WO2004015445A1 - Vorrichtung zum senden und empfangen elektromagnetischer strahlung - Google Patents

Vorrichtung zum senden und empfangen elektromagnetischer strahlung Download PDF

Info

Publication number
WO2004015445A1
WO2004015445A1 PCT/DE2003/002569 DE0302569W WO2004015445A1 WO 2004015445 A1 WO2004015445 A1 WO 2004015445A1 DE 0302569 W DE0302569 W DE 0302569W WO 2004015445 A1 WO2004015445 A1 WO 2004015445A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
frequency band
frequency
antenna
oscillator
Prior art date
Application number
PCT/DE2003/002569
Other languages
English (en)
French (fr)
Inventor
Klaus-Dieter Miosga
Armin Himmelstoss
Guenter Bertsch
Joachim Hauk
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004015445A1 publication Critical patent/WO2004015445A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/034Duplexers
    • G01S7/036Duplexers involving a transfer mixer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems

Definitions

  • the present invention relates to a device for transmitting and receiving electromagnetic radiation, in particular microwave radiation, which consists of at least one oscillator, one diode, one antenna and two radio-frequency band-locks, the diode being arranged between the oscillator and the antenna.
  • an adaptive distance and speed controller which uses a radar sensor to detect the relative position and the relative speed of objects that are in front of the vehicle equipped with them and, depending on the determined object data, the drive devices of the vehicle or the deceleration devices of the
  • a radar transmission and reception device which is preferably used in automobiles. Furthermore, it is described that a frequency-modulated oscillator signal is fed via a ring coupler to both a monostatic antenna and a second ring coupler, and that the received antenna signal is also passed on to the second ring coupler via the first ring coupler. With the help of the second ring coupler, the transmit and Received signal mixed and demodulated by means of second diodes, so that an intermediate frequency signal can be tapped at the intermediate frequency outputs for further processing.
  • the essence of the present invention is to provide a device for transmitting and receiving electromagnetic radiation which can be produced with as few components as possible and which requires as little space as possible. According to the invention, this is solved by the features of the independent claim.
  • the diode is arranged in series between the oscillator and the antenna. This means that both the send and the
  • Receive signals are present at the diode, which acts as a demodulator.
  • the diode can be driven by the direct current Ibias or the received power in such a way that the diode essentially only has an unavoidable damping behavior in the transmission direction.
  • the two high-frequency band-locks are each arranged in parallel, the first high-frequency band-stop being connected between the diode and the oscillator and the second high-frequency band-stop being connected between the diode and the antenna.
  • the oscillator modulates a frequency-modulated continuous wave signal.
  • This frequency-modulated continuous wave signal which is also known as an FMCW signal, enables simple and precise determination of the object distance or the object relative speed by measuring the signal transit time or the Doppler effect.
  • the antenna is designed as a patch antenna.
  • the provision of a patch antenna enables inexpensive and precise manufacture of the
  • Antenna and, depending on the positioning of the patch antenna, a polarization of the transmit and receive signals.
  • the first and the second high-frequency band-stop advantageously have their maximum blocking effect in the frequency range around 77 gigahertz.
  • the diode is supplied with a direct current via the two high-frequency band-locks.
  • the diode is biased by means of a DC voltage into an operating point in which an advantageous demodulation of the transmit and receive signals can be achieved.
  • High-frequency band-lock can be tapped off, a frequency in the range around 100 kilohertz.
  • the arrangement for transmitting and receiving electromagnetic radiation is advantageously used in a motor vehicle radar system, which generates control signals for the drive devices and the brake devices of the vehicle from the relative object positions and the relative object speeds in relation to the driver's own vehicle.
  • a motor vehicle radar system which generates control signals for the drive devices and the brake devices of the vehicle from the relative object positions and the relative object speeds in relation to the driver's own vehicle.
  • FIG. 1 shows the design of the device according to the invention using stripline technology and the sonication of the device with further system components.
  • the oscillator 1 which generates a transmission signal.
  • This transmission signal is preferably a frequency-modulated continuous wave signal, also known under the term “frequency modulated continuous wave” signal, in which the transmission frequency is increased and decreased linearly around a carrier frequency according to a ramp function.
  • This transmission signal is transmitted via a first matching circuit 6 of the device according to the invention supplied, the first matching circuit 6 has the task of the transmission signal to the
  • the transmission signal passes the diode 2 and reaches the antenna 3 via a second matching circuit 7, which can preferably be designed as a monostatic antenna.
  • the antenna 3 is designed as a patch antenna, although other antenna embodiments can also be selected.
  • Antenna 3 emits the transmission signal, which can be emitted as a polarized signal if the antenna patch is suitably positioned.
  • the electrical power emitted in this way is partially reflected on objects possibly present in the detection range of the transmitting and receiving device and partially received by the monostatic antenna 3, which also acts as a receiving antenna.
  • the received signals obtained in this way are fed back from the antenna 3 via the second matching circuit 7 to the diode 2, among other things. Transmit and receive signals are now superimposed on the diode 2, so that the mixture products are demodulated at the non-linearity of the diode 2.
  • there is no diode bias Necessary, since the large transmission and reception powers lead to a so-called self-biasing, that is to say that the diode 2 is driven by the transmission and reception signals to such an extent that a bias of the diode 2 can be dispensed with. Since the transmission and reception performance in motor vehicle radar systems is generally very small, a bias bias is necessary in most cases.
  • High-frequency band-stop device 4 which is in contact with the device in the area of the first matching circuit 6 and is connected to the ground on the one hand, and through the second high-frequency band-stop device 5, which is in contact with the transmitter and receiver device between the antenna 3 and the diode 2, and on the other hand, connected to a current source Ibias, the diode 2 can be connected to a corresponding one
  • the first and second high-frequency band-blocking devices 4, 5 ensure that the high-frequency transmit and receive signals are neither short-circuited via the ground nor can they influence other components via the Ibias current source or the intermediate frequency output ZF OUT .
  • the product of the mixing and demodulation at the diode 2 has a frequency which is approximately in the range from 1 to several 100 kilohertz. This frequency is dependent on the frequency deviation ⁇ f of the frequency-modulated FMCW ramp and on the transit time ⁇ , which the transmission signal requires until it has been reflected on a corresponding object and is in turn applied to the diode 2. The meantime frequency change of the FMCW ramp as well as a possibly existing one
  • Doppler effect due to a moving object determine the frequency of the demodulated intermediate frequency signal.
  • This demodulated signal can pass through the second high-frequency bandstop 5 unimpaired and be tapped via a coupling capacitor C at the terminal ZF 0 u ⁇ at which the intermediate frequency output signal is present.
  • the coupling capacitor C has the function of providing a DC voltage-free intermediate frequency output signal by the capacitor C blocking the DC current I BIAS , which biases the diode 2 to a suitable operating point.
  • the direct current I BIAS5 which flows via the second high-frequency band-stop 5, the diode 2, the first matching circuit 6 and the first high-frequency band-blocking device 4 can be set, for example, in such a way that the transmission losses caused by the first matching circuit 6 and the second matching circuit 7 are the loss at the diode when sending and the mixer loss when receiving, is minimal.
  • the optimization of the intermediate frequency power for a specific object distance can therefore be set by means of the current I BIAS .
  • the device according to the invention can also be embodied as a multi-beam radar system in that the device according to the invention is executed several times side by side.
  • the ground connection to the operating point bias is made via the second high-frequency band stop 5 and the current source Ibias and the coupling capacitor C with the intermediate frequency output ZF OUT must be connected to the first high-frequency band stop 4.
  • the polarity of the diode 2 must be reversed in comparison to the exemplary embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Vorgeschlagen wird eine Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung, insbesondere von Mikrowellenstrahlung, die mindestens aus einem Oszillator, einer Diode, einer Antenne und zwei Hochfrequenzbandsperren bestehend, wobei die Diode zwischen dem Oszillator und der Antenne angeordnet ist.

