WO2003085163A1 - Bauteil mit einer maskierungsschicht - Google Patents

Bauteil mit einer maskierungsschicht Download PDF

Info

Publication number
WO2003085163A1
WO2003085163A1 PCT/EP2003/003283 EP0303283W WO03085163A1 WO 2003085163 A1 WO2003085163 A1 WO 2003085163A1 EP 0303283 W EP0303283 W EP 0303283W WO 03085163 A1 WO03085163 A1 WO 03085163A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
component
masking layer
component according
ceramic
Prior art date
Application number
PCT/EP2003/003283
Other languages
English (en)
French (fr)
Inventor
Oliver Dernovsek
Ralph Reiche
Nigel-Philip Cox
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2003582332A priority Critical patent/JP2005526907A/ja
Priority to US10/511,250 priority patent/US7163747B2/en
Priority to EP03717250A priority patent/EP1492900A1/de
Publication of WO2003085163A1 publication Critical patent/WO2003085163A1/de
Priority to US11/636,682 priority patent/US20070292719A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/04Diffusion into selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31536Including interfacial reaction product of adjacent layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the invention relates to a component according to the preamble of claims 1 and 3.
  • Turbine blades in particular for gas turbines, are coated in particular in the airfoil area because they are exposed to high thermal loads.
  • the object of the invention is therefore to show a masking layer which, after a desired coating of the turbine blade, can be easily removed again in the undesired areas without affecting the
  • Base material or the geometry of the turbine blade comes in the masked area.
  • a ceramic is applied directly to the base material of the turbine blade.
  • Thermal insulation layers that are applied to a turbine blade in the airfoil area generally have intermediate layers between a substrate, ie the base material of the turbine blade, and the thermal insulation layer, such as so-called adhesive layers, for example metallic MCrAlY, or diffusion barriers. These intermediate layers are dispensed with during masking in order to prevent a good connection of the masking layer.
  • the masking layer is in particular made of ceramic because the brittle ceramic can be removed by simple methods such as sandblasting or dry ice blasting.
  • the material for the ceramic is chosen so that there is little or no diffusion from the ceramic into the substrate.
  • the object of the invention is further achieved by a turbine blade according to claim 3.
  • the masking layer reacts with the material of the material to be applied, making it easy to remove.
  • FIG. 1 shows a turbine blade according to the prior art
  • FIG. 2 process steps for producing a coating according to the prior art
  • Figure 3 shows a masking layer of an inventive
  • FIG. 4 shows a further masking layer of a turbine blade according to the invention
  • FIGS. 7 and 8 show how the masking layer can be easily removed again after a reaction.
  • FIG. 1 shows a perspective view of a turbine blade 1, in particular a rotor blade for a gas turbine, which extends along a longitudinal axis 4.
  • the turbine blade 1 has, in succession along the longitudinal axis 4, a fastening region 7, an adjacent blade platform 10 and an airfoil region 13.
  • the fastening area 7 is designed as a blade root 16, which serves to fasten the turbine blade 1 to a shaft, not shown in more detail, of a turbomachine, also not shown.
  • the blade root 16 is designed, for example, as a hammer head. Other configurations, for example as a fir tree or dovetail foot, are possible.
  • solid metallic materials in particular nickel- or cobalt-based superalloys, are used in all areas of the turbine blade.
  • the turbine blade can be manufactured by a casting process, a forging process, a milling process or combinations thereof.
  • the fastening area 7 is made of metal, because it is clamped into a corresponding shape of a pane with a precise fit. Brittle ceramic coatings would flake off and change the geometry in the fastening area.
  • the airfoil area 13 is coated, for example, with a heat insulation layer, it being possible for further layers, such as, for example, adhesion promoter layers (MCrAlY layers), to be arranged between the base material of the turbine blade 1.
  • MrAlY layers adhesion promoter layers
  • a component according to the invention in the form of a turbine blade 1 can be a guide or rotor blade of any turbine, in particular a steam or gas turbine.
  • FIG. 2 shows what happens when the surface of the blade 1 has no masking layer 25 (FIG. 3).
  • the material 22 of an intermediate layer 19 (MCrAlY), which has been applied to a surface of the turbine blade 1 and forms the intermediate layer 19, for example by plasma spraying, by PVD or CVD or immersion in a liquid metal or application of powder in any form, and leads to a reaction of the material 22 with the turbine blade 1 and for good adhesion of the intermediate layer 19 with the base material of the turbine blade 1.
  • FIG. 3 shows a component according to the invention in the form of a turbine blade 1 with a masking layer 25.
  • a first functional layer 28 is first applied to the turbine blade 1.
  • This is, for example, a nanometer-thin polycarbosilane layer that crosslinks in air at 200 ° C. and enables good adhesion to the base material 40 of the turbine blade 1.
  • a gradient layer 31 is applied to the first functional layer 28, the material for the gradient layer 31 being a mixture of polysiloxane and a metal ceramic and / or metal.
  • the gradient layer 31 can, for example, in the form of a
  • slips with layer thicknesses of 10 - 30 ⁇ m thickness are applied and also crosslinked in air at about 200 ° C.
  • a further powder in particular the composition MCrAlY, where M stands for Fe, Co, Ni, is added to this material of the gradient layer 31 because, due to its expansion coefficient, it is used as an intermediate layer (adhesion promoter layer) between the base material 40 and the ceramic thermal insulation layer.
  • a reactive layer 34 is applied to the gradient layer, which consists, for example, of a pure carbon precursor.
  • the crosslinking within the reactive layer 34 takes place at 180 ° C. in air.
  • the crosslinked layers 28, 31, 34 are converted into a ceramic by a thermal treatment at 1000 ° C. in an argon atmosphere, using the so-called pyrolysis process. Due to the change in density of the organometallic precursor such as, for example, the polysiloxane with a density of 1 g / cm 3 in a silicon oxycabid phase (SiOC) with a density of approx.
  • the organometallic precursor such as, for example, the polysiloxane with a density of 1 g / cm 3 in a silicon oxycabid phase (SiOC) with a density of approx.
  • a material 22 is applied to the airfoil area 13 of the turbine blade 1 and to the masking layer 25.
  • the material 22 reacts with the reactive layer 34 to form a reaction layer 43, i.e. to a material that is resistant to high temperatures, but is, for example, soluble in water, i.e. easily removable.
  • the material 22 is, for example, aluminum, which is applied to the turbine blade 1 to form an aluminide layer.
  • an aluminide layer can be applied by plasma spraying or by methods as specified in EP patent 0 525 545 B1 and EP patent 0 861 919 B1.
  • the carbon of the reactive layer 34 reacts with aluminum to form Al 4 C 3 . If the airfoil region 13 is completely coated, the entire airfoil, in particular the fastening region 7, can be introduced into water, as a result of which the water-soluble reaction layer 43 converted with the material 22 dissolves.
  • the underlying layers 28, 31 can easily be removed by dry ice blasting, so that the geometry of the fastening area 7 is not changed by the removal method.
  • Aluminum is used for example in refurbishment, i.e. et al when removing used MCrAlY layers, applied to a turbine blade 1.
  • the masking layer 25 can also be a gradient layer which has a gradual structure, that is, the composition on the substrate 40 is selected so that good adhesion is possible, and on the outer surface the composition is such that it reacts with the material 22 of layers still to be applied.
  • FIG. 4 shows a component according to the invention in the form of a turbine blade 1 with a masking layer 25.
  • a ceramic layer 37, which forms the masking layer 25, is applied directly to the metallic turbine blade 1, for example.
  • This can, for example, be an oxide ceramic that is adapted to the thermal expansion coefficient of the substrate.
  • the dense ceramic layer 37 also forms during a coating process of the turbine blade 1 with different layers, e.g. Adhesion promoter layers or thermal insulation layers, a diff barrier.
  • the masking layer 25 can also only react with the material 22 of layers still to be applied, for example to form a brittle layer 43, for example a ceramic layer 37.
  • the ceramic layer 37 can, for example, also only form after a further heat treatment (pyrolysis).
  • Such brittle layers 43 can be removed by simple processes such as thermal shock processes or sandblasting or dry ice blasting, ie by energy-introducing, but not abrasive, blasting processes. It is particularly advantageous if the masking layer 25 reacts with the material 22 of layers to be applied to form a water-soluble layer 43.
  • Masking layer further layers may be present, i.e. the masking layer 25 can be constructed in multiple layers.
  • the masking layer 25 can be constructed in multiple layers.
  • FIG. 5 shows a turbine blade 1 with a substrate 40, on which a masking layer 25 is applied.
  • the material of the masking layer does not react and diffuse at the higher temperatures of the
  • material 22 hits and reacts with the masking layer 25.
  • the reaction can also take place in a downstream heat treatment if the reaction temperature is higher than the substrate temperature during the coating.
  • the reaction layer 43 (FIG. 6) formed in this way can easily be removed again after the coating process of the turbine blade, because it is, for example, brittle or water-soluble.
  • the material 22 thus also strikes the unmasked areas of the substrate 40 of the turbine blade 1 and forms a desired coating 55 (FIG. 6).
  • FIG. 7 shows a water bath 46 in which a turbine blade with a water-soluble layer 43 is introduced.
  • the water solubility can be easily removed from the layer 43, so that after the turbine blade 1 has been removed from the water bath, an uncoated part and a desired coated part 55 of the turbine blade 1 are present.
  • the reaction layer 43 can also by
  • the brittle reaction layer 43 can be removed by an energy input from an irradiation cannon 49 (ultrasound, dry ice blaster, sand blaster). (Fig. 8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Verfahren zur Beschichtung eines Bauteils. Das erfindungsgemässe Bauteil weist eine Maskierungsschicht (25) auf, die sich nach einer Beschichtung der Bauteil (1) sehr leicht entfernen lässt, weil zum einen keine gute Haftung zwischen der Maskierungsschicht (25) und dem Grundmaterial (40) des Bauteils (1) gegeben ist oder die Maskierungsschicht (25) sich durch Eindringen einer Flüssigkeit leicht entfernen lässt.

Description

Bauteil mit einer Maskierungsschicht
Die Erfindung betrifft ein Bauteil nach dem Gattungsbegriff des Anspruchs 1 und 3.
Bauteile wie z.B. Turbinenschaufeln, insbesondere für Gasturbinen, werden insbesondere im Schaufelblattbereich beschichtet, weil diese hohen thermischen Belastungen ausgesetzt sind.
Im Sockel- bzw. im Befestigungsbereich der Turbinenschaufel herrschen niedrigere Temperaturen, so dass dort keine Beschichtung in Form einer Wärmedämmschicht notwendig ist. Keramische Beschichtungen sind in diesem Bereich sogar unerwünscht, weil der Sockel genau in eine metallische Scheibe eingepasst werden muss.
Maskierungen nach dem Stand der Technik, die eine Beschichtung verhindern sollen, lassen sich oft schlecht wieder entfernen, da eine gute Haftung des Materials der
Maskierung mit dem Grundmaterial der Turbinenschaufel gegeben ist oder eine unerwünschte Diffusion von Elementen aus der Maskierungsschicht in das Grundmaterial der Turbinenschaufel erfolgt.
Aufgabe der Erfindung ist es daher, eine Maskierungsschicht aufzuzeigen, die sich nach einer gewollten Beschichtung der Turbinenschaufel in den unerwünschten Bereichen wieder leicht entfernen lässt, ohne dass es zu einer Beeinflussung des
Grundmaterials oder der Geometrie der Turbinenschaufel in dem maskierten Bereich kommt.
Die Aufgabe wird gelöst durch eine Turbinenschaufel gemäß Anspruch 1. Dabei wird eine Keramik direkt auf das Grundmaterial der Turbinenschaufel aufgebracht. Wärmedämmschichten, die auf eine Turbinenschaufel im Schaufelblattbereich aufgebracht werden, weisen in der Regel zwischenliegende Schichten zwischen einem Substrat, d.h. dem Grundmaterial der Turbinenschaufel, und der Wärmedämmschicht auf, wie z.B. sogenannte Haftmittlerschichten, beispielsweise metallisches MCrAlY, oder Diffusionsbarrieren. Bei der Maskierung wird auf diese Zwischenschichten verzichtet um eine gute Anbindung der Maskierungsschicht zu verhindern. Die Maskierungsschicht ist insbesondere aus Keramik, weil sich die spröde Keramik durch einfache Verfahren, wie z.B. Sandstrahlen, Trockeneisstrahlen entfernen lässt. Das Material für die Keramik wird so gewählt, dass keine oder kaum Diffusion aus der Keramik heraus in das Substrat stattfindet.
Die Aufgabe der Erfindung wird weiterhin durch eine Turbinenschaufel gemäß Anspruch 3 gelöst. Dabei reagiert die Maskierungsschicht mit dem Material des aufzubringenden Materials und lässt sich so leicht entfernen.
Weitere vorteilhafte Ausbildungen des erfindungsgemäßen Bauteils gemäß Anspruch 1 bzw. 3 sind in den Unteransprüchen 2, bzw. 4 bis 14 aufgelistet.
Es zeigen
Figur 1 eine Turbinenschaufel nach dem Stand der Technik, Figur 2 Verfahrensschritte zur Herstellung einer Beschichtung nach dem Stand der Technik,
Figur 3 eine Maskierungsschicht einer erfindungsgemäßen
Turbinenschaufel,
Figur 4 eine weitere Maskierungsschicht einer erfindungsgemäßen Turbinenschaufel,
Figur 5, β zeigen eine Maskierungsschicht, die mit Material aufzubringender Schichten reagiert, und Figur 7, 8 wie sich die Maskierungsschicht nach einer Reaktion wieder leicht entfernen lässt.
Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.
Figur 1 zeigt in perspektivischer Ansicht eine Turbinenschaufel 1, insbesondere eine Laufschaufei für eine Gasturbine, die sich entlang einer Längsachse 4 erstreckt. Die Turbinenschaufel 1 weist entlang der Längsachse 4 aufeinanderfolgend einen Befestigungsbereich 7, eine daran angrenzende Schaufelplattform 10 sowie einen Schaufelblattbereich 13 auf. Der Befestigungsbereich 7 ist als ein Schaufelfuß 16 ausgebildet, der zur Befestigung der Turbinenschaufel 1 an einer nicht näher dargestellten Welle einer ebenfalls nicht dargestellten Strömungsmaschine dient. Der Schaufelfuß 16 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen, beispielsweise als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Bei herkömmlichen Turbinenschaufeln 1 werden in allen Bereichen der Turbinenschaufel massive metallische Werkstoffe, insbesondere Nickel- oder Cobalt-basierte Superlegierungen, verwendet. Die Turbinenschaufel kann hierbei durch ein Gussverfahren, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Insbesondere der Befestigungsbereich 7 ist aus Metall, weil der passgenau in eine entsprechende Form einer Scheibe eingeklemmt wird. Spröde keramische Beschichtungen würden dabei abplatzen und die Geometrie im Befestigungsbereich verändern. Der Schaufelblattbereich 13 ist beispielsweise mit einer Wärmedämmschicht beschichtet, wobei zwischen dem Grundmaterial der Turbinenschaufel 1 beispielsweise noch weitere Schichten, wie z.B. Haftvermittlerschichten (MCrAlY- Schichten) angeordnet sein können.
Ein erfindungsgemäßes Bauteil in Form einer Turbinenschaufel 1 kann eine Leit- oder Laufschaufel einer beliebigen Turbine, insbesondere einer Dampf- oder Gasturbine, sein.
Figur 2 zeigt, was passiert, wenn die Oberfläche der Schaufel 1 keine Maskierungsschicht 25 (Fig. 3) aufweist. Das Material 22 einer Zwischenschicht 19 (MCrAlY) , die beispielsweise durch Plasmaspritzen, durch PVD oder CVD oder Eintauchen in ein flüssiges Metall oder Aufbringen von Pulver in jeglicher Form auf eine Oberfläche der Turbinenschaufel 1 aufgebracht wurde und die Zwischenschicht 19 bildet, führt zu einer Reaktion des Materials 22 mit der Turbinenschaufel 1 und zu einer guten Haftung der Zwischenschicht 19 mit dem Grundmaterial der Turbinenschaufel 1.
Wenn die Zwischenschicht 19 wieder entfernt werden soll, weil sie bspw. im Befestigungsbereich 7 unerwünscht ist, so bereitet es daher große Probleme, weil sich die Geometrie des Befestigungsbereichs 7 durch teilweises Entfernen des Grundmaterials des Substrats 40 verändert.
Figur 3 zeigt ein erfindungsgemässes Bauteil in Form einer Turbinenschaufel 1 mit einer Maskierungsschicht 25.
Auf die Turbinenschaufel 1 wird bspw. zuerst eine erste Funktionsschicht 28 aufgebracht. Dies ist beispielsweise eine nanometerdünne Polycarbosilanschicht, die bei 200 °C an Luft vernetzt und eine gute Haftung zum Grundmaterial 40 der Turbinenschaufel 1 ermöglicht. Auf die erste Funktionsschicht 28 wird beispielsweise eine Gradientenschicht 31 aufgebracht, wobei das Material für die Gradientenschicht 31 eine Mischung aus Polysiloxan und einer Metallkeramik und/oder Metall ist. Die Gradientenschicht 31 kann beispielsweise in Form eines
Schlickers mit Schichtdicken von 10 - 30 μm Dicke aufgebracht werden und ebenfalls bei etwa 200°C an Luft vernetzt werden. Als metallischer Füllstoff wird diesem Material der Gradientenschicht 31 ein weiteres Pulver, insbesondere der Zusammensetzung MCrAlY, wobei M für Fe, Co, Ni steht, beigefügt, weil dieses aufgrund seines Ausdehnungskoeffizienten als Zwischenschicht (Haftvermittlerschicht) zwischen Grundmaterial 40 und keramischer Wärmedämmschicht verwendet wird.
Auf die Gradientenschicht wird eine Reaktivschicht 34 aufgebracht, wobei diese bspw. aus einem reinen Kohlenstoffprecursor besteht. Die Vernetzung innerhalb der Reaktivschicht 34 erfolgt bei 180 °C an Luft.
Die vernetzen Schichten 28, 31, 34 werden durch eine thermische Behandlung bei 1000 °C in Argonatmosphäre in eine Keramik umgewandelt, durch den sogenannten Pyrolyseprozess . Aufgrund der Dichteänderung des metallorganischen Precursors wie z.B. des Polysiloxans mit einer Dichte von 1 g/cm3 in eine Siliciumoxycabidphase (SiOC) mit einer Dichte von ca. 2,3 g/cm3, ist eine 10 - 30 (im dicke, dichte und rissfreie Beschichtung nicht möglich. Deshalb werden dem Polymer metallische oder keramische Füllstoffe beispielsweise mit einem Volumenanteil von 30 - 50% zugesetzt, um die stattfindende Phasenumwandlung des Polymers und die Rissbildung gezielt zu steuern und die thermomechanischen Spannungen aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten an der Grenzfläche zwischen Metall (Turbinenschaufel 1) und Maskierungsschicht 25 zu minimieren oder zu eliminieren. Die geforderte Temperaturbeständigkeit der Markierungsschicht ist durch die thermische
Phasentransformation des Polycarbosilans in die entsprechende hochtemperaturbeständige SiOC bzw. Graphitphase gegeben.
Während des Beschichtungsprozesses wird ein Material 22 auf den Schaufelblattbereich 13 der Turbinenschaufel 1 und auf die Maskierungsschicht 25 aufgebracht. Das Material 22 reagiert mit der Reaktivschicht 34 zu einer Reaktionsschicht 43, d.h. zu einem Material, das hochtemperaturbeständig ist, aber beispielsweise in Wasser löslich ist, also leicht entfernbar ist.
Das Material 22 ist beispielsweise Aluminium, das auf die Turbinensschaufel 1 aufgebracht wird, um eine Aluminidschicht zu bilden. Eine solche Aluminidschicht kann durch Plasmaspritzen oder Verfahren wie sie in dem EP-Patent 0 525 545 Bl und dem EP-Patent 0 861 919 Bl angegeben sind, aufgebracht werden.
Bei Aluminium reagiert der Kohlenstoff der Reaktivschicht 34 mit Aluminium zu AI4C3. Wenn der Schaufelblattbereich 13 vollständig beschichtet ist, kann die gesamte Schaufel insbesondere der Befestigungsbereich 7 in Wasser eingebracht werden, wodurch sich die mit dem Material 22 umgewandelte wasserlösliche Reaktionsschicht 43 auflöst.
Die unterliegenden Schichten 28, 31 lassen sich leicht durch Trockeneisstrahlen entfernen, so dass durch die Entfernungsverfahren keine Geometrieänderung im Befestigungsbereich 7 erfolgt.
Aluminium wird beispielsweise beim Refurbishment, d.h. u.a. beim Entfernen verbrauchter MCrAlY-Schichten, auf eine Turbinenschaufel 1 aufgebracht.
Statt des hier beispielsweise gezeigten dreischichtigen Aufbaus, kann die Maskierungsschicht 25 auch eine Gradientenschicht sein, die einen graduellen Aufbau aufweist, d.h. auf dem Substrat 40 ist die Zusammensetzung so gewählt, dass eine gute Haftung ermöglicht ist, und an der äußeren Oberfläche ist die Zusammensetzung so, dass diese mit dem Material 22 noch aufzubringender Schichten reagiert.
Figur 4 zeigt ein erfindungsgemäßes Bauteil in Form einer Turbinenschaufel 1 mit einer Maskierungsschicht 25.
Auf die beispielsweise metallische Turbinenschaufel 1 wird direkt eine keramische Schicht 37 aufgebracht, die die Maskierungsschicht 25 bildet. Dies kann bspw. eine Oxidkeramik, die dem thermischen Ausdehnungskoeffizienten des Substrats angepasst ist, sein. Zwischen der keramischen Schicht 37 und dem metallischen Substrat 40 der Turbinenschaufel 1 sind keine weiteren Schichten, insbesondere keine Haftvermittlerschichten vorhanden, so dass sich durch leichten Energieeintrag, wie z.B. Sandstrahlen oder Trockeneisstrahlen, die keramische Schicht 25,37 entfernen lässt. Die dichte keramische Schicht 37 bildet auch während eines Beschichtungsverfahrens der Turbinenschaufel 1 mit verschiedenen Schichten, wie z.B. Haftvermittlerschichten oder Wärmedämmschichten, eine Diff sionsbarriere .
Die Maskierungsschicht 25 kann auch erst mit dem Material 22 noch aufzubringender Schichten beispielsweise zu einer spröden Schicht 43, beispielsweise einer keramischen Schicht 37 reagieren. Die keramische Schicht 37 kann sich beispielsweise auch erst nach einer weiteren Wärmebehandlung ausbilden (Pyrolyse) .
Solche spröden Schichten 43 lassen sich durch einfache Verfahren wie Thermoschockverfahren oder Sandstrahlen oder Trockeneisstrahlen, d.h. durch Energie einbringende, aber nicht abrasiv wirkende Strahlverfahren entfernen. Besonders vorteilhaft ist es, wenn die Maskierungsschicht 25 mit dem Material 22 aufzubringender Schichten zu einer wasserlöslichen Schicht 43 reagiert.
Dabei können unter der obersten Schicht der
Maskierungsschicht weitere Schichten vorhanden sein, d.h. die Maskierungsschicht 25 kann mehrschichtig aufgebaut sein. Dabei gibt es die Möglichkeit, eine Anbindungsschicht direkt auf das Substrat 40 des beschichteten Bauteils aufzubringen und weiterhin eine Gradientenschicht aufzubringen, die eine Anpassung an thermische Ausdehnungskoeffizienten ermöglicht, so dass die Maskierungsschicht 25 auch während der Maskierung rissfrei bleibt, so dass kein Material auf das Substrat 40 des zu beschichtenden Bauteils gelangen kann.
Figur 5 zeigt eine Turbinenschaufel 1 mit einem Substrat 40, auf dem eine Maskierungsschicht 25 aufgebracht ist. Das Material der Maskierungsschicht reagiert und diffundiert nicht bei den höheren Temperaturen des
Beschichtungsverfahrens mit dem Material des Substrats 40.
Während des Beschichtungsverfahrens trifft Material 22 auf die Maskierungsschicht 25 auf und reagiert mit dieser. Die Reaktion kann auch in einer nachgelagerten Wärmebehandlung stattfinden, wenn die Reaktionstemperatur höher liegt als die Substrattemperatur während der Beschichtung. Die so gebildete Reaktionsschicht 43 (Fig. 6) lässt sich nach dem Beschichtungsverfahren der Turbinenschaufel wieder leicht entfernen, weil sie beispielsweise spröde oder wasserlöslich ist. Das Material 22 trifft also auch auf die unmaskierten Bereiche des Substrats 40 der Turbinenschaufel 1 auf und bildet eine gewünschte Beschichtung 55 (Fig. 6) .
Figur 7 zeigt ein Wasserbad 46, in dem eine Turbinenschaufel mit einer wasserlöslichen Schicht 43 eingebracht ist. Durch die Wasserlöslichkeit lässt sich die Schicht 43 leicht entfernen, so dass nach Herausnahme der Turbinenschaufel 1 aus dem Wasserbad ein unbeschichteter Teil und ein gewünschter beschichteter Teil 55 der Turbinenschaufel 1 vorhanden ist. Die Reaktionsschicht 43 kann auch durch
Wasserstrahlen entfernt werden, wobei da noch ein kleiner Energieeintrag vorhanden ist.
Ebenso kann die beispielsweise spröde Reaktionsschicht 43 durch einen Energieeintrag aus einer Bestrahlungskanone 49 (Ultraschall, Trockeneisstrahler, Sandstrahler) abgetragen werden. (Fig. 8)

Claims

Patentansprüche
1. Für eine teilweise Beschichtung vorgesehenes Bauteil, insbesondere eine Turbinenschaufel, das eine Maskierungsschicht auf Flächen des Bauteils aufweist, die nicht beschichtet werden sollen,
d a d u r c h g e k e n n z e i c h n e t,. dass
die Maskierungsschicht (25) aus Keramik (37) ist und direkt auf dem Grundmaterial (40) des Bauteils (1) aufliegt, wobei keine oder nur eine geringe chemische Verbindung zwischen Maskierungsschicht (25) und dem Grundmaterial (40) des Bauteils (1) vorhanden ist, so dass sich keine gute Haftung zwischen Maskierungsschicht (25) und Grundmaterial (40) ergibt.
2. Bauteil nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass
die Keramik (37) eine Oxidkeramik ist.
3. Für eine teilweise Beschichtung vorgesehenes Bauteil, insbesondere eine Turbinenschaufel, das eine Maskierungsschicht auf Flächen des Bauteils aufweist, die nicht beschichtet werden sollen,
d a d u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) mit Material (22) auf das Bauteil (1) aufzubringender Schichten (19) reagiert und sich aufgrund der Reaktion zwischen diesem Material (22) und Material der Maskierungsschicht (25) wieder leicht entfernen lässt.
Bauteil nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) mit dem Material (22) auf das Bauteil (1) aufzubringender Schichten (19) eine spröde Schicht (43) bildet.
5. Bauteil nach Anspruch 3 oder 4, d a d u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) mit dem Material (22) auf das Bauteil (1) aufzubringender Schichten (19) eine keramische Schicht oder eine Vorstufe zu einer keramischen Schicht (43) bildet.
6. Bauteil nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) mit dem Material (22) auf das Bauteil (1) aufzubringender Schichten (19) eine wasserlösliche Schicht bildet.
7. Bauteil nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass
auf ein Grundmaterial (40) des Bauteils (1) eine erste Funktionsschicht (28) , als ein Teil der Maskierungsschicht (25) , aufgebracht wird, die eine gute Haftung zum Grundmaterial des Bauteils (1) ermöglicht.
Bauteil nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass
die erste Funktionsschicht (28) aus Carbosilan besteht,
9. Bauteil nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, dass
eine Gradientenschicht (31) auf die erste Funktionsschicht (28) aufgebracht wird, die eine dichte und rissfreie Beschichtung der Maskierungsschicht (25) ermöglicht.
10. Bauteil nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, dass
die Gradientenschicht (31) eine Mischung aus Polysiloxan, Metall und/oder einer Metallkeramik ist.
11. Bauteil nach Anspruch 10, bei der der Gradientenschicht (31) ein Füllstoff zugesetzt ist, um thermomechanische Spannungen in der Maskierungsschicht (25) oder zwischen Maskierungsschicht (25) und einem Substrat (40) des Bauteils (1) aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten zu verhindern.
12. Bauteil nach Anspruch 3 ' ' I /, d a d u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) zumindest teilweise kohlenstoffhaltig ist, insbesondere an ihrer äußeren Oberfläche .
14. Bauteil nach Anspruch 3, d a u r c h g e k e n n z e i c h n e t, dass
die Maskierungsschicht (25) eine Gradientenschicht ist.
PCT/EP2003/003283 2002-04-10 2003-03-28 Bauteil mit einer maskierungsschicht WO2003085163A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003582332A JP2005526907A (ja) 2002-04-10 2003-03-28 遮蔽層を有する構成部材
US10/511,250 US7163747B2 (en) 2002-04-10 2003-03-28 Component comprising a masking layer
EP03717250A EP1492900A1 (de) 2002-04-10 2003-03-28 Bauteil mit einer maskierungsschicht
US11/636,682 US20070292719A1 (en) 2002-04-10 2006-12-08 Component comprising a masking layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02008045.3 2002-04-10
EP20020008045 EP1352989A1 (de) 2002-04-10 2002-04-10 Bauteil mit einer Maskierungsschicht

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/636,682 Continuation US20070292719A1 (en) 2002-04-10 2006-12-08 Component comprising a masking layer

Publications (1)

Publication Number Publication Date
WO2003085163A1 true WO2003085163A1 (de) 2003-10-16

Family

ID=28051773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003283 WO2003085163A1 (de) 2002-04-10 2003-03-28 Bauteil mit einer maskierungsschicht

Country Status (4)

Country Link
US (2) US7163747B2 (de)
EP (2) EP1352989A1 (de)
JP (1) JP2005526907A (de)
WO (1) WO2003085163A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783243A1 (de) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Trockene Zusammensetzung, deren Verwendung, Schichtsystem und Verfahren zur Beschichtung
US8211506B2 (en) 2005-11-07 2012-07-03 United Technologies Corporation Coating methods and apparatus using pre-formed ceramic mask

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510592B1 (de) * 2003-08-28 2012-12-26 Siemens Aktiengesellschaft Verfahren zur Beschichtung eines Bauteils und Bauteil
US20100068556A1 (en) * 2005-12-09 2010-03-18 General Electric Company Diffusion barrier layer and methods of forming
DE102010009616A1 (de) * 2010-02-27 2011-09-01 Mtu Aero Engines Gmbh Verfahren zur Herstellung oder Reparatur eines Bauteils und Abdeckbeschichtung
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
DE102015208781A1 (de) * 2015-05-12 2016-11-17 MTU Aero Engines AG Kombination von Schaufelspitzenpanzerung und Erosionsschutzschicht sowie Verfahren zur Herstellung derselben
JP7224096B2 (ja) * 2017-07-13 2023-02-17 東京エレクトロン株式会社 プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品
JP7369499B2 (ja) * 2021-04-02 2023-10-26 株式会社ディ・ビー・シー・システム研究所 耐熱合金部材およびその製造方法ならびに高温装置およびその製造方法
US11753713B2 (en) 2021-07-20 2023-09-12 General Electric Company Methods for coating a component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128522A (en) * 1976-07-30 1978-12-05 Gulf & Western Industries, Inc. Method and maskant composition for preventing the deposition of a coating on a substrate
JPS5893866A (ja) * 1981-12-01 1983-06-03 Agency Of Ind Science & Technol 表面処理防止方法
GB2210387A (en) * 1987-09-30 1989-06-07 Rolls Royce Plc Selective chemical vapour deposition
US4845139A (en) * 1979-09-07 1989-07-04 Alloy Surfaces Company, Inc. Masked metal diffusion
US5867762A (en) * 1994-05-26 1999-02-02 Rafferty; Kevin Masking tape
JPH11181561A (ja) * 1997-12-22 1999-07-06 Toshiba Mach Co Ltd 溶融メッキのマスキング方法
JP2000311870A (ja) * 1999-04-28 2000-11-07 Mitsubishi Electric Corp 半導体装置の製造方法
US20010007708A1 (en) * 1996-12-03 2001-07-12 Venkat Subramaniam Venkataramani Curable masking material for protecting a passage hole in a substrate

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647497A (en) * 1968-11-29 1972-03-07 Gen Electric Masking method in metallic diffusion coating
US3904789A (en) * 1974-04-24 1975-09-09 Chromalloy American Corp Masking method for use in aluminizing selected portions of metal substrates
US4181758A (en) * 1976-07-30 1980-01-01 Gulf & Western Industries, Inc. Method for preventing the deposition of a coating on a substrate
US4726104A (en) * 1986-11-20 1988-02-23 United Technologies Corporation Methods for weld repairing hollow, air cooled turbine blades and vanes
US5262466A (en) * 1988-04-18 1993-11-16 Alloy Surfaces Co. Inc. Aqueous masking solution for metal treatment
GB9116332D0 (en) 1991-07-29 1991-09-11 Diffusion Alloys Ltd Refurbishing of corroded superalloy or heat resistant steel parts and parts so refurbished
DE4423619A1 (de) * 1994-07-06 1996-01-11 Bosch Gmbh Robert Laterale Halbleiterstruktur zur Bildung einer temperaturkompensierten Spannungsbegrenzung
US6036995A (en) 1997-01-31 2000-03-14 Sermatech International, Inc. Method for removal of surface layers of metallic coatings
US6110262A (en) * 1998-08-31 2000-08-29 Sermatech International, Inc. Slurry compositions for diffusion coatings
GB2348439A (en) * 1999-03-29 2000-10-04 Chromalloy Uk Limited Mask for diffusion coating
US6253441B1 (en) * 1999-04-16 2001-07-03 General Electric Company Fabrication of articles having a coating deposited through a mask
US6521294B2 (en) * 1999-08-11 2003-02-18 General Electric Co. Aluminiding of a metallic surface using an aluminum-modified maskant, and aluminum-modified maskant
KR100677965B1 (ko) * 1999-11-01 2007-02-01 동경 엘렉트론 주식회사 기판처리방법 및 기판처리장치
US6605160B2 (en) * 2000-08-21 2003-08-12 Robert Frank Hoskin Repair of coatings and surfaces using reactive metals coating processes
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system
EP1350860A1 (de) * 2002-04-04 2003-10-08 ALSTOM (Switzerland) Ltd Verfahren zum Abdecken von Kühlungsöffnungen eines Gasturbinebauteils
EP1365039A1 (de) * 2002-05-24 2003-11-26 ALSTOM (Switzerland) Ltd Verfahren zum Abdecken von Kühlungsöffnungen eines Gasturbinenbauteils
DE60310168T2 (de) * 2002-08-02 2007-09-13 Alstom Technology Ltd. Verfahren zum Schutz von Teilflächen eines Werkstücks
US6884470B2 (en) * 2002-10-03 2005-04-26 General Electric Company Application method for abradable material
US6884476B2 (en) * 2002-10-28 2005-04-26 General Electric Company Ceramic masking material and application method for protecting turbine airfoil component surfaces during vapor phase aluminiding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128522A (en) * 1976-07-30 1978-12-05 Gulf & Western Industries, Inc. Method and maskant composition for preventing the deposition of a coating on a substrate
US4845139A (en) * 1979-09-07 1989-07-04 Alloy Surfaces Company, Inc. Masked metal diffusion
JPS5893866A (ja) * 1981-12-01 1983-06-03 Agency Of Ind Science & Technol 表面処理防止方法
GB2210387A (en) * 1987-09-30 1989-06-07 Rolls Royce Plc Selective chemical vapour deposition
US5867762A (en) * 1994-05-26 1999-02-02 Rafferty; Kevin Masking tape
US20010007708A1 (en) * 1996-12-03 2001-07-12 Venkat Subramaniam Venkataramani Curable masking material for protecting a passage hole in a substrate
JPH11181561A (ja) * 1997-12-22 1999-07-06 Toshiba Mach Co Ltd 溶融メッキのマスキング方法
JP2000311870A (ja) * 1999-04-28 2000-11-07 Mitsubishi Electric Corp 半導体装置の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198328, Derwent World Patents Index; Class M13, AN 1983-708382, XP002230816 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12 29 October 1999 (1999-10-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783243A1 (de) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Trockene Zusammensetzung, deren Verwendung, Schichtsystem und Verfahren zur Beschichtung
WO2007051752A1 (de) * 2005-11-04 2007-05-10 Siemens Aktiengesellschaft Trockene zusammensetzung, deren verwendung, schichtsystem und verfahren zur beschichtung
US8211506B2 (en) 2005-11-07 2012-07-03 United Technologies Corporation Coating methods and apparatus using pre-formed ceramic mask

Also Published As

Publication number Publication date
EP1492900A1 (de) 2005-01-05
EP1352989A1 (de) 2003-10-15
US7163747B2 (en) 2007-01-16
JP2005526907A (ja) 2005-09-08
US20050181222A1 (en) 2005-08-18
US20070292719A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
EP2398936B1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
DE69707365T2 (de) Isolierendes, wärmedämmendes Beschichtungssystem
EP1708829B1 (de) Verfahren zur entfernung einer schicht
WO2006103127A1 (de) Matrix und schichtsystem
DE19807636C1 (de) Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
EP1707301B1 (de) Verfahren zum Aufbringen von Fasermatten auf die Oberfläche oder in eine Vertiefung eines Bauteiles
WO2009100706A1 (de) Vorrichtung und verfahren zur partiellen beschichtung von bauteilen
EP1772594A1 (de) Verfahren zum Schützen von Öffnungen eines Bauteils bei einem Bearbeitungsprozess gegen ein Eindringen von Material und Polysiloxan enthaltende keramische Zusammensetzung
EP1492900A1 (de) Bauteil mit einer maskierungsschicht
EP1805344B1 (de) Verfahren zur herstellung eines mit einer verschleissschutzbeschichtung beschichteten bauteils
EP3458431B1 (de) Verfahren zur herstellung eines keramischen hitzeschildes mit reaktionscoating
EP1840245A1 (de) Matrix und Schichtsystem mit unstöchiometrischen Teilchen
WO2008128848A1 (de) Polymerbasierte keramikbeschichtungen zum schutz von oberflächen vor fluoridionen bei einem reinigungsprozess
EP1097249B1 (de) Verfahren zur herstellung einer panzerung für ein metallisches bauteil
EP1582694A1 (de) Verfahren zum Schützen von Öffnungen eines Bauteils bei einem Bearbeitungsprozess
EP3078649B1 (de) Verbundkeramik mit korrosionsschutzschicht und verfahren zur herstellung
WO2008000247A1 (de) Verfahren zum korrosionsschutz von keramischen oberflächen, körper mit entsprechenden keramischen oberflächen und deren verwendung
EP1522603B1 (de) Verfahren zur Beschichtung eines Bauteils und Bauteil
WO2005037483A1 (de) Verfahren zum herstellen eines schichtsystems
WO2005005690A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht, verwendung derselben und bauteil mit einer schutzschicht
EP1510592B1 (de) Verfahren zur Beschichtung eines Bauteils und Bauteil
DE102005038374A1 (de) Verfahren zur Herstellung einer Schutzschicht für ein Bauteil
EP1088907B1 (de) Verfahren zum Herstellen einer Panzerung für ein metallisches Bauteil
EP1508628A1 (de) Bauteil mit einer Maskierungsschicht und Verfahren zur Beschichtung eines Bauteils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003717250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003582332

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10511250

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003717250

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003717250

Country of ref document: EP