device for transmitting and receiving radar radiation
  • FIG. 2 shows a detailed view of a first embodiment of the device
  • FIG. 3 shows a detailed view of a second embodiment
  • FIG. 4 shows a sectional view of the detailed view of a second embodiment
  • FIG. 5 shows a detailed view of a third embodiment
  • Figure 6 is a sectional view of the detail view of a third embodiment.
  • FIG. 1 shows a preferred embodiment of a device for transmitting and receiving radar radiation, which in this case has four patch antennas as an example.
  • the transmission oscillator 1 can be seen, which provides a transmission signal which is advantageously in the range of approximately 77 GHz and which is advantageously in the form of frequency-modulated
  • Continuous wave signal or can be modulated as a pulse signal.
  • This transmission power provided by the transmission oscillator 1 is divided over a plurality of antenna feeds 6 via a plurality of 3dB power dividers.
  • the number of patch antennas which advantageously lie approximately on a common straight line, is advantageously selected such that they can be supplied via 3dB power dividers without losses. This means, that the number of patch antennas is advantageously 1,
  • the transmission power feeds 6 open into the patch antennas 3, which are shown in FIG. 1 as rectangular antenna spots and have been tilted in such a way that in this example a diagonal polarization of the emitted wave occurs.
  • the emitted radar wave is reflected on objects in the detection area of the radar system and reflected back in the direction of the transmitting and receiving antennas 3.
  • the received electrical signal is mixed with the currently arriving transmission signal on the antenna patch 3 and demodulated by means of the mixer elements 4, which in this case are designed as mixer diodes 4.
  • the demodulated intermediate frequency signal can thus be tapped directly at the diode outputs 5.
  • the respective mixer is combined with the respective antenna patch, so that the shortest possible paths are created and a phase noise that arises due to different path lengths of the transmit and receive signals is minimized.
  • sufficient electrical power is also available on the mixer elements 4, which are advantageously designed as mixer diodes 4, in order to be able to dispense with a pretensioning of the mixer elements by means of a DC voltage.
  • the transmission feed line 6 can be seen, via which the necessary transmission power is supplied to the patch antenna from the transmission oscillator 1.
  • the antenna patch Mixer elements 4 which can be designed, for example, as mixer diodes. Both the transmission signal and the electrical reception signal received by the antenna are superimposed on these mixer elements 4 and are demodulated due to the non-linearity of the mixer diode 4, so that a demodulated one at the output 5
  • Intermediate frequency signal can be tapped, which can be fed to further processing.
  • This is, for example, at least one analog-digital converter and a further processing device in the form of a computing device, which can be designed, for example, as a microcontroller or signal processor.
  • FIG. 3 shows a further embodiment variant, which in turn has the transmission feed line 6 and the antenna patch 3.
  • the transmission power of the transmission oscillator 1 is fed to the antenna via the transmission feed line 6 and radiated by the antenna 3.
  • the transmission wave reflected on objects in the detection range of the radar system is received as a reception wave by the antenna 3 and converted into an electrical signal.
  • a mixer element 4 which in turn can be designed as a mixer diode, is connected for mixing and demodulation in the center of the antenna patch.
  • a conductive plated-through hole through the substrate on which the patch antenna 3 is applied can be provided in the center of the antenna patch 3 and the necessary mixer element 4 can be applied on the underside of the substrate.
  • a section A-A * is provided in FIG. 3, the sectional view of which is explained in more detail in FIG.
  • FIG. 4 shows a sectional illustration of the embodiment variant according to FIG. 3 along the line AA.
  • the patch antenna 3 can again be seen, which is applied to a substrate 8, which can be designed, for example, as a printed circuit board or as a ceramic.
  • a via 7 is provided in the center of the patch antenna 3 in the substrate 8, so that the mixer element 4 on the underside of the substrate 8 can be connected to the patch antenna 3.
  • the direct connection of the mixer element 4 to the patch antenna 3 relates here to the direct electrical connection of these two elements.
  • a ground surface 10 is provided on the underside of the substrate 8, which covers the area around the mixer element 4 and the intermediate frequency output 5.
  • FIG. 5 shows a further embodiment of the device according to the invention, in which the mixer element 4 is provided on the same side of the substrate 8 as the patch antenna 3.
  • a recess is provided in the center of the patch antenna 3, in which the through-contact 7 through the Substrate is positioned.
  • the mixer element 4 now establishes an electrical connection between the patch antenna 3 and the via 7, so that the intermediate frequency signal can be picked off directly on the underside of the substrate.
  • the substrate 8 the patch antenna 3, which has the cutout 9 in the area of the via 7 along the line BB ′, and the mixer element 4, which connects the patch antenna 3 to the via 7, can again be seen.
  • the demodulated intermediate frequency signal can be tapped off from the conductive layer 5 for further processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Abstract

Es wird eine Vorrichtung zum Senden und Empfangen von Radarstrahlung vorgeschlagen, bei der als Sende- und Empfangselement mindestens eine Patchantenne vorgesehen ist, die mit mindestens einem Mischerelement unmittelbar verbunden ist.

Description

Vorrichtung zum Senden und Empfangen von Radarstrahlung
Die vorliegende Erfindung betrifft eine Vorrichtung zum Senden und Empfangen von Radarstrahlung, bei der als Sende- und Empfangselement mindestens eine Patchantenne vorgesehen ist, die mit mindestens einem Mischerelement unmittelbar verbunden ist.
Stand der Technik
Aus der EP 0685930 AI ist eine Radarsende- und Empfangsanordnung bekannt, bei der die Mikrowellenleistung eines frequenzmodulierten Oszillators auf eine Sendeantenne und einen Mischereingang ausgegeben wird und die Mikrowellenleistung, die von dem Ziel reflektiert wurde und von der Antenne empfangen wurde, auf einen zweiten Mischereingang gegeben wird. Die Trennung der Sende- und Empfangssignale geschieht bei dieser Anordnung über zwei Ringleitungskoppler, die untereinander mittels zweier Verbindungsleitungen verbunden sind.
Kern und Vorteile der Erfindung
Der Kern der vorliegenden Erfindung ist es, eine Vorrichtung zum Senden und Empfangen von Radarstrahlung anzugeben, die einfache Strukturen aufweist, einfach zu fertigen ist, niedrige Herstellungskosten aufweist sowie eine hohe Phasenrauschkorrelationsunterdrückung aufzeigt . Erfindungsgemäß wird dieses durch die Merkmale des unabhängigen Anspruchs gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen.
Es ist vorteilhaft, dass das Sende- und Empfangselement, das als mindestens eine Patchantenne ausgebildet ist, mit mindestens einem Mischerelement unmittelbar verbunden ist, wobei das mindestens eine Mischerelement mit dem Zentrum der Patchantenne verbunden ist. Das Zentrum der Patchantenne ist in diesem Fall der Mittelpunkt der geometrischen Anordnung mit l=(n+l)*λ/2 für n=l,2,3,..., als welche die Patchantenne ausgebildet ist.
Weiterhin ist es vorteilhaft, dass an zwei gegenüberliegenden Rändern der Patchantenne jeweils ein Mischerelement angeordnet ist. In dem Fall, dass die Patchantenne als Rechteck ausgebildet ist, ist es vorteilhaft, die beiden Mischerelemente an zwei gegenüberliegenden Kanten des Rechtecks anzubringen. Im Fall, dass die Patchantenne als Kreis oder Ellipse ausgebildet ist, ist es vorteilhaft, die Mischerelemente an zwei Randpunkten der Antenne so anzuordnen, dass sie sich diametral gegenüberliegen.
Weiterhin ist es vorteilhaft, dass als Sende- und Empfangselemente vorteilhafter Weise 2n Patchantennen mit n = 0, l, 2, ... vorgesehen sind, wobei diese 2n
Patchantennen insbesondere in etwa auf einer gemeinsamen Geraden angeordnet sind und die 2n Patchantennen mittels symmetrischer 3dB-Leistungsteiler mit dem Sendeoszillator verbunden sind. Hierdurch ist es möglich, die Leistung des Sendeoszillators mit möglichst einfachen Mitteln gleichmäßig auf alle Patchantennen zu verteilen ohne dass hierbei Verluste der Ξendeoszillatorleistung auftreten.
Weiterhin ist es vorteilhaft, dass die Mischerelemente Dioden sind. Durch die Ausführung der Mischerelemente in Form von Mischerdioden wird eine preiswerte, einfach herzustellende, sowie bezüglich der räumlichen Abmessungen kompakte Bauform aufweisende Ausführung erreicht.
Weiterhin ist es vorteilhaft, dass die Abmessungen der Vorrichtung zum Senden und Empfangen von
Mikrowellenstrahlung für den Frequenzbereich zwischen 75 und 80 GHz dimensioniert sind.
Weiterhin ist es vorteilhaft, dass die Vorrichtung zum Senden und Empfangen von Radarstrahlung in einem Kraftfahrzeugradarsystem zur adaptiven Abstands- und Geschwindigkeitsregelung eingesetzt wird. Ein System zur adaptiven Abstands- und Geschwindigkeitsregelung in einem Kraftfahrzeug misst den Abstand sowie die
Relativgeschwindigkeit vorherfahrender Objekte und führt in deren Abhängigkeit eine Geschwindigkeitsregelung im Sinne einer Geschwindigkeitskonstantregelung bzw. einer Abstandskonstantregelung durch.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Zeichnungen. Zeichnungen
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen erläutert . Es zeigen
Figur 1 eine mögliche Ausführung der Vorrichtung zum Senden und Empfangen von RadarStrahlung, Figur 2 eine Detailansicht einer ersten Ausführungsform der Vorrichtung,
Figur 3 eine Detailansicht einer zweiten Ausführungsform, Figur 4 eine Schnittdarstellung der Detailansicht einer zweiten Ausführungsform, Figur 5 eine Detailansicht einer dritten Ausführungsform und
Figur 6 eine Schnittdarstellung der Detailansicht einer dritten Ausführungsform.
Beschreibung von Ausführungsbeispielen
In Figur 1 ist eine bevorzugte Ausführungsform einer Vorrichtung zum Senden und Empfangen von Radarstrahlung dargestellt, die in diesem Fall beispielhaft über vier Patchantennen verfügt. Zu erkennen ist der Sendeoszillator 1, der ein Sendesignal zur Verfügung stellt, das vorteilhafter Weise im Bereich von etwa 77 GHz liegt und das vorteilhafter Weise als frequenzmoduliertes
Dauerstrichsignal (FMCW) oder als Pulssignal moduliert sein kann. Diese vom Sendeoszillator 1 bereitgestellte Sendeleistung wird über mehrere 3dB-Leistungsteiler auf mehrere Antennenzuführungen 6 aufgeteilt. Dabei wird die Anzahl der Patchantennen, die vorteilhafter Weise in etwa auf einer gemeinsamen Geraden liegen, vorteilhafter Weise so gewählt, dass diese über 3dB-Leistungsteiler versorgt werden können ohne dass hierbei Verluste entstehen. Dies bedeutet, dass die Anzahl der Patchantennen vorteilhafter Weise zu 1,
2, 4, 8, ... gewählt wird, was sich auch als 2n mit n = 0, 1, 2, ... schreiben lässt. Die Sendeleistungszuführungen 6 münden in die Patchantennen 3, die in Figur 1 als rechteckige Antennenflecken dargestellt sind und so verkippt wurden, dass in diesem Beispiel eine Diagonalpolarisierung der ausgesandten Welle entsteht. Die ausgesandte Radarwelle wird an Objekten im Erfassungsbereich des Radarsystems reflektiert und in Richtung der Sende- und Empfangsantennen 3 zurückreflektiert. Die Patchantennen 3, die sowohl als Sende- als auch als Empfangsantennen arbeiten, empfangen die reflektierte RadarStrahlung. Das empfangene, elektrische Signal wird mit dem momentan ankommenden Sendesignal auf dem Antennenpatch 3 gemischt und mittels der Mischerelemente 4, die in diesem Fall als Mischerdioden 4 ausgeführt sind, demoduliert. An den Diodenausgängen 5 lässt sich somit direkt das demodulierte Zwischenfrequenzsignal abgreifen. Gemäß dieser Ausführung ist der jeweilige Mischer mit dem jeweiligen Antennenpatch zusammengelegt, so dass möglichst kurze Wege entstehen und ein Phasenrauschen, das aufgrund unterschiedlicher Weglängen der Sende- und Empfangssignale entsteht, minimiert wird. Durch diese Anordnung, die keinen Ringkoppler benötigt, steht weiterhin an den Mischerelementen 4, die vorteilhafter Weise als Mischerdioden 4 ausgeführt sind, genügend elektrische Leistung zur Verfügung um auf eine Vorspannung der Mischerelemente mittels einer Gleichspannung verzichten zu können .
In Figur 2 ist eine Detailansicht einer erfindungsgemäßen
Patchantenne dargestellt. Zu erkennen ist die Sendezuleitung 6, über die der Patchantenne vom Sendeoszillator 1 die notwendige Sendeleistung zugeführt wird. Der Antennenpatch
3, der als Sende- und Empfangsantenne dient, weist an zwei gegenüberliegenden Rändern des Antennenpatches zwei Mischerelemente 4 auf, die beispielsweise als Mischerdioden ausgeführt sein können. An diesen Mischerelementen 4 überlagert sich sowohl das Sendesignal als auch das von der Antenne empfangene elektrische Empfangssignal und wird aufgrund der Nichtlinearität der Mischerdiode 4 demoduliert so dass am Ausgang 5 ein demoduliertes
Zwischenfrequenzsignal abgreifbar ist, das einer weiteren Verarbeitung zugeführt werden kann. Deabei handelt es sich beispielhafter Weise um mindestens einen Analog-Digital- Wandler und eine Weiterverarbeitungseinrichtung in Form einer Recheneinrichtung, die beispielsweise als Mikrocontroller oder Signalprozessor ausgeführt sein kann.
In Figur 3 ist eine weitere Ausführungsvariante dargestellt, die wiederum die SendeZuleitung 6 sowie den Antennenpatch 3 aufweist. Über die Sendezuleitung 6 wird der Antenne die Sendeleistung des Sendeoszillators 1 zugeführt und durch die Antenne 3 abgestrahlt. Die an Objekten im Erfassungsbereich des Radarsystems reflektierte Sendewelle wird als Empfangswelle durch die Antenne 3 empfangen und in ein elektrisches Signal gewandelt. Zur Mischung und Demodulation ist in diesem Ausführungsbeispiel im Zentrum des Antennenpatches ein Mischerelement 4, das wiederum als Mischerdiode ausgeführt sein kann, angeschlossen. Hierzu kann im Zentrum des Antennenpatches 3 eine leitfähige Durchkontaktierung durch das Substrat, auf dem die Patchantenne 3 aufgebracht ist, vorgesehen sein und auf der Unterseite des Substrats das notwendige Mischerelement 4 aufgebracht werden. Hierzu ist in Figur 3 ein Schnitt A-A* vorgesehen, dessen Schnittdarstellung in Figur 4 näher erläutert ist.
In Figur 4 ist eine Schnittdarstellung der AusführungsVariante gemäß Figur 3 entlang der Linie A-A dargestellt. Zu erkennen ist wiederum die Patchantenne 3, die auf einem Substrat 8, das beispielsweise als Leiterplatte oder als Keramik ausgeführt sein kann, aufgebracht ist. Im Zentrum der Patchantenne 3 ist im Substrat 8 eine Durchkontaktierung 7 vorgesehen, so dass das Mischerelement 4 auf der Unterseite des Substrats 8 mit der Patchantenne 3 verbunden werden kann. Die unmittelbare Verbindung des Mischerelementes 4 mit der Patchantenne 3 bezieht sich hierbei auf die unmittelbare elektrische Verbindung dieser beiden Elemente. Zusätzlich ist auf der Unterseite des Substrats 8 eine Massefläche 10 vorgesehen, die den Bereich um das Mischerelemenet 4 und den Zwischenfrequenzausgang 5 bedeckt.
In Figur 5 ist eine weitere Ausführungsform der erfindungsgemäßen Vorrichtung dargestellt, bei der das Mischerelement 4 auf der gleichen Seite des Substrats 8 vorgesehen ist, wie die Patchantenne 3. Hierzu ist im Zentrum der Patchantenne 3 eine Aussparung vorgesehen, in der die Durchkontaktierung 7 durch das Substrat positioniert ist. Das Mischerelement 4 stellt nun eine elektrische Verbindung zwischen der Patchantenne 3 und der Durchkontaktierung 7 her, so dass auf der Unterseite des Substrats das Zwischenfrequenzsignal direkt abgreifbar ist.
In Figur 6 ist eine Schnittdarstellung entlang der Linie
B-Bv der Ausführungsvariante gemäß Figur 5 dargestellt. Zu erkennen ist wiederum das Substrat 8, die Patchantenne 3, die im Bereich der Durchkontaktierung 7 entlang der Linie B- B' die Aussparung 9 aufweist sowie das Mischerelement 4, das die Patchantenne 3 mit der Durchkontaktierung 7 verbindet. An der Unterseite des Substrates 8 kann an der leitenden Schicht 5 das demodulierte Zwischenfrequenzsignal zur Weiterverarbeitung abgegriffen werden. Zusätzlich ist auf der Unterseite des Substrats 8 eine Massefläche 10 vorgesehen, die den Bereich um die Durchkontaktierung 7 und den Zwischenfrequenzausgang 5 bedeckt.

Claims

Ansprüche
1. Vorrichtung zum Senden und Empf ngen von
RadarStrahlung, dadurch gekennzeichnet, dass als Sende- und Empfangselement mindestens eine Patchantenne (3) vorgesehen ist, die mit mindestens einem Mischerelement (4) unmittelbar verbunden ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Mischerelement (4) mit dem Zentrum der Patchantenne (3) verbunden ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass an zwei gegenüberliegenden Ränder der Patchantenne (3) jeweils mit einem Mischerelement (4) verbunden ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 2 Patchantennen (3) mit n=0,l,2,... vorgesehen sind, die mittels symmetrischer 3dB- Leistungsteiler (2) mit einem Sendeoszillator (1) verbunden sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mischerelemente (4) Dioden sind.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abmessungen der Vorrichtung zum Senden und Empfangen von Mikrowellenstrahlung im Bereich von etwa 77 GHz dimensioniert sind.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung in einem Kraftfahrzeugradarsystem zur adaptiven Abstands- und Geschwindigkeitsregelung eingesetzt wird.
PCT/DE2002/004586 2002-05-24 2002-12-16 Vorrichtung zum senden und empfangen von radarstrahlung WO2003100456A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02795000A EP1512029A1 (de) 2002-05-24 2002-12-16 Vorrichtung zum senden und empfangen von radarstrahlung
US10/514,676 US20060049979A1 (en) 2002-05-24 2002-12-16 Device for transmitting and receiving radar radiation
JP2004507861A JP2005526984A (ja) 2002-05-24 2002-12-16 レーダ放射を送信および受信する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10223124A DE10223124A1 (de) 2002-05-24 2002-05-24 Vorrichtung zum Senden und Empfangen von Radarstrahlung
DE10223124.9 2002-05-24

Publications (1)

Publication Number Publication Date
WO2003100456A1 true WO2003100456A1 (de) 2003-12-04

Family

ID=29414131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004586 WO2003100456A1 (de) 2002-05-24 2002-12-16 Vorrichtung zum senden und empfangen von radarstrahlung

Country Status (5)

Country Link
US (1) US20060049979A1 (de)
EP (1) EP1512029A1 (de)
JP (1) JP2005526984A (de)
DE (1) DE10223124A1 (de)
WO (1) WO2003100456A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024458A1 (de) * 2006-05-24 2007-12-06 Infineon Technologies Ag Integrierte Mehrfachmischer-Schaltung
US7492180B2 (en) 2006-05-24 2009-02-17 Infineon Technologies Ag Apparatus and methods for performing a test
US7672647B2 (en) 2006-05-24 2010-03-02 Infineon Technologies Ag Integrated circuit for transmitting and/or receiving signals

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062135B2 (ja) * 2003-03-14 2008-03-19 株式会社村田製作所 高周波発振装置、無線装置およびレーダ
JP5569856B2 (ja) * 2008-10-16 2014-08-13 Toto株式会社 電波センサ
JP5120788B2 (ja) * 2008-10-16 2013-01-16 Toto株式会社 電波センサ
JP5671787B2 (ja) * 2009-02-04 2015-02-18 Toto株式会社 電波センサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2223130A (en) * 1988-09-25 1990-03-28 Secr Defence Microstrip patch antenna
US4980925A (en) * 1989-01-03 1990-12-25 Raytheon Company Monopulse first detector array
GB2266207A (en) * 1992-04-13 1993-10-20 Marconi Gec Ltd Vehicle detection system
EP0685930A1 (de) * 1994-06-01 1995-12-06 Plessey Semiconductors Limited Radar-Sender/Empfänger
US5511238A (en) * 1987-06-26 1996-04-23 Texas Instruments Incorporated Monolithic microwave transmitter/receiver
EP0844731A1 (de) * 1996-11-23 1998-05-27 Matra BAe Dynamics (UK) Ltd Sender-Empfänger
US5952964A (en) * 1997-06-23 1999-09-14 Research & Development Laboratories, Inc. Planar phased array antenna assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155050A (en) * 1987-06-26 1992-10-13 Texas Instruments Incorporated Method of fabrication of a monolithic microwave transmitter/receiver
US5268692A (en) * 1991-03-14 1993-12-07 Grosch Theodore O Safe stopping distance detector, antenna and method
US5309163A (en) * 1991-09-12 1994-05-03 Trw Inc. Active patch antenna transmitter
US6366244B1 (en) * 1993-03-11 2002-04-02 Southern California Edison Company Planar dual band microstrip or slotted waveguide array antenna for all weather applications
US5394159A (en) * 1993-11-02 1995-02-28 At&T Corp. Microstrip patch antenna with embedded detector
US6380883B1 (en) * 1998-02-23 2002-04-30 Amerigon High performance vehicle radar system
US6292143B1 (en) * 2000-05-04 2001-09-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multi-mode broadband patch antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511238A (en) * 1987-06-26 1996-04-23 Texas Instruments Incorporated Monolithic microwave transmitter/receiver
GB2223130A (en) * 1988-09-25 1990-03-28 Secr Defence Microstrip patch antenna
US4980925A (en) * 1989-01-03 1990-12-25 Raytheon Company Monopulse first detector array
GB2266207A (en) * 1992-04-13 1993-10-20 Marconi Gec Ltd Vehicle detection system
EP0685930A1 (de) * 1994-06-01 1995-12-06 Plessey Semiconductors Limited Radar-Sender/Empfänger
EP0844731A1 (de) * 1996-11-23 1998-05-27 Matra BAe Dynamics (UK) Ltd Sender-Empfänger
US5952964A (en) * 1997-06-23 1999-09-14 Research & Development Laboratories, Inc. Planar phased array antenna assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024458A1 (de) * 2006-05-24 2007-12-06 Infineon Technologies Ag Integrierte Mehrfachmischer-Schaltung
US7482972B2 (en) 2006-05-24 2009-01-27 Infineon Technologies Ag Integrated multi-mixer circuit
US7492180B2 (en) 2006-05-24 2009-02-17 Infineon Technologies Ag Apparatus and methods for performing a test
US7672647B2 (en) 2006-05-24 2010-03-02 Infineon Technologies Ag Integrated circuit for transmitting and/or receiving signals
US7741863B2 (en) 2006-05-24 2010-06-22 Infineon Technologies Ag Apparatus and methods for performing a test
DE102006024458B4 (de) * 2006-05-24 2016-04-14 Infineon Technologies Ag Integrierte Mehrfachmischer-Schaltung

Also Published As

Publication number Publication date
JP2005526984A (ja) 2005-09-08
US20060049979A1 (en) 2006-03-09
EP1512029A1 (de) 2005-03-09
DE10223124A1 (de) 2003-12-04

Similar Documents

Publication Publication Date Title
EP1825561B1 (de) Antennenanordnung für einen radar-transceiver
EP0721697B1 (de) Millimeterwellen-mischer in fenstertechnik
EP2569820B1 (de) Fahrerassistenzeinrichtung für ein fahrzeug, fahrzeug und verfahren zum betreiben eines radargeräts
WO2006029926A1 (de) Monostatischer planarer mehrstrahlradarsensor
WO2001009975A2 (de) Radarsensor und radarantenne für ein überwachen der umgebung eines kraftfahrzeuges
DE102006024458B4 (de) Integrierte Mehrfachmischer-Schaltung
WO2006072511A1 (de) Antennenanordnung für einen radar-transceiver
EP1812809A1 (de) Radarsystem insbesondere zur entfernungs- und/oder geschwindigkeitsmessung
DE10355796A1 (de) Integrierte Schaltung zur Abstands- und/oder Geschwindigkeitsmessung von Objekten
DE1245444B (de) Mikrowellen-Mischstufenanordnung mit Hybride
DE19951123C2 (de) Radarsensor für ein Überwachen der Umgebung eines Kraftfahrzeuges
WO2003100456A1 (de) Vorrichtung zum senden und empfangen von radarstrahlung
DE19719953B4 (de) Kraftfahrzeug-Radarsensor
EP1476921A1 (de) Vorrichtung zum senden und empfangen elektromagnetischer strahlung
WO2008028739A1 (de) Antennenanordnung mit parasitär angekoppelten antennenelementen
WO1999004282A1 (de) Einrichtung zum senden und empfangen von radarwellen, insbesondere für einen abstandssensor
EP2438459B1 (de) Radarsensor mit störsignalkompensation
DE102005056756A1 (de) Antennenanordnung für einen Radar-Sensor
EP2225799B1 (de) Antennenanordnung für einen radar-transceiver und schaltungsanordnung zum speisen einer antennenanordnung eines solchen radar-transceivers
DE3615502C2 (de) Entkopplungsanordnung für Dauerstrich-Radare
EP0780969B1 (de) Frequenzmischer für ein Dopplerradarmodul
DE3526046A1 (de) Array-antenne
WO2004015445A1 (de) Vorrichtung zum senden und empfangen elektromagnetischer strahlung
DE3841266A1 (de) Gegentaktmischer fuer den mikrowellenbereich
DE102016204022A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer Strahlung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002795000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004507861

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002795000

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006049979

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10514676

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10514676

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002795000

Country of ref document: EP