Description

Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung
Die vorliegende Erfindung betrifft eine Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung, insbesondere von Mikrowellenstrahlung, die mindestens aus einem Oszillator, einer Diode, einer Antenne und zwei Hochfrequenzbandsperren besteht, wobei die Diode zwischen dem Oszillator und der Antenne angeordnet ist.
Stand der Technik
In der Veröffentlichung „Adaptive Cruise Control System Aspects and Development Trends" von Winner, Witte et al., SAE-Paper 961010, veröffentlicht auf der SAE
International Congress & Exposition, Detroit, 26.-29. Februar 1996 wird ein adaptiver Abstands- und Geschwindigkeitsregler offenbart, der mittels eines Radarsensors die relative Position sowie die Relativgeschwindigkeit von Objekten erfasst, die sich vor dem damit ausgerüsteten Fahrzeug befinden und in Abhängigkeit der ermittelten Objektdaten die Antriebseinrichtungen des Fahrzeugs oder die Verzögerungseinrichtungen des
Fahrzeugs ansteuert und somit die Fahrzeuggeschwindigkeit je nach erkannten Objekten im Sinne einer Konstantabstandsregelung bzw. einer Konstantgeschwindigkeitsregelung beeinflusst.
Aus der EP 0685930 AI ist eine Radarsende- und empfangseinrichtung bekannt, die vorzugsweise in Automobilen eingesetzt wird. Weiterhin ist beschrieben, dass ein frequenzmoduliertes Oszillatorsignal über einen Ringkoppler sowohl einer monostatischen Antenne als auch einem zweiten Ringkoppler zugeführt wird sowie das Empfangsantennensignal über den ersten Ringkoppler ebenfalls an den zweiten Ringkoppler weitergeführt wird. Mit Hilfe des zweiten Ringkopplers wird das Sende- und Empfangssignal gemischt und mittels zweiter Dioden demoduliert, so dass an den Zwischenfrequenzausgängen ein Zwischenfrequenzsignal zur Weiterverarbeitung abgreifbar ist.
Kern und Vorteile der Erfindung
Kern der vorliegenden Erfindung ist es, eine Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung anzugeben, die mit möglichst wenig Bauteilen herzustellen ist und dabei einen möglichst geringen Platzbedarf benötigt. Erfindungsgemäß wird dieses durch die Merkmale des unabhängigen Anspruchs gelöst.
Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen.
Vorteilhafter Weise ist es dabei, dass die Diode in Serie zwischen dem Oszillator und der Antenne angeordnet ist. Hierdurch erreicht man, dass sowohl die Sende- als auch die
Empfangssignale an der Diode, die als Demodulator wirkt, anliegen.
Vorteilhafter Weise ist die Diode durch den Gleichstrom Ibias oder die empfangene Leistung so aussteuerbar, dass die Diode in Senderichtung im wesentlichen nur ein unvermeidbares Dämpfungsverhalten aufweist.
Weiterhin ist es vorteilhaft, dass die beiden Hochfrequenzbandsperren jeweils in Parallelschaltung angeordnet sind, wobei die erste Hochfrequenzbandsperre zwischen der Diode und dem Oszillator angeschlossen ist und die zweite Hochfrequenzbandsperre zwischen der Diode und der Antenne angeschlossen ist. Durch diese Maßnahme ist es möglich, die Diode mit einer Gleichspannung zu beaufschlagen, wodurch die als Demodulator wirkende Diode in einen geeigneten Arbeitspunkt vorgespannt werden kann. Weiterhin wird hierdurch vermieden, dass die hochfrequenten Sende- und Empfangssignale sich entlang der Leitungsstrukturen weiter ausbreiten als in dem Bereich, in dem diese für die Funktionalität notwendig sind.
Weiterhin ist es vorteilhaft, dass der Oszillator ein frequenzmoduliertes Dauerstrichsignal moduliert. Dieses frequenzmodulierte Dauerstrichsignal, das auch als FMCW-Signal bekannt ist, ermöglicht eine einfache und präzise Ermittlung des Objektabstandes bzw. der Objektrelativgeschwindigkeit durch die Messung der Signallaufzeit bzw. des Dopplereffektes.
Weiterhin ist es vorteilhaft, dass die Antenne als Patchantenne ausgeführt ist. Das Vorsehen einer Patchantenne ermöglicht eine kostengünstige und präzise Herstellung der
Antenne sowie, je nach Positionierung der Patchantenne, eine Polarisation der Sende- und Empfangssignale.
Vorteilhafterweise weist die erste und die zweite Hochfrequenzbandsperre ihre maximale Sperrwirkung im Frequenzbereich um 77 Gigahertz auf.
Weiterhin ist es vorteilhaft, dass der Diode über die beiden Hochfrequenzbandsperren ein Gleichstrom zugeführt wird. Durch dieses Merkmal wird die Diode mittels einer Gleichspannung in einen Arbeitspunkt vorgespannt, in den eine vorteilhafte Demodulation der Sende- und Empfangssignale erreicht werden kann.
Weiterhin ist es vorteilhaft, dass an der zweiten Hochfrequenzbandsperre ein Zwischenfrequenzsignal abgreifbar ist.
Vorteilhafter Weise weist das Zwischenfrequenzsignal, das an der zweiten
Hochfrequenzbandsperre abreifbar ist, eine Frequenz im Bereich um 100 Kilohertz auf.
Vorteilhafter Weise wird die Anordnung zum Senden und Empfangen elektromagnetischer Strahlung in einem Kraftfahrzeugradarsystem eingesetzt, das aus den relativen Objektpositionen sowie den relativen Objektgeschwindigkeiten in Bezug zum eigenen Fahrzeug Stellsignale für die Antriebseinrichtungen sowie die Bremseinrichtungen des Fahrzeugs erzeugt. Hierfür ist es von besonderer Bedeutung, die Vorrichtung zum Senden und Empfangen elektromagnetischer Signale so auszuführen, dass eine kleine Bauform erreicht wird um diese Vorrichtung universell am Fahrzeug anbringen zu können.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
Zeichnungen
Nachfolgend wird ein Ausfuhrungsbeispiel der Erfindung anhand einer Zeichnung erläutert. Diese zeigt den Aufbau der Vorrichtung in Mikrostreifenleitertechnik sowie die Beschallung der Ein- und Ausgänge mit den entsprechenden Systemkomponenten.
Beschreibung eines Ausfuhrungsbeispiels
Figur 1 zeigt die Ausführung der erfindungsgemäßen Vorrichtung in Streifenleitertechnik sowie die Beschallung der Vorrichtung mit weiteren Systemkomponenten. Zu erkennen ist der Oszillator 1, der ein Sendesignal generiert. Dieses Sendesignal ist vorzugsweise ein frequenzmoduliertes Dauerstrichsignal, auch bekannt unter dem Begriff „Frequency Modulated Continuous Wave"-Signal, bei dem die Sendefrequenz gemäß einer Rampenfunktion linear um eine Trägerfrequenz herum erhöht und verringert wird. Dieses Sendesignal wird über eine erste Anpassschaltung 6 der erfindungsgemäßen Vorrichtung zugeführt, wobei die erste Anpassschaltung 6 die Aufgabe besitzt, das Sendesignal an das
Impedanzniveau der Vorrichtung anzupassen. Im weiteren Verlauf des Sendesignalpfades passiert das Sendesignal die Diode 2 und gelangt über eine zweite Anpassschaltung 7 zur Antenne 3, die vorzugsweise als monostatische Antenne ausgeführt sein kann. In diesem Ausführungsbeispiel ist die Antenne 3 als Patchantenne ausgeführt, wobei jedoch auch andere Antennenausführungsformen gewählt werden können. Mittels der monostatischen
Antenne 3 wird das Sendesignal abgestrahlt, das bei geeigneter Positionierung des Antenntenpatches als polarisiertes Signal abgestrahlt werden kann. Die derart abgestrahlte elektrische Leistung wird an möglicherweise vorhandenen Objekten im Erfassungsbereich der Sende- und Empfangsvorrichtung teilweise reflektiert und von der monostatischen Antenne 3, die auch als Empfangsantenne wirkt, teilweise empfangen.
Die derart gewonnenen Empfangssignale werden von der Antenne 3 wieder über die zweite Anpassschaltung 7 unter anderem der Diode 2 zugeführt. An der Diode 2 überlagern sich nun Sende- und Empfangssignale, so dass die Mischungsprodukte an der Nichtlinearität der Diode 2 demoduliert werden. Bei großen Sende- und Empfangsleistungen ist gemäß dieser Vorrichtung keine Vorspannung der Diode notwendig, da die großen Sende- und Empfangsleistungen zu einem sogenannten self- biasing führen, das heißt dass die Diode 2 durch die Sende- und Empfangssignale so weit ausgesteuert wird, dass auf eine Vorspannung der Diode 2 verzichtet werden kann. Da die Sende- und Empfangsleisrungen bei Kraftfahrzeugradarsystemen im allgemeinen sehr klein sind wird in den meisten Fälle eine Biasvorspannung notwendig. Durch eine erste
Hochfrequenzbandsperre 4, die einerseits im Bereich der ersten Anpassschaltung 6 mit der Vorrichtung kontaktiert ist sowie andererseits mit der Masse verbunden ist und durch die zweite Hochfrequenzbandsperre 5, die einerseits zwischen der Antenne 3 und der Diode 2 mit der Sende- und Empfangsvorrichtung kontaktiert ist, sowie andererseits mit einer Stromquelle Ibias verbunden ist, kann die Diode 2 mit einer entsprechenden
Gleichspannung in einen optimalen Arbeitspunkt vorgespannt werden. Die erste und zweite Hochfrequenzbandsperre 4, 5 sorgen dafür, dass die hochfrequenten Sende- und Empfangssignale weder über die Masse kurzgeschlossen werden noch über die Stromquelle Ibias oder den Zwischenfrequenzausgang ZFOUT andere Komponenten beeinflussen können. Das Produkt aus der Mischung und Demodulation an der Diode 2 weist eine Frequenz auf, die etwa im Bereich von 1 bis mehreren 100 Kilohertz liegt. Diese Frequenz ist abhängig vom Frequenzhub Δf der frequenzmodulierten FMCW- Rampe sowie von der Laufzeit τ, die das Sendesignal benötigt, bis es an einem entsprechenden Objekt reflektiert wurde und wiederum an der Diode 2 anliegt. Die zwischenzeitliche Frequenzänderung der FMCW-Rampe sowie ein eventuell vorhandener
Dopplereffekt infolge eines bewegten Objektes bestimmen die Frequenz des demodulierten Zwischenfrequenzsignals. Dieses demodulierte Signal kann unbeeinträchtigt die zweite Hochfrequenzbandsperre 5 passieren und über einen Koppelkondensator C an der Klemme ZF0uτ, an der das Zwischenfrequenzausgangssignal anliegt, abgegriffen werden. Der Koppelkondensator C hat hierbei die Funktion, ein gleichspannungsfreies Zwischenfrequenzausgangssignal zur Verfügung zu stellen indem der Kondensator C den Gleichstrom IBIAS, der die Diode 2 in einen geeigneten Arbeitspunkt vorspannt, abblockt. Durch das Vorsehen des Empfangsmischers in Form der Diode 2, die sehr nah an der Antenne 3 angeordnet ist, können die Verluste sowie die Rauschanpassung der Gesamtvorrichtung optimiert werden. Der Gleichstrom IBIAS5 der über die zweite Hochfrequenzbandsperre 5, die Diode 2, die erste Anpassschaltung 6 sowie die erste Hochfrequenzbandsperre 4 fließt, kann beispielsweise derart eingestellt werden, dass die Transmissionsverluste, die durch die erste Anpassschaltung 6 sowie die zweite Anpassschaltung 7, den Verlust an der Diode beim Senden und der Mischerverlust beim Empfangen entstehen, minimal ist. Dies bedeutet, dass ein Objekt, das eine bestimmte Entfernung zur Sende- und Empfangsvorrichtung besitzt, eine maximale Zwischenfrequenzleistung liefert. Die Optimierung der Zwischenfrequenzleistung auf eine bestimmte Objektentfernung kann also durch die Stromstärke IBIAS eingestellt werden. Selbstverständlich kann die erfindungsgemäße Vorrichtung auch als mehrstrahliges Radarsystem ausgeführt werden, indem die erfindungsgemäße Vorrichtung mehrfach nebeneinander ausgeführt wird.
Gemäß einem weiteren Ausführungsbeispiel ist es vorgesehen, die externe Beschaltung der Hochfrequenzbandsperrenanschlüsse zu vertauschen. In diesem Fall erfolgt der Masseanschluss zur Arbeitspunktvorspannung über die zweite Hochfrequenzbandsperre 5 und an der ersten Hochfrequenzbandsperre 4 ist die Stromquelle Ibias sowie der Koppelkondensator C mit dem Zwischenfrequenzausgang ZFOUT anzuschließen. In diesem Ausführungsbeispiel ist die Polung der Diode 2 im Vergleich zu dem in Figur 1 dargestellten Ausfuhrungsbeispiel umzudrehen.

Claims

Patentansprüche
1. Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung, insbesondere von Mikrowellenstrahlung, mindestens bestehend aus einem Oszillator (1), einer Diode (2), einer Antenne (3), zwei Hochfrequenzbandsperren (4,5), dadurch gekennzeichnet, dass die Diode (2) zwischen dem Oszillator (1) und der Antenne (3) angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Diode (2) in Serie zwischen dem Oszillator (1) und der Antenne (3) angeordnet ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Hochfrequenzbandsperren (4,5) jeweils in Parallelschaltung angeordnet sind, wobei die erste Hochfrequenzbandsperre (4) zwischen der Diode (2) und dem Oszillator (1) angeschlossen ist und die zweite Hochfrequenzbandsperre (5) zwischen der Diode (2) und der Anteime (3) angeschlossen ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die beiden Hochfrequenzbandsperren (4,5) jeweils in Parallelschaltung angeordnet sind, wobei die zweite Hochfrequenzbandsperre (4) zwischen der Diode (2) und dem Oszillator (1) angeschlossen ist und die erste Hochfrequenzbandsperre (5) zwischen der Diode (2) und der Antemie (3) angeschlossen ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Oszillator (1) ein frequenzmoduliertes Dauerstrichsignal (FMCW) generiert.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antenne (3) als Patchantenne ausgeführt ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste und die zweite Hochfrequenzbandsperre (4,5) ihre maximalen Sperrwirkungen im Frequenzbereich um 77 Gigahertz aufweisen.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Diode (2) über die beiden Hochfrequenzbandsperren (4,5) ein Gleichstrom (IBIAS) zugeführt wird.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der ersten oder der zweiten zweiten Hochfrequenzbandsperre (4,5) ein Zwischenfrequenzsignal (ZF0uτ) abgreifbar ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das
Zwischenfrequenzsignal (ZFOUT) eine Frequenz im Bereich um 100 Kilohertz aufweist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung zum Senden und Empfangen elektromagnetischer Strahlung in einem Kraftfahrzeugradarsystem zur adaptiven Abstands- und
Geschwindigkeitsregelung eingesetzt wird.
PCT/DE2003/002569 2002-08-02 2003-07-31 Vorrichtung zum senden und empfangen elektromagnetischer strahlung WO2004015445A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002135338 DE10235338A1 (de) 2002-08-02 2002-08-02 Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung
DE10235338.7 2002-08-02

Publications (1)

Publication Number Publication Date
WO2004015445A1 true WO2004015445A1 (de) 2004-02-19

Family

ID=30128653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002569 WO2004015445A1 (de) 2002-08-02 2003-07-31 Vorrichtung zum senden und empfangen elektromagnetischer strahlung

Country Status (2)

Country Link
DE (1) DE10235338A1 (de)
WO (1) WO2004015445A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1610148A1 (de) * 2004-06-25 2005-12-28 Robert Bosch Gmbh Radarsensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044130A1 (de) * 2004-09-13 2006-03-30 Robert Bosch Gmbh Monostatischer planarer Mehrstrahlradarsensor
DE102005062128A1 (de) * 2005-12-23 2007-08-30 Robert Bosch Gmbh Radarvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319244A (en) * 1979-01-22 1982-03-09 Nissan Motor Co., Ltd. Short-range doppler radar
EP0685930A1 (de) * 1994-06-01 1995-12-06 Plessey Semiconductors Limited Radar-Sender/Empfänger
US5497163A (en) * 1993-08-09 1996-03-05 Siemens Aktiengesellschaft Doppler radar module using micro-stripline technology
US5596325A (en) * 1995-07-07 1997-01-21 Nonlinear Technologies, Inc. FM-CW radar transceiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319244A (en) * 1979-01-22 1982-03-09 Nissan Motor Co., Ltd. Short-range doppler radar
US5497163A (en) * 1993-08-09 1996-03-05 Siemens Aktiengesellschaft Doppler radar module using micro-stripline technology
EP0685930A1 (de) * 1994-06-01 1995-12-06 Plessey Semiconductors Limited Radar-Sender/Empfänger
US5596325A (en) * 1995-07-07 1997-01-21 Nonlinear Technologies, Inc. FM-CW radar transceiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1610148A1 (de) * 2004-06-25 2005-12-28 Robert Bosch Gmbh Radarsensor
US7202811B2 (en) 2004-06-25 2007-04-10 Robert Bosch Gmbh Radar sensor

Also Published As

Publication number Publication date
DE10235338A1 (de) 2004-02-12

Similar Documents

Publication Publication Date Title
DE69733511T2 (de) Radaranlage mit vereinfachter Bauart
EP1601991B1 (de) Verfahren und einrichtung zur adaptiven leistungsregelung
EP0758093B1 (de) Radargerät mit reduzierter abgestrahlter Leistung
DE69529118T2 (de) Radar-Sender/Empfänger
EP0359911A2 (de) Radarhöhenmesser
DE2542628C2 (de) Korrelationsradar zur Entfernungsmessung
WO2003107528A2 (de) Schaltungsanordnung zur erzeugung eines iq-signals
DE102004044130A1 (de) Monostatischer planarer Mehrstrahlradarsensor
EP1340097A1 (de) Radareinrichtung und verfahren zum betreiben einer radareinrichtung
DE102010002759A1 (de) Radarsensor mit Selbsttesteinrichtung
DE69122375T2 (de) Sender-Empfängerteil eines Pulsdopplerradars
WO2010112261A1 (de) Mehrstrahlradarsensorvorrichtung und verfahren zum bestimmen eines abstandes
EP1610148B1 (de) Radarsensor
DE102004051276A1 (de) Radarsensor zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten
EP1423729A2 (de) Pulsradaranordnung
EP1600793A2 (de) Radarsensor für Kraftfahrzeuge
EP1423723A2 (de) Pulsradaranordnung
EP3966593A1 (de) Kohärentes, multistatisches radarsystem, insbesondere zur verwendung in einem fahrzeug
EP1245964A1 (de) Verfahren zur Generierung und Auswertung von Radarpulsen sowie Radarsensor
EP2438459B1 (de) Radarsensor mit störsignalkompensation
WO2004015445A1 (de) Vorrichtung zum senden und empfangen elektromagnetischer strahlung
DE69114591T2 (de) Gepulstes Radar mit einem einzigen FSK-Oszillator.
DE69721452T2 (de) Kombinierter Duplexer-Mischer
WO2003027708A1 (de) Cw-radar mit bestimmung des objektabstandes über die laufzeit eines dem cw-signal aufgeprägten phasensprunges
DE69009573T2 (de) Einrichtung zur Detektion der Durchfahrt von mindestens einem beweglichen Gegenstand an mindestens einem bestimmten Punkt seiner Bewegung.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP