WO2003095700A1 - Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method - Google Patents

Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method Download PDF

Info

Publication number
WO2003095700A1
WO2003095700A1 PCT/JP2003/005595 JP0305595W WO03095700A1 WO 2003095700 A1 WO2003095700 A1 WO 2003095700A1 JP 0305595 W JP0305595 W JP 0305595W WO 03095700 A1 WO03095700 A1 WO 03095700A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionized
target
deposition
elements
deposition method
Prior art date
Application number
PCT/JP2003/005595
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Mori
Takashi Ushida
Yoshimi Kamijo
Ko Nakajima
Akihiro Okazaki
Akira Mitsuzuka
Takehiro Takoshima
Naohiko Mikami
Original Assignee
Umk Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umk Technologies Co., Ltd. filed Critical Umk Technologies Co., Ltd.
Publication of WO2003095700A1 publication Critical patent/WO2003095700A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0459Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for solid samples
    • H01J49/0463Desorption by laser or particle beam, followed by ionisation as a separate step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/162Direct photo-ionisation, e.g. single photon or multi-photon ionisation

Definitions

  • the present invention relates to a method for purifying a material as a functional material such as a metal and a semiconductor material with high purity and a film forming method for forming a laminated structure and the like constituting a device.
  • oxides and other raw materials that have been used as raw materials have been reduced to single substances, and a more sophisticated purification process has been required, and chemical and physical processes have been repeated to remove impurities to achieve high purity. ing.
  • a typical example of these is high-purity Si used in semiconductor devices and the like.
  • the degree of dullness is increased through a physicochemical process such as utilizing segregation.
  • the achievement of high purity is one of the bottlenecks that hinders practical application.
  • the method uses epitaxial growth using GaAs with a lattice constant close to that of the substrate, Defects are likely to occur, which shortens the life of the product, and has defects such as large luminescence loss absorbed by the substrate.
  • mass spectrometry is a method of high purification that can be widely applied regardless of the type of target element, in which ionized elements are deflected by an electromagnetic field and deposited on a target to separate impurities.
  • Purification methods using the principle of the vessel have been proposed, and these methods have been combined with ionization by selective excitation using a laser.
  • Various applications have been attempted.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 5-4-1357
  • Patent Document 2 Japanese Patent Publication No. 58-5092
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-26209
  • Patent Document 4 Japanese Patent Application Laid-Open No. Hei 6-226020
  • Patent Document 5 Japanese Patent Application Laid-Open No. 6-26203
  • Patent Document 6 Japanese Patent Application Laid-Open No. 6-2646428
  • the target element or element in a high-purification method in which elements and molecules evaporated at a high temperature from a Balta-like raw material produced by metallurgical methods are ionized and deflected by an electric field to separate impurities.
  • Improve ionization efficiency by irradiating them with radiation energy, such as a laser with two or more frequencies, that excites only the molecules from the ground state to the intermediate energy level and then to the energy level that ionizes them.
  • radiation energy such as a laser with two or more frequencies
  • an element or a molecule to be subjected to high purity purification is previously purified through conventional chemical and physical processes, and then heated and evaporated with a crucible or the like to remove atoms or molecules. It is selectively excited and ionized by laser irradiation.
  • these selective ionization processes themselves also serve as a means for separating impurities.
  • the impurity concentration of the starting material is determined. Therefore, reduction of these impurities is an issue.
  • impurities are also ionized at this stage with almost no distinction, so that the efficiency is low and the load on maintenance is low.
  • the purified high-purity material is subjected to another process such as electron beam melting with a rutupo, etc., and then to the VJ method.
  • the pulp formed in this manner is processed into a substrate, or the pulp made of the same purified element is used as a raw material on these substrates through a film formation process using MBE or the like. Impurities are taken in again from the surrounding environment and the like in the melting step and the like for the highly purified material, so that it is difficult to maintain the high achieved purity without lowering the purity. Under such circumstances, the extremely high purity required for device manufacturing as described above is practically difficult to achieve.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. Hei 8-172051
  • Patent Document 2 Japanese Patent Application Laid-Open No. H11-1877343
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-201 2
  • the above-described method of performing ionization by selective excitation in the prior art is basically aimed at ionization for separating a single element, and is performed by adding a dissociation process of such a compound.
  • a relatively high-purity vaporizable organic compound of metal or semiconductor As a starting material, the overall efficiency of the ionization process is improved, the ionization rate of the target element is improved, and the load on mass separation is reduced.
  • the present invention provides a method for dissociation and ionization of non-resonant multiphoton absorption that does not pass through an intermediate level by excimer laser irradiation on a vaporized metal or semiconductor organic compound.
  • a high-purity purification method characterized in that the ionized element is separated into impurities by a mass separation method using an electromagnetic field, and only a predetermined ionized element is deposited on a target.
  • Zn or Se is used as the above element, and dimethyl or selenium is used as the organic compound.
  • the starting materials of the elements that become high-performance semiconductor materials are metal or semiconductor organic compounds and gaseous element compounds, which are dissociated and ionized by nonresonant multiphoton absorption that does not pass through intermediate levels by excimer laser irradiation.
  • This is a deposition method in which only a predetermined ionized element is deposited on a target by a mass separation method using an electromagnetic field, and a barta or a laminated structure of a high-performance material is directly obtained.
  • two or more ions are alternately directed from each ion source toward the target, simultaneously, or before or after these. And the ions are in a beam form and run on a target to form a film. It is, to control the ratio of ionic species.
  • the predetermined elements are Zn, Se or O
  • the starting materials are dimethyl zinc, dimethyl selenium, and O 2 or dimethyl ether, respectively, each of which is composed of ZnSe or Z ⁇ .
  • a high-performance material is deposited and formed.
  • N and C1 as dopants are added as the above-mentioned predetermined elements, and N 2 , ammonia, trimethyl 4-amine, a type of nitrogen oxide, and C 1 Use 2 or HC1.
  • the target of ionization is not a metal element or molecule evaporated from Balta by heating at a high temperature, but a vaporizable substance such as a vaporizable organic compound of metal or semiconductor as a starting material.
  • Metals and semiconductor elements are ionized at the same time as dissociation.
  • the electronic state is not limited to the electron energy level, but the vibration and rotation of molecules.
  • the ionization process is performed without passing through an intermediate level by excimer laser irradiation. It depends on the multiphoton absorption of resonance.
  • This process has been known as a phenomenon in which the transition probability increases in proportion to the square of the incident light intensity.However, the absolute value of the conventional light intensity is small, and sufficient efficiency cannot be obtained. However, its application had not been reached.
  • the present inventors irradiate the molecule directly with an excimer laser
  • the molecules can absorb multiple lights within one laser pulse. Has a lower dissociation energy than the ionization energy, so molecules dissociate by one-photon absorption.
  • the ionization process and the dissociation process occur in competition with each other, where the ionized molecules further absorb light and sequentially dissociate these alkyl groups or the like, or the dissociated molecules absorb light and absorb.
  • the target metal ion can be obtained by ionization.
  • a vaporizable organic compound or a gaseous elemental compound of the target element is used as a starting material for ionization, and in these starting materials, the impurity concentration is low due to the origin of the manufacturing process. Extremely low, the load on the subsequent purification process due to impurities is not a problem.
  • Metals, organic compounds of semiconductors, and gaseous element compounds were selected as such starting materials in the present invention because of these characteristics, and there are no particular restrictions on the form suitable for excimer laser irradiation. Not applicable.
  • the two-photon process corresponds to absorbing energy of ArF: 12.8 eV and KrF: 10. OeV, respectively.
  • the ionization energy of dimethylzinc (CH 3 ) 2 Zn is 8.9 eV
  • the elementary processes of the ionization and dissociation reactions are as follows.
  • the activation energy of the dissociation reaction in the electronic ground state is as follows.
  • (CH 3 ) 2 Zn ⁇ Zn + processes include (1) ⁇ (5) ⁇ (6) or (1) ⁇ (7) ⁇ (8) or (1) ⁇ (7) ⁇ (6 ) Or (1) ⁇ (7) ⁇ (8), where the ionization reaction occurs first, and (3) ⁇ (2) ⁇ (6) or (3) ⁇ (2) ⁇ (8) There may be pathways for dissociation reactions.
  • organometallic compounds can also be used as raw materials, as can be seen from the ionization energy described.
  • oxygen (0) as a gaseous element compound as a raw material other than organic metal or nitrogen (N) or chlorine (C1) as a dopant into the system
  • the following raw materials can be used It is.
  • laser irradiation means and other organometallic compounds, gases or vaporizable compounds whose ionization energy and two-photon absorption energy satisfy these relationships, can be ionized by the same process. Applicable to process.
  • the present invention it is possible to obtain target ions with high efficiency by a two-photon absorption process by irradiation with a laser having a high light intensity such as an excimer laser, and at the same time, a highly pure organometallic compound is used as a starting material. Therefore, the load on the purification process can be reduced and the purity level of the ion can be easily improved.
  • the ionized target element can be sent to the separation process using an electromagnetic field with high purity, higher purity is achieved and the load on the apparatus is significantly reduced.
  • the purity of the obtained ions is synergistically enhanced by the high purity derived from these raw materials and the high purity in the selective ionization excitation process, and extremely high purity is obtained.
  • Free radicals and remaining impurity components generated in these ionization processes are quickly discharged out of the system as gaseous.
  • ions that have been deflected in the electromagnetic field and have undergone the impurity separation process are directed to the target along a predetermined trajectory and are deposited.However, since the ions are excited including their kinetic energy, they are deposited on the target. As the heat is released, a stable crystal structure is obtained.
  • the target has a predetermined crystal structure (a single crystal composed of the same element and has a consistency with the crystal structure) in advance, and the kinetic energy and the preheating conditions are controlled to obtain a layer structure having the predetermined crystal structure. Can be formed. In addition, since the deposition process forms a stable crystal structure, it can be recovered as a bulk body.
  • a predetermined crystal structure a single crystal composed of the same element and has a consistency with the crystal structure
  • the target element is not limited to one kind, but is ionized using two or more kinds of elements as described above, and the separated and purified ion beams from the respective ion sources are alternately applied to the target or at a predetermined ratio.
  • the target element is not limited to one kind, but is ionized using two or more kinds of elements as described above, and the separated and purified ion beams from the respective ion sources are alternately applied to the target or at a predetermined ratio.
  • the laminated structure When the laminated structure is extremely thin, elements from each ion source can be deposited and laminated, and a compound layer can be formed with a stable crystal structure, and can be replaced with an epitaxy layer. To form a laminated structure composed of each element or compound layer.
  • These deposited layers of the present invention have a high deposition rate, a high productivity and a stable crystal structure. By forming the structure, it is possible to secure a practical level of productivity at once, instead of the conventional trial scale.
  • FIG. 1 is a diagram showing the structure and principle of the purification device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • a source gas such as dimethyl zinc / dimethyl selenium, which is vaporizable, is sprayed and supplied from a source gas supply unit 11 to be vaporized.
  • the entire apparatus is composed of a vacuum chamber evacuated by vacuum pumps 70, 71, 72, 73, and is operated by gate valves 30, 31, 32, respectively, along the source gas route. It is divided into ionization stage 10, acceleration stage 40, drawing stage 50, magnetic separation stage 55, and deposition stage 60.
  • the vaporized source gas is irradiated by an excimer laser to dissociate and the metal elements are ionized.
  • the laser light is opaque to the wavelength because the wavelength excites the metal element, and is efficiently absorbed. However, while the laser light is irradiated along the gas flow path in the chamber, the laser light is emitted. Absorbing efficiency by placing a mirror on the wall facing Can be improved.
  • the ionized metal is accelerated by the electric potential applied between the accelerating electrodes 41 of the accelerating stage due to its electric charge, and enters the constriction stage.
  • the dissociated organic gas is removed by the vacuum pump 70, 7 together with impurities. It is discharged out of the system by 1 and the inside of the champ is maintained at a high vacuum.
  • the ion is focused by the magnetism of the focusing coil 51 of the aperture stage so that the ion beam is focused at the aperture 54.
  • the ions are accelerated by an electric field, converged into a beam by a converging stage, incident on a magnetic separation stage, further deflected by a magnetic field, and charged with a different Z-mass ratio. It is deflected from 2 and blocked by the aperture 4 3 and separated.
  • the neutralized metal element is deposited on the target 61.
  • the film formation conditions on the target can be adjusted, and not only a single deposited layer such as Zn or Se, but also the composition of these compounds Can be formed.
  • the target 61 is sequentially replaced by the motor 62, so that the purification process and the film formation process can be continued without breaking the vacuum.
  • the ion beam is depicted as having a certain width in the figure, the beam aperture may be adjusted according to the deposition area on the target.
  • the deposition conditions on the target can be made uniform, or the deposition area can be arbitrarily changed.
  • the ion beam is expanded, the aperture conditions are adjusted, and the deposition conditions are changed to achieve uniform deposition.
  • the acceleration conditions are controlled to control the ion implantation and the crystallization conditions. It can be used for adjustment, furthermore, these processes can be performed on an arbitrary area, or the ion beam can be scanned to control the deposition conditions and for uniform deposition over a large area.
  • the high-purity refining method and film-forming method of the present invention achieve ultra-high purity, which is essential for realizing new depises for elements that could not previously achieve ultra-high purity, especially elements such as zinc and selenium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for high purity purification, wherein an organic compound, such as dimethyl zinc, or a gaseous element compound, such as oxygen as a starting material is irradiated with an excimer laser (21), dissociated and ionized by the non-resonant multiphoton absorption not passing by way of an intermediate level, and the ionized element is freed of impurities by the mass separation method using the electromagnetic field (55) to thereby deposit a predetermined ionized element alone on a target (61). In an embodiment, elements to be ionized are Zn and, Se or O, and N, Cl or the like is used as a dopant. The method allows the reduction of the load by impurities derived from starting materials and the improvement of ionization efficiency, resulting in the improvement of productivity, in a high purity purification process by the mass separation method for an element such as zinc or selenium.

Description

明 細 書  Specification
'質量分離法による高機能材料の高純度精製方法及び高機能材料の堆積方法 技 分野 '' High-purity purification of high-performance materials by mass separation and deposition of high-performance materials
この発明は、 金属、 半導体材料などの機能材料としての素材の高純度精製法及 ぴデバイスを構成する積層構造などを形成する成膜法に関する。 背景技術  The present invention relates to a method for purifying a material as a functional material such as a metal and a semiconductor material with high purity and a film forming method for forming a laminated structure and the like constituting a device. Background art
従来から半導体デバイスやセンサー等を製造するための素材、 いわゆる高機 能材料などではその物性を発揮させるために極めて純度の高い状態とする必要 があり、 また、 それらを高い純度を保って基板上に積層し、 或いは基板として 積層して形成する必要がある。  Conventionally, materials used for manufacturing semiconductor devices and sensors, so-called high-performance materials, etc., need to be in a very high purity state in order to exhibit their physical properties. It is necessary to form the substrate by laminating or by laminating as a substrate.
このため、 従来は原材料となる酸化物などを還元して単体とすると共に更に 高度の精製過程を必要とし、 化学的, 物理的工程を重ねて不純物を除去して高 純度とすることが行われている。 これらの典型例が、 半導体デバイスなどに用 いられる高純度 Siであって、 還元工程の後、 偏析を利用するなど物理化学的 過程を経て高鈍度化することが行われている。  For this reason, oxides and other raw materials that have been used as raw materials have been reduced to single substances, and a more sophisticated purification process has been required, and chemical and physical processes have been repeated to remove impurities to achieve high purity. ing. A typical example of these is high-purity Si used in semiconductor devices and the like. After the reduction step, the degree of dullness is increased through a physicochemical process such as utilizing segregation.
しかしながら、 これらの精製工程は、 一般に高温度の冶金的還元過程を含む 物理ィ匕学的プロセスを繰返し行うため工程が複雑で生産性が低いのみでなく、 その過程における精製環境からの不純物混入が避けられないため、 その高純度 化には自ずと一定範囲の制約がある。  However, these refining processes are generally not only complicated and low in productivity due to the repetition of physical processes including a high-temperature metallurgical reduction process, but also include impurities from the refining environment during the process. Because it is unavoidable, its purification has a certain range of limitations.
また、 これらの高純度化が求められる元素として、 S iのみでなく、 半導体 デバイスの発展と共に II一 VI族半導体や III— V族半導体などが研究され、 発 光ダイォードなどとして応用 ·実用化を図られているが、 発光ダイォードに用 いられるこれら Z n、 S e、 G aや A s等の元素では Siのように実用的な高 純度化精製の手法は完成しておらず、 またこれらの高純度物性も十分に解明さ れていないのが現状である。 このため、 最近実用化が図られている Z n S e系 II— VI族半導体を用いた青色発光ダイォードも究極の青色デバィスといわれ ながら、 高純度の達成が一つのネックとなって実用化が阻まれている状態であ り、 また、 その基板として格子定数の近接した G a A sを用いてェピタキシャ ル成長させる方法によるため、 欠陥が発生しやすく、 その為に製品の寿命を短 くする原因となり、 さらに基板に吸収される発光損失が大きいなどの欠陥があ る。 In addition, not only Si, but also II-VI group semiconductors and III-V group semiconductors have been studied along with the development of semiconductor devices as elements requiring high purification, and they have been applied and commercialized as light emitting diodes. However, for these elements such as Zn, Se, Ga, and As used in the light-emitting diode, a practical high-purity purification method like Si has not been completed. At present, the high-purity physical properties of these have not been fully elucidated. For this reason, blue light-emitting diodes using ZnSe-based II-VI semiconductors, which have recently been put to practical use, are said to be the ultimate blue devices. However, the achievement of high purity is one of the bottlenecks that hinders practical application.In addition, the method uses epitaxial growth using GaAs with a lattice constant close to that of the substrate, Defects are likely to occur, which shortens the life of the product, and has defects such as large luminescence loss absorbed by the substrate.
このため上記のように材料となる Z n、 S eの高純度化とこれらからなる基 板となるパルク形成或いは基板構造としての成膜形成方法の開発が望まれてい るところである。  For this reason, as described above, it is desired to purify Zn and Se as materials and to develop a method for forming a pulp serving as a substrate composed of these materials or a film forming method as a substrate structure.
これに対して、 対象となる元素の種類を問わず広く応用可能な高純度化の手 法としてイオン化した元素を電磁場で偏向させてターゲット上に堆積させて不 純物を分離する、 いわゆる質量分析器の原理を利用した精製手法が提案され、 さらにこれらの手法とレーザーによる選択的励起によるイオン化法が組み合わ されて近年の磁性材料の開発、 真空技術の発展などの要素技術の発達を背景に その応用が種々試みられている。  On the other hand, mass spectrometry is a method of high purification that can be widely applied regardless of the type of target element, in which ionized elements are deflected by an electromagnetic field and deposited on a target to separate impurities. Purification methods using the principle of the vessel have been proposed, and these methods have been combined with ionization by selective excitation using a laser. Various applications have been attempted.
従来の技術 Conventional technology
特許文献 1 : 特開平 5— 4 1 3 5 7号公報  Patent Document 1: Japanese Patent Application Laid-Open No. Hei 5-4-1357
特許文献 2 : 特公昭 5 8 - 5 0 9 2号公報  Patent Document 2: Japanese Patent Publication No. 58-5092
特許文献 3 : 特開平 6— 2 6 2 0 2 9号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 6-26209
特許文献 4 : 特開平 6— 2 6 2 0 3 0号公報  Patent Document 4: Japanese Patent Application Laid-Open No. Hei 6-226020
特許文献 5 : 特開平 6— 2 6 2 0 3 1号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 6-26203
特許文献 6 : 特開平 6— 2 6 4 2 2 8号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 6-2646428
これらには、 例えば、 冶金的手法により製造されたバルタ状原料から高温度 で蒸発させた元素や分子をィオン化し、 電界によって偏向させて不純物を分離 する高純度化法において、 目的とする元素又は分子のみを基底状態から中間ェ ネルギー準位及ぴ更にそれからイオン化するエネルギー準位にそれぞれ励起す る 2つ以上の振動数のレーザーなどの輻射エネルギーをこれらに照射すること によって、 イオン化効率を向上することが提案されており、 さらにこのように して不純物を分離したのち直接捕集基板上に堆積させて高純度の元素或いはィ匕 合物の複合膜を形成することが試みられている。 ところで、 これらの手法においては、 いずれも高純度ィ匕する対象となる元素 単体を予め従来の化学的 ·物理的過程を経て精製し、 これをルツボなどで加 熱 -蒸発させた原子又は分子をレーザー照射によって選択的に励起してイオン 化している。 These include, for example, the target element or element in a high-purification method in which elements and molecules evaporated at a high temperature from a Balta-like raw material produced by metallurgical methods are ionized and deflected by an electric field to separate impurities. Improve ionization efficiency by irradiating them with radiation energy, such as a laser with two or more frequencies, that excites only the molecules from the ground state to the intermediate energy level and then to the energy level that ionizes them. Further, attempts have been made to form a composite film of a high-purity element or compound by separating the impurities in this way and depositing them directly on a collecting substrate. By the way, in these methods, in each case, an element or a molecule to be subjected to high purity purification is previously purified through conventional chemical and physical processes, and then heated and evaporated with a crucible or the like to remove atoms or molecules. It is selectively excited and ionized by laser irradiation.
しかしながら、 これらの元素、 特に亜鉛やセレンなどの元素を対象とする場 合には S iの場合と異なり、 多種多様な元素の混合物である鉱石を出発原料と し、 高温度の還元工程でこれらの他の金属元素が同時に還元されて随伴してく るため、 これら多種多様な不純物の混入が避けられない。  However, when targeting these elements, particularly elements such as zinc and selenium, unlike ore, the ore, which is a mixture of various elements, is used as a starting material, Since other metal elements are simultaneously reduced and accompanied, it is inevitable that these various impurities are mixed.
このため、 上記の各先行技術においてイオン化された元素を電磁場で偏向さ せて不純物を分離し、 或いは特定波長のレーザー光によって選択的なイオン化 を行うことは、 いずれもこれらの不可避的に相当量混入している不純物の存在 を前提として、 その除去を目指すが、 これらのパルク金属を出発原料とする限 りこれらの不純物のため精製プロセスの負荷が大きく、 本発明が目指すような、 また現在要求されている極めて高い高純度レベルを達成することは困難である。 特に、 これらの先行技術におけるレーザーによってエネルギー準位に一致す る元素を選択的に多段階で励起する方法は、 それぞれ特定の波長を使用するこ とで選択的に特定の金属原子のみをイオン化することが可能となり、 また、 こ れら特定元素の励起エネルギーギャップに相当する波長を用いるため効率よく 原子を励起状態にすることができるとしている。  For this reason, in each of the above prior arts, deflecting an ionized element by an electromagnetic field to separate impurities, or performing selective ionization with a laser beam of a specific wavelength, inevitably requires a considerable amount of these. Aiming at the removal of impurities based on the premise of the presence of impurities, the load on the refining process is large due to these impurities as long as these pulp metals are used as starting materials. It is difficult to achieve the extremely high purity levels that have been achieved. In particular, these prior art methods of selectively exciting an element having an energy level corresponding to an energy level in a multi-stage manner by using a specific wavelength selectively ionize only a specific metal atom. It is stated that the use of a wavelength corresponding to the excitation energy gap of these specific elements makes it possible to efficiently put atoms into an excited state.
しかしながら、 これらの特定波長のレーザー光を得るために前記先行技術文 献にも示されているとおり、 特定波長の選択性を有する色素レーザーを用い、 その吸収帯に合わせて励起光源にェキシマレーザーなどを用いて光ポンビング を行うため、 最終的な出力の低下すなわち総合的なエネルギー効率の低下が著 しく、 イオン化に際してはその複数のレーザー光を同軸上に入射する必要があ るなど、 実用上の制約がある。  However, as described in the above-mentioned prior art document, in order to obtain a laser beam having a specific wavelength, a dye laser having selectivity at a specific wavelength is used, and an excimer laser is used as an excitation light source in accordance with the absorption band. Since optical pumping is performed using such a method, the final output is significantly reduced, that is, the overall energy efficiency is significantly reduced.In ionization, it is necessary to input a plurality of laser beams coaxially. There are restrictions.
即ち、 これらの選択的ィオン化過程自体が不純物の分離手段ともなつてい るのであって、 これらの先行技術に於いては、 全体のエネルギー効率や生産性 よりもむしろ上記のとおり出発原料の不純物濃度が高いため、 これらの不純物 の低減が課題とされているのである。 また、 気化した原料化合物をプラズマ処理によって解離すると共にイオン化 する手法もあるが、 高周波励起などによるプラズマ処理で解離すると共にィォ ン化する場合、 ガス化した原材料の約 5 %程度しかイオン化せず、 他は解離し てもそのまま周囲に堆積するなどして失われる。 また、 不純物もこの段階では ほとんど区別なく同様にイオン化されるのであり、 このため、 効率が低く、 且 つメンテナンス上の負荷となる。 That is, these selective ionization processes themselves also serve as a means for separating impurities. In these prior arts, as described above, rather than the overall energy efficiency and productivity, the impurity concentration of the starting material is determined. Therefore, reduction of these impurities is an issue. There is also a method of dissociating and ionizing the vaporized raw material compound by plasma treatment. Others are lost as they accumulate in the surroundings even if dissociated. In addition, impurities are also ionized at this stage with almost no distinction, so that the efficiency is low and the load on maintenance is low.
—方、 このようにして精製した高純度材料を用いてデバイスを製造するには、 —且精製した高純度材料をルツポなどで改めて電子ビーム溶解等の工程を経て、 プ Vッジマン法などによつて形成したパルクを加工して基板としたり、 或いは これらの基板上に同様の精製された元素から成るパルクを原料として MB Eな どによる成膜工程を経て製造するが、 これらの工程は一且高純度ィ匕した材料に 対してこれらの溶解工程などにより周囲の環境などから再び不純物を取り込む ことになるため、 折角達成した高 、純度を低下させることなく維持することは 困難である。 また、 このような事情から、 前述のような、 デバイス製造に要求 される極めて高い純度は、 実際上達成しがたい。  -On the other hand, in order to manufacture a device using the high-purity material purified in this way, --- the purified high-purity material is subjected to another process such as electron beam melting with a rutupo, etc., and then to the VJ method. The pulp formed in this manner is processed into a substrate, or the pulp made of the same purified element is used as a raw material on these substrates through a film formation process using MBE or the like. Impurities are taken in again from the surrounding environment and the like in the melting step and the like for the highly purified material, so that it is difficult to maintain the high achieved purity without lowering the purity. Under such circumstances, the extremely high purity required for device manufacturing as described above is practically difficult to achieve.
このような極めて高い純度の成膜法は、 加熱気化した元素をイオン化して、 質量分離法による原理によつて基板上に堆積することによつて実現することが 試みられているが、 これらにおいてもイオン化した対象元素を電磁場により不 純物分離することで高鈍度化を達成するものの、 出発原料からイオン化にいた るプロセスでの不純物除去ゃィオン化効率向上に関して上記の問題の解決とな るものではない。  Attempts have been made to realize such an extremely high-purity film formation method by ionizing heated and vaporized elements and depositing them on a substrate according to the principle of mass separation. Although the high degree of dullness can be achieved by separating the ionized target element by impurities using an electromagnetic field, the above problem can be solved with regard to the improvement of the efficiency of impurity removal and ionization in the process from starting material to ionization. Not something.
従来の技術 Conventional technology
特許文献 1 : 特開平 8 - 1 7 2 0 5 1号公報  Patent Literature 1: Japanese Patent Application Laid-Open No. Hei 8-172051
特許文献 2 : 特開平 1 1一 8 7 3 4 3号公報  Patent Document 2: Japanese Patent Application Laid-Open No. H11-1877343
特許文献 3 : 特開 2 0 0 1— 2 2 6 1 9 3号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2000-201 2
本発明者らは、 先にこれらの元素の多くは気化し易い有機ィ匕合物などとして 入手可能であり、 これらの有機化合物はいわゆる冶金的な高温還元プロセスを 経由しないため本来高純度であり、 これらを出発原料としてプラズマ処理によ つて解離することにより、 容易に一定レベルの高純度化が達成できることを提 案している (特願 2 0 0 0— 1 4 3 7 5 2号) 。 The present inventors have previously obtained many of these elements as organic compounds which are easily vaporized, and these organic compounds are originally of high purity because they do not go through a so-called metallurgical high-temperature reduction process. It is proposed that by using these as starting materials and dissociating by plasma treatment, a certain level of high purity can be easily achieved. (Japanese Patent Application No. 2000-2014).
従って、 これらを出発原料として、 目的元素をイオン化して電磁場による不 純物分離を行う一貫した精製法を構築すれば精製過程の負荷が軽減でき、 さら にデバイス形成にいたる成膜工程までを一貫した工程とすれば、 多段階の精製 工程を経ることなく極めて高いレベルの高純度化が容易に達成できることを着 想し、 実際に高い効率を実現できる精製方法について検討を行つてきた。 ところが、 これらの有機金属化合物などの物質を出発原料として、 目的元素 をイオン化する場合、 単体元素や分子をそのままイオン化する場合と異なり、 その解離過程で、 有機化合物であれば解離過程とィオン化過程を経なければな らない。  Therefore, by using these as starting materials, a consistent purification method that ionizes the target element and separates impurities by an electromagnetic field can reduce the load on the purification process, and further integrate the film formation process leading to device formation. With this process in mind, we have considered that it is possible to easily achieve an extremely high level of purification without going through a multi-stage purification process, and have been studying purification methods that can actually achieve high efficiency. However, when the target element is ionized using these organometallic compounds as starting materials, it is different from ionization of a single element or molecule as it is.In the dissociation process, the dissociation process and the ionization process are performed for organic compounds. Must go through.
これに対してプラズマ化による場合、 上記のとおり必ずしも効率がよいとはい えない。 On the other hand, when plasma is used, the efficiency is not necessarily high as described above.
また、 上述の従来技術における選択的励起によるイオン化を行なう手法は、 基本的には単体元素を分離するためのイオン化を目的とするものであって、 こ のような化合物の解離過程を加えて同じょうに波長選択性を利用したレーザー 照射により目的元素のィオン化まで行なうことは、 上記のとおりエネルギー効 率の低下と生産性の低さから、 到底実用化し難い。  In addition, the above-described method of performing ionization by selective excitation in the prior art is basically aimed at ionization for separating a single element, and is performed by adding a dissociation process of such a compound. As described above, it is very difficult to practically use the laser irradiation utilizing wavelength selectivity until ionization of the target element due to the reduced energy efficiency and low productivity.
発明の課題  Problems of the Invention
イオン化した元素を電磁場で偏向させて質量分析器と同様の原理で不純物を 除去し、 ターゲット上に堆積させて高純度物質を得る方法において、 比較的高 純度である金属又は半導体の気化性有機化合物などを出発原料として採用する とともに、 そのイオン化プロセスの総合的な効率を向上し、 目的元素のイオン 化率を向上して質量分離の負荷を軽減する。 また、 このようにして得られた高 純度材料の純度を低下することなく、 直接バルタ形成や積層形成などの成膜を 可能としてデパイス製造技術に応用する。 発明の開示  In a method of deflecting ionized elements with an electromagnetic field to remove impurities on the same principle as a mass spectrometer and depositing them on a target to obtain a high-purity substance, a relatively high-purity vaporizable organic compound of metal or semiconductor As a starting material, the overall efficiency of the ionization process is improved, the ionization rate of the target element is improved, and the load on mass separation is reduced. In addition, it is possible to directly form a film such as a walter or a laminate without deteriorating the purity of the high-purity material obtained in this way, and to apply the method to a depice manufacturing technique. Disclosure of the invention
本発明は、 気化した金属若しくは半導体の有機ィ匕合物に対してエキシマレー ザ一照射により中間準位を経ない非共鳴の多光子吸収により解離及びイオン化 し、 イオン化された元素を電磁場による質量分離法により不純物を分離して所 定のイオン化元素のみをターゲット上に堆積させることを特徴とする高純度精 製方法であり、 The present invention provides a method for dissociation and ionization of non-resonant multiphoton absorption that does not pass through an intermediate level by excimer laser irradiation on a vaporized metal or semiconductor organic compound. A high-purity purification method characterized in that the ionized element is separated into impurities by a mass separation method using an electromagnetic field, and only a predetermined ionized element is deposited on a target.
特に、 上記元素として Z n又は S eを対象とし、 有機化合物としてジメチル 亜 又はジメチルセレンを用いる。  Particularly, Zn or Se is used as the above element, and dimethyl or selenium is used as the organic compound.
また、 半導体高機能材料となる元素の出発原料を金属又は半導体の有機化合 物及び気体元素化合物とし、 これに対してエキシマレーザー照射により中間準 位を経ない非共鳴の多光子吸収により解離及びイオンィ匕し、 イオン化された元 素を電磁場による質量分離法により所定のイオン化元素のみをターゲット上に 堆積させて直接高機能材料のバルタ又は積層構造を得る堆積方法であり、 特に、 上記イオン化された元素を電磁場による質量分離法により所定のィォ ン化元素のみをターゲット上に堆積させる際、 2種以上のイオンをそれぞれの イオン源からターゲットに向けて交互に、 又は同時に若しくはこれらと前後し て任意の比率で堆積させ、 また、 上記イオンがビーム状であって、 ターゲット 上を走查することにより、 成膜の厚さ、 イオン種の比率を制御する。  In addition, the starting materials of the elements that become high-performance semiconductor materials are metal or semiconductor organic compounds and gaseous element compounds, which are dissociated and ionized by nonresonant multiphoton absorption that does not pass through intermediate levels by excimer laser irradiation. This is a deposition method in which only a predetermined ionized element is deposited on a target by a mass separation method using an electromagnetic field, and a barta or a laminated structure of a high-performance material is directly obtained. When depositing only a specified ionization element on a target by mass separation using an electromagnetic field, two or more ions are alternately directed from each ion source toward the target, simultaneously, or before or after these. And the ions are in a beam form and run on a target to form a film. It is, to control the ratio of ionic species.
さらに、 上記所定の元素が、 Z nと、 S e又は Oであり、 出発原料としてそ れぞれジメチル亜鉛、 ジメチルセレン、 及び O 2又はジメチルエーテルとし、 それぞれ Z n S e又は Z η θからなる高機能材料を堆積して形成する。 Further, the predetermined elements are Zn, Se or O, and the starting materials are dimethyl zinc, dimethyl selenium, and O 2 or dimethyl ether, respectively, each of which is composed of ZnSe or Zηθ. A high-performance material is deposited and formed.
また、 上記所定の元素として、 更にドーパントである N及び C 1などを加 え、 出発原料として Nについてそれぞれ、 N 2、 アンモニア、 トリメチ 4^アミ ン、 窒素酸化物の一種、 C 1について C 1 2又は H C 1を用いる。 In addition, N and C1 as dopants are added as the above-mentioned predetermined elements, and N 2 , ammonia, trimethyl 4-amine, a type of nitrogen oxide, and C 1 Use 2 or HC1.
本発明においては、 イオン化の対象は高温度の加熱によりバルタから蒸発 した金属元素や分子ではなく、 金属 ·半導体の気化性有機化合物など気化性物 質を出発原料として、 高強度のレーザー照射によってその解離と共に金属 ·半 導体元素のイオン化を行うのであり、 これらの有機金属化合物などの分子にお いては原子の場合と異なり、 その電子状態は電子エネルギー準位のみではなく、 分子の振動 ·回転などによるエネルギー状態があるためそれらに応じて波長選 択範囲が広くとれる利点がある。  In the present invention, the target of ionization is not a metal element or molecule evaporated from Balta by heating at a high temperature, but a vaporizable substance such as a vaporizable organic compound of metal or semiconductor as a starting material. Metals and semiconductor elements are ionized at the same time as dissociation.Unlike molecules of these organometallic compounds, the electronic state is not limited to the electron energy level, but the vibration and rotation of molecules. There is an advantage that the wavelength selection range can be widened according to the energy state due to the energy state.
また、 ィオン化の過程をエキシマレーザー照射による中間準位を経ない非 共鳴の多光子吸収によっている。 In addition, the ionization process is performed without passing through an intermediate level by excimer laser irradiation. It depends on the multiphoton absorption of resonance.
この過程は遷移確率が入射光強度の二乗に比例して大きくなるなどの現象 としては従来より知られていたのであるが、 従来の光強度では絶対値は小さく、 十分な効率が得られないため、 その応用には至っていなかったのである。  This process has been known as a phenomenon in which the transition probability increases in proportion to the square of the incident light intensity.However, the absolute value of the conventional light intensity is small, and sufficient efficiency cannot be obtained. However, its application had not been reached.
本発明者らは、 直接エキシマレーザーを分子に照射することによりその光 The present inventors irradiate the molecule directly with an excimer laser,
3虽度を活用すれば、 2光子過程における効率が二乗則により十分に実用域に達 することを確認し、 上記の目的に適した条件を検討した。 It was confirmed that the efficiency in the two-photon process could sufficiently reach the practical range by the square law if 3 ° was used, and conditions suitable for the above purpose were examined.
光強度の大きいエキシマレーザーを直接有機金属化合物分子に照射してそ の高い光密度により 2光子過程でイオン化を行うと、 分子は一つのレーザーパ ルス内で複数の光を吸収することができ、 分子の解離エネルギーはイオン化工 ネルギ一よりも低いため、 1光子吸収により分子は解離する。  When an excimer laser with high light intensity is directly irradiated on the organometallic compound molecules and ionization is performed in a two-photon process due to the high light density, the molecules can absorb multiple lights within one laser pulse. Has a lower dissociation energy than the ionization energy, so molecules dissociate by one-photon absorption.
そのため、 イオン化の過程と解離過程とは競合して起こり、 そこでイオン 化した分子が更に光吸収して逐次的にこれらのアルキル基などを解離する、 或 いは、 解離した分子が光吸収してイオン化して目的の金属イオンを得ることが できる。  Therefore, the ionization process and the dissociation process occur in competition with each other, where the ionized molecules further absorb light and sequentially dissociate these alkyl groups or the like, or the dissociated molecules absorb light and absorb. The target metal ion can be obtained by ionization.
この方法によると、 各々の金属原子にそれぞれ別の波長を用いる必要のあ る上記のような方法に比べ、 一つのエキシマレーザーのみを用いて種々の有機 金属化合物に適用することが可能である。  According to this method, it is possible to apply to various organometallic compounds using only one excimer laser as compared with the above-described method in which different wavelengths must be used for each metal atom.
また、 更に励起エネルギーギヤップがエキシマレーザーの波長に近い分子 を選ぶことにより、 効率よくイオン化することができる。  Further, by selecting a molecule whose excitation energy gap is close to the wavelength of the excimer laser, it is possible to ionize efficiently.
本発明においては、 上述のとおりイオン化の出発原料として対象とする元素 の気化性有機化合物、 若しくは気体元素化合物を用いており、 これらの出発原 料に於いてはその製造過程の由来から不純物濃度が極めて低く、 不純物による その後の精製過程に対する負荷が問題とならない。  In the present invention, as described above, a vaporizable organic compound or a gaseous elemental compound of the target element is used as a starting material for ionization, and in these starting materials, the impurity concentration is low due to the origin of the manufacturing process. Extremely low, the load on the subsequent purification process due to impurities is not a problem.
本発明に於けるこのような出発原料として、 金属、 半導体の有機化合物、 及 び気体元素化合物を選択した理由はこれらの特徴にあり、 エキシマレーザー照 射に適した形態であれは格別の制約はなく、 適用可能である。  Metals, organic compounds of semiconductors, and gaseous element compounds were selected as such starting materials in the present invention because of these characteristics, and there are no particular restrictions on the form suitable for excimer laser irradiation. Not applicable.
これらの原料物質によれば、 パルク状の単体原料を高温度で蒸発 ·気化させ てイオン化する場合のように、 共存する高濃度の不純物の分離を選択的イオン 化過程によって行なう必要はなく、 上記のレーザー照射による解離 ·イオンィ匕 過程を適用して総合的なエネルギー効率を著しく向上することが可能となる。 According to these raw materials, selective ion separation of co-existing high-concentration impurities can be achieved, as in the case where a simple substance in the form of pulp is vaporized and vaporized at high temperature and ionized. It is not necessary to perform this step by the conversion process, and the overall energy efficiency can be significantly improved by applying the above-described dissociation / ionization process by laser irradiation.
そこで、 照射レーザーとして、 A r Fエキシマレーザー (193nm、 6.4eV) 、 若しくは Kr Fエキシマレーザー (248nm、 5.0 e V) を用い、 原料として、 ジ メチル亜鉛を用いる場合について検討すると、 2光子過程の場合、 それぞれ Ar F : 12.8eV及び Kr F : 10. OeVのエネルギーを吸収することに相当す る 。  Considering the case of using an ArF excimer laser (193 nm, 6.4 eV) or KrF excimer laser (248 nm, 5.0 eV) as the irradiation laser and using dimethyl zinc as a raw material, the two-photon process In this case, it corresponds to absorbing energy of ArF: 12.8 eV and KrF: 10. OeV, respectively.
これに対して、 ジメチル亜鉛 (CH3) 2Z nのイオン化エネルギーは、 8. 9eVであり、 そのイオン化及び解離反応の素過程を示すと、 次のとおりであ る 。 On the other hand, the ionization energy of dimethylzinc (CH 3 ) 2 Zn is 8.9 eV, and the elementary processes of the ionization and dissociation reactions are as follows.
(CH3) 2Z n+ 2 v (CH3) 2Z n++e- (1) CH3Z n+ 2 h v - CH3Z n++e- (2)(CH 3 ) 2 Z n + 2 v (CH 3 ) 2 Z n + + e- (1) CH 3 Z n + 2 hv-CH 3 Z n + + e- (2)
(CH3) 2Z n+ h v ^ CH3Z n + CH3 (3) CH3Z n + h v → Z n + CH3 (4)(CH 3 ) 2 Z n + hv ^ CH 3 Z n + CH 3 (3) CH 3 Z n + hv → Z n + CH 3 (4)
(CH3) 2Z n++h v → CH3Zn++CH3 (5) CH,Z n++h v - Z n++CH3 or Z n + C H3 + (6)(CH 3 ) 2 Z n + + hv → CH 3 Zn + + CH 3 (5) CH, Z n + + hv-Z n + + CH 3 or Z n + CH 3 + (6)
(CH3) 2Z n + C¾Z n++CH (7)(CH 3 ) 2 Z n + C¾Z n ++ CH (7)
CH3Z n+ — > Z n++CH3 or Z n + CH3 (8) 上記の反応式において、 (1) 、 (2) はジメチル亜鉛の光吸収によるィォ ン化反応、 (3) 、 (4) はジメチル亜鉛の光吸収による解離反応の過程であ る。 CH 3 Z n + - in> Z n ++ CH 3 or Z n + CH 3 (8) above reaction formula, (1), (2) I O emissions reaction by light absorption of dimethyl zinc, (3 ) And (4) show the process of the dissociation reaction due to the light absorption of dimethylzinc.
また、 ジメチル亜鉛イオンについても、 光吸収による解離反応 (5) 、 (6) 、 更にジメチル亜鉛が余剰エネルギーを持つ場合には、 (7) 、 (8) のような解離反応も起こる。  In addition, dissociation reactions due to light absorption (5) and (6) also occur when dimethylzinc has excess energy, as shown in (7) and (8).
これに対して、 電子基底状態での解離反応の活性ィ匕エネルギーは、 下記のと おりである。  On the other hand, the activation energy of the dissociation reaction in the electronic ground state is as follows.
(CH3) 2Z n→CH3Z n + CH3 63.7Kcal/mol (=2.7eV) (CH 3) 2 Z n → CH 3 Z n + CH 3 63.7Kcal / mol (= 2.7eV)
(9)  (9)
CH,Z n→Z n + CH, 24.5Kcal/mol(=l. leV) (10) したがって、 上記の列挙したィオン化及び解離反応から、CH, Zn → Zn + CH, 24.5Kcal / mol (= l.leV) (10) Therefore, from the ionization and dissociation reactions listed above,
(CH3) 2Z n → Z n+ のプロセスには、 (1) → (5) → (6) 又は (1) → (7) → (8) 又は (1) → (7) → (6) 又は (1) → (7) → (8) という最初にイオン化反応が起こる経路、 また、 (3) → (2) → (6) 又は (3) → (2) → (8) という最初に解離反応が起こる経路が存在 しうる。 (CH 3 ) 2 Zn → Zn + processes include (1) → (5) → (6) or (1) → (7) → (8) or (1) → (7) → (6 ) Or (1) → (7) → (8), where the ionization reaction occurs first, and (3) → (2) → (6) or (3) → (2) → (8) There may be pathways for dissociation reactions.
(7) 及び (8) の活性ィ匕エネルギーが電子基底状態での反応 (9) 及び (1 (7) and (8) react in the electronic ground state with the activation energy (9) and (1)
0) とみられ、 これに対して A r Fエキシマレーザーによって 2光子過程でィ オン化した場合の余剰エネルギーは前記の値から、 0), and the excess energy when ionized in a two-photon process by an ArF excimer laser is
12.8eV-8.9eV = +3.9eVであることから、 これらの反応過程で十分に解離 することができ、 目的とする亜鉛イオンを得ることができる。 Since 12.8 eV-8.9 eV = + 3.9 eV, it can be sufficiently dissociated in the course of these reactions, and the intended zinc ion can be obtained.
さらに、 上記のとおり、 解離した分子が光吸収してイオン化する (2) のよ うな反応もあるから、 余剰エネルギーが (9) や (10) の活性ィ匕エネルギー に達していない場合でも亜鉛イオンは得られる。  Further, as described above, there is a reaction such as (2) in which the dissociated molecules absorb light and are ionized. Therefore, even when the surplus energy does not reach the activation energy of (9) or (10), the zinc ion Is obtained.
これらのことから、 上記の吸収エネルギーの低い KrFエキシマレーザーも使 用可能である。  For these reasons, the above-mentioned KrF excimer laser with low absorption energy can also be used.
また、 下記のような他の有機金属化合物も併記したイオン化エネルギーから 解るように、 原料として使用可能である。  In addition, the following other organometallic compounds can also be used as raw materials, as can be seen from the ionization energy described.
ジェチル亜鉛 (C2H5) 2 Z n: 8. 6 eV Jechiru Zinc (C 2 H 5) 2 Z n: 8. 6 eV
ジメチルセレン (CH3) 2S e : 8. 4 eV Dimethyl selenium (CH 3 ) 2 Se: 8.4 eV
ジェチルセレン (C2H5)。S e : 8. 3 eV Jechiruseren (C 2 H 5). S e: 8.3 eV
有機金属以外の原料物質として気体元素化合物として酸素 (0) 、 或いはド 一パントとして窒素 (N) 、 塩素 (C 1 ) を系内に導入する場合には、 次のよ うな原料物質が使用可能である。  When introducing oxygen (0) as a gaseous element compound as a raw material other than organic metal or nitrogen (N) or chlorine (C1) as a dopant into the system, the following raw materials can be used It is.
酸素 (0) : 02ガス: 1 2. 0 eV Oxygen (0): 0 2 Gas: 1 2. 0 eV
ジメチノレエ一テル : 1 0. 0 eV  Dimethinolete: 10.0 eV
窒素 (N) : N2: 1 5. 6 eV Nitrogen (N): N 2: 1 5. 6 eV
アンモニア (NH2) : 1 0. 1 eV Ammonia (NH 2 ): 1 0.1 eV
(CHa) 3N: 7. 9 eV その他各種酸化窒素: 9 . 3〜1 2 . 9 eV 塩素 (C 1 ) : C 1 2: 1 1 . 5〜1 1 . 6 eV (CH a ) 3 N: 7.9 eV Other various nitric oxide:.. 9 3~1 2 9 eV chlorine (C 1): C 1 2 :.. 1 1 5~1 1 6 eV
塩化水素 (HC 1 ) : 1 2 . 7 eV  Hydrogen chloride (HC 1): 12.7 eV
また、 これら以外にもさらにイオン化エネルギーと 2光子吸収エネルギーが これらの関係を満たすレーザー照射手段及び他の有機金属化合物や気体又は気 化可能な化合物も同様の過程によってイオン化可能であり、 本発明のプロセス に適用できる。  In addition to the above, laser irradiation means and other organometallic compounds, gases or vaporizable compounds, whose ionization energy and two-photon absorption energy satisfy these relationships, can be ionized by the same process. Applicable to process.
このように本発明においては、 エキシマレーザーなどの光強度の大きいレー ザ一照射による 2光子吸収過程により高い効率で目的とするイオンを得ること が可能となり、 同時に純度の高い有機金属化合物を出発原料とすることができ るため、 精製プロセスの負荷を低減して容易にィオンの純度レベルを向上する ことができる。  As described above, in the present invention, it is possible to obtain target ions with high efficiency by a two-photon absorption process by irradiation with a laser having a high light intensity such as an excimer laser, and at the same time, a highly pure organometallic compound is used as a starting material. Therefore, the load on the purification process can be reduced and the purity level of the ion can be easily improved.
対象となる原料物質は、 上記したように一定の純度が確保される (C H3) 2 Z n、 (C H3) 2S eなどの有機化合物であり、 現在では C V D (Chemica 1 Vaper Deposition) 原料などとして比較的安価に入手できるものである。 特にこれらの有機金属化合物は、 常温で容易に気化するため、 解離'イオン 化工程における取り扱レ、上有利である。 Raw materials of interest, certain purity as described above is secured (CH 3) 2 Z n, (CH 3) an organic compound such as 2 S e, at present CVD (Chemica 1 Vaper Deposition) material It can be obtained relatively inexpensively. In particular, these organometallic compounds are easily vaporized at room temperature, which is advantageous in handling in the dissociation and ionization processes.
本発明のィオン化過程は、 ィオン化した目的元素を高い純度で電磁場による 分離過程に送ることが可能であるため、 より一層の高純度ィヒが図られ、 装置の 負荷も著しく軽減される。  In the ionization process of the present invention, since the ionized target element can be sent to the separation process using an electromagnetic field with high purity, higher purity is achieved and the load on the apparatus is significantly reduced.
したがって、 得られるイオンの純度はこれら出努原料由来の高純度と選択的 イオン化励起過程における高純度化とにより相乗的に高められ、 極めて高い純 度が得られる。  Therefore, the purity of the obtained ions is synergistically enhanced by the high purity derived from these raw materials and the high purity in the selective ionization excitation process, and extremely high purity is obtained.
これらのイオン化過程で生成した、 遊離基や残存する不純物成分は、 ガス状 として速やかに系外に排出されることとなる。  Free radicals and remaining impurity components generated in these ionization processes are quickly discharged out of the system as gaseous.
質量分析器の原理による元素分離の手法自体はいわば古典的であって、 U235 などの同位体分離に用いられたほか、 現在では化学分析や分子組成の精密測定 用機器として広く用いられているが、 イオン化の効率が低いため、 生産 I"生向上 が図れず上記のとおり分析機器などにその用途が限られていたのである。 本発明においては、 高い効率によって極めて高密度のイオンビームを形成す ることが可能であり、 その結果髙純度材料の精製手段として応用して、 充分な 効率及び生産性を確保することが可能となった。 Method itself of the elements separated by the principles of mass analyzer is a speak classic, well used in isotope separation, such as U 235, are currently in the widely used as a precision measuring instruments chemical analysis and molecular composition However, due to the low ionization efficiency, production I "production was not improved, and as described above, its use was limited to analytical instruments. In the present invention, it is possible to form an extremely high-density ion beam with high efficiency. As a result, it is possible to secure sufficient efficiency and productivity by applying the method as a means for purifying a pure material. became.
また、 電磁場において偏向されて不純物分離工程を経たイオンは、 所定の軌 跡を描いてターゲットに向けられて堆積するが、 その運動エネルギーを含め励 起された状態にあることから、 ターゲット上に堆積すると共に放熱して安定な 結晶構造を取る。  In addition, ions that have been deflected in the electromagnetic field and have undergone the impurity separation process are directed to the target along a predetermined trajectory and are deposited.However, since the ions are excited including their kinetic energy, they are deposited on the target. As the heat is released, a stable crystal structure is obtained.
したがって、 ターゲットを予め所定の結晶構造 (同じ元素から成る単結晶体 など結晶構造に整合性のある) としておき、 運動エネルギー及ぴ予熱条件を制 御することにより、 所定の結晶構造を有する層構造を形成することができる。 また、 堆積過程が安定した結晶構造を形成することによりバルク体として回収 することができる。  Therefore, the target has a predetermined crystal structure (a single crystal composed of the same element and has a consistency with the crystal structure) in advance, and the kinetic energy and the preheating conditions are controlled to obtain a layer structure having the predetermined crystal structure. Can be formed. In addition, since the deposition process forms a stable crystal structure, it can be recovered as a bulk body.
さらに、 対象とする元素は、 一種に限らず上述のとおり 2種以上の元素を用 いてそれぞれィオン化し、 それぞれのィオン源からの分離精製されたィオンビ ームをターゲット上に交互に或いは所定の比率で交差混合して、 所定厚さで堆 積させることにより、 任意の積層構造或いは任意の化合物の組み合わせからな る構造を得ることができる。  Furthermore, the target element is not limited to one kind, but is ionized using two or more kinds of elements as described above, and the separated and purified ion beams from the respective ion sources are alternately applied to the target or at a predetermined ratio. By cross-mixing with each other and depositing them at a predetermined thickness, an arbitrary laminated structure or a structure composed of an arbitrary combination of compounds can be obtained.
この積層構造が極く薄レヽ場合は、 それぞれのィオン源からの元素は堆積して 積層すると共に安定した結晶構造をとつて化合物層を形成することが可能であ り、 またェピタキシャル層に替わってそれぞれの元素若しくは化合物層からな る積層構造を形成することもできる。  When the laminated structure is extremely thin, elements from each ion source can be deposited and laminated, and a compound layer can be formed with a stable crystal structure, and can be replaced with an epitaxy layer. To form a laminated structure composed of each element or compound layer.
このような成膜の手法は従来、 MB Eとして薄膜形成に試みられているが、 本来堆積量が微量であるため数原子層の極めて薄い (数 n m) 薄膜しかできな いため実用レベルでの特性の確認や製造方法としての応用はできなかったが、 本発明の成膜法にお!/、ては均等な制御された条件下で比較的厚 、層構造の形成 が可能であり、 実用的なデパイスへの応用が見込める。  Conventionally, such a film formation method has been attempted to form a thin film as MBE. However, since the amount of deposition is very small, only a very thin (several nm) thin film of several atomic layers can be formed. Although it was not possible to confirm the results and to apply the method as a manufacturing method, the film forming method of the present invention was able to form a relatively thick and layered structure under evenly controlled conditions. Application to natural depays can be expected.
さらに、 それぞれの元素ィオンのビームを交差混合して堆積させることによ り、 種々の目的とする化合物半導体層を形成することが可能である。  Further, by cross-mixing and depositing the beam of each element ion, it is possible to form various target compound semiconductor layers.
本発明のこれらの堆積層は、 高い堆積速度、 高い生産性及ぴ安定した結晶構 造の形成によって、 従来の試験的規模ではなく、 一気に実用化レベルの生産性 を確保することができる。 These deposited layers of the present invention have a high deposition rate, a high productivity and a stable crystal structure. By forming the structure, it is possible to secure a practical level of productivity at once, instead of the conventional trial scale.
これらのバルタ製造方法及び成膜方法に依れば、 高純度に精製された元素、 或いは化合物として直接バルタ及び積層構造が形成されるため、 その不純物濃 度は精製プロセスのまま維持されることとなり、 生産性の向上のみでなく、 こ れら機能性材料からなるデバイス製造に要求される厳しい高純度条件を満たす ことができる。 図面の簡単な説明  According to these methods for manufacturing and forming a Balta, since the Balta and the laminated structure are formed directly as highly purified elements or compounds, the impurity concentration is maintained in the purification process. In addition to improving the productivity, it can satisfy the strict high-purity conditions required for manufacturing devices made of these functional materials. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の精製装置の構造及び原理を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing the structure and principle of the purification device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 具体的に説明する。  Hereinafter, a specific description will be given with reference to the drawings.
図において、 原料ガス供給部 1 1から気化性のジメチル亜鉛ゃジメチルセレン などの原料ガスが噴霧.供給されて気化される。 装置全体は、 真空ポンプ 7 0, 7 1, 7 2, 7 3により排気される真空チャンバ一で構成され、 原料ガスのル 一トに沿つてそれぞれゲートバルブ 3 0, 3 1 , 3 2によつて仕切られた、 ィ オン化ステージ 1 0、 加速ステージ 4 0、 絞りステージ 5 0、 磁気分離ステー ジ 5 5、 堆積ステージ 6 0カ らなる。 In the figure, a source gas such as dimethyl zinc / dimethyl selenium, which is vaporizable, is sprayed and supplied from a source gas supply unit 11 to be vaporized. The entire apparatus is composed of a vacuum chamber evacuated by vacuum pumps 70, 71, 72, 73, and is operated by gate valves 30, 31, 32, respectively, along the source gas route. It is divided into ionization stage 10, acceleration stage 40, drawing stage 50, magnetic separation stage 55, and deposition stage 60.
なお、 図に於いては高純度精製工程の説明のため、 原料供給部から堆積ステ ージまで単一のコースで示されているが、 高機能材料として Z n S e, Z n O などの化合物を形成する工程や更にこれらのドーパントとして N, C1などを注 入する工程に対してはこれらの工程ごとにそれぞれ原料供給部から堆積ステー ジに至るコースが設けられる。  In the figure, a single course from the raw material supply unit to the deposition stage is shown for explanation of the high-purity refining process, but high-performance materials such as ZnSe and ZnO For the step of forming the compound and the step of injecting N, C1, etc. as these dopants, a course from the raw material supply unit to the deposition stage is provided for each of these steps.
イオン化ステージでは、 気化された原料ガスが、 エキシマレーザーにより照 射されて解離すると共に、 金属元素がイオン化する。  In the ionization stage, the vaporized source gas is irradiated by an excimer laser to dissociate and the metal elements are ionized.
レーザー光はその波長が金属元素を励起するためその波長に対して不透明で あって効率的に吸収されるが、 チャンパ一内のガスの流路に沿ってレーザー光 の照射を行うと共に、 チャンバ一の相対する壁面に反射鏡を配置して吸収効率 を向上することができる。 The laser light is opaque to the wavelength because the wavelength excites the metal element, and is efficiently absorbed. However, while the laser light is irradiated along the gas flow path in the chamber, the laser light is emitted. Absorbing efficiency by placing a mirror on the wall facing Can be improved.
イオン化された金属は、 その電荷のために加速ステージの加速電極 4 1の間 に負荷された電位によって加速され、 絞りステージに入るが、 解離した有機ガ スは、 不純物と共に真空ポンプ 7 0, 7 1により系外に排出され、 チャンパ一 内は高真空に維持される。  The ionized metal is accelerated by the electric potential applied between the accelerating electrodes 41 of the accelerating stage due to its electric charge, and enters the constriction stage. The dissociated organic gas is removed by the vacuum pump 70, 7 together with impurities. It is discharged out of the system by 1 and the inside of the champ is maintained at a high vacuum.
イオン化された金属のみを堆積ステージに導入するために、 絞り 5 4でィォ ンビームが焦点を結ぶように、 絞りステージの集束コイル 5 1の磁気にてィォ ンを集束させる。  In order to introduce only the ionized metal into the deposition stage, the ion is focused by the magnetism of the focusing coil 51 of the aperture stage so that the ion beam is focused at the aperture 54.
加速ステージでイオンは電場によって加速され、 絞りステージにてビーム状 に絞られて、 磁気分離ステージに入射し、 磁場によって更に垂直方向に偏向さ れて、 荷電 Z質量比の異なる不純物はイオンビーム 1 2から反れ、 絞り 4 3に 遮られて分離される。  In the acceleration stage, the ions are accelerated by an electric field, converged into a beam by a converging stage, incident on a magnetic separation stage, further deflected by a magnetic field, and charged with a different Z-mass ratio. It is deflected from 2 and blocked by the aperture 4 3 and separated.
堆積ステージでは、 電荷を中和された金属元素が、 ターゲット 6 1上に堆積 する。  In the deposition stage, the neutralized metal element is deposited on the target 61.
ターゲットの温度や加速条件などの堆積条件を調整することにより、 ターグ ット上の成膜条件を調整することができ、 Z nや S eなどの単体の堆積層のみ でなく、 これらの化合物組成の堆積層を形成することもできる。  By adjusting the deposition conditions such as the target temperature and acceleration conditions, the film formation conditions on the target can be adjusted, and not only a single deposited layer such as Zn or Se, but also the composition of these compounds Can be formed.
ターゲット 6 1は、 所定の堆積過程を終了すると、 モータ 6 2によって順次 置き換えられ、 真空を破らずに精製工程や成膜工程を継続することができる。 イオンビームは、 図においては一定の幅があるように描かれているが、 ター ゲット上の堆積面積に合わせてビームの絞りを調製すればよい。  When a predetermined deposition process is completed, the target 61 is sequentially replaced by the motor 62, so that the purification process and the film formation process can be continued without breaking the vacuum. Although the ion beam is depicted as having a certain width in the figure, the beam aperture may be adjusted according to the deposition area on the target.
また、 イオンビームを荷電状態において電磁場によって偏向させてターゲッ ト上を走査することによって、 ターゲット上の堆積条件を均一にし、 或いは堆 積面積を任意に変更することもできる。  By scanning the target while deflecting the ion beam by an electromagnetic field in a charged state, the deposition conditions on the target can be made uniform, or the deposition area can be arbitrarily changed.
さらに、 イオンビームを拡大したり、 絞り条件を調節して、 堆積条件を変え て均一な堆積を図ったり、 それに加えて加速条件を制御することにより半導体 へのィオンィンプランテーションゃ結晶化の条件調整に利用したり、 さらにこ れらの処理を任意の領域に行ったり'、 或いはィオンビームを走査して堆積条件 の制御、 大面積への均一な堆積などに利用することができる。 産業上の利用可能性 Furthermore, the ion beam is expanded, the aperture conditions are adjusted, and the deposition conditions are changed to achieve uniform deposition. In addition, the acceleration conditions are controlled to control the ion implantation and the crystallization conditions. It can be used for adjustment, furthermore, these processes can be performed on an arbitrary area, or the ion beam can be scanned to control the deposition conditions and for uniform deposition over a large area. Industrial applicability
本発明の高純度精製法及び成膜法は、 従来超高純度化を実現できなかった元 素、 特に亜鉛及ぴセレンなどの元素について新たなデパイス実現に不可欠な超 高純度化を達成するものであり、 要素技術として従来より原理的に知られ且つ 実用化されていた質量分離法及び高強度のエキシマレーザー直接照射による多 光子吸収によるイオン化の手法などを新たな課題に対する技術手段として適用 することにより、 実用性及ぴ生産性の高い精製法を実現し、 もって産業の発展 に寄与するものである。  The high-purity refining method and film-forming method of the present invention achieve ultra-high purity, which is essential for realizing new depises for elements that could not previously achieve ultra-high purity, especially elements such as zinc and selenium. The application of mass separation methods and ionization methods by multiphoton absorption by direct irradiation of high-intensity excimer laser, which have been known in principle as elemental technologies and put to practical use, as technical means for new issues. As a result, a purification method with high practicality and high productivity is realized, thereby contributing to industrial development.

Claims

請 求 の 範 囲 The scope of the claims
1 . 気化した金属又は半導体の有機化合物に対してエキシマレーザー照射に より中間準位を経ない非共鳴の多光子吸収により解離及びイオン化し、 イオン 化された元素を電磁場による質量分離法により不純物を分離して所定のイオン 化元素のみをターゲット上に堆積させることを特徴とする高純度精製方法。 1. Excimer laser irradiation dissociates and ionizes the vaporized metal or semiconductor organic compound by non-resonant multiphoton absorption that does not pass through an intermediate level, and removes the ionized element by mass separation using an electromagnetic field. A high-purity purification method comprising separating and depositing only a predetermined ionized element on a target.
2 . 上記元素として Z n又は S eを対象とし、 有機化合物としてジメチル亜 鉛又はジメチルセレンを用いることを特徴とする、 請求項 1記載の高純度精製 方法。 2. The high-purity purification method according to claim 1, wherein the element is Zn or Se, and dimethyl zinc or dimethyl selenium is used as the organic compound.
3 . 半導体高機能材料となる元素の出発原料として有機金属化合物及び気体 元素化合物を用い、 これに対してエキシマレーザー照射により中間準位を経な い非共鳴の多光子吸収により解離及びイオン化し、 イオン化された元素を電磁 場による質量分離法により所定のィオン化元素のみをターゲット上に堆積させ て直接高機能材料のバルタ又は積層構造を得る堆積方法。  3. An organometallic compound and a gaseous elemental compound are used as starting materials for elements that become semiconductor high-performance materials, and dissociation and ionization are performed by non-resonant multiphoton absorption without intermediate levels by excimer laser irradiation. A deposition method in which only ionized elements are deposited on a target by a predetermined ionizing element by a mass separation method using an electromagnetic field to directly obtain a balta or a laminated structure of a high-performance material.
4 . 上記イオンィヒされた元素を電磁場による質量分離法により所定のイオン 化元素のみをターゲット上に堆積させる際、 2種以上のイオンをそれぞれのィ オン源からターゲットに向けて交互に、 又は同時に若しくはこれらと前後して 任意の比率で堆積させることを特徴とする請求項 3記載の堆積方法。  4. When depositing only the specified ionized elements on the target by the mass separation method using an electromagnetic field, two or more ions are alternately or simultaneously or simultaneously directed from each ion source toward the target. 4. The deposition method according to claim 3, wherein the deposition is performed at an arbitrary ratio before and after these steps.
5 . 上記イオンがビーム状であって、 ターゲット上を走査することにより、 成膜の厚さ、 ィオン種の比率を制御することを特徴とする請求項 4記載の堆積 方法  5. The deposition method according to claim 4, wherein the ions are in the form of a beam, and the thickness of the film and the ratio of the ion species are controlled by scanning over the target.
6 . 上記所定の元素が、 Z nと、 S e又は Oであり、 出発原料としてそれぞ れジメチル亜鈴、 ジメチルセレン、 及ぴ 02又はジメチルエーテルとし、 堆積 した高機能材料がそれぞれ Z n S e又は Z n Oであることを特徴とする請求項 3乃至 4記載の堆積方法。 6. The predetermined element, and Z n, an S e or O,, respectively it as a starting material dimethyl dumbbell, dimethyl selenium, and及Pi 0 2 or dimethyl ether, highly functional material deposited each Z n S e 5. The deposition method according to claim 3, wherein the deposition method is ZnO.
7 . 上記所定の元素として、 更にドーパントである N及ぴ C 1などを加え、 出発原料として Nについてそれぞれ、 N 2、 アンモユア、 トリメチルァミン、 窒素酸化物の一種、 C 1について C 1 2又は H C 1であることを特徴とする請 求項 3乃至 4記載の堆積方法。 7. As the above-mentioned predetermined elements, N and C 1 as dopants are further added, and N 2 , ammoua, trimethylamine, a kind of nitrogen oxide, and C 1 2 or 5. The deposition method according to claim 3, wherein the deposition method is HC1.
PCT/JP2003/005595 2002-05-10 2003-05-01 Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method WO2003095700A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002135538 2002-05-10
JP2002-135538 2002-05-10
JP2002-336072 2002-11-20
JP2002336072A JP2004031887A (en) 2002-05-10 2002-11-20 High purity refining method for high performance material by mass separation method, and deposition method for high performance material

Publications (1)

Publication Number Publication Date
WO2003095700A1 true WO2003095700A1 (en) 2003-11-20

Family

ID=29422392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005595 WO2003095700A1 (en) 2002-05-10 2003-05-01 Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method

Country Status (3)

Country Link
JP (1) JP2004031887A (en)
TW (1) TW591078B (en)
WO (1) WO2003095700A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214527A (en) * 1985-03-20 1986-09-24 Seiko Epson Corp Low resistance n- type semiconductor thin film and manufacture thereof
JPS62209833A (en) * 1986-03-11 1987-09-16 Toshiba Corp N-type semiconductor crystal
JPS63270540A (en) * 1987-04-28 1988-11-08 Matsushita Electric Ind Co Ltd Multiple ion beam accumulation device
JPH01184278A (en) * 1988-01-18 1989-07-21 Fujitsu Ltd Depositing method for high-purity metal
JPH0637015A (en) * 1992-07-21 1994-02-10 Nec Corp Manufacture of zinc solenide crystal
JPH0745538A (en) * 1993-07-29 1995-02-14 Hitachi Ltd Manufacture of compound semiconductor device and its manufacture equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214527A (en) * 1985-03-20 1986-09-24 Seiko Epson Corp Low resistance n- type semiconductor thin film and manufacture thereof
JPS62209833A (en) * 1986-03-11 1987-09-16 Toshiba Corp N-type semiconductor crystal
JPS63270540A (en) * 1987-04-28 1988-11-08 Matsushita Electric Ind Co Ltd Multiple ion beam accumulation device
JPH01184278A (en) * 1988-01-18 1989-07-21 Fujitsu Ltd Depositing method for high-purity metal
JPH0637015A (en) * 1992-07-21 1994-02-10 Nec Corp Manufacture of zinc solenide crystal
JPH0745538A (en) * 1993-07-29 1995-02-14 Hitachi Ltd Manufacture of compound semiconductor device and its manufacture equipment

Also Published As

Publication number Publication date
TW591078B (en) 2004-06-11
JP2004031887A (en) 2004-01-29
TW200306332A (en) 2003-11-16

Similar Documents

Publication Publication Date Title
US6627268B1 (en) Sequential ion, UV, and electron induced chemical vapor deposition
US20170218498A1 (en) Process for depositing metal or metalloid chalcogenides
KR0164843B1 (en) Method for growing thin film by beam deposition and apparatus for practicing the same
WO2003095700A1 (en) Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method
Kompa Laser Photochemistry at Surfaces—Laser‐Induced Chemical Vapor Deposition and Related Phenomena
JPH10513108A (en) Isotope separation
JPS6184379A (en) Production of high-hardness boron nitride film
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPH0786164A (en) Method and equipment for producing fine structure material and light emission element having fine structure
Vepřek Preparation of inorganic materials, surface treatment, and etching in low pressure plasmas: Present status and future trends
CN1786255A (en) One step method of preparing doped compound film
JP2600243B2 (en) High purity metal deposition method
Gilb et al. Monodispersed cluster-assembled materials
JPS5988820A (en) Compound semiconductor thin film manufacturing device utilizing sheet plasma
JPH0459769B2 (en)
JPH02239616A (en) Forming method of thin-film
JPS62243315A (en) Photoreaction and apparatus for the same
JPH06264228A (en) Apparatus for producing high-purity composite film
US5952059A (en) Forming a piezoelectric layer with improved texture
WO2016011559A1 (en) Methods for atom incorporation into materials using a plasma afterglow
JPH0515788B2 (en)
JPS62149116A (en) Manufacture of thin-film layered superlattice structure
JP2841694B2 (en) Photo CVD method
JPS60257130A (en) Formation of thin film using radical beam
JPH0652717B2 (en) Thin film formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase