WO2003098071A1 - Damping mechanism - Google Patents
Damping mechanism Download PDFInfo
- Publication number
- WO2003098071A1 WO2003098071A1 PCT/US2003/012374 US0312374W WO03098071A1 WO 2003098071 A1 WO2003098071 A1 WO 2003098071A1 US 0312374 W US0312374 W US 0312374W WO 03098071 A1 WO03098071 A1 WO 03098071A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- damping
- tensioner
- arcuate member
- lever arm
- engaged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes or chains
- F16H7/10—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley
- F16H7/12—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley of an idle pulley
- F16H7/1209—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means
- F16H7/1218—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means of the dry friction type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes or chains
- F16H7/10—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley
- F16H7/12—Means for varying tension of belts, ropes or chains by adjusting the axis of a pulley of an idle pulley
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes or chains
- F16H2007/0802—Actuators for final output members
- F16H2007/081—Torsion springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes or chains
- F16H7/0829—Means for varying tension of belts, ropes or chains with vibration damping means
- F16H2007/084—Means for varying tension of belts, ropes or chains with vibration damping means having vibration damping characteristics dependent on the moving direction of the tensioner
Definitions
- the invention relates to a damping mechanism, and more particularly, to an asymmetric damping mechanism for a tensioner .
- Belt tensioners are used to impart a load on a belt.
- the belt is used in an engine application for driving various accessories associated with the engine.
- an air conditioning compressor and alternator are two of the accessories that may be driven by a belt drive system.
- a belt tensioner comprises a pulley journaled to an arm.
- a spring is connected between the arm and a base.
- the spring may also engage a damping mechanism.
- the damping mechanism comprises frictional surfaces in contact with each other. The damping mechanism damps an oscillatory movement of the arm caused by operation of the belt drive. This in turn enhances a belt life expectancy.
- the primary aspect of the present invention is to provide a damping mechanism having an asymmetric damping factor in the range of 1.5 to 5.0.
- Another aspect of the invention is to provide a tensioner having a damping mechanism comprising two members having a pivotal connection.
- Fig. 1 is a top perspective view of an inventive damping mechanism.
- Fig. 2 is a cross-section view of an inventive damping mechanism at line 2-2 in Fig. 1.
- Fig. 3 is a top perspective view of an inventive damping mechanism.
- Fig. 4 is a cross-section view of an inventive damping mechanism at line 4-4 in Fig. 3.
- Fig. 5 is a top perspective view of a locking mechanism on the damping shoe of an inventive damping mechanism.
- Fig. 6 is a top perspective view of a locking mechanism on the damping band of an inventive damping mechanism.
- Fig. 7 is a top perspective view of a prior art damping mechanism.
- Fig. 8 is a top perspective view of a prior art damping mechanism damping shoe.
- Fig. 9 is a top perspective view of a prior art damping mechanism damping band.
- Fig. 10 is a diagram of forces acting on a damping mechanism.
- Fig. 11 is a cross-sectional view of forces acting on a tensioner at line 11-11 in Fig. 12.
- Fig. 12 is a plan view of forces acting on a tensioner.
- Fig. 13 is a diagram of forces acting on a damping mechanism.
- Fig. 14 is a cross-sectional view of forces acting on a tensioner at line 14-14 in Fig. 15.
- Fig. 15 is a plan view of forces acting on a tensioner.
- Fig. 16 is an exploded view of a tensioner having a damping mechanism.
- Fig. 17 is an exploded view of a tensioner having a damping mechanism.
- Fig. 1 is a top perspective view of an inventive damping mechanism.
- the inventive damping mechanism is utilized in a belt tensioner, see Fig. 17.
- the belt tensioner engages a belt through a pulley journaled to a lever arm.
- the tensioner is used to apply a preload to the belt and to damp oscillatory movements of the belt.
- the damping mechanism damps oscillatory movements of a tensioner lever arm.
- the lever arm generally experiences a bi-directional or oscillatory motion caused by changes in the operating status of a belt drive, for example by load changes. Damping is necessary to remove energy from the belt system, thereby ensuring proper operation of the tensioner in order to maximize belt life and operational efficiency.
- Damping mechanism 100 comprises damping band 102. Damping band 102 is connected to an outer arcuate surface 104 of damping shoe 101.
- Spring, or biasing member, receiving portion 103 comprises a slot in damping shoe 101. Receiving portion 103 receives an end tang (not shown, see 500 in Fig. 15) of a coil spring. Surface 105 engages a coil of a spring to provide support during operation.
- Damping band 102 comprises a lubricated plastic such as nylon, PA and PPA, and their equivalents.
- Fig. 2 is a cross-section view of an inventive damping mechanism at line 2-2 in Fig. 1.
- Ring cut 106 extends about an outer perimeter of outer arcuate surface 104.
- Rim or protrusion 107 extends about a partial circumference of damping shoe 101. Ring cut 106 in combination with protrusion 107 serve to mechanically attach damping band 102 to damping shoe 101.
