JPS62209833A - N-type semiconductor crystal - Google Patents

N-type semiconductor crystal

Info

Publication number
JPS62209833A
JPS62209833A JP61051429A JP5142986A JPS62209833A JP S62209833 A JPS62209833 A JP S62209833A JP 61051429 A JP61051429 A JP 61051429A JP 5142986 A JP5142986 A JP 5142986A JP S62209833 A JPS62209833 A JP S62209833A
Authority
JP
Japan
Prior art keywords
crystal
concentration
group
blue light
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61051429A
Other languages
Japanese (ja)
Other versions
JPH0697655B2 (en
Inventor
Atsushi Kamata
鎌田 敦之
Masasue Okajima
岡島 正季
Keijiro Hirahara
平原 奎治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5142986A priority Critical patent/JPH0697655B2/en
Publication of JPS62209833A publication Critical patent/JPS62209833A/en
Publication of JPH0697655B2 publication Critical patent/JPH0697655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a crystal which has a low resistivity and emits blue light at a room temperature by making the composition ratio of a group II element in the crystal less than a specific value. CONSTITUTION:In order to realize a blue light emitting device (especially LED and LD), a low resistivity and a high blue light emission intensity are essential. For that purpose, paying attention to a group II element which is an N-type donor impurity contained by ZnSxSe1-x, the relations between the group II element concentration in the crystal, the electron concentration (n), the electron mobility mu, a deep electron trapping level and further a PL spectrum at a room temperature obtained by SIMS analysis are studied. As a result, if the group II impurity concentration is predetermined within a proper range, the growth of the crystal which shows a low resistivity and blue light emission can be made to grow. In other words, the group II impurity concentration contained in ZnSxSe1-x (0<=x<=0.1) is selected to be less than 50ppm, or more preferably, less than 50ppm and not less than 1ppm.

Description

【発明の詳細な説明】 本発明は、有機金属化合物を用いた気相成長法(MOC
VD法)により成長させたI族元素を含むセレン化硫化
亜鉛(Zn5x8e 、 −x(0≦X≦1)結晶から
なるN型半導体結晶に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth method (MOC) using an organometallic compound.
The present invention relates to an N-type semiconductor crystal consisting of a zinc selenide sulfide (Zn5x8e, -x (0≦X≦1) crystal containing Group I elements grown by VD method).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

青色発光素子として期待がかけられているZn5xSe
、−x(0≦X≦1)結晶は、自己補償効果が強く電気
伝導型や制御する事が非常に難しい。そのためPN接合
を形成する事はもちろん、適当な後処理を施す事なく低
抵抗率の結晶を得る事すらなかなか難しい。近年、非熱
平衡下での結晶成長方法と言われるMBgやMOCVD
法の発達に伴い、自己補償効果の抑制への期待がかけら
れている。実際MBE 。
Zn5xSe has high expectations as a blue light emitting element
, -x (0≦X≦1) crystal has a strong self-compensation effect and is extremely difficult to control as an electrically conductive type. Therefore, it is difficult not only to form a PN junction but also to obtain a crystal with low resistivity without appropriate post-treatment. In recent years, MBg and MOCVD, which are said to be crystal growth methods under non-thermal equilibrium,
As the law develops, there are expectations that it will suppress the self-compensation effect. Actually MBE.

MOCVDの両方法により、適当な不純物を添加する事
により後処理なして低抵抗のN型半導体結晶が得られる
ようになってきた。
With both MOCVD methods, it has become possible to obtain low-resistance N-type semiconductor crystals without post-treatment by adding appropriate impurities.

