JPS5988820A - Compound semiconductor thin film manufacturing device utilizing sheet plasma - Google Patents

Compound semiconductor thin film manufacturing device utilizing sheet plasma

Info

Publication number
JPS5988820A
JPS5988820A JP19887182A JP19887182A JPS5988820A JP S5988820 A JPS5988820 A JP S5988820A JP 19887182 A JP19887182 A JP 19887182A JP 19887182 A JP19887182 A JP 19887182A JP S5988820 A JPS5988820 A JP S5988820A
Authority
JP
Japan
Prior art keywords
sheet plasma
substrate
compound semiconductor
plasma
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19887182A
Other languages
Japanese (ja)
Other versions
JPH023291B2 (en
Inventor
Muneharu Komiya
小宮 宗治
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP19887182A priority Critical patent/JPS5988820A/en
Publication of JPS5988820A publication Critical patent/JPS5988820A/en
Publication of JPH023291B2 publication Critical patent/JPH023291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To realize low speed and high density ion implantation and protect the growth chamber from contamination by injecting ion from the area nearer to the substrate surface to an element having a low adhessive coefficient placed on the sheet plasma. CONSTITUTION:A sheet plasma forming apparatus 2 comprises a sheet plasma generator 2a and a sheet plasma receiver 2c. The sheet plasma 2b containes elements having adhessive coefficient less than 1 to a substrate 1 at a growth temperature among the compound semiconductors requested to grow up and is formed in parallel to the surface of substrate 1. With such structure, the ions extracted from the plasma 2b reaches the substrate 1 before it is subjected to spreading of beam due to the influence of space charges. Accordingly, ion implantation of low speed and high density can be realized and the growth chamber is protected from contamination by element vapor having low adhessive coefficient.

Description

【発明の詳細な説明】 この発明は、シートプラズマを利用した化合物半導体薄
膜製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor thin film manufacturing apparatus using sheet plasma.

化合物半導体としては金属の酸化物、セレン化物、硫化
物やテルル化物の他に■属、 ITI属と 属または■
属と■属の金属間化合物例えばSin。
In addition to metal oxides, selenides, sulfides, and tellurides, compound semiconductors include metal oxides, selenides, sulfides, and tellurides, as well as genus ITI, genus ITI, and genus ■.
Intermetallic compounds of the genus and genus eg, Sin.

GaAs、InP、GaP、InA、s、In8bなど
があり、これらの金属間化合物半導体は、キャリヤの移
動度が大きく、エネルギーギャップの大きいものでは動
作温度限界が高く、ダイオードとしての逆方向電流の小
さいものが得られ、そのためパラメトリックダイオード
、レーザーダイオ−rや太陽電池等に使用されている。
These intermetallic compound semiconductors include GaAs, InP, GaP, InA, s, and In8b, and these intermetallic compound semiconductors have high carrier mobility, large energy gaps, high operating temperature limits, and low reverse current as diodes. Therefore, it is used in parametric diodes, laser diodes, solar cells, etc.

ところで、このような化合物半導体は種々の方法で製造
されておシ、例えば生成すべき化合物半導体A m B
 nの各成分元素Am、Bnについてそれぞれ分子ビー
ム蒸発源を設け、各蒸発源から成長温度に保たれた基板
へ各成分元素の蒸気分子ビームを注入して成長させる方
法や、基板の至近距離に、生成すべき化合物半導体A 
m B nの成分元素のうち成長中の基板温度で付着確
率が/でない元素(例えばBn元素)の基板表面からの
脱離による欠乏を補償する蒸発源を設けたもの等が知ら
れている。
By the way, such compound semiconductors can be manufactured by various methods, for example, compound semiconductors to be produced A m B
A molecular beam evaporation source is provided for each of the component elements Am and Bn of n, and vapor molecular beams of each component element are injected from each evaporation source into a substrate kept at the growth temperature. , compound semiconductor A to be produced
Among the constituent elements of mBn, a method is known in which an evaporation source is provided to compensate for the deficiency due to desorption from the substrate surface of an element (for example, Bn element) whose adhesion probability is / is not at the substrate temperature during growth.

しかしながら、このような従来公知のものでは化合物半
導体の成分元素のうち成長中の基板温度で通常の熱的蒸
発では付着確率がlでない元素はエピタキシャル成長中
に真空容器内に充満していて分子ビーム蒸発源装置では
その蒸発分子が容器壁やポンプ内で凝縮するため汚染の
原因となっていた。また蒸発源から基板へのイオンビー
ムの注入においてイオンビームは空間電荷の影響で拡が
る傾向があり、大密度でのイオン注入ができないだけで
なく、これもまた汚染の原因となっていた。
However, in such a conventionally known method, among the component elements of a compound semiconductor, elements whose adhesion probability is not l by normal thermal evaporation at the substrate temperature during growth are filled in the vacuum chamber during epitaxial growth, and cannot be evaporated by molecular beam evaporation. In the source equipment, the evaporated molecules condense on the container walls and inside the pump, causing contamination. Furthermore, when an ion beam is implanted from an evaporation source into a substrate, the ion beam tends to spread due to the influence of space charges, which not only makes it impossible to implant ions at a high density, but also causes contamination.

一方シートプラズマを作る研究が進み、最近所望の寸法
のシートプラズマを形成できる技術が開発された。これ
は簡単には永久磁石を利用して磁場中の放電で作られた
プラズマを圧縮および伸長して所望の幅、厚さ、密度を
もつシートプラズマを形成しようとするものである。
Meanwhile, research to create sheet plasma has progressed, and a technology that can form sheet plasma of desired dimensions has recently been developed. Simply put, this involves using permanent magnets to compress and expand plasma created by electric discharge in a magnetic field to form a sheet plasma with a desired width, thickness, and density.

そこでこの発明はこのシートプラズマを利用して#親の
化合物半導体薄(1〆製造装置を提供しようとするもの
である。
Therefore, the present invention aims to provide an apparatus for manufacturing a parent compound semiconductor thin film using this sheet plasma.

この目的で、この発明による装置は、化合物半導体の生
成されることになる基板表面に平行にしかも近接して、
基板表面の実質的部分を穆う幅をもちかつ生成すべき化
合物半導体の成分元素のうち成長温度で付着確率の低い
一方の元素を含んだシートプラズマを形成する装置と、
上記シートプラズマを通過して基4反へ他方の成分元素
の分子ビームを注入する装置とを有し、シートプラズマ
中に含まれた一方の成分元素はイオンとして引き出され
て他方の成分元素の分子ビームと共に基板へ注入される
For this purpose, the apparatus according to the invention provides a method for producing a compound semiconductor parallel to and close to the substrate surface on which the compound semiconductor is to be produced.
an apparatus for forming a sheet plasma having a width that covers a substantial portion of a substrate surface and containing one of the component elements of a compound semiconductor to be generated that has a low adhesion probability at a growth temperature;
A device for injecting a molecular beam of the other component element into the base plate through the sheet plasma, and the one component element contained in the sheet plasma is extracted as ions and the molecules of the other component element are extracted. The beam is injected into the substrate along with the beam.

基板は成長温rLを保つように加熱され、必要により回
転、並進等の運動をさせても、或いは静止状態で保持し
てもよい。
The substrate is heated to maintain the growth temperature rL, and may be rotated, translated, or otherwise moved as necessary, or may be held stationary.

またこの発明においてシートプラズマが生成すべき化合
物半導体の成分元素のうち成長温度で基板への付着確率
が/以下の元素を含むという概念は、シートプラズマが
その元素だけで構成されていても、又プラズマの形成を
容易にさせるため他のガス分子を含んでいてもよいこと
が認められる。
In addition, in this invention, the concept that the sheet plasma includes an element whose adhesion probability to the substrate at the growth temperature is / or less among the component elements of the compound semiconductor to be generated, even if the sheet plasma is composed only of that element, or It is recognized that other gas molecules may be included to facilitate plasma formation.

このように構成することによってこの発明は、従来公知
の化合物半導体製造装置に代わる新規の装置を提供し、
この装置では付着確率の低い成分元素をシートプラズマ
にのせて基板表面の近傍から注入するように構成してい
るので、空間電荷によ仝拡がシの影響を受ける前に基板
へ入るので低速大密度のイオン注入が可能となると川に
付着確率の低い元素蒸気で成長室を汚染することがない
With this configuration, the present invention provides a new device that replaces conventionally known compound semiconductor manufacturing devices,
This device is configured so that component elements with low adhesion probability are placed on a sheet plasma and injected from near the substrate surface, so that they enter the substrate before being affected by space charge expansion, resulting in low-speed, high-speed injection. If high-density ion implantation becomes possible, the growth chamber will not be contaminated with elemental vapors that have a low probability of adhering to the river.

すなわち、通常の分子ビーム蒸発手段を用いた方法では
付着確率の低い成分元素は成長温度において基板上の化
合物から解離したシ、その元素の表面から脱離し易いが
、この発明では解離ま/こは脱離した元素は同じ元素を
含んだシートプラズマ内に入るので、シートプラズマ中
で再び1M、etして基板へ戻シ得る3、従って脱離に
よる成分元素の欠乏および成長室の汚染を著しく改善す
ることができる。
In other words, in a method using ordinary molecular beam evaporation means, component elements with a low adhesion probability dissociate from the compound on the substrate at the growth temperature and are likely to be desorbed from the surface of the element, but in this invention, the dissociation is prevented. Since the desorbed element enters the sheet plasma containing the same element, it can be returned to the substrate by etching 1M in the sheet plasma3, thus significantly improving the depletion of component elements and contamination of the growth chamber due to desorption. can do.

以下この発明を添附図面を参照してさらに説明する。The present invention will be further described below with reference to the accompanying drawings.

図面にはこの発明による装置を原理的に示し、/は基板
で、図示してない加熱装置で成長温度に加熱され、そし
て上述したように静止状態または回転、並進運動状態に
保持され得る。λはシートプラズマ形成装置で、シート
プラズマ発生部2aととのシートプラズマ発生部2aか
ら発生されたシートプラズマ、2bを受けるシートプラ
ズマ受入部、2Cとから成っている1、シートプラズマ
2 bは生成すべき化合物半導体AmBnのうち成長温
度で基板への付着確率が/に比べて小さい元素Bnを含
んでおり、そして図示したように基板lの表面に平行に
しかもその近く(例えばシートプラズマ2bの境界と基
板/との距離は一例ではλm〜30鑓とすることができ
る)に位置して形成される。
The drawing shows the device according to the invention in principle; / is a substrate which is heated to the growth temperature in a heating device not shown and which can be held stationary or in rotational or translational movement as described above. λ is a sheet plasma forming apparatus, which is composed of a sheet plasma generating section 2a, a sheet plasma receiving section 2B that receives the sheet plasma generated from the sheet plasma generating section 2a, and a sheet plasma receiving section 2C; Among the compound semiconductors AmBn to be produced, it contains the element Bn, which has a smaller probability of adhering to the substrate at the growth temperature than /. The distance between the substrate and the substrate is, for example, λm to 30 cm.

また基板lとシートプラズマ2bとの間にはシートプラ
ズマ、2bからイオン(主として成分元素Bnのイオン
)を引き出すための電界を形成する電源3が設けられこ
の場合図示例では陽イオンが引き出されるが、必要によ
シ陰イオンを引き出すようにすることもできる。このよ
うに構成することで、シートプラズマコbから引き出さ
れたイオンは空間電荷の影響によるビームの拡がりを受
ける前に基板/へ到達することができ、シートプラズマ
コbから引き出されたイオンの基板lへ達する際の加速
エネルギーは例えばrevから!θθcVのような比較
的低い任意の加速エネルギーを得ることができろ。イオ
ンビームを利用した方法では200e v’以下の加速
エネルギーを得ることは困!、iI′であるが、シート
プラズマではイオンビーム法では困難であるような低速
のイオンを容易に作ることができる。
Further, a power source 3 is provided between the substrate l and the sheet plasma 2b to form an electric field for extracting ions (mainly ions of the component element Bn) from the sheet plasma 2b. In this case, in the illustrated example, positive ions are extracted. It is also possible to draw out negative ions if necessary. With this configuration, the ions extracted from the sheet plasma column B can reach the substrate before the beam spreads due to the influence of space charges, and the ions extracted from the sheet plasma column B can reach the substrate. For example, the acceleration energy when reaching l is from rev! Any relatively low acceleration energy such as θθcV can be obtained. It is difficult to obtain acceleration energy of less than 200 e v' with methods using ion beams! , iI', but sheet plasma can easily produce low-velocity ions that are difficult to produce using ion beam methods.

また図面においてグは成分元素Amの分子ビームの発生
源であり、この発生源参からの分子ビーム≠aは好脣し
くは基板/に直交する方向からシートプラズマ2b中を
横切って基板lに入るようにされ、シートプラズマ2b
を通過する際に元素Amの蒸気分子の一部はシートプラ
ズマ、2b内で励起まだは電離されて、他の熱運動エネ
ルギーをもった元素Amの蒸気分子と共に基板/に入射
する。なお元素Amの分子ビーム4’aの方向は必ずし
も基板/に垂直である必要はなく、著しくか1めでない
限り使用できる。
Further, in the drawing, g is a source of a molecular beam of the component element Am, and the molecular beam ≠a from this source preferably crosses the sheet plasma 2b from a direction perpendicular to the substrate and enters the substrate l. Sheet plasma 2b
When passing through the sheet plasma, some of the vapor molecules of the element Am are excited or ionized in the sheet plasma 2b, and enter the substrate together with other vapor molecules of the element Am having thermal kinetic energy. Note that the direction of the molecular beam 4'a of element Am does not necessarily have to be perpendicular to the substrate, and can be used as long as it is not extremely perpendicular to the substrate.

従って、この発明の装置の動作においてrよ僅かに1助
起または電゛離された粒子を含んだ成分元素A、mの分
手ビーム4taとシートプラズマ、2bから引き出され
基板/とシートプラズマ、21)との間に存在する電界
の作用で加速された成分元素Bnを含むイオンとが基板
/の表面に同時に入射される。基板/の表面は成長温度
に保たれているのでAm、Bnの両元素が化学量論的状
態で結合し、表面に化合物A m B nが形成される
Therefore, in the operation of the apparatus of the present invention, the partial beam 4ta of the component elements A and m containing particles that are ionized or ionized as slightly as r and the sheet plasma 2b are extracted from the substrate/and the sheet plasma 21. ) and ions containing the component element Bn are simultaneously incident on the surface of the substrate. Since the surface of the substrate is maintained at the growth temperature, both elements Am and Bn combine in a stoichiometric state, forming a compound A m B n on the surface.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明による化合物半導体薄膜製造装置の原理
図である。 図中、l:基板、2=シ一トプラズマ発生装置、グ:分
子ビーム発生源。
The drawing is a principle diagram of a compound semiconductor thin film manufacturing apparatus according to the present invention. In the figure, l: substrate, 2: sheet plasma generator, g: molecular beam source.

Claims (1)

【特許請求の範囲】[Claims] 基板に平行にしかもそれに近接して基板表面の実質的部
分を覆う幅をもち生成すべき化合物半導体の成分元素の
うち成長温度で付着確率の低い一方の元素を含んだシー
トプラズマを形成する装ffと、上記シートプラズマを
通過して基板へ他方の成分元素の分子線を注入する装置
とを有し、シートプラズマから一方の成分元素のイオン
を引き出して他方の成分元素の分子線と共に基板へ注入
するように構成したことを特徴とするシートプラズマを
利用した化合物半導体薄膜製造装置。
A device for forming sheet plasma parallel to and close to the substrate and having a width covering a substantial portion of the substrate surface and containing one of the component elements of the compound semiconductor to be generated that has a low adhesion probability at the growth temperature. and a device for injecting a molecular beam of the other component element into the substrate through the sheet plasma, and extracting ions of one component element from the sheet plasma and injecting them into the substrate together with the molecular beam of the other component element. A compound semiconductor thin film manufacturing apparatus using sheet plasma, characterized in that it is configured to:
JP19887182A 1982-11-15 1982-11-15 Compound semiconductor thin film manufacturing device utilizing sheet plasma Granted JPS5988820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19887182A JPS5988820A (en) 1982-11-15 1982-11-15 Compound semiconductor thin film manufacturing device utilizing sheet plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19887182A JPS5988820A (en) 1982-11-15 1982-11-15 Compound semiconductor thin film manufacturing device utilizing sheet plasma

Publications (2)

Publication Number Publication Date
JPS5988820A true JPS5988820A (en) 1984-05-22
JPH023291B2 JPH023291B2 (en) 1990-01-23

Family

ID=16398304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19887182A Granted JPS5988820A (en) 1982-11-15 1982-11-15 Compound semiconductor thin film manufacturing device utilizing sheet plasma

Country Status (1)

Country Link
JP (1) JPS5988820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119676A (en) * 1984-11-15 1986-06-06 Ulvac Corp Film forming device using sheet plasma and laser light
JPS61176121A (en) * 1985-01-31 1986-08-07 Tokai Univ Vacuum processing device utilizing sheet plasma
JPS6350464A (en) * 1986-08-19 1988-03-03 Toobi:Kk Method and device for sheet plasma ion plating
US5178905A (en) * 1988-11-24 1993-01-12 Canon Kabushiki Kaisha Process for the formation of a functional deposited film by hydrogen radical-assisted cvd method utilizing hydrogen gas plasma in sheet-like state
US9620260B2 (en) 2012-12-14 2017-04-11 Autonetworks Technologies, Ltd. Insulating coated wire and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577129A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Treating method and device for sputtering
JPS57156031A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Formation of thin film and vacuum deposition device
JPS58166930A (en) * 1982-03-05 1983-10-03 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Apparatus for generating neutralized ion beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577129A (en) * 1980-06-17 1982-01-14 Fujitsu Ltd Treating method and device for sputtering
JPS57156031A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Formation of thin film and vacuum deposition device
JPS58166930A (en) * 1982-03-05 1983-10-03 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Apparatus for generating neutralized ion beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119676A (en) * 1984-11-15 1986-06-06 Ulvac Corp Film forming device using sheet plasma and laser light
JPS61176121A (en) * 1985-01-31 1986-08-07 Tokai Univ Vacuum processing device utilizing sheet plasma
JPS6350464A (en) * 1986-08-19 1988-03-03 Toobi:Kk Method and device for sheet plasma ion plating
US5178905A (en) * 1988-11-24 1993-01-12 Canon Kabushiki Kaisha Process for the formation of a functional deposited film by hydrogen radical-assisted cvd method utilizing hydrogen gas plasma in sheet-like state
US9620260B2 (en) 2012-12-14 2017-04-11 Autonetworks Technologies, Ltd. Insulating coated wire and method for manufacturing the same

Also Published As

Publication number Publication date
JPH023291B2 (en) 1990-01-23

Similar Documents

Publication Publication Date Title
Rimini Ion implantation: basics to device fabrication
US5811820A (en) Parallel ion optics and apparatus for high current low energy ion beams
US5631524A (en) Switching apparatus
KR20080089646A (en) Methods of implanting ions and ion sources used for same
US4533831A (en) Non-mass-analyzed ion implantation
TWI246105B (en) System and method for removing particles entrained in an ion beam
JPS5988820A (en) Compound semiconductor thin film manufacturing device utilizing sheet plasma
JP2934456B2 (en) Surface treatment method and apparatus
JP3341387B2 (en) Method for manufacturing microstructured material, apparatus for manufacturing the same, and light emitting device having microstructure
KR100665846B1 (en) Thin film forming method for fabricating semiconductor device
JPH05206515A (en) Ultrafine particle light-emitting element and its manufacturing device
JP6969065B2 (en) Ion implantation method, ion implantation device
JP2600243B2 (en) High purity metal deposition method
Hüfner et al. Introduction and basic principles
JP2572270B2 (en) Ultra-high purity film forming equipment
Weaver Reactions of the silicon (100) crystal surface with hyperthermal chlorine molecules and radicals
RU2135633C1 (en) Method of vacuum deposition of thin films
JPS5826821B2 (en) Molecular beam epitaxial growth equipment
JPS6114652B2 (en)
JPS61163635A (en) Semiconductor impurity doping device
Kantrowitz Wide angle isotope separator
Grant GaN radiation detectors for particle physics and synchrotron applications
Zeman In Situ, Real-Time Characterization of Silicide Nanostructure Coarsening Dynamics by Photo-Electron Emission Microscopy
Alton et al. The use of an electromagnetic isotope separator in preparing special research samples
JPS6148416A (en) Electromagnetic fluid dynamic device and process for separating and depositing material