- Fig. 3 is a top perspective view of an alternate damping mechanism.
- Inventive damping mechanism 200 comprises a first arcuate member 210 and a second arcuate member 220.
- First arcuate member 210 has a spring receiving portion 211 into which a spring end tang may be inserted, see Fig. 12.
- a wall of the spring receiving portion has maximum thickness 211a at the spring contact area.
- Wall 211a may be tapered from the contact area m one direction or m both directions as it extends m both directions. By comparison, a like wall of the previous art has uniform thickness.
- First arcuate member 210 comprises a damping band 213 attached to a damping shoe 212.
- Second arcuate member 220 comprises a damping band 215 attached to a damping shoe 214.
- First arcuate member 210 is in pivotal contact with the second arcuate member 220 at a point of contact 216.
- Point of contact 216 comprises end 228 of damping shoe 212 and end 219 of damping shoe 214.
- Point of contact 216 may vary from a minimum radius to a maximum radius across a width W of each damping shoe with respect to a lever arm axis of rotation R-R, see Fig. 11.
- point of contact 216 is located at a predetermined radial distance from a lever arm axis of rotation R-R.
- a minimum radius location for point of contact 216, shown in Fig. 3 results in the highest asymmetric damping factor for the damping mechanism in operation in a tensioner.
- Point of contact 216 may be disposed at an outer radius 288 which produces a reduced asymmetric damping factor as compared to the foregoing minimum radius location.
- end 218 of first arcuate member 210 is in contact with the second arcuate member end 217.
- a spring (not shown) having a coil direction opposite that used for the embodiment in Fig. 3 is used. Therefore, by switching the point of contact from one end of the first arcuate member and second arcuate member to another end, either a left hand or right hand spring can be used.
- Damping band 213, 215 are made of frictional material such as plastics, phenolics and metallics.
- a working surface 230, 231 of damping band 213, 215 respectively is slideably engaged under pressure with a tensioner base or arm by operation of a spring, see Fig. 12 and Fig. 15.
- a frictional damping force is generated when the damping band slides on the base or arm.
- Damping shoes 212, 213 are each made of structural material such as steel, molded plastic or equivalents thereof. Each damping shoe can be manufactured by utilizing a powder metal process, a die cast process, injection molding or similar processes. Materials that can be used include steel, aluminum (for low load parts), thermoplastics with various fillers, and equivalents thereof. Damping band 215 of the second arcuate member has a material thickness less than the damping band 213 of the second portion. This has two advantages, first, increased spring hook-up size can be realized therefore a larger spring can be used. Second, due to the fact of that the second portion 220 of the damping mechanism has higher load than the first portion 210, a reduced thickness of the first damping band 213 will equalize durability life of both parts .
- Fig. 4 is a cross-section view of an alternate damping mechanism at line 4-4 in Fig. 3.
- Ring cut 221 extends about an outer perimeter of damping shoe 212.
- Protrusion 222 extends about a partial circumference of damping shoe 212.
- Ring cut 223 extends about an outer perimeter of damping shoe 214.
- Protrusion 224 extends about a partial circumference of damping shoe 214.
- Each ring cut 221, 223 in combination with each protrusion 222, 224 serve to mechanically attached each damping band 213, 215 to each damping shoe 212, 214 respectively.
- Fig. 5 is a top perspective view of a locking mechanism on the damping shoe of an inventive damping mechanism.
- Locking mechanism 300 joins damping shoe 101 to damping band 102, see Fig. 6.
- Locking mechanism 300 comprises a plurality of vertical grooves 110 on an arcuate outer engaging surface 111 of damping shoe 101. Ring cut 112 is included to a top edge of the arcuate outer surface 111 to enhance the interconnection of the damping band 102 to the damping shoe 101. Accordingly, lip portion 227 on damping band 102 engages over ring cut 112.
- the disclosed multiple groove locking mechanism provides an improved, strong and uniform connection between the damping shoe and damping band. The connection distributes a frictional load imparted to the damping band 102 during operation, thereby extending an operational life over the prior art.
- Fig. 6 is a top perspective view of a locking mechanism on the damping band of an inventive damping mechanism.
- the damping band portion of locking mechanism 300 comprises a plurality of spaced vertical ribs 120 on an arcuate inner engaging surface 121 of damping band 102. Ribs 120 of damping band 102 cooperatively engage grooves 110 of damping shoe 101.
- Protrusions 228 extend from a lower portion 229 of damping band 102. Protrusions 228 engage cooperating recesses or dimples 231 in a base of damping shoe 101 to further affix damping band 102.
- the inventive locking mechanism significantly reduces weakening of the damping shoe, therefore, the inventive damping mechanism is much stronger than those in prior art. Loading conditions on the damping shoe/damping band are also much improved due to an improved load distribution across the damping shoe realized by the force distributive nature of the locking mechanism.
- Fig. 7 is a top perspective view of a prior art damping mechanism.
- Prior art damping band DB is connected to prior art damping shoe DS .
- Tabs T mechanically connect the damping band DB, see Fig. 9, to the damping shoe DS, see Fig. 8.
- Fig. 8 is a top perspective view of a prior art damping mechanism damping shoe.
- Damping shoe DS comprises slots S. Slots S receive tabs T in order to mechanically connect damping band DB to damping shoe DS, see Fig. 9.
- Fig. 9 is a top perspective view of a prior art damping mechanism damping band.
- Damping band DB comprises tabs T. Each of tabs T mechanically cooperate with corresponding slots S m order to connect damping band DB to damping shoe DS.
- Fig. 10 is a diagram of forces acting on a damping mechanism.
- the damping mechanism depicted is the embodiment described in Fig. 3 and Fig. 4.
- Forces FI are spring contact reaction forces caused by contact of spring end 500 with the spring receiving portion 211. Spring end 500 contacts the spring receiving portion 211 at two points, creating a pair of reaction forces FI .
- F2 is a normal reaction force on the damping surface 230.
- F3 is a tangent friction force on the damping surface 230.
- F8 is a normal reaction force on the damping surface 231.
- F9 is a tangent friction force on the damping surface 231.
- F4 is the normal reaction force on damping mechanism arcuate member 220 imparted by a contact of damping shoe 214 with a lever arm 1030, see Fig. 16.
- the asymmetric damping factor is a function of a difference m frictional forces F3 and F9 for a movement of the lever arm 1030.
- a normal reaction force F8 on damping surface 231 is larger than normal reaction force F2 on damping surface 230.
- F3 and F9 operate as shown in Fig. 10.
- friction force vectors F3 and F9 reverse direction.
- the change of direction of frictional force vectors F3 and F9 causes a resultant force on each damping surface 230, 231 to change.
- the asymmetric damping factor is adjustable depending upon the radial location of point of contact 216 described in Fig. 3 and Fig. 4.
- the asymmetric damping factor will be increased as the point of contact 216 is placed radially closer to an axis of rotation of the lever arm 1030.
- the asymmetric damping factor will be decreased as the point of contact 216 is placed radially farther from an axis of rotation of the lever arm 1030.
- the asymmetric damping factor can be varied in the range of approximately 1.5 to 5.
- Fig. 11 is a cross-sectional view of forces acting on a tensioner at line 11-11 in Fig. 12.
- Force F7 is a normal reaction force acting on the arm at the damping mechanism contact point. Force F7 has the same magnitude as force F4 acting on the damping mechanism.
- F6 is a pivot bushing reaction force acting at the interface between bushing 1040 and lever arm 1030.
- F5 is a hub load caused by a load on a belt B, see Fig. 12.
- Fig. 12 is a plan view of forces acting on a tensioner. Depicted in Fig. 12 is a plan view of the forces described in Fig. 11.
- Fig. 13 is a diagram of the forces acting on a damping mechanism.
- the damping mechanism is that depicted in Fig. 1 and Fig. 2.
- Forces Fll are spring contact reaction forces caused by contact of the end 500 with the spring receiving portion 103.
- F12 is a normal reaction force on the damping surface 109.
- F13 is a tangent friction force on the damping surface 109.
- F14 is the reaction force on damping mechanism portion 102 imparted by a contact with a lever arm 2030, see Fig. 17.
- the asymmetric damping factor is realized by a difference in frictional force F13 for a movement of the lever arm 2030.
- the value of the torque on the lever arm when the arm moves in the direction +A is larger than the value of torque generated by the pair of spring forces Fll.
- the difference between the two values of torque is defined as the damping torque in the direction +A.
- the value of the torque on the lever arm when the arm moves in the direction -A is smaller than the value of torque generated by the pair of spring forces Fll.
- the difference between the two values of torque is defined as the damping torque in the direction -A.
- the ratio between the value of the damping torque in the direction +A and the value of the damping torque in the direction -A represents the asymmetric damping factor.
- Fig. 14 is a cross-sectional view of forces acting on a tensioner at line 14-14 in Fig. 15.
- Force F17 is a normal reaction force acting on the damping mechanism contact point.
- F16 is a pivot bushing reaction force acting at the interface between bushing 1040 and lever arm 1030.
- F15 is a hub load caused by a load on a belt B.
- Fig. 15 is a plan view of the forces acting on a tensioner. Depicted in Fig. 15 is a plan view of the forces described in Fig. 14.
- Fig. 16 is an exploded view of a tensioner having a damping mechanism.
- Damping mechanism 200 engages lever arm 1030 at tab 1031.
- Biasing member or spring 1020 has one end connected to base 1010 and the other end connected to damping mechanism spring receiving portion 211 as described elsewhere in this specification.
- Lever arm 1030 is pivotably connected to base 1010 through bushing 1040. Dust seal 1050 prevents foreign material from entering the tensioner during operation.
- Pulley 1060 is journaled to lever arm 1030 through bearing 1070.
- a belt (not shown) engages pulley surface 1061.
- Bearing 1070 is connected by a fastener such as bolt 1080.
- Damping mechanism surfaces 230, 231 are in sliding engagement with an inner surface 1011 of tensioner base 1010.
- Tab 1031 engages damping shoe 212 during operation, thereby causing a movement of base inner surface 1011 across damping mechanism surface 230.
- Fig. 17 is an exploded view of a tensioner having a damping mechanism.
- Damping mechanism 100 is engaged with lever arm 2030 at tab 2031.
- Biasing member or spring 2020 has one end connected to base 2010 and the other end connected to damping mechanism spring receiving portion 103 as described elsewhere in this specification.
- Lever arm 2030 is pivotably connected to base 2010 through bushing 2040. Dust seal 2050 prevents foreign material from entering the tensioner during operation.
- Pulley 2060 is journaled to lever arm 2030 through bearing 2070.
- a belt (not shown) engages pulley surface 2061.
- Bearing 2070 is connected by a fastener such as bolt 2080.
- Damping mechanism surface 109 is in sliding engagement with an inner surface 2011 of tensioner base 2010.
- Tab 2031 engages damping mechanism 100 during operation, thereby causing a movement of base inner surface 2011 across damping mechanism surface 109.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Vibration Dampers (AREA)
- Supporting Of Heads In Record-Carrier Devices (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Chair Legs, Seat Parts, And Backrests (AREA)
Priority Applications (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020067002069A KR100649075B1 (ko) | 2002-05-15 | 2003-04-18 | 감쇠 기구 |
| CNB038004631A CN100489344C (zh) | 2002-05-15 | 2003-04-18 | 阻尼机构和具有阻尼机构的张紧器 |
| AU2003228632A AU2003228632B2 (en) | 2002-05-15 | 2003-04-18 | Damping mechanism |
| HU0700112A HUP0700112A2 (en) | 2002-05-15 | 2003-04-18 | Damping mechanism |
| EP03726393A EP1504204B1 (en) | 2002-05-15 | 2003-04-18 | Damping mechanism |
| BRPI0303389-9A BRPI0303389B1 (pt) | 2002-05-15 | 2003-04-18 | Mecanismo de amortecimento e tensionador |
| KR1020037016042A KR100626631B1 (ko) | 2002-05-15 | 2003-04-18 | 감쇠 기구 및 이를 포함하는 텐셔너 |
| CA002448919A CA2448919C (en) | 2002-05-15 | 2003-04-18 | Damping mechanism |
| PL365542A PL208791B1 (pl) | 2002-05-15 | 2003-04-18 | Napinacz pasowy |
| ES03726393T ES2375355T3 (es) | 2002-05-15 | 2003-04-18 | Mecanismo de amortiguamiento. |
| AT03726393T ATE529660T1 (de) | 2002-05-15 | 2003-04-18 | Dämpfermechanismus |
| JP2004505564A JP4009782B2 (ja) | 2002-05-15 | 2003-04-18 | ダンピング機構 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/147,183 | 2002-05-15 | ||
| US10/147,183 US7004863B2 (en) | 2002-05-15 | 2002-05-15 | Damping mechanism |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003098071A1 true WO2003098071A1 (en) | 2003-11-27 |
Family
ID=29418964
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/012374 Ceased WO2003098071A1 (en) | 2002-05-15 | 2003-04-18 | Damping mechanism |
Country Status (16)
| Country | Link |
|---|---|
| US (2) | US7004863B2 (enExample) |
| EP (1) | EP1504204B1 (enExample) |
| JP (1) | JP4009782B2 (enExample) |
| KR (2) | KR100626631B1 (enExample) |
| CN (1) | CN100489344C (enExample) |
| AT (1) | ATE529660T1 (enExample) |
| AU (1) | AU2003228632B2 (enExample) |
| BR (1) | BRPI0303389B1 (enExample) |
| CA (1) | CA2448919C (enExample) |
| ES (1) | ES2375355T3 (enExample) |
| HU (1) | HUP0700112A2 (enExample) |
| PL (1) | PL208791B1 (enExample) |
| RU (1) | RU2258163C2 (enExample) |
| TR (1) | TR200302342T1 (enExample) |
| TW (1) | TWI223695B (enExample) |
| WO (1) | WO2003098071A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005299810A (ja) * | 2004-04-13 | 2005-10-27 | Gates Unitta Asia Co | オートテンショナとオートテンショナの製造方法 |
| DE102007049858A1 (de) | 2007-10-18 | 2009-04-23 | Schaeffler Kg | Spannvorrichtung mit mechanischer Dämpfung für einen Zugmitteltrieb |
| US8118698B2 (en) | 2006-04-12 | 2012-02-21 | Litens Automotive Gmbh | Tensioner for an endless drive |
| US8142314B2 (en) | 2006-03-22 | 2012-03-27 | Litens Automotive Partnership | Tensioner for flexible drives |
| US9377090B2 (en) | 2008-10-02 | 2016-06-28 | Litens Automotive Partnership | Compact tensioner with sustainable damping |
Families Citing this family (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE60225716T2 (de) * | 2001-12-05 | 2009-04-30 | Litens Automotive, Woodbridge | Riemenspanner mit reibungsgesteuerter stopposition |
| DE20319886U1 (de) * | 2003-12-22 | 2005-05-04 | Litens Automotive Gmbh | Automatischer Riemenspanner |
| DE102004047422A1 (de) * | 2004-09-28 | 2006-04-13 | Muhr Und Bender Kg | Riemenspannvorrichtung mit hoher Dämpfung |
| US7448974B2 (en) * | 2004-11-05 | 2008-11-11 | Dayco Products, Llc | Belt tensioner and method for making a belt-tensioner arm and a spring case |
| US7497794B2 (en) * | 2004-11-05 | 2009-03-03 | Dayco Products, Llc | Belt tensioner and method for assembly |
| US20060258497A1 (en) * | 2005-05-13 | 2006-11-16 | Andrzej Dec | Tensioner |
| EP1893894B1 (en) * | 2005-06-20 | 2010-12-22 | Dayco Europe S.R.L. Con Unico Socio | Asymetric damping belt tensioner |
| US7790406B2 (en) * | 2005-08-11 | 2010-09-07 | Sru Biosystems, Inc | Grating-based sensor combining label-free binding detection and fluorescence amplification and readout system for sensor |
| DE102005052453A1 (de) * | 2005-11-03 | 2007-05-10 | Schaeffler Kg | Spanneinrichtung für ein Zugmittel, insbesondere einen Riemen |
| AU2012202067B2 (en) * | 2005-12-13 | 2013-10-10 | Dayco Ip Holdings, Llc | Belt tensioner |
| DE102006014942A1 (de) * | 2006-03-31 | 2007-10-04 | Schaeffler Kg | Spannvorrichtung eines Zugmitteltriebs |
| US7678002B2 (en) * | 2006-08-31 | 2010-03-16 | Dayco Products, Llc | One-way clutched damper for automatic belt tensioner |
| US20080119310A1 (en) * | 2006-11-16 | 2008-05-22 | Holcombe C Scott | Rotary tensioner |
| DE102006059550A1 (de) * | 2006-12-16 | 2008-06-19 | Schaeffler Kg | Spannvorrichtung für einen Zugmitteltrieb |
| DE102007015676A1 (de) * | 2007-03-31 | 2008-10-02 | Schaeffler Kg | Spannvorrichtung eines Zugmitteltriebs |
| PL2140172T3 (pl) | 2007-05-01 | 2012-01-31 | Litens Automotive Inc | Napinacz z kompensacją zużywania |
| DE102007031294A1 (de) * | 2007-07-05 | 2009-01-08 | Schaeffler Kg | Spannvorrichtung für Zugmitteltriebe |
| DE102007031298A1 (de) * | 2007-07-05 | 2009-01-08 | Schaeffler Kg | Dämpfungsvorrichtung eines mechanischen Spannsystems für einen Zugmitteltrieb |
| DE102008015737A1 (de) | 2008-03-26 | 2009-10-01 | Schaeffler Kg | Automatische Zugmittelspannvorrichtung zum Spannen eines Riemens eines Verbrennungsmotors mit einer Gleitlagerbuchse, die eine konisch ausgeformte Außenseite aufweist |
| DE102008021037A1 (de) * | 2008-04-26 | 2009-10-29 | Schaeffler Kg | Hebellagerung mit eingespritztem Gleitlager |
| US8142315B2 (en) * | 2008-04-30 | 2012-03-27 | Litens Automotive Partnership | Tensioner with hub load balancing feature |
| DE102008050384A1 (de) * | 2008-10-02 | 2010-04-08 | Schaeffler Kg | Spann- und Dämpfungsvorrichtung für Zugmitteltriebe |
| US8403785B2 (en) * | 2008-11-05 | 2013-03-26 | Dayco Ip Holdings, Llc | Clutched damper for a belt tensioner |
| DE102009014263B4 (de) * | 2009-03-20 | 2019-03-28 | Schaeffler Technologies AG & Co. KG | Zugmitteltrieb mit Schwingungsdämpfer |
| US20100261564A1 (en) * | 2009-04-13 | 2010-10-14 | Hughes Thomas E | Rotary tensioner |
| DE102009020589A1 (de) * | 2009-05-09 | 2010-11-11 | Schaeffler Technologies Gmbh & Co. Kg | Riemenspanneinheit |
| JP5291550B2 (ja) * | 2009-06-26 | 2013-09-18 | 滋 河本 | オートテンショナ |
| US8092328B2 (en) | 2009-06-30 | 2012-01-10 | The Gates Corporation | Dual tensioner assembly |
| US20110177897A1 (en) * | 2010-01-20 | 2011-07-21 | Peter Ward | Tensioner |
| DE102010019066A1 (de) | 2010-05-03 | 2011-11-03 | Schaeffler Technologies Gmbh & Co. Kg | Riemenspanner |
| DE102010019054A1 (de) * | 2010-05-03 | 2011-11-03 | Schaeffler Technologies Gmbh & Co. Kg | Spannvorrichtung |
| US8439781B2 (en) * | 2010-06-22 | 2013-05-14 | Dayco Ip Holdings, Llc | Radial damping mechanism and use for belt tensioning |
| US8617013B2 (en) | 2010-09-02 | 2013-12-31 | Dayco Ip Holdings, Llc | Tensioner with expanding spring for radial frictional asymmetric damping |
| US8545352B2 (en) | 2010-09-02 | 2013-10-01 | Dayco Ip Holdings, Llc | Tensioner with expanding spring for radial frictional asymmetric damping |
| DE102011007722A1 (de) | 2011-04-20 | 2012-10-25 | Schaeffler Technologies AG & Co. KG | Spannvorrichtung für einen Zugmitteltrieb |
| US20140287860A1 (en) * | 2011-10-26 | 2014-09-25 | Litens Automotive Partnership | Tensioner with damping structure made from two components with no rotational play therebetween |
| IN2014DN03031A (enExample) * | 2011-10-29 | 2015-05-08 | Gates Corp | |
| US20140287858A1 (en) * | 2011-10-29 | 2014-09-25 | Gates Unitta Power Transmission (Shanghai) Limited) | Tensioner |
| KR20150100686A (ko) | 2012-12-26 | 2015-09-02 | 리텐스 오토모티브 파트너쉽 | 궤도 장력기 조립체 |
| US9394977B2 (en) | 2013-03-15 | 2016-07-19 | Dayco Ip Holdings, Llc | Tensioner with expanding spring for radial frictional asymmetric damping |
| KR102204802B1 (ko) * | 2013-05-14 | 2021-01-18 | 리텐스 오토모티브 파트너쉽 | 댐핑이 개선된 텐셔너 |
| CN103423392B (zh) * | 2013-08-09 | 2015-11-18 | 宁波丰茂远东橡胶有限公司 | 带有非对称阻尼机构的张紧轮 |
| ITTO20131032A1 (it) * | 2013-12-17 | 2015-06-18 | Dayco Europe Srl | Tenditore per una trasmissione a cinghia |
| CN103775582A (zh) * | 2014-01-10 | 2014-05-07 | 洛阳理工学院 | 一种链条张紧机构 |
| JP6162162B2 (ja) * | 2014-02-18 | 2017-07-12 | 三ツ星ベルト株式会社 | オートテンショナ |
| CN203770558U (zh) * | 2014-03-25 | 2014-08-13 | 宁波丰茂远东橡胶有限公司 | 一种发动机用大阻尼低衰减张紧器 |
| US20150308545A1 (en) * | 2014-04-28 | 2015-10-29 | The Gates Corporation | Orbital tensioner |
| EP2955414A1 (en) * | 2014-06-13 | 2015-12-16 | Aktiebolaget SKF | Tensioning device and method for assembling such a tensioning device |
| WO2015196268A1 (en) | 2014-06-26 | 2015-12-30 | Litens Automotive Partnership | Orbital tensioner assembly |
| CN104179906A (zh) * | 2014-08-08 | 2014-12-03 | 莱顿汽车部件(苏州)有限公司 | 弹簧外张式高阻尼自动张紧器 |
| WO2016028557A1 (en) * | 2014-08-19 | 2016-02-25 | Borgwarner Inc. | Damping ring |
| CN104214289A (zh) * | 2014-09-01 | 2014-12-17 | 莱顿汽车部件(苏州)有限公司 | 叠加片簧式张紧器 |
| JP6421039B2 (ja) * | 2015-01-06 | 2018-11-07 | ゲイツ・ユニッタ・アジア株式会社 | テンショナ |
| US9982760B2 (en) * | 2015-02-12 | 2018-05-29 | Ningbo Fengmao Far-East Rubber Co., Ltd. | Tensioner for engine with large and stable damping and minimum deflection of shaft |
| US9618099B2 (en) * | 2015-07-13 | 2017-04-11 | Gates Corporation | Tensioner with secondary damping |
| JP6527550B2 (ja) * | 2016-06-27 | 2019-06-05 | 三ツ星ベルト株式会社 | 補機駆動ベルトシステムに備わるオートテンショナ |
| US9976634B2 (en) | 2016-07-06 | 2018-05-22 | Gates Corporation | Rotary tensioner |
| US9890837B1 (en) * | 2016-09-15 | 2018-02-13 | Gates Corporation | Tensioner |
| CN106838165B (zh) * | 2017-01-22 | 2019-02-12 | 宁波丰茂远东橡胶有限公司 | 装有对称布置式阻尼装置的自动张紧器 |
| US10962092B2 (en) | 2017-09-08 | 2021-03-30 | Gates Corporation | Tensioner and method |
| US10746264B2 (en) | 2017-11-16 | 2020-08-18 | Gates Corporation | Rotary tensioner |
| US10883575B2 (en) * | 2018-01-03 | 2021-01-05 | Gates Corporation | Tensioner |
| US10683914B2 (en) * | 2018-02-14 | 2020-06-16 | Gates Corporation | Tensioner |
| US11333223B2 (en) | 2019-08-06 | 2022-05-17 | Gates Corporation | Orbital tensioner |
| CN111207192B (zh) * | 2019-09-30 | 2021-01-15 | 宁波丰茂远东橡胶有限公司 | 一种装有圆形阻尼套筒的自动张紧器 |
| EP4088045B1 (en) * | 2020-01-08 | 2025-08-20 | Gates Corporation | Adjustable damping mechanism for tensioner device |
| WO2021178337A1 (en) * | 2020-03-02 | 2021-09-10 | Gates Corporation | Tensioner device with elongated arm |
| DE102021103684A1 (de) | 2021-02-17 | 2022-08-18 | Schaeffler Technologies AG & Co. KG | Riemenspanner |
| JP7300549B1 (ja) * | 2021-12-23 | 2023-06-29 | 三ツ星ベルト株式会社 | オートテンショナ |
| CN117722474A (zh) * | 2023-12-15 | 2024-03-19 | 莱顿汽车部件(苏州)有限公司 | 一种非对称高阻尼比张紧器 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1645576A (en) * | 1924-03-24 | 1927-10-18 | Beconnier Paul Marcellin | Shock absorber |
| DE4029940A1 (de) * | 1990-09-21 | 1992-03-26 | Kugelfischer G Schaefer & Co | Daempfungseinrichtung fuer ein riemenspannsystem |
| EP0636815A1 (de) * | 1993-07-29 | 1995-02-01 | Continental Aktiengesellschaft | Vorrichtung zum Spannen von Treibriemen |
| US5632697A (en) | 1995-12-18 | 1997-05-27 | The Gates Corporation | Damping mechanism for a tensioner |
| DE19647224A1 (de) * | 1995-11-25 | 1997-05-28 | Volkswagen Ag | Reibdämpfer |
| US20020010045A1 (en) * | 2000-01-12 | 2002-01-24 | Alexander Serkh | Damping mechanism for a tensioner |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4557709A (en) * | 1982-05-03 | 1985-12-10 | I Corp. | Belt tensioner system |
| US4696663A (en) * | 1986-04-14 | 1987-09-29 | Dyneer Corporation | Belt tensioner |
| US5354242A (en) * | 1992-10-08 | 1994-10-11 | St John Richard C | Automatic belt tensioner with an enclosed flat wire power spring and improved zeroing and damping means |
| US5647813A (en) | 1995-12-18 | 1997-07-15 | The Gates Corporation | Tensioner with damping mechanism and belt drive system |
| US5964674A (en) * | 1997-03-21 | 1999-10-12 | The Gates Corporation | Belt tensioner with bottom wall of base juxtaposed pivot arm |
| RU2163986C1 (ru) * | 2000-02-16 | 2001-03-10 | Вахрамов Николай Александрович | Гидромеханическое устройство для натяжения цепи |
| JP2002039297A (ja) * | 2000-07-19 | 2002-02-06 | Unitta Co Ltd | オートテンショナ |
| US6609988B1 (en) * | 2001-05-24 | 2003-08-26 | The Gates Corporation | Asymmetric damping tensioner belt drive system |
| US20030119616A1 (en) * | 2001-12-20 | 2003-06-26 | Meckstroth Richard J. | Dual friction surface asymmetric damped tensioner |
-
2002
- 2002-05-15 US US10/147,183 patent/US7004863B2/en not_active Expired - Lifetime
-
2003
- 2003-04-18 JP JP2004505564A patent/JP4009782B2/ja not_active Expired - Lifetime
- 2003-04-18 EP EP03726393A patent/EP1504204B1/en not_active Expired - Lifetime
- 2003-04-18 CN CNB038004631A patent/CN100489344C/zh not_active Expired - Lifetime
- 2003-04-18 PL PL365542A patent/PL208791B1/pl unknown
- 2003-04-18 TR TR2003/02342T patent/TR200302342T1/xx unknown
- 2003-04-18 RU RU2003135796/11A patent/RU2258163C2/ru active
- 2003-04-18 AU AU2003228632A patent/AU2003228632B2/en not_active Expired
- 2003-04-18 BR BRPI0303389-9A patent/BRPI0303389B1/pt not_active IP Right Cessation
- 2003-04-18 ES ES03726393T patent/ES2375355T3/es not_active Expired - Lifetime
- 2003-04-18 WO PCT/US2003/012374 patent/WO2003098071A1/en not_active Ceased
- 2003-04-18 KR KR1020037016042A patent/KR100626631B1/ko not_active Expired - Lifetime
- 2003-04-18 KR KR1020067002069A patent/KR100649075B1/ko not_active Expired - Lifetime
- 2003-04-18 AT AT03726393T patent/ATE529660T1/de not_active IP Right Cessation
- 2003-04-18 HU HU0700112A patent/HUP0700112A2/hu unknown
- 2003-04-18 CA CA002448919A patent/CA2448919C/en not_active Expired - Lifetime
- 2003-05-14 TW TW092113051A patent/TWI223695B/zh not_active IP Right Cessation
-
2004
- 2004-11-01 US US10/978,799 patent/US20050096168A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1645576A (en) * | 1924-03-24 | 1927-10-18 | Beconnier Paul Marcellin | Shock absorber |
| DE4029940A1 (de) * | 1990-09-21 | 1992-03-26 | Kugelfischer G Schaefer & Co | Daempfungseinrichtung fuer ein riemenspannsystem |
| EP0636815A1 (de) * | 1993-07-29 | 1995-02-01 | Continental Aktiengesellschaft | Vorrichtung zum Spannen von Treibriemen |
| DE19647224A1 (de) * | 1995-11-25 | 1997-05-28 | Volkswagen Ag | Reibdämpfer |
| US5632697A (en) | 1995-12-18 | 1997-05-27 | The Gates Corporation | Damping mechanism for a tensioner |
| US20020010045A1 (en) * | 2000-01-12 | 2002-01-24 | Alexander Serkh | Damping mechanism for a tensioner |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005299810A (ja) * | 2004-04-13 | 2005-10-27 | Gates Unitta Asia Co | オートテンショナとオートテンショナの製造方法 |
| US8142314B2 (en) | 2006-03-22 | 2012-03-27 | Litens Automotive Partnership | Tensioner for flexible drives |
| US8485925B2 (en) | 2006-03-22 | 2013-07-16 | Litens Automotive Partnership | Tensioner for flexible drives |
| US8118698B2 (en) | 2006-04-12 | 2012-02-21 | Litens Automotive Gmbh | Tensioner for an endless drive |
| DE102007049858A1 (de) | 2007-10-18 | 2009-04-23 | Schaeffler Kg | Spannvorrichtung mit mechanischer Dämpfung für einen Zugmitteltrieb |
| US9377090B2 (en) | 2008-10-02 | 2016-06-28 | Litens Automotive Partnership | Compact tensioner with sustainable damping |
Also Published As
| Publication number | Publication date |
|---|---|
| RU2258163C2 (ru) | 2005-08-10 |
| ATE529660T1 (de) | 2011-11-15 |
| HUP0700112A2 (en) | 2007-05-02 |
| BRPI0303389B1 (pt) | 2015-06-23 |
| CN1516789A (zh) | 2004-07-28 |
| KR20040020918A (ko) | 2004-03-09 |
| US20050096168A1 (en) | 2005-05-05 |
| EP1504204B1 (en) | 2011-10-19 |
| US20030216204A1 (en) | 2003-11-20 |
| TR200302342T1 (tr) | 2004-07-21 |
| AU2003228632B2 (en) | 2006-08-03 |
| BR0303389A (pt) | 2004-03-30 |
| US7004863B2 (en) | 2006-02-28 |
| RU2003135796A (ru) | 2005-04-20 |
| PL208791B1 (pl) | 2011-06-30 |
| PL365542A1 (en) | 2005-01-10 |
| TW200403403A (en) | 2004-03-01 |
| EP1504204A1 (en) | 2005-02-09 |
| TWI223695B (en) | 2004-11-11 |
| AU2003228632A1 (en) | 2003-12-02 |
| KR100649075B1 (ko) | 2006-11-29 |
| KR20060022731A (ko) | 2006-03-10 |
| CN100489344C (zh) | 2009-05-20 |
| CA2448919A1 (en) | 2003-11-27 |
| CA2448919C (en) | 2007-09-25 |
| JP4009782B2 (ja) | 2007-11-21 |
| KR100626631B1 (ko) | 2006-09-25 |
| ES2375355T3 (es) | 2012-02-29 |
| JP2005520104A (ja) | 2005-07-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2448919C (en) | Damping mechanism | |
| US6575860B2 (en) | Belt tensioner for a power transmission belt system | |
| CN101915290B (zh) | 具有阻尼构件的带张紧器 | |
| US4696663A (en) | Belt tensioner | |
| JP2005507063A (ja) | テンショナ | |
| JPH09189348A (ja) | テンショナ | |
| WO2009035605A2 (en) | Tensioner | |
| JP3916973B2 (ja) | オートテンショナ | |
| EP3735543B1 (en) | Tensioner | |
| EP0818642B1 (en) | Automatic belt tensioner | |
| MXPA05002722A (es) | Polea expansible. | |
| CA2392560C (en) | Timing belt tensioner having a floating backstop | |
| JPH061902U (ja) | 可動型プーリ用ガイド部材 | |
| CA1282266C (en) | Belt tensioner | |
| JPH05340453A (ja) | 可動型プーリ用ガイド部材 | |
| JPH07317857A (ja) | オートテンショナ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003228632 Country of ref document: AU |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2448919 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004505564 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003726393 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020037016042 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 038004631 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1167/MUMNP/2003 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003/02342 Country of ref document: TR |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWP | Wipo information: published in national office |
Ref document number: 2003726393 Country of ref document: EP |