しかし、低抵抗化した半導体結晶(ZnSxSe、 。However, semiconductor crystals with lower resistance (ZnSxSe,

結晶)は、青色発光素子に必須の室温における帯間遷移
による発光(〜47.011m1)は見られるものの、
それにも増して深い準位の関与したスペクトル巾の広い
DA発光が優勢に現われる。さらに、この深い準位の関
与した発光は不純物添加量の増加と共に強度が増大する
。また、DLTSによるDeepleielの評価によ
っても、不純物添加量の増加と共に深い電子トラップ濃
度の増大が見られる。
Although the crystal) can emit light (~47.011 m1) due to interband transition at room temperature, which is essential for blue light emitting devices,
Moreover, DA emission with a wide spectrum width involving deep levels appears predominant. Furthermore, the intensity of light emission involving this deep level increases as the amount of impurity added increases. Also, according to Deepleiel evaluation by DLTS, an increase in the deep electron trap concentration is observed as the amount of impurity added increases.

以上の事からMBgおよびMOCVDにより低抵抗の結
晶を成長させる事はできるが、不純物添加に伴う深い準
位の発生が見られ青色発光が阻害されているといった問
題点が見られる。
From the above, although it is possible to grow a low-resistance crystal using MBg and MOCVD, there are problems such as the generation of deep levels due to the addition of impurities, which inhibits blue light emission.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の事情に鑑み、青色発光素子を実現する
ことを目ざした結晶中に含まれるn型不純物濃度の適切
な範囲を規定したものである。
In view of the above circumstances, the present invention defines an appropriate range of n-type impurity concentration contained in a crystal aimed at realizing a blue light emitting device.

〔発明の概要〕[Summary of the invention]

本発明の骨子とするところは、Zn5XSe1−X(0
≦X≦0.1)中に含まれる■族不純物濃度を50pp
m以下になるように、より好ましい範囲としては11)
I)m以上50 pI)m以下となるように設定する事
を特徴とする。
The gist of the present invention is that Zn5XSe1-X(0
≦X≦0.1), the concentration of group ■ impurities contained in
A more preferable range is 11) so that it is less than m.
It is characterized in that it is set to I) m or more and 50 pI) m or less.

前述したように、青色発光素子(特にLED、LD)を
実現する為には、室温で低抵抗で青色発光強度の強い事
が必須である。そこで、本発明者はZn5xSe、−X
  中に含まれるn型ドナー不純物であるI族元素に着
目し、SIMS分析により得られた結晶中の1族元素濃
度と、電子濃度(n)、電子移動度−)、そして深い電
子トラップ準位、さらに室温でのPLスペクトルとの関
係を調べた。その結果、■族不純物濃度を適切な範囲に
設定すれば、低抵抗率でかつ青色発光を示す結晶の成長
が可能である事が判また。その範囲は上述した通りであ
り、この範囲より高い濃度をもつ結晶では深い準位の関
与した緑〜赤色域の発光が強くなる為、発光色として青
色とは見えず、濃度の増大と共に白色からオレンジ色の
発光として視認されるようになる。
As mentioned above, in order to realize a blue light emitting device (especially an LED or LD), it is essential that the device has low resistance and high blue light emission intensity at room temperature. Therefore, the present inventor proposed Zn5xSe, -X
Focusing on Group I elements, which are n-type donor impurities, contained in the crystal, we analyzed the Group 1 element concentration in the crystal, electron concentration (n), electron mobility -), and deep electron trap level obtained by SIMS analysis. Furthermore, the relationship with the PL spectrum at room temperature was investigated. As a result, it was found that it is possible to grow crystals that have low resistivity and emit blue light by setting the concentration of group (Ⅰ) impurities within an appropriate range. The range is as described above, and in crystals with a concentration higher than this range, the emission in the green to red region involving deep levels becomes stronger, so the emission color does not appear to be blue, and as the concentration increases, it changes from white to white. It becomes visible as orange luminescence.

また、濃度が低い場合には抵抗率が増大し、言合発光強
度も弱く実用に適さない。
Furthermore, when the concentration is low, the resistivity increases and the relative luminescence intensity is also weak, making it unsuitable for practical use.

また、本発明を実施する上で、成長方法として特にMO
CVD法が適しており、内でもセレン、硫黄。
Furthermore, in carrying out the present invention, it is particularly important to use MO as a growth method.
CVD method is suitable, especially selenium and sulfur.

亜鉛そして夏族不純物原料の全てに有機化合物を用いる
と、結晶性に優れ不純物濃度の制御性にも優れるといっ
た利点がある。
When organic compounds are used as both zinc and Xia group impurity raw materials, there are advantages of excellent crystallinity and excellent controllability of impurity concentration.

さらに、上記のN型半導体結晶を用いて炸裂したMIS
型又はPN接合型発光素子は印加電圧が低く良好な青色
発光を示すものであ−た。1族不純物り度が上述した範
囲より低い場合には印加電圧が高く、実用に適さない。
Furthermore, MIS exploded using the above N-type semiconductor crystal.
The type or PN junction type light emitting device exhibited good blue light emission with a low applied voltage. If the concentration of Group 1 impurities is lower than the above-mentioned range, the applied voltage will be high, making it unsuitable for practical use.

一方、濃度が高い場合には発光色が長波長側に移るとい
った不都合を生じる。
On the other hand, when the concentration is high, there is a problem that the emitted light color shifts to the longer wavelength side.

〔発明の効果〕〔Effect of the invention〕

本発明により、青色発光素子材料であるZn8xSeI
−x(0≦X≦0.1の抵抗率が低く、かつ室温で青色
に発光する結晶を得ることができるようになった。さら
に、上記結晶を用いたMIS型又はPN接合型発光素子
は印加電圧が低く、青色の発光を示すようになった。
According to the present invention, Zn8xSeI, which is a blue light emitting element material,
-x(0≦X≦0.1) It has become possible to obtain a crystal that has a low resistivity and emits blue light at room temperature.Furthermore, an MIS type or PN junction type light emitting device using the above crystal can be obtained. When the applied voltage was low, it began to emit blue light.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〈実施例1〉 GaAs基板上に成長させたZn5eを例に説明する。<Example 1> This will be explained using Zn5e grown on a GaAs substrate as an example.

ジメチルセレン(DM8e)、ジメチル亜鉛(DMZ)
そしてIN不純物原料としてトリエチルアルミニウム(
TEAL)を用いて表1に示した条件でG aA s基
板上にZn5eを成長させた。Al添加量はTハlの供
給量を変化させて行なった。
Dimethyl selenium (DM8e), dimethyl zinc (DMZ)
And triethylaluminum (
Zn5e was grown on a GaAs substrate under the conditions shown in Table 1 using Zn5e (TEAL). The amount of Al added was determined by changing the amount of Thalium supplied.

表1 成長条件 第1図はAl添加量をvan der Pouw法から
求めたキャリア濃度(11)、、電子移動度(11)そ
して抵抗率C)の関係を示したものである。第2図は同
じ(Al添加量と325 f’1mのHe−Cdレーザ
ー光励起による)tトルミネッセンス(PL)スペクト
ルの帯間発光強度(IB)深い準位の関係する発光強度
(Ideep)の比R(I deep/I n )を示
したものである。さらに第3図はDLT8スペクトルか
ら得られた電子トラップ準位濃度のAl添加量との関係
を示したものである。
Table 1 Growth Conditions Figure 1 shows the relationship between carrier concentration (11), electron mobility (11), and resistivity C) determined by the van der Pouw method for the amount of Al added. Figure 2 shows the ratio of the interband emission intensity (IB) of the t-luminescence (PL) spectrum and the emission intensity related to the deep level (Ideep) for the same (aluminum addition amount and 325 f'1 m He-Cd laser light excitation). It shows R(I deep/I n ). Further, FIG. 3 shows the relationship between the electron trap level concentration obtained from the DLT8 spectrum and the amount of Al added.

第1図からnはAl添加量と共に増加していくが、成る
所で減少しはじめる。μはAl添加量と共に減少してい
く。この結果はAI!添加量が成る所に達すると、補償
度が急増し、キャリアの発生を妨げていると考えること
ができる。この傾向は第4図により一層明白となる。即
ち、Al濃度が増大すると、イオン化不純物等の散乱中
心が増大し、低温におけるμが激減してしまう。
From FIG. 1, n increases with the amount of Al added, but begins to decrease at a point where n increases. μ decreases with the amount of Al added. This result is AI! When the amount of addition reaches a certain point, the degree of compensation increases rapidly, and it can be considered that the generation of carriers is hindered. This tendency becomes even clearer in FIG. That is, as the Al concentration increases, the number of scattering centers such as ionized impurities increases, resulting in a sharp decrease in μ at low temperatures.

第2図によれば、Al11度が低いとI deepはほ
とんど見られない。A69度が増大するに従ってRは増
大していく。A69度が5099mをこえるとRは急激
に増大し、青色には見えず白色さらにはオレンジ色に見
えてくる。この現象はIBがi高濃度側で減少している
事に対応している。またAl@度が1 pl)mより低
い所では青色発光が支配的だが強度が非常に弱い。
According to FIG. 2, when the Al11 degree is low, I deep is hardly observed. R increases as A69 degrees increases. When A69 degrees exceeds 5099 m, R increases rapidly, and the color does not appear blue, but instead appears white or even orange. This phenomenon corresponds to the fact that IB decreases on the i high concentration side. Furthermore, in areas where the Al degree is lower than 1 pl)m, blue light emission is dominant, but the intensity is very weak.

第3図からは、Al9度の低い場合には、比較的浅い電
子トラップが低濃度見られる。しかし、A77度が高く
なるにつれより深い準位の濃度が高まると共に、低濃度
では見られなかったさらに深いトラップ準位が発生し、
この濃度が増大していく。これら深い方のトラップ準位
の増大はIdeepの振舞と相関が有る。
From FIG. 3, relatively shallow electron traps with a low concentration can be seen when the Al9 degree is low. However, as the A77 degree increases, the concentration of deeper levels increases, and deeper trap levels that were not seen at low concentrations occur.
This concentration increases. The increase in these deeper trap levels is correlated with the behavior of Ideep.

以上の結果からただnが大きくρが低いだけでは必ずし
も青色発光が得られるわけではな(、Deepleve
lが少なくかつρの低い領域には限りのあることが明ら
かとな、た。したがって、抵抗率が低くかつ青色発光が
得られるのは1〜50ppmのAA’濃度範囲である。
The above results show that simply having a large n and a low ρ does not necessarily result in blue light emission (Deepleve
It is clear that there is a limit to the region where l is small and ρ is low. Therefore, low resistivity and blue light emission can be obtained within the AA' concentration range of 1 to 50 ppm.

Zn5e結晶中のAllQ度は成長時の’I’BAl供
給量により制御する事ができる。ただし、′Alの結晶
中への取り込まれ方は成長時の温度圧力W/V 比原料
の組み合わせ等の条件により変化し、一義的に決める事
はできない。しかし、様々な成長条件により成長させて
も、成長した結晶中のIJI度が上述した範囲にある事
が必須の条件となっている。
The AllQ degree in the Zn5e crystal can be controlled by the amount of 'I'BAl supplied during growth. However, the manner in which 'Al is incorporated into the crystal varies depending on conditions such as temperature, pressure, W/V ratio, combination of raw materials, etc. during growth, and cannot be determined unambiguously. However, even if the crystal is grown under various growth conditions, it is essential that the IJI degree in the grown crystal be within the above-mentioned range.

〈実施例2〉 GaAs基板上にA/を添加したZnS eを成長させ
、この上に100A程度の5in2を堆積させ、さらに
その上に金属電極を形成して成るMIS型発光発光素子
に説明する。
<Example 2> A MIS type light emitting device will be explained in which ZnSe doped with A/ is grown on a GaAs substrate, 5in2 of about 100A is deposited on this, and a metal electrode is further formed on it. .

第5図に示したような素子によりA69度を種々変化さ
せた素子の発光スペクトルにおける青色発光(In)と
長波長側発光(I deep )の強度変化を第6図に
示す。さらに電流が10mA流れる場合の印加電圧とA
l濃度の関係を調べてみると、lppmより低濃度の場
合には印加電圧が急に高まり高濃度の場合にはI de
epが増大していく。したがって、発光素子を形成する
場合にも■族濃度は1〜50ppmの範囲が適切といえ
る。
FIG. 6 shows intensity changes of blue light emission (In) and long wavelength side light emission (I deep ) in the emission spectrum of the device shown in FIG. 5 with various A69 degrees. Furthermore, the applied voltage and A when the current flows 10mA
Examining the relationship between l concentration, we found that when the concentration is lower than lppm, the applied voltage increases suddenly, and when the concentration is high, I de
EP is increasing. Therefore, also when forming a light emitting element, it can be said that the group II concentration is appropriate in the range of 1 to 50 ppm.

〔発明の他の実施例〕 尚、本発明は、上記実施例に限るものではない。[Other embodiments of the invention] Note that the present invention is not limited to the above embodiments.

Zn8x8e、、とする事により基板と格子整合をとる
事ができるので、さらに良質の結晶層が得られる。璽族
不純物もklに限るものでなく、Ga、In等も用いる
事ができる。また、原料もZn、S、およびSe、そし
て璽族原料のいずれに関しても種々の組み合せで成長さ
せる事が可能である。成長条件も、温度、圧力、供給量
等、種々変化させることができ、成長したn型結晶の1
族不純物濃度が本発明範囲内であればよい。又、発光素
子においてもMIS型に限らず、PN接合型のN層に本
発明を用いれば、より信頼性に優れ、より純粋な青色発
光素子が得られる。
By using Zn8x8e, lattice matching with the substrate can be achieved, resulting in a crystal layer of even better quality. The group impurity is not limited to kl, and Ga, In, etc. can also be used. Furthermore, it is possible to grow the raw materials in various combinations of Zn, S, Se, and any of the Zhen group raw materials. The growth conditions can also be changed in various ways, such as temperature, pressure, and supply amount.
The group impurity concentration may be within the range of the present invention. Furthermore, if the present invention is applied to the N layer of a PN junction type light emitting element, not only the MIS type, a more reliable and purer blue light emitting element can be obtained.

その他、本発明の骨子を逸脱しない範囲で種々変形して
用いる事ができる。
In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、SIMs分析から得られたZn5e中のAl
a反とn、稲とρの関係を示す図、第2図はSIMS分
析から得られたZn5e中のAl濃度とPL強度比の関
係を示す図、第3図はS IMS分析から得られたZn
5e中のAl1度とDLTSから求めた電子トラップ準
位濃度を示す図、第4図はHall移動度の温度変化を
示す図、第5図は本発明により得られたMIS型発光発
光素子成を示す図、第6図はSIMS分析から得られた
Zn5e中のA49度と、発光強度の関係を示す図であ
る。51 51−41電極、52 ・・・Zn5e : kl結晶
、S3・・・GaAs基板、54・・・オーミック電極
Figure 1 shows Al in Zn5e obtained from SIMs analysis.
A diagram showing the relationship between a and n, and rice and ρ. Figure 2 is a diagram showing the relationship between Al concentration in Zn5e and PL intensity ratio obtained from SIMS analysis. Figure 3 is a diagram showing the relationship between a and n and PL intensity ratio. Zn
Figure 4 shows the temperature change in Hall mobility, and Figure 5 shows the composition of the MIS type light emitting device obtained by the present invention. The figure shown in FIG. 6 is a diagram showing the relationship between A49 degrees in Zn5e obtained from SIMS analysis and emission intensity. 51 51-41 electrode, 52... Zn5e: kl crystal, S3... GaAs substrate, 54... Ohmic electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)有機金属化合物を用いた気相成長方法により成長
させたIII族元素を含むセレン化硫化亜鉛(ZnSxS
e_1_−_x{0≦x≦0.1)}からなるN型半導
体結晶において、III族元素の結晶中における組成が1
ppm以上50ppm以下である事を特徴とするN型半
導体結晶。
(1) Zinc selenide sulfide (ZnSxS) containing group III elements grown by a vapor phase growth method using an organometallic compound
In the N-type semiconductor crystal consisting of e_1_−_x {0≦x≦0.1), the composition of the group III element in the crystal is 1.
An N-type semiconductor crystal characterized by having a concentration of ppm or more and 50 ppm or less.
(2)セレン、硫黄、亜鉛、そしてIII族元素の原料と
していずれも有機化合物を用いて結晶成長させる事を特
徴とした特許説求範囲第1項記載の半導体結晶。
(2) The semiconductor crystal according to item 1 of the patent description, characterized in that the crystal is grown using organic compounds as raw materials for selenium, sulfur, zinc, and Group III elements.
JP5142986A 1986-03-11 1986-03-11 N-type semiconductor crystal Expired - Fee Related JPH0697655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142986A JPH0697655B2 (en) 1986-03-11 1986-03-11 N-type semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142986A JPH0697655B2 (en) 1986-03-11 1986-03-11 N-type semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS62209833A true JPS62209833A (en) 1987-09-16
JPH0697655B2 JPH0697655B2 (en) 1994-11-30

Family

ID=12886685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142986A Expired - Fee Related JPH0697655B2 (en) 1986-03-11 1986-03-11 N-type semiconductor crystal

Country Status (1)

Country Link
JP (1) JPH0697655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095700A1 (en) * 2002-05-10 2003-11-20 Umk Technologies Co., Ltd. Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095700A1 (en) * 2002-05-10 2003-11-20 Umk Technologies Co., Ltd. Method for high purity purification of high functional material and method for deposition of high functional material by mass separation method

Also Published As

Publication number Publication date
JPH0697655B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
Hoffmann et al. Silicon carbide blue light emitting diodes with improved external quantum efficiency
KR970007135B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US6472298B2 (en) Layered group III-V compound semiconductor, method of manufacturing the same and light emitting element
US5113233A (en) Compound semiconductor luminescent device
CN112005388B (en) Deep ultraviolet light-emitting element
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
JPH0242770A (en) Manufacture of light-emitting element
US5329141A (en) Light emitting diode
US7728347B2 (en) ZnO layer and semiconductor light emitting device
JP4032224B2 (en) Gallium phosphide light emitting device and manufacturing method thereof
JPS62209833A (en) N-type semiconductor crystal
JPH08162671A (en) Nitride semiconductor light emitting diode
Stringfellow et al. Green-emitting diodes in vapor phase epitaxial GaP
JPS5931232B2 (en) GaN light emitting device
US3951699A (en) Method of manufacturing a gallium phosphide red-emitting device
US4755856A (en) Znse green light emitting diode
EP0631330B1 (en) A GaP pure green light emitting element substrate
JPS5846686A (en) Blue light emitting diode
RU2202843C2 (en) Semiconductor adjustable-color electroluminescent light source
US6448584B1 (en) Light emitting diode with high luminance and method for making the same
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
JPS6118184A (en) Light-emitting element
US20230209676A1 (en) Nitride-based multi-wavelength light emitting diode system and control method thereof
KR20010099146A (en) METHOD FOR CONTROLLING LUMINESCENCE PROPERTIES OF ZnO ACCORDING TO A HEAT PROCESSING
US5886369A (en) Epitaxial wafer for GaP pure green light-emitting diode and GaP pure green light-emitting diode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees