WO2003085238A1 - Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle - Google Patents
Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle Download PDFInfo
- Publication number
- WO2003085238A1 WO2003085238A1 PCT/EP2003/002330 EP0302330W WO03085238A1 WO 2003085238 A1 WO2003085238 A1 WO 2003085238A1 EP 0302330 W EP0302330 W EP 0302330W WO 03085238 A1 WO03085238 A1 WO 03085238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive unit
- housing
- combustion engine
- internal combustion
- output unit
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/3442—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
- F01L2001/3445—Details relating to the hydraulic means for changing the angular relationship
- F01L2001/34483—Phaser return springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L2810/00—Arrangements solving specific problems in relation with valve gears
- F01L2810/03—Reducing vibration
Definitions
- Device for changing the control times of gas exchange valves of an internal combustion engine in particular device for the hydraulic rotation angle adjustment of a camshaft relative to a crankshaft
- the invention relates to a device for changing the timing of gas exchange valves of an internal combustion engine according to the preamble-forming features of claim 1, and it can be realized particularly advantageously on a device for hydraulic rotation angle adjustment of a camshaft relative to a crankshaft.
- DE 100 07 200 A1 discloses a generic device for changing the timing of gas exchange valves of an internal combustion engine, which is arranged at the drive end of a camshaft mounted in the cylinder head of the internal combustion engine and is designed as a hydraulic actuator that can be controlled as a function of various operating parameters of the internal combustion engine.
- This device essentially consists of a drive unit that is in drive connection with the crankshaft and axially delimited by two side covers, as well as a drive unit that is non-rotatably connected to the camshaft and that is inserted into the drive unit, that uses at least two alternately or simultaneously with a hydraulic one that is formed within the device Pressure chambers that can be pressurized are in power transmission connection.
- the drive unit is formed in this device in a concrete embodiment by a hollow cylindrical drive wheel formed with an external toothing, in which several hydraulic working spaces are created by several radial partition walls. Accordingly, an impeller is provided as the output unit in this device, which is designed with a plurality of vanes which extend radially away from the wheel hub and which divide the working spaces in the drive unit into two of the hydraulic pressure chambers mentioned.
- this device has a spring means to adjust its adjustment speeds in both adjustment directions and to achieve a position of the output unit relative to the drive unit that is preferred for starting the internal combustion engine is attached to the drive unit and at the other end to the output unit.
- the invention is therefore based on the object of designing a device for changing the control times of gas exchange valves of an internal combustion engine, in particular a device for hydraulically adjusting the angle of rotation of a camshaft relative to a crankshaft, in which the function of the device is not impaired and the device's installation space is not changed with simple means an oscillation of the coil spring excited by the vibrations of the internal combustion engine in its resonance frequencies and thus a vibration breakage of the coil spring is avoided.
- the additional housing preferably consists of a cup-shaped housing cover, in the bottom of which a coaxial circular opening is incorporated and which forms the outer boundary walls of the annular space, and of a sleeve-shaped housing hub which is inserted into the circular opening Housing cover can be inserted and forms the inner boundary wall of the annular space.
- the two-part design of the additional housing has been particularly advantageous with regard to the inexpensive manufacture of the Housing parts as stamped and drawn parts and with respect to the attachment of the ends of the coil spring on the one hand to the drive unit and on the other hand to the output unit.
- a more than two-part design of the housing and its production in non-cutting or exciting production is also conceivable.
- the cup-shaped housing cover of the device designed according to the invention it is also proposed to provide it with a circumferential wall which has an inner diameter corresponding approximately to the outer diameter of the adjacent side cover of the drive unit and an elongated edge part with which the housing cover can be locked on the side cover of the drive unit ,
- the peripheral wall is preferably angled at right angles to the bottom of the housing cover and, due to the elongated edge part, has a height that extends slightly beyond the width of the spiral spring arranged in the annular space of the housing.
- the housing cover in a further embodiment of the invention has a circumferential step in its peripheral wall, which rests on the end face on the side cover of the drive unit and thus on the one hand an axial stop for the housing cover to avoid axial jamming of the arranged on the housing Coil spring forms and on the other hand centered the housing cover to the side cover of the drive unit.
- the housing cover is then positively fastened to the side cover of the drive unit and axially secured against unintentional loosening by means of a plurality of latching lugs, which are evenly distributed over the circumference of the extended length of the peripheral wall of the housing cover and which engage behind the side cover of the drive unit.
- the necessary space for the latching lugs can be created either by a circumferential puncture into the adjacent edge portion of the lateral surface of the drive unit or by a side cover of the drive unit that is slightly larger in diameter than the drive unit.
- the sleeve-shaped housing hub of the device designed according to the invention has a cylinder wall with an outer diameter corresponding approximately to the inside diameter of the circular opening in the housing cover, which is designed with an inward angled bend on its end face for locking the housing hub on the output unit.
- an annular base is formed on the housing hub, through which a central screw inserted into the housing hub can be passed, with which the housing hub is screwed to the camshaft together with the output unit of the device.
- the axial length of the housing hub is designed such that its other end face protrudes slightly from the circular opening in the housing cover and closes it by an outwardly angled portion of its edge section.
- the housing hub represents a camshaft-fixed component due to its attachment to the output unit, this edge portion protruding from the housing cover can be used in a particularly advantageous manner in addition to attaching further components necessary for the function of the device, for example by connection to a pulse generator disk of a device for determination the camshaft position relative to the crankshaft position or the like.
- a further feature of the sleeve-shaped housing hub of the device designed according to the invention is that its cylinder wall is partially designed as a hollow edge on which the complementary inner end of the spiral spring is fastened in a form-fitting manner.
- the diameter of the hollow cylindrical part of the housing hub and the side length of the hollow square of the housing hub are preferably of identical design and correspond approximately to the diameter of the screw head of the central screw with which the housing hub and the output unit are screwed to the camshaft.
- the housing hub it is also possible to design the housing hub to be hollow cylindrical along its entire length and to fasten the inner end of the spiral spring, which is formed in this case without additional deformations, to the housing hub by means of a rivet or screw connection or the like.
- the outer end of the coil spring is preferably bent in a hook-shaped manner in a further embodiment of the device designed according to the invention and is positively attached to an axially projecting suspension point on the drive unit of the device. It has proven to be particularly advantageous to have this suspension point for the outer end of the spiral spring by a component which is arranged anyway on the drive unit of the device, such as, for example, in the case of a rotary piston adjuster extended fastening screw to form the side cover of the drive unit, but suspension points provided specifically for spring fastening can also be arranged on the drive unit. It is also possible here to design the outer end of the spiral spring without additional deformations and to secure it to the drive unit of the device by means of a rivet or screw connection or the like.
- the external pressure medium leaks of the device are deliberately discharged via gap seals between the drive unit and the driven unit to a coaxial opening in the side cover of the drive unit adjacent to the housing and from there through an annular gap between the opening in the Side cover and the outside of the housing hub are introduced into the annular space of the housing. Due to the design, these external pressure medium leaks occur in all known hydraulic devices for adjusting the angle of rotation of a camshaft, the volume and pressure loss associated therewith in the hydraulic pressure chambers of the device being permanently compensated for by a corresponding control of the device.
- the device designed according to the invention for changing the control times of gas exchange valves of an internal combustion engine in particular a device for the hydraulic rotation angle adjustment of a camshaft relative to a crankshaft, thus has the advantage over the devices known from the prior art that the device outside the device in front of one of the side covers Spiral spring arranged on the drive unit by encapsulation by means of an additional housing, which can be filled with the already existing pressure medium leakage from the device, is now no longer freely arranged but is enclosed on all sides by the hydraulic pressure medium of the device and thus hydraulic in its resonance vibrations excited by vibrations of the internal combustion engine is steamed.
- FIG. 1 shows an exploded view of the device designed according to the invention
- Figure 2 shows a longitudinal section through an inventive
- FIG. 3 shows an enlarged illustration of the detail X according to FIG. 2.
- a device 1 for changing the timing of gas exchange valves of an internal combustion engine which is designed, for example, as a vane adjustment device for the hydraulic rotation angle adjustment of a camshaft relative to a crankshaft and can be controlled as a function of various operating parameters of the internal combustion engine.
- This device 1 is fastened to the drive-side end of a camshaft which is mounted in the cylinder head of the internal combustion engine and is not shown in the drawings and essentially consists of an drive unit 4 which is in drive connection with a crankshaft (also not shown) and an output unit 5 which is non-rotatably connected to the camshaft ,
- the drive unit 4 is formed by a drive wheel which is axially delimited by two side covers 2, 3 and which has an external toothing and in which a plurality of intermediate walls (not designated in more detail) hydraulic workrooms are created.
- the output unit 5 of the device 1, on the other hand, is clearly formed by an impeller which can be inserted into the drive unit 4 and which is formed with a plurality of vanes which also extend radially from its wheel hub and are also not described in detail.
- These wings divide the working spaces in the drive unit 4 into two hydraulic pressure chambers 6, 7, which act against one another and via which the drive unit 4 and the output unit 5 of the device 1 are in power transmission connection with one another by alternating or simultaneous pressurization with a hydraulic pressure medium.
- the pressurization of the pressure chambers 6, 7 thus causes a relative rotation or a hydraulic clamping of the output unit 5 with respect to the drive unit 4 or the camshaft with respect to the crank shaft, wherein between the drive unit 4 and the output unit 5, design-related pressure fluid leaks occur, which are discharged from the device 1 and constantly compensated.
- the device 1 has a spring means which acts counter to the camshaft alternating torques in order to adjust its adjustment speeds in both adjustment directions and to achieve a position of the output unit 5 which is preferred for starting the internal combustion engine and which is clearly visible in FIG. 1 as outside the device 1 in front of the side cover 2 of the drive unit 4 and one end 9 on the drive unit 4 and the other end 10 attached to the output unit 5 is formed.
- Annular space 12 is arranged, which is created by encapsulating the spiral spring 8 by means of an additional housing 11 shown particularly clearly in FIG. 1 together with the adjacent side cover 2 of the drive unit 4.
- the external fluid leakages of the device 1 are initially caught until the hydraulic pressure medium, in cooperation with the centrifugal forces acting during the operation of the internal combustion engine, completely fills the annular space 12 in the housing 11 from radially outside to radially inward and then as a fluid leakage this is discharged again.
- the additional housing 11 is therefore, as in 1, from a cup-shaped housing cover 14 with a coaxial circular opening 16 machined into its base 15 and from a housing hub 17 which can be inserted into this circular opening 16.
- the cup-shaped housing cover 14 has a circumferential wall, numbered 18 in FIG. 2, which is angled at right angles to the bottom 15 thereof and has an inner diameter corresponding approximately to the outer diameter of the adjacent side cover 2 of the drive unit 4.
- the housing cover 14 can then be locked on the side cover 2 of the drive unit 4 via an extended edge portion 19 of this peripheral wall 18, by centering it with a diameter-reduced circumferential step 20 in its peripheral wall 18 on the side cover 2 and by several evenly circumferentially distributed in the edge portion 19 of the peripheral wall 18 the catches 21 engaging behind the side cover 2 are fastened to this in a form-fitting manner.
- the necessary space for the locking lugs 21 is created by a circumferential recess 31 in the adjacent edge portion of the lateral surface of the drive unit 4.
- the sleeve-shaped housing hub 17, on the other hand, as can also be seen in FIG. 2, has a cylinder wall 22 with an outer diameter corresponding approximately to the inside diameter of the circular opening 16 in the housing cover 14, which for locking the housing hub 17 on the output unit 5 has one end face 24 on it internally directed bend 23 is formed.
- a central screw (not shown in the drawings) is then passed through the annular base thus formed, with which the housing hub 17 is screwed to the camshaft together with the output unit 5 of the device 1. With its other end face 26, the housing hub 17 protrudes slightly from the circular opening 16 in the housing cover 14 and closes it by means of an outward, unspecified angling of its edge part.
- FIGS. 1 and 2 it can also be seen that the cylinder wall 22 of the housing hub 17 within the annular space 12 in the housing 11 as a hollow Square 25 is formed, on which the complementary inner end 10 of the coil spring 8 is positively attached.
- the inner end 10 of the spiral spring 8 is shaped such that, as shown in FIG. 1, it rests on all four sides of the hollow square 25 of the housing hub 17 and thus the spiral spring 8 is locked against rotation on the housing hub 17 by positive locking.
- the diameter of the hollow cylindrical part of the housing hub 17 and the side length of the hollow square 25 of the housing hub 17 are identical and correspond approximately to the diameter of the screw head of the central screw with which the housing hub 17 and the output unit 5 are screwed to the camshaft.
- the outer end 9 of the spiral spring 8, on the other hand, is also shown in a hook shape, as is also shown in FIG. 1, and at an axially protruding suspension point on the drive unit 4, which in the device 1 shown is formed by an extended fastening screw 27 for the side covers 2, 3 , positively attached.
- Coil spring one end the other end
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020047016228A KR100929519B1 (ko) | 2002-04-11 | 2003-03-07 | 내연기관의 가스 교환 밸브의 타이밍 수정 장치, 특히크랭크축과 관련한 캠축의 회전 각도의 유압식 조정 장치 |
DE50301108T DE50301108D1 (de) | 2002-04-11 | 2003-03-07 | Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle |
AU2003210432A AU2003210432A1 (en) | 2002-04-11 | 2003-03-07 | Device for modifying the timing of gas exchange valves of an internal combustion engine, in particular a device for hydraulically adjusting the rotational angle of a camshaft in relation to a crankshaft |
EP03745762A EP1492943B1 (de) | 2002-04-11 | 2003-03-07 | Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10215879A DE10215879A1 (de) | 2002-04-11 | 2002-04-11 | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere Einrichtung zur hydraulischen Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle |
DE10215879.7 | 2002-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003085238A1 true WO2003085238A1 (de) | 2003-10-16 |
Family
ID=28458699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/002330 WO2003085238A1 (de) | 2002-04-11 | 2003-03-07 | Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1492943B1 (de) |
KR (1) | KR100929519B1 (de) |
AU (1) | AU2003210432A1 (de) |
DE (2) | DE10215879A1 (de) |
WO (1) | WO2003085238A1 (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007082600A1 (en) * | 2006-01-21 | 2007-07-26 | Schaeffler Kg | Camshaft adjuster for an internal combustion engine |
WO2008015062A2 (de) * | 2006-08-02 | 2008-02-07 | Schaeffler Kg | Dichtblech für einen nockenwellenversteller und nockenwellenversteller |
EP1833147A3 (de) * | 2006-03-06 | 2009-04-22 | Honda Motor Co., Ltd | Elektromotor |
EP2166199A1 (de) * | 2008-09-22 | 2010-03-24 | Hydraulik-Ring Gmbh | Flügelzellennockenwellenversteller |
WO2010043462A1 (de) * | 2008-10-15 | 2010-04-22 | Schaeffler Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
WO2011032610A1 (de) * | 2009-09-18 | 2011-03-24 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
WO2011104055A1 (de) * | 2010-02-26 | 2011-09-01 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
WO2013178378A1 (de) | 2012-05-31 | 2013-12-05 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller |
WO2014019724A1 (de) * | 2012-07-31 | 2014-02-06 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller |
WO2014056490A1 (de) * | 2012-10-10 | 2014-04-17 | Schaeffler Technologies AG & Co. KG | Hydraulischer nockenwellenversteller mit federdeckel sowie federdeckel mit integrierter federaufnahme und variabler federvorspannkraft |
WO2015000476A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Zentralventilsystem für einen trockenen riementrieb |
DE102013212942A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Fluidversorgung, etwa eine Ölversorgung, für ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212943A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
WO2015000472A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Lagerungssystem für zentralventilsysteme für trockene riementriebe |
DE102013022320A1 (de) | 2013-07-03 | 2015-01-22 | Schaeffler Technologies Gmbh & Co. Kg | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
DE202013012609U1 (de) | 2013-07-03 | 2017-11-24 | Schaeffler Technologies AG & Co. KG | Zentralventilsystem für einen trockenen Riementrieb |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008056796A1 (de) | 2008-11-11 | 2010-05-12 | Schaeffler Kg | Rotationskolbenversteller mit Drehfeder |
DE102009054048A1 (de) | 2009-11-20 | 2011-05-26 | Schaeffler Technologies Gmbh & Co. Kg | Baugruppe und Verfahren zur Montage eines Rotationskolbenverstellers |
DE102013200767B4 (de) * | 2013-01-18 | 2016-04-07 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller und Federkassette für einen Nockenwellenversteller |
DE102014008155A1 (de) | 2014-05-30 | 2015-12-17 | Daimler Ag | Nockenwellenverstellvorrichtung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5095857A (en) * | 1990-07-17 | 1992-03-17 | Eaton Corporation | Self actuator for cam phasers |
DE4229202A1 (de) * | 1992-09-02 | 1994-03-03 | Schaeffler Waelzlager Kg | Vorrichtung für eine stufenlose Winkelverstellung |
EP0675265A1 (de) * | 1993-09-20 | 1995-10-04 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Ventilantriebssystem für eine interne brennkraftmaschine |
DE19600853A1 (de) * | 1996-01-12 | 1997-07-17 | Schaeffler Waelzlager Kg | Vorrichtung zum Verändern der Steuerzeiten einer Brennkraftmaschine |
DE10007200A1 (de) * | 2000-02-17 | 2001-08-23 | Schaeffler Waelzlager Ohg | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine |
US20010039933A1 (en) * | 1998-07-29 | 2001-11-15 | Denso Corporation | Valve timing adjusting device |
US20020000213A1 (en) * | 1999-10-22 | 2002-01-03 | Mitsubishi Denki Kabushiki Kaisha | Valve timing adjusting apparatus for internal combustion engine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US509585A (en) * | 1893-11-28 | Burial apparatus |
-
2002
- 2002-04-11 DE DE10215879A patent/DE10215879A1/de not_active Withdrawn
-
2003
- 2003-03-07 EP EP03745762A patent/EP1492943B1/de not_active Expired - Lifetime
- 2003-03-07 DE DE50301108T patent/DE50301108D1/de not_active Expired - Lifetime
- 2003-03-07 AU AU2003210432A patent/AU2003210432A1/en not_active Abandoned
- 2003-03-07 WO PCT/EP2003/002330 patent/WO2003085238A1/de not_active Application Discontinuation
- 2003-03-07 KR KR1020047016228A patent/KR100929519B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5095857A (en) * | 1990-07-17 | 1992-03-17 | Eaton Corporation | Self actuator for cam phasers |
DE4229202A1 (de) * | 1992-09-02 | 1994-03-03 | Schaeffler Waelzlager Kg | Vorrichtung für eine stufenlose Winkelverstellung |
EP0675265A1 (de) * | 1993-09-20 | 1995-10-04 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Ventilantriebssystem für eine interne brennkraftmaschine |
DE19600853A1 (de) * | 1996-01-12 | 1997-07-17 | Schaeffler Waelzlager Kg | Vorrichtung zum Verändern der Steuerzeiten einer Brennkraftmaschine |
US20010039933A1 (en) * | 1998-07-29 | 2001-11-15 | Denso Corporation | Valve timing adjusting device |
US20020000213A1 (en) * | 1999-10-22 | 2002-01-03 | Mitsubishi Denki Kabushiki Kaisha | Valve timing adjusting apparatus for internal combustion engine |
DE10007200A1 (de) * | 2000-02-17 | 2001-08-23 | Schaeffler Waelzlager Ohg | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101360890B (zh) * | 2006-01-21 | 2011-11-23 | 谢夫勒科技有限两合公司 | 用于内燃机的凸轮轴调节器 |
WO2007082600A1 (en) * | 2006-01-21 | 2007-07-26 | Schaeffler Kg | Camshaft adjuster for an internal combustion engine |
KR101304714B1 (ko) | 2006-01-21 | 2013-09-06 | 섀플러 테크놀로지스 아게 운트 코. 카게 | 내연 기관용 캠축 조절기 |
EP1833147A3 (de) * | 2006-03-06 | 2009-04-22 | Honda Motor Co., Ltd | Elektromotor |
US7683520B2 (en) | 2006-03-06 | 2010-03-23 | Honda Motor Co., Ltd. | Electric motor and rotating device that changes relative phase of rotors |
WO2008015062A2 (de) * | 2006-08-02 | 2008-02-07 | Schaeffler Kg | Dichtblech für einen nockenwellenversteller und nockenwellenversteller |
WO2008015062A3 (de) * | 2006-08-02 | 2008-04-17 | Schaeffler Kg | Dichtblech für einen nockenwellenversteller und nockenwellenversteller |
EP2166199A1 (de) * | 2008-09-22 | 2010-03-24 | Hydraulik-Ring Gmbh | Flügelzellennockenwellenversteller |
WO2010043462A1 (de) * | 2008-10-15 | 2010-04-22 | Schaeffler Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
US8978606B2 (en) | 2009-09-18 | 2015-03-17 | Schaeffler Technologies AG & Co. KG | Device for variably adjusting the control times of gas exchange valves of an internal combustion engine |
US8950369B2 (en) | 2009-09-18 | 2015-02-10 | Schaeffler Technologies Gmbh & Co. Kg | Device for varying the angular position of a camshaft relative to a crankshaft of an internal combustion engine |
CN102498268B (zh) * | 2009-09-18 | 2014-04-30 | 谢夫勒科技股份两合公司 | 用于可变地调整内燃机换气阀配气正时的装置 |
WO2011032610A1 (de) * | 2009-09-18 | 2011-03-24 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
WO2011104055A1 (de) * | 2010-02-26 | 2011-09-01 | Schaeffler Technologies Gmbh & Co. Kg | Vorrichtung zur variablen einstellung der steuerzeiten von gaswechselventilen einer brennkraftmaschine |
US8671900B2 (en) | 2010-02-26 | 2014-03-18 | Schaeffler Technologies Gmbh & Co. Kg | Device for variably adjusting the control times of gas exchange valves of an internal combustion engine |
CN102791965A (zh) * | 2010-02-26 | 2012-11-21 | 谢夫勒科技股份两合公司 | 用于可变地调整内燃机换气阀的配气正时的设备 |
CN102791965B (zh) * | 2010-02-26 | 2014-10-29 | 谢夫勒科技股份两合公司 | 用于可变地调整内燃机换气阀的配气正时的设备 |
WO2013178378A1 (de) | 2012-05-31 | 2013-12-05 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller |
DE102012209137A1 (de) | 2012-05-31 | 2013-12-05 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller |
WO2014019724A1 (de) * | 2012-07-31 | 2014-02-06 | Schaeffler Technologies AG & Co. KG | Nockenwellenversteller |
US9429050B2 (en) | 2012-07-31 | 2016-08-30 | Schaeffler Technologies Gmbh & Co. Kg | Camshaft phaser |
CN104685165A (zh) * | 2012-07-31 | 2015-06-03 | 舍弗勒技术股份两合公司 | 凸轮轴调节器 |
WO2014056490A1 (de) * | 2012-10-10 | 2014-04-17 | Schaeffler Technologies AG & Co. KG | Hydraulischer nockenwellenversteller mit federdeckel sowie federdeckel mit integrierter federaufnahme und variabler federvorspannkraft |
DE102013212942B4 (de) * | 2013-07-03 | 2016-01-21 | Schaeffler Technologies AG & Co. KG | Fluidversorgung, etwa eine Ölversorgung, für ein Zentralventilsystem für einen trockenen Riementrieb |
CN104279017A (zh) * | 2013-07-03 | 2015-01-14 | 舍弗勒技术有限两合公司 | 用于干的带式传动件的中心阀系统的流体供应,例如油供应 |
DE102013022320A1 (de) | 2013-07-03 | 2015-01-22 | Schaeffler Technologies Gmbh & Co. Kg | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212943A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212942A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Fluidversorgung, etwa eine Ölversorgung, für ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212935A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Zentralventilsystem für einen trockenen Riementrieb |
WO2015000472A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Lagerungssystem für zentralventilsysteme für trockene riementriebe |
WO2015000476A1 (de) | 2013-07-03 | 2015-01-08 | Schaeffler Technologies Gmbh & Co. Kg | Zentralventilsystem für einen trockenen riementrieb |
DE102013212943B4 (de) * | 2013-07-03 | 2017-01-26 | Schaeffler Technologies AG & Co. KG | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
DE202013012609U1 (de) | 2013-07-03 | 2017-11-24 | Schaeffler Technologies AG & Co. KG | Zentralventilsystem für einen trockenen Riementrieb |
DE102013022320B4 (de) * | 2013-07-03 | 2020-02-06 | Schaeffler Technologies AG & Co. KG | Anbindung eines Verstellaktuators an ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212942C5 (de) * | 2013-07-03 | 2021-04-22 | Schaeffler Technologies AG & Co. KG | Fluidversorgung, etwa eine Ölversorgung, für ein Zentralventilsystem für einen trockenen Riementrieb |
DE102013212935B4 (de) | 2013-07-03 | 2024-02-08 | Schaeffler Technologies AG & Co. KG | Aktuator-Nockenwellenversteller-System für einen trockenen Riementrieb |
Also Published As
Publication number | Publication date |
---|---|
EP1492943B1 (de) | 2005-08-31 |
EP1492943A1 (de) | 2005-01-05 |
KR20040101441A (ko) | 2004-12-02 |
DE10215879A1 (de) | 2003-10-23 |
AU2003210432A1 (en) | 2003-10-20 |
KR100929519B1 (ko) | 2009-12-03 |
DE50301108D1 (de) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1492943B1 (de) | Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere einrichtung zur hydraulischen drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle | |
DE10084408B4 (de) | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine | |
DE10150856B4 (de) | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere Rotationskolben-Verstelleinrichtung zur Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle | |
DE102008017688A1 (de) | Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine | |
DE102009042228A1 (de) | Vorrichtung zur Veränderung der relativen Winkellage einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine | |
DE10143862A1 (de) | Vorrichtung zum Verändern der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine, insbesondere Rotationskolben-Verstelleinrichtung zur Drehwinkelverstellung einer Nockenwelle gegenüber einer Kurbelwelle | |
DE102008058110A1 (de) | Nockenwellenversteller | |
DE19611365C2 (de) | Vorrichtung zur relativen Winkelverstellung einer Nockenwelle | |
DE102012204726A1 (de) | Nockenwellenversteller | |
DE102012102022A1 (de) | Schwenkmotorversteller | |
DE102009042227A1 (de) | Vorrichtung zur Veränderung der relativen Winkellage einer Nockenwelle gegenüber einer Kurbelwelle einer Brennkraftmaschine | |
WO1997017529A1 (de) | Arretierung für einen kolben einer nockenwellenverstellung | |
WO2016110287A1 (de) | Montagehilfe für einen nockenwellenversteller sowie verfahren zur montage des nockenwellenverstellers an einem nockenwellenfesten abschnitt | |
WO2005019611A1 (de) | Vorrichtung zum verändern der steuerzeiten von gaswechselventilen einer brennkraftmaschine, insbesondere rotationskolben-verstelleinrichtung zur drehwinkelverstellung einer nockenwelle gegenüber einer kurbelwelle | |
DE102004019190A1 (de) | Nockenwellenversteller | |
DE102013222826A1 (de) | Nockenwellenversteller | |
DE102016207177B3 (de) | Nockenwellenversteller mit einer axial gewickelten Drehfeder und einem umgeformten, federführenden und druckmitteldichten Blechfederdeckel | |
DE102005014883A1 (de) | Nockenwellenversteller | |
DE102010060620A1 (de) | Schwenkmotorversteller | |
WO2014048587A1 (de) | Nockenwellenversteller | |
DE10241103B4 (de) | Elastische Kupplung, insbesondere Zweimassenschwungrad für eine Brennkraftmaschine | |
WO2014029515A1 (de) | Befestigungsanordnung zur verbindung eines nockenwellenverstellers mit einem nockenwellenende einer nockenwelle | |
WO2013185942A1 (de) | Nockenwellenverstelleranordnung | |
DE102012217391A1 (de) | Nockenwellenversteller | |
DE102016124440A1 (de) | Schwenkmotorversteller für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003745762 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047016228 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020047016228 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003745762 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2003745762 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |