WO2003081140A1 - Climatiseur et procede de commande de climatiseur - Google Patents

Climatiseur et procede de commande de climatiseur Download PDF

Info

Publication number
WO2003081140A1
WO2003081140A1 PCT/JP2003/002813 JP0302813W WO03081140A1 WO 2003081140 A1 WO2003081140 A1 WO 2003081140A1 JP 0302813 W JP0302813 W JP 0302813W WO 03081140 A1 WO03081140 A1 WO 03081140A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
motor
air conditioner
heat exchanger
indoor units
Prior art date
Application number
PCT/JP2003/002813
Other languages
English (en)
French (fr)
Inventor
Hidehiko Kataoka
Takashi Morita
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES03708529.7T priority Critical patent/ES2510640T3/es
Priority to EP03708529.7A priority patent/EP1496316B1/en
Priority to AU2003213441A priority patent/AU2003213441B2/en
Publication of WO2003081140A1 publication Critical patent/WO2003081140A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner, particularly to a multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit, and a control method of the multi-type air conditioner.
  • an air conditioner including an outdoor unit and an indoor unit
  • a so-called multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit.
  • a refrigerant circuit is configured between an outdoor unit having a compressor and an outdoor heat exchanger and a plurality of indoor units each having an indoor heat exchanger.
  • an electric valve for adjusting the amount of refrigerant flowing through each indoor heat exchanger is provided.
  • the high-temperature refrigerant from the compressor is distributed to each indoor heat exchanger, and each indoor heat exchanger performs the heating operation.
  • each motor-operated valve adjusts the opening degree according to the temperature of the discharge pipe of the compressor, the temperature in the room where each indoor unit is arranged, and the like, and adjusts the amount of refrigerant.
  • stop room a room in which the indoor unit has stopped operating during the heating operation
  • the motorized valve in the stop room generates refrigerant pool in the indoor heat exchanger.
  • the motor-operated valve is opened to some extent and a small amount of refrigerant is allowed to flow. If the opening of the motor-operated valve at this time is a fixed value, it cannot respond to changes in the actual operating conditions, and it is difficult to perform stable refrigerant control.
  • the amount of the liquid refrigerant staying between the stop rooms may be different.
  • the electric valve is controlled uniformly, so not only the electric valve in the room where a large amount of liquid refrigerant is retained, but also other electric valves are opened. Will be in a state of being This causes the generation of refrigerant noise in the stop room where the liquid refrigerant does not stay.
  • An object of the present invention is to provide air that can perform stable refrigerant control even when a multi-type air conditioner is performing a heating operation and there are a plurality of indoor units that have stopped operating. It is an object of the present invention to provide a control method for a conditioner and an air conditioner.
  • the refrigerant circuit connects the outdoor heat exchanger, the compressor, and the plurality of indoor heat exchangers.
  • the motor-operated valve is provided in the refrigerant circuit and adjusts the amount of refrigerant flowing through each of the plurality of indoor heat exchangers.
  • Discharge pipe temperature sensor The sensor detects the temperature of the discharge pipe of the compressor.
  • the motor-operated valve opening correction means determines the opening of the motor-operated valve corresponding to the stopped indoor unit based on the discharge pipe temperature when there are multiple indoor units that have stopped operating during the heating operation. Control.
  • the electric valve opening correction means corrects the opening of the electric valve corresponding to the indoor unit whose operation is stopped for each electric valve.
  • the electrically operated valve corresponding to the stopped indoor unit means an electrically operated valve that adjusts the amount of refrigerant flowing to the indoor heat exchanger of the stopped indoor unit.
  • the opening of the motor-operated valve corresponding to the indoor unit whose operation is stopped is not uniformly controlled for all motor-operated valves. Each time is corrected. For this reason, it is possible to correct and control the optimal opening degree of the motor-operated valve in accordance with a difference in environment that affects the refrigerant, such as the temperature and location of the room where the indoor unit is placed.
  • stable refrigerant control can be performed even when the heating operation is performed and the indoor unit is stopped in operation.
  • the invention according to claim 2 is the air conditioner according to claim 1, further comprising a liquid pipe temperature sensor that detects a liquid pipe temperature between the indoor heat exchanger and the electric valve. Then, when there are a plurality of indoor units that are stopped during the heating operation, the electric valve opening correction means stops the operation and the average value of the liquid pipe temperature of the indoor units that are stopped. Correct the opening of the motor-operated valve corresponding to the indoor unit whose operation has been stopped for each motor-operated valve so that the difference from the liquid pipe temperature of the indoor unit falls within a certain range.
  • this air conditioner operation is performed so that the difference between the average value of the liquid pipe temperatures of all the indoor units that are stopped and the liquid pipe temperature of the indoor units that are stopped is within a certain range.
  • the opening of the motorized valve corresponding to the stopped indoor unit is controlled for each motorized valve.
  • the amount of the refrigerant flowing in the indoor unit whose operation is stopped can be made substantially equal for each indoor unit.
  • malfunctions that occur when liquid pools in the indoor heat exchanger occur or when the amount of refrigerant flowing through the indoor units that are not operating differ for each indoor unit, such as generation of refrigerant noise and air conditioner Can be reduced, such as a decrease in overall heating capacity.
  • An invention according to claim 3 is an outdoor unit having an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a refrigerant connecting the outdoor heat exchanger, the compressor, and the plurality of indoor heat exchangers.
  • An air conditioner comprising a circuit, a plurality of motor-operated valves provided in the refrigerant circuit to regulate the amount of refrigerant flowing through each of the plurality of indoor heat exchangers, and a discharge pipe temperature sensor for detecting a discharge pipe temperature of the compressor.
  • Control method comprising a first step and a second step.
  • the opening of the motor-operated valve corresponding to the indoor unit that has stopped operating is set based on the discharge pipe temperature.
  • the above-mentioned electric valve opening is corrected for each electric valve.
  • the degree of opening of the motorized valves corresponding to the indoor units whose operation is stopped is not corrected uniformly for all motorized valves, but is corrected for each motorized valve. You. For this reason, it is possible to correct and control the optimal opening of the motor-operated valve in accordance with a difference in environment that affects the refrigerant, such as the temperature of the room in which the indoor unit is placed, the location, and the like.
  • stable refrigerant control is performed even when the heating operation is being performed and there are a plurality of indoor units that are not operating. be able to.
  • FIG. 1 is a configuration diagram of an air conditioner.
  • FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioner.
  • FIG. 3 is a control block diagram.
  • FIG. 4 is a control flowchart of a motor-operated valve opening degree.
  • FIG. 5 is a control flowchart of the electric valve opening correction.
  • FIG. 1 shows an air conditioner 1 employing an embodiment of the present invention.
  • the air conditioner 1 is a so-called multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit.
  • This air conditioner 1 has four indoor units 3a, 3b, 3c, 3 (1 is connected by refrigerant pipes 4 &, 4b, 4c, 4d) to one outdoor unit 2. These four rooms Machines 3a, 3b, 3c, 3d are arranged in separate rooms. Here, it is assumed that only the indoor unit 3a is performing the heating operation, and the other three indoor units 3b, 3c, and 3d are in the stopped state.
  • FIG. 2 schematically shows the refrigerant circuit 5 of the air conditioner 1.
  • the refrigerant circuit 5 includes one outdoor unit 2 and four indoor units 3 a, 3 b, 3 c, and 3 d connected in parallel to the outdoor unit 2.
  • the outdoor unit 2 includes a compressor 20, a four-way switching valve 21, an outdoor heat exchanger 22, an accumulator 23, and the like. Further, on the discharge side of the compressor 20, a discharge pipe thermistor 24 for detecting the discharge pipe temperature on the discharge side of the compressor 20 is attached.
  • the outdoor unit 2 includes an outdoor air thermistor 25 for detecting the outdoor air temperature and an outdoor heat exchange thermistor 26 for detecting the temperature of the outdoor heat exchanger 22.
  • the indoor unit 3a includes an indoor heat exchanger 30a and an electric valve 33a, and the indoor heat exchanger 30a and the electric valve 33a are connected in series.
  • the motor-operated valve 33a is provided on the outlet side of the indoor heat exchanger 30a and adjusts the amount of refrigerant flowing through the indoor heat exchanger 30a.
  • the indoor unit 3a includes a room temperature thermistor 31a for detecting the indoor temperature and an indoor heat exchange thermistor 32a for detecting the temperature of the indoor heat exchanger 30a.
  • the pipe between the indoor heat exchanger 30a and the electric valve 33a is provided with a liquid pipe thermistor 34 for detecting the temperature of the liquid pipe between the indoor heat exchanger 30a and the electric valve 33a. Have been.
  • a gas pipe thermistor 35 for detecting the temperature of the refrigerant passing therethrough is provided.
  • the other indoor units 3b, 3c, and 3d have the same configuration.
  • the same symbols are given to the indoor heat exchanger, the motor-operated valve, and various thermistors.
  • motorized valves 33a, 33b, 33c, 33d are not necessarily built in the indoor units 3a, 3b, 3c, 3d, but are installed in the indoor units 3a, 3b, 3c, 3d.
  • it may be provided outside the 3d, for example, inside a branch unit that connects each indoor unit 3a, 3b, 3c, 3d to the outdoor unit 2.
  • FIG. 1 a control block diagram of the air conditioner 1 is shown in FIG.
  • the outdoor unit 2 includes an outdoor control unit 27 including a microprocessor, a ROM, a RAM, various interfaces, and the like.
  • Various sensors such as a discharge pipe thermistor 24, an outdoor air thermistor 25, and an outdoor heat exchange thermistor 26 are connected to the outdoor control unit 27, and a detection signal of each sensor is input.
  • the outdoor control unit 27 is configured to control each part during operation by supplying a control signal to the connected compressor 20, the four-way switching valve 21, and the like.
  • the indoor unit 3a includes an indoor control unit 36a including a microprocessor, a ROM, a RAM, and various interfaces similar to those of the outdoor unit 2.
  • a room temperature thermistor 31a, an indoor heat exchange thermistor 32a, a liquid pipe thermistor 34a, and a gas pipe thermistor 35a are connected to the indoor control unit 36a, and are configured to input detection signals from each sensor. Have been.
  • the indoor control unit 36a is connected to a motor-operated valve 33a provided in the indoor unit 3a, and is configured to transmit a control signal to each motor-operated valve 33a to adjust the opening. I have.
  • a transmission line 40a is provided between the outdoor control unit 27 and the indoor control unit 36a, and various data can be input / output via the transmission line 40a.
  • the indoor control units 36b, 36c, and 36d of the indoor units 3b, 3c, and 3d transmit data to the outdoor control unit 27, respectively. They are connected by lines 40b, 40c, 40d.
  • the outdoor control unit 27 controls the air conditioning operation by controlling the operation frequency of the compressor 20 according to various conditions during operation.
  • the indoor control units 36a, 36b, 36c, and 36d control the air-conditioning operation by controlling the opening pulse of the motor-operated valve 33a according to various conditions during operation. Further, the outdoor control unit 27 determines the opening degree of the indoor units 3 b, 3 c, 3 (the electric valve 331 of 1), 33 c, 33 d whose operation is stopped based on the discharge pipe temperature. The feedback control is performed, and the opening is corrected for each of the motor-operated valves 33b, 33c, and 33d.
  • the control of the indoor units 3b, 3c, 3 (1 motorized valve 331), 33c, and 33d whose operation is stopped will be described.
  • a multi-type air conditioner In a multi-type air conditioner, multiple indoor units are placed in different rooms, and multiple Air conditioning of the room is performed, but not all indoor units are operated at the same time. That is, some indoor units may be operating, and the remaining indoor units may be stopped.
  • the room where the indoor unit 3a that is operating is located is called the ⁇ operating room ''
  • the room where the indoor units 3b, 3c, and 3d that are not operating are located is called the ⁇ stop room ''.
  • the control of the motor-operated valve in the stop room when the heating operation is being performed and there are a plurality of stop rooms will be described.
  • the opening of the electric valve 33a in the operating room is determined based on the discharge pipe temperature To, and the opening of the electric valves 33b, 33c, 33d in the stop room is It is determined to be a value proportional to the opening of the motor-operated valve 33a in the operating room determined based on the pipe temperature To.
  • step S11 the condensing temperature T ca of the indoor heat exchanger 30a in the operating room and the evaporating temperature Te of the outdoor heat exchanger 22 and the force are respectively the indoor heat exchange thermistor 32a and the outdoor heat exchange thermistor 26. And is detected by
  • step S12 the target discharge pipe temperature Tm is calculated by the following equation.
  • Tm a XT c a + b XTe + s h 1
  • step S13 the deviation between the target discharge pipe temperature Tm and the discharge pipe temperature To detected by the discharge pipe thermistor 24 is calculated, and the amount of change in the discharge pipe temperature To at regular intervals is calculated.
  • step S14 the opening of the motor-operated valve 33a in the cab is determined. Further, in step S15, the degree of opening of the motor-operated valves 33b, 33c, 33d in the stop room is determined. That is, the opening degree of the electric valve 33a in the operating room is multiplied by a certain coefficient d to obtain the target electric valve opening degree of the electric valves 33b, 33c, 33d in the stop room. Next, as shown in the flowchart of FIG. 5, the target electric valve opening is corrected for each electric valve 33b, 33c, 33d in the stop room.
  • step S21 (1) the air conditioner 1 is in the heating operation, and (2) the electric valves 33b, 33c, and 33d are in the feedback control. It is determined whether or not both conditions are satisfied. When both of the above conditions are satisfied, the process proceeds to step S22.
  • step S22 the sampling timer TTHS5 is set up.
  • step S23 it is determined whether or not the sampling timer TTHS5 has reached a predetermined time. When the sampling timer TTHS5 has reached a predetermined time, the process proceeds to step S24.
  • step S24 first, (1) detection of the liquid tube temperature T1 # in each stop room is performed. Next, (2) the average value T1aVe of the liquid pipe temperatures in each stop room is calculated. Then, (3) a deviation T 1 # between the liquid tube temperature T 1 # of each stop room and the average value T 1 a V e is calculated.
  • # above means any of the symbols b, c, and d attached to each indoor unit in the stopped room.
  • step S25 it is determined whether the absolute value of the deviation obtained in step S24 is equal to or more than a predetermined value T1abs for each stopped room. If the absolute value of the deviation is equal to or larger than the predetermined value, the process proceeds to step S25. If the absolute value of the deviation is smaller than the predetermined value, the process returns to step S21.
  • step 26 the correction amount of the opening of the motor-operated valves 33b, 33c, 33d is calculated, and the opening of the motor-operated valves 33b, 33c, 33d is corrected for each stop room.
  • the amount of correction of the opening is calculated by multiplying the deviation by a negative coefficient.
  • the liquid tube temperature T l # increases, and in an indoor heat exchanger with a low refrigerant flow rate, the liquid tube temperature T l # decreases.
  • the opening degree of each motor-operated valve is set so that the target motor-operated valve with a lower liquid pipe temperature ⁇ 1 # is opened and the target motor-operated valve with a higher liquid pipe temperature ⁇ 1 # is closed. Is corrected.
  • the degree of opening of the electrically operated valves 33b, 33c, 33d in the stop room is controlled based on the discharge pipe temperature To, and all the indoor units 3b, 3c, 3d in the stop room. So that the difference between the average value between the liquid pipe temperatures T 1 b, T ic and T 1 d and the liquid pipe temperature T 1 # of the indoor units 3 b, 3 c and 3 d in the stop room is within a certain range.
  • the electric valves 33b, 33c and 33d are controlled individually. For this reason, indoor units 3b, 3c, 3d may be used when indoor units 3b, 3c, 3d are placed on different floors or when indoor temperatures differ.
  • the amount of refrigerant flowing in the indoor units 3b, 3c, and 3d that are not operating should be approximately equal for each indoor unit 3b, 3c, and 3d. I can do it.
  • the degree of opening of the motorized valves 33b, 33c, 33d in the stop room is controlled more finely than in the case of only control using the discharge pipe temperature To. be able to. Thereby, even when there are a plurality of stop rooms, more stable refrigerant control can be performed.
  • the deviation ⁇ 1 # between the liquid pipe temperature T 1 # and the average value T lave of each stop room is equal to or greater than a predetermined value. Is determined, and no correction is performed for the motor-operated valve having a small deviation ⁇ 1 #. Therefore, when the deviation ⁇ 1 # is small, it is determined that the influence of the refrigerant drift is small, and the change in the opening degree can be omitted.
  • the opening degree of the motorized valve corresponding to the indoor unit whose operation is stopped is not controlled uniformly for all the motorized valves. Since each correction is performed by the correction means for each motor-operated valve, stable refrigerant control can be performed even when the heating operation is being performed and there are a plurality of indoor units that have stopped operating. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

明 細 書 空気調和機および空気調和機の制御方法 (技術分野)
本発明は、 空気調和機、 特に、 1台の室外機に対して複数台の室内機が接続さ れるマルチ型空気調和機およびマルチ型空気調和機の制御方法に関する。
(背景技術)
室外機と室内機とからなる空気調和機には、 1台の室外機に対して複数台の室 内機が接続されるいわゆるマルチ型空気調和機がある。
マルチ型空気調和機では、 圧縮機と室外熱交換器とを有する室外機と、 室内熱 交換器をそれぞれ有する複数の室内機との間で冷媒回路を構成しており、 この冷 媒回路中には、 各室内熱交換器に流れる冷媒量を調整する電動弁が室内熱交換器 ごとに設けられる。 暖房運転を行う場合、 圧縮機からの高温冷媒が各室内熱交換 器に分配され、 それぞれ室内熱交換器が暖房運転を行う。 このとき、 各電動弁は 、 圧縮機の吐出管温度や各室内機が配置された室内の温度等に応じて開度を調整 し、 冷媒量を調整する。 しかし、 このような空気調和機を用いて、 複数の部屋の 空気調和を行う場合、 必ずしもすべての室内機を運転させるとは限らず、 いくつ かの室内機を運転させ、 残りの室内機の運転を停止させることがある。 暖房運転 を行っている場合において、 室内機が運転を停止している部屋 (以下 「停止部屋 」 という) がある場合には、 停止部屋の電動弁は、 室内熱交換器への冷媒溜りの 発生を避けるために、 ある程度電動弁を開けておき若干の冷媒を流すことが行わ れている。 このときの電動弁の開度が、 固定された値であると、 実際の運転状況 の変化に対応できず、 安定した冷媒制御を行うことは困難である。 このため、 停 止部屋の電動弁の開度については、 吐出管温度によるフィードバック制御を行う ことが提案されている。 これにより、 実際の運転状態に合わせて停止部屋の冷媒 量を調整することができ、 空気調和機のシステム全体において、 安定した冷媒制 御を行うことができる。 しカゝし、 このような制御を行う空気調和機では、 停止部屋の電動弁がすべて一 律に同じ制御を受けているため、 停止部屋が複数ある場合には、 停止部屋の室内 環境や停止部屋の設置位置などの違いによっては、 以下のような問題が生じる恐 れがある。 すなわち、 ある停止部屋の室温が他の停止部屋の室温よりも低い場合 には、 この停止部屋の冷媒は放熱しやすくなつているため、 液が溜りやすくなる 。 それにもかかわらず、 この電動弁が他の停止部屋の電動弁と同じような開度に 制御された場合には、 この室温の低い停止部屋に液溜りが生じる恐れが高くなる 。 また、 停止部屋の一つが、 他の停止部屋よりも低い階にある場合には、 高低差 による圧力差が生じるため、 低い階の停止部屋に液溜りが生じやすくなる。 この ような液溜りが生じると、 システム全体の循環冷媒量が減少することによりガス 欠気味の運転となり、 暖房の能力不足や効率の低下を招きやすくなる。 さらに、 圧縮機の温度上昇等を招き、 圧縮機の耐久性に影響を与える場合もあり うる。 また、 液溜りまで至らない場合であっても、 各停止部屋間に滞留する液冷媒の 量が異なる場合が生じうる。 この場合、 システム全体の循環冷媒量を確保するた めには、 液冷媒が多く滞留している部屋の液冷媒が排出されるまで、 電動弁を開 く必要がある。 しカゝし、 上述したような制御を行う空気調和機では、 電動弁が一 律に制御されるため、 液冷媒が多く滞留している部屋の電動弁のみならず、 他の 電動弁まで開かれる状態となる。 このことは、 液冷媒が滞留していない停止部屋 での冷媒音の発生原因となる。
(発明の開示)
本発明の目的は、 マルチ型空気調和機が暖房運転を行っている場合であって、 運転を停止している室内機が複数ある場合であっても、 安定した冷媒制御を行う ことができる空気調和機および空気調和機の制御方法を提供することにある。 請求項 1に記載の空気調和機は、 室外熱交換器を有する室外機と、 室内熱交換 器を有する複数の室内機と、 冷媒回路と、 電動弁と、 吐出管温度センサと、 電動 弁開度制御手段と、 電動弁開度補正手段とを備える。 冷媒回路は、 室外熱交換器 と、 圧縮機と、 複数の前記室内熱交換器とを結ぶ。 電動弁は、 冷媒回路中に設け られ、 複数の室内熱交換器それぞれに流れる冷媒量を調整する。 吐出管温度セン サは、 圧縮機の吐出管温度を検知する。 電動弁開度補正手段は、 暖房運転時にお いて運転を停止している室内機が複数ある場合に、 運転を停止している室内機に 対応する電動弁の開度を吐出管温度に基づいて制御する。 電動弁開度補正手段は 、 運転を停止している室内機に対応する電動弁の開度を、 電動弁ごとにそれぞれ 補正する。 なお、 運転を停止している室内機に対応する電動弁とは、 運転を停止 している室内機の室内熱交換器に流れる冷媒量を調整する電動弁を意味する。 この空気調和機では、 運転を停止している室内機に対応する電動弁の開度が、 すべての電動弁について一律に同様の制御を受けるのではなく、 電動弁開度補正 手段により、 電動弁ごとにそれぞれ補正される。 このため、 室内機が置かれた部 屋の温度や場所等の冷媒に影響を与えるような環境の違いに応じて、 最適な電動 弁の開度に補正して制御することができる。 これにより、 この空気調和機では、 暖房運転が行われてレヽる場合であって、 運転を停止している室内機が複数ある場 合であっても、 安定した冷媒制御を行うことができる。
請求項 2に記載の発明は、 請求項 1に記載の空気調和機であって、 室内熱交換 器と電動弁との間の液管温度を検知する液管温度センサをさらに備える。 そして 、 電動弁開度補正手段は、 暖房運転時において運転を停止している室内機が複数 ある場合に、 運転を停止している室内機の液管温度の平均値と運転を停止してい る室内機の液管温度との差が一定範囲に入るように、 運転を停止している室内機 に対応する電動弁の開度を; 電動弁ごとにそれぞれ補正する。
この空気調和機では、 運転を停止している全室内機の液管温度間の平均値と運 転を停止している室内機の液管温度との差が一定範囲に入るように、 運転を停止 している室内機に対応する電動弁の開度を、 電動弁ごとにそれぞれ制御する。 こ のため、 この空気調和機は、 運転を停止している室内機内を流れる冷媒の量を各 室内機について概ね均等にすることができる。 これにより、 室内熱交換器への液 溜りが発生した場合や運転を停止している室内機内を流れる冷媒の量が各室内機 について異なる場合に生じる不具合、 例えば、 冷媒音の発生や空気調和機全体の 暖房能力の低下など、 を抑えることができる。
請求項 3に記載の発明は、 室外熱交換器を有する室外機と、 室内熱交換器を有 する複数の室内機と、 室外熱交換器と圧縮機と複数の室内熱交換器とを結ぶ冷媒 回路と、 冷媒回路中に設けられ複数の室内熱交換器それぞれに流れる冷媒量を調 整する複数の電動弁と、 圧縮機の吐出管温度を検知する吐出管温度センサとを備 える空気調和機の制御方法であって、 第 1ステップと第 2ステップとを有する。 第 1ステップは、 暖房運転時において運転を停止している室内機が複数ある場合 に、 運転を停止している室内機に対応する電動弁の開度を吐出管温度に基づいて 設定する。 第 2ステップは、 上記の電動弁開度を、 電動弁ごとにそれぞれ補正す る。
この空気調和機の制御方法では、 運転を停止している室内機に対応する電動弁 の開度が、 すべての電動弁について一律に同様の制御を受けるのではなく、 電動 弁ごとにそれぞれ補正される。 このため、 室内機が置かれた部屋の温度や場所等 の冷媒に影響を与えるような環境の違いに応じて、 最適な電動弁の開度に補正し て制御することができる。 これにより、 この空気調和機の制御方法によれば、 暖 房運転が行われている場合であって、 運転を停止している室内機が複数ある場合 であっても、 安定した冷媒制御を行うことができる。
(図面の簡単な説明)
第 1図は、 空気調和機の構成図である。
第 2図は、 空気調和機の冷媒回路の概略図である。
第 3図は、 制御ブロック図である。
第 4図は、 電動弁開度の制御フローチャートの図である。
第 5図は、 電動弁開度補正の制御フローチャートの図である。
(発明を実施するための最良の形態)
〈空気調和機の構成〉
本発明の一実施形態が採用された空気調和機 1を図 1に示す。
空気調和機 1は、 1台の室外機に対して複数の室内機が接続される、 いわゆる マルチ型空気調和機である。
この空気調和機 1は、 1台の室外機 2に対し 4台の室内機 3 a, 3 b , 3 c, 3 (1が冷媒配管4 &, 4 b, 4 c , 4 dにより接続されている。 この 4台の室内 機 3 a, 3 b, 3 c, 3 dは、 それぞれ別々の部屋に配置されている。 また、 こ こでは室内機 3 aのみが暖房運転を行っており、 他の 3台の室内機 3 b, 3 c , 3 dは、 運転を停止している状態であるとする。
本空気調和機 1の冷媒回路 5の概略を図 2に示す。
冷媒回路 5は、 1台の室外機 2と、 室外機 2に並列に接続された 4台の室内機 3 a , 3 b, 3 c, 3 dとにより構成されている。
室外機 2は、 圧縮機 20、 四路切換弁 2 1、 室外熱交換器 22、 アキュムレー タ 23などを備えている。 また、 圧縮機 20の吐出側には、 圧縮機 20の吐出側 の吐出管温度を検知するための吐出管サーミスタ 24が取り付けられている。 室 外機 2には外気温度を検知するための外気サーミスタ 25と、 室外熱交換器 22 の温度を検知するための室外熱交サ一ミスタ 26とを備えている。
室内機 3 aは、 室内熱交換器 30 aと電動弁 33 aとを備えており、 室内熱交 換器 30 aと電動弁 33 aとは、 直列に接続されている。 電動弁 33 aは、 室内 熱交換器 30 aの出口側に設けられており室内熱交換器 30 aに流れる冷媒量を 調整する。 また、 この室内機 3 aは、 室内温度を検知するための室温サーミスタ 3 1 aと、 室内熱交換器 30 aの温度を検知するための室内熱交サーミスタ 32 aとをそれぞれ備えている。 室内熱交換器 30 aと電動弁 33 aとの間の配管に は、 室内熱交換器 30 aと電動弁 33 aとの間の液管温度を検知するための液管 サ一ミスタ 34が設けられている。 室内熱交換器 30 aのガス管側には、 内部を 通過する冷媒温度を検知するガス管サーミスタ 35が設けられている。
他の室内機 3 b、 3 c、 3 dについても同様の構成であり、 図 2において、 室 内熱交換器、 電動弁、 各種サーミスタに対して同一の記号を付している。
なお、 電動弁 33 a, 33 b、 33 c、 33 dは、 室内機 3 a, 3 b、 3 c、 3 dに内蔵されるとは限らず、 室内機 3 a, 3 b、 3 c、 3 dの外部に、 例えば 、 各室内機 3 a, 3 b、 3 c、 3 dと室外機 2とを接続する分岐ユニットなどの 内部に設けられてもよレ、。
次に、 空気調和機 1の制御プロック図を図 3に示す。
室外機 2は、 マイクロプロセッサ、 ROM、 RAM, 各種インタ一フェイスな どを含む室外制御部 27を備えている。 室外制御部 27には、 吐出管サーミスタ 24、 外気サーミスタ 25、 室外熱交 サーミスタ 26などの各種センサが接続されており、 各センサの検知信号が入力 される。
また、 室外制御部 27は、 接続される圧縮機 20、 四路切換弁 21などに制御 信号を供給することによって運転中の各部の制御を行うように構成されている。 室内機 3 aには、 室外機 2と同様のマイクロプロセッサ、 ROM、 RAM, 各 種ィンターフェイスなどを含む室内制御部 36 aを備えている。
室内制御部 36 aには、 室温サーミスタ 31 a、 室内熱交サーミスタ 32 a、 液管サーミスタ 34 aおよびガス管サーミスタ 35 aが接続されており、 各セン サの検知信号が入力されるように構成されている。
また、 室内制御部 36 aは、 室内機 3 aに設けられた電動弁 33 aと接続され ており、 この電動弁 33 aにそれぞれ制御信号を送信して開度調整を行うように 構成されている。
室外制御部 27と室内制御部 36 aとの間には、 伝送線 40 aが設けられてお り、 この伝送線 40 aを介して各種データの入出力が可能となっている。
他の室内機 3 b、 3 c、 3 dについても同様であり、 各室内機 3 b、 3 c、 3 dの室内制御部 36 b、 36 c、 36 dが、 それぞれ室外制御部 27と伝送線 4 0 b、 40 c、 40 dにより接続されている。
室外制御部 27は、 運転中の各種条件に応じて圧縮機 20の運転周波数を制御 することによって、 空調運転の制御を行う。 また、 室内制御部 36 a、 36 b、 36 c、 36 dでは、 運転中の各種条件に応じて電動弁 33 aの開度パルスを制 御することによって、 空調運転の制御を行う。 また、 室外制御部 27は、 運転を 停止している室内機 3 b、 3 c、 3 (1の電動弁331)、 33 c、 33 dについて 、 吐出管温度に基づいてその開度を決定するフィードバック制御を行うと共に、 電動弁 33 b、 33 c、 33 dごとに開度をそれぞれ補正する。 以下、 運転を停 止している室内機 3 b、 3 c、 3 (1の電動弁331)、 33 c、 33 dの制御につ いて説明する。
〈停止部屋における電動弁の制御〉
マルチ型空気調和機では、 複数の室内機がそれぞれ別の部屋に配置され複数の 部屋の空気調和が行われるが、 すべての室内機が同時に運転されるとは限らない 。 すなわち、 いくつかの室内機は運転を行い、 残りの室内機は運転を停止してい る場合がある。 運転を行っている室内機 3 aが配置された部屋を 「運転部屋」 、 運転を行っていない室内機 3 b、 3 c、 3 dが配置された部屋を 「停止部屋」 と 呼ぶこととし、 以下、 暖房運転が行われている場合であって、 停止部屋が複数あ る場合における停止部屋の電動弁の制御について説明する。
停止部屋の電動弁 33 b、 33 c、 33 dの制御フローチャートを図 4および 図 5に示す。
図 4に示す制御フローチャートでは、 運転部屋の電動弁 33 aの開度は、 吐出 管温度 T oに基づいて決定され、 停止部屋の電動弁 33 b、 33 c、 33 dの開 度は、 吐出管温度 T oに基づいて決定された運転部屋の電動弁 33 aの開度に比 例した値に決定される。
まず、 ステップ S 1 1では、 運転部屋の室内熱交換器 30 aの凝縮温度 T c a と室外熱交換器 22の蒸発温度 T eと力 それぞれ室内熱交サーミスタ 32 aと 室外熱交サ一ミスタ 26とにより検知される。
ステップ S 1 2では、 目標吐出管温度 Tmが下記の①式により算出される。 Tm=a XT c a + b XTe+ s h ①
ここで、 a, bは所定の定数であり、 s hは外気温度による補正項である。 ステップ S 1 3では、 目標吐出管温度 Tmと吐出管サーミスタ 24により検知 された吐出管温度 T oとの偏差を算出し、 一定時間ごとに吐出管温度 T oの変化 量を算出する。
そして、 ステップ S 14で、 運転部屋の電動弁 33 aの開度を決定する。 さらに、 ステップ S 1 5において、 停止部屋の電動弁 33 b、 33 c、 33 d の開度を決定する。 すなわち、 運転部屋の電動弁 33 aの開度に、 ある係数 dを 乗じて停止部屋の電動弁 33 b、 33 c、 33 dの目標電動弁開度とする。 次に、 図 5のフローチャートに示すように、 停止部屋の電動弁 33 b、 33 c 、 33 dごとに上記の目標電動弁開度の補正が行われる。
まず、 ステップ S 21において、 (1) 空気調和機 1が暖房運転中であること 、 (2) 電動弁 33 b, 33 c, 33 dがフィードバック制御中であること、 の 2つの条件が共に成立するか否かが判断される。 上記の 2つの条件が共に成立す る場合は、 ステップ S 22へと進む。
ステップ S 22では、 サンプリングタイマー TTHS 5をセッ トスタ一卜する 。 ステップ S 23では、 サンプリングタイマー TTHS 5が所定時間に達したか 否かが判断される。 サンプリングタイマー TTHS 5が所定時間に達した場合に は、 ステップ S 24へと進む。
ステップ S 24では、 まず (1) 各停止部屋の液管温度 T 1 #の検知がそれぞ れ行われる。 次に、 (2) 各停止部屋の液管温度の平均値 T 1 a V eが算出され る。 そして、 (3) 各停止部屋の液管温度 T 1 #と平均値 T 1 a V eとの偏差厶 T 1 #がそれぞれ算出される。 ここで、 上記の #は、 停止部屋のそれぞれの室内 機に付されている記号 b、 c、 dのいずれかを意味する。
ステップ S 25では、 停止部屋ごとにステップ S 24で求めた偏差の絶対値が 所定値 T 1 a b s以上であるか否かが判断される。 偏差の絶対値が所定値以上で ある場合には、 ステップ S 25へと進む。 偏差の絶対値が所定値未満である場合 には、 ステップ S 21へと戻る。
ステップ 26では、 電動弁 33 b、 33 c、 33 dの開度の補正量が計算され 、 停止部屋ごとに電動弁 33 b、 33 c、 33 dの開度が補正される。 開度の補 正量は、 偏差に負の係数を乗じて計算される。 冷媒の流量が多い室内熱交換器で は、 液管温度 T l #が上昇し、 冷媒の流量が少ない室内熱交換器では、 液管温度 T l #が低下する。 このため、 停止部屋の液管温度 Τ 1 #が低い対象電動弁は開 かれるように、 停止部屋の液管温度 Τ 1 #が高い対象電動弁は閉じられるように 、 それぞれの電動弁の開度が補正される。
〈空気調和機 1の特徴〉
この空気調和機 1では、 停止部屋の電動弁 33 b、 33 c、 33 dの開度を吐 出管温度 Toに基づいて制御するとともに、 停止部屋の全室内機 3 b、 3 c、 3 dの液管温度 T 1 b、 T i c, T 1 d間の平均値と停止部屋の室内機 3 b、 3 c 、 3 dの液管温度 T 1 #との差が一定範囲に入るように、 電動弁 33 b、 33 c 、 33 dごとにそれぞれ制御する。 このため、 室内機 3 b、 3 c、 3 dが異なる 階に配置されている場合や室内の温度が異なる場合など室内機 3 b、 3 c、 3 d の環境が異なる場合であっても、 運転を停止している室内機 3 b、 3 c、 3 d内 を流れる冷媒の量を各室内機 3 b、 3 c、 3 dについて概ね均等にすることがで きる。 すなわち、 停止部屋の電動弁 33 b、 33 c、 33 dの開度について、 吐 出管温度 T oによる制御のみ場合よりも、 さらに細やかに電動弁 33 b、 33 c 、 33 dの制御を行うことができる。 これにより、 停止部屋が複数ある場合であ つても、 より安定した冷媒制御を行うことができる。
また、 各電動弁 33 b、 33 c、 33 dの開度の補正が行われるときに、 各停 止部屋の液管温度 T 1 #と平均値 T l a v eとの偏差 ΔΤ 1 #が所定値以上であ るか否かが判断され、 偏差 ΔΤ 1 #が小さい電動弁については、 補正が行われな い。 このため、 偏差 ΔΤ 1 #が小さい場合には、 冷媒の偏流による影響が小さい と判断して、 開度の変更を省略することができる。
(産業上の利用可能性)
本発明に係る空気調和機を利用すれば、 運転を停止している室内機に対応する 電動弁の開度が、 すべての電動弁について一律に同様の制御を受けるのではなく 、 電動弁開度補正手段により電動弁ごとにそれぞれ補正されるため、 暖房運転が 行われている場合であって運転を停止している室内機が複数ある場合であっても 、 安定した冷媒制御を行うことができる。

Claims

請 求 の 範 囲
室外熱交換器 (2 2) を有する室外機 (2) と、
室内熱交換器 (3 0 a, 3 0 b, 30 c , 30 d ) を有する複数の室内機 ( 3 a , 3 b, 3 c, 3 d) と、
前記室外熱交換器 (2 2) と、 圧縮機 (20) と、 複数の前記室内熱交換器 ( 30 a, 30 b, 3 0 c, 3 0 d) とを結ぶ冷媒回路 ( 5 ) と、
前記冷媒回路 (5) 中に設けられ、 複数の前記室内熱交換器 (30 a, 30 b , 3 0 c, 30 d) それぞれに流れる冷媒量を調整する複数の電動弁 (3 3 a, 3 3 b, 3 3 c, 3 3 d) と、
前記圧縮機 (20) の吐出管温度を検知する吐出管温度センサ (24) と、 暖房運転時において運転を停止している室内機が複数ある場合に、 前記運転を 停止している室内機 (3 b、 3 c、 3 d) に対応する電動弁 (3 3 b、 3 3 c、 3 3 d) の開度を前記吐出管温度に基づいて制御する電動弁開度制御手段 (2 7 ) と、
前記運転を停止している室内機 (3 b、 3 c、 3 d) に対応する電動弁 (3 3 b、 3 3 c , 3 3 d) の開度を、 前記電動弁ごとにそれぞれ補正する電動弁開度 補正手段 (2 7) と、
を備える空気調和機。
2.
前記室内熱交換器 (3 0 a, 30 b, 3 0 c, 3 0 d ) と前記電動弁 ( 3 3 a , 3 3 b, 3 3 c, 33 d) との間の液管温度を検知する液管温度センサ (34 a , 34 b, 34 c, 34 d) をさらに備え、
前記電動弁開度補正手段 (2 7) は、 暖房運転時において運転を停止している 室内機 (3 b, 3 c, 3 d) が複数ある場合に、 前記運転を停止している室内機 (3 b, 3 c, 3 d) の液管温度の平均値と前記運転を停止している室内機の液 管温度との差が一定範囲に入るように、 前記運転を停止している室内機 (3 b, 3 c , 3 d) に対応する電動弁 (3 3 b, 3 3 c, 3 3 d ) の開度を、 前記電動 弁ごとにそれぞれ補正する、
請求項 1に記載の空気調和機。
3.
室外熱交換器 (2 2) を有する室外機 (2) と、 室内熱交換器 (3 0 a , 3 0 b, 30 c, 3 0 d) を有する複数の室内機 (3 a, 3 b, 3 c, 3 d) と、 前 記室外熱交換器 (2 2) と圧縮機 (2 0) と複数の前記室内熱交換器 (30 a, 30 b, 3 0 c, 3 0 d) とを結ぶ冷媒回路 (5) と、 前記冷媒回路 (5) 中に 設けられ複数の前記室内熱交換器 (3 0 a, 3 0 b, 30 c, 3 0 d) それぞれ に流れる冷媒量を調整する複数の電動弁 (3 3 a, 3 3 b, 3 3 c, 3 3 d) と 、 圧縮機 (20) の吐出管温度を検知する吐出管温度センサ (24) とを備える 空気調和機 (1) の制御方法であって、
暖房運転時において運転を停止している室内機が複数ある場合に、 前記運転を 停止している室内機 (3 b、 3 c、 3 d) に対応する電動弁 (3 3 b、 3 3 c、 3 3 d) の開度を前記吐出管温度に基づいて設定する第 1ステップと、
前記電動弁 (33 b、 3 3 c、 3 3 d) の開度を、 前記電動弁ごとにそれぞれ 捕正する第 2ステップと、
を有する空気調和機の制御方法。
PCT/JP2003/002813 2002-03-27 2003-03-10 Climatiseur et procede de commande de climatiseur WO2003081140A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES03708529.7T ES2510640T3 (es) 2002-03-27 2003-03-10 Acondicionador de aire y procedimiento de control de un acondicionador de aire
EP03708529.7A EP1496316B1 (en) 2002-03-27 2003-03-10 Air conditioner, and method of controlling air conditioner
AU2003213441A AU2003213441B2 (en) 2002-03-27 2003-03-10 Air conditioner, and method of controlling air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/89150 2002-03-27
JP2002089150A JP3772777B2 (ja) 2002-03-27 2002-03-27 空気調和機および空気調和機の制御方法

Publications (1)

Publication Number Publication Date
WO2003081140A1 true WO2003081140A1 (fr) 2003-10-02

Family

ID=28449491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002813 WO2003081140A1 (fr) 2002-03-27 2003-03-10 Climatiseur et procede de commande de climatiseur

Country Status (6)

Country Link
EP (1) EP1496316B1 (ja)
JP (1) JP3772777B2 (ja)
CN (1) CN1294390C (ja)
AU (1) AU2003213441B2 (ja)
ES (1) ES2510640T3 (ja)
WO (1) WO2003081140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571405A3 (en) * 2004-02-25 2006-06-21 Lg Electronics Inc. Control method for heat pumps
CN100363689C (zh) * 2004-08-04 2008-01-23 三星电子株式会社 多空调系统及其操作方法
CN105485868A (zh) * 2015-12-23 2016-04-13 宁波奥克斯电气股份有限公司 多联机的内机电子膨胀阀的复位控制方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338410C (zh) * 2004-02-25 2007-09-19 Lg电子株式会社 用于复式热泵的控制方法
KR100640856B1 (ko) * 2004-12-14 2006-11-02 엘지전자 주식회사 멀티 공기조화기의 제어방법
KR100640858B1 (ko) 2004-12-14 2006-11-02 엘지전자 주식회사 공기조화기 및 그 제어방법
KR101482101B1 (ko) * 2006-11-29 2015-01-14 엘지전자 주식회사 공기조화기
JP4972069B2 (ja) 2008-10-28 2012-07-11 ナガノサイエンス株式会社 空調装置の制御方法、空調装置及び環境試験装置
GB2468343A (en) * 2009-03-05 2010-09-08 Bmci Ltd Heating or cooling system comprising a heat pump
WO2011083516A1 (ja) * 2010-01-08 2011-07-14 ダイキン工業株式会社 ラジエータ
KR101951673B1 (ko) * 2011-12-12 2019-04-25 엘지전자 주식회사 멀티 공기조화기 및 멀티 공기조화기의 냉매 액고임 방지 운전방법
CN102829531A (zh) * 2012-09-25 2012-12-19 广东志高暖通设备股份有限公司 一种检测多联机室内机环境温度的方法
JP6609417B2 (ja) * 2015-04-03 2019-11-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN106352488A (zh) * 2016-09-29 2017-01-25 广东美的制冷设备有限公司 一拖多空调器的开度控制方法、装置及一拖多空调器
CN108224739B (zh) * 2017-12-01 2020-08-18 青岛海尔空调电子有限公司 多联式空调系统的噪音控制方法
JP2021038907A (ja) * 2019-09-05 2021-03-11 東芝キヤリア株式会社 空気調和機
CN113865059B (zh) * 2021-09-22 2023-04-28 青岛海尔空调电子有限公司 多联机空调器制热运行控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304713A (ja) * 2000-04-17 2001-10-31 Mitsubishi Electric Corp 空気調和装置および開閉弁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3290306B2 (ja) * 1994-07-14 2002-06-10 東芝キヤリア株式会社 空気調和機
JP3377632B2 (ja) * 1994-12-06 2003-02-17 東芝キヤリア株式会社 空気調和機
KR100545009B1 (ko) * 1999-02-03 2006-01-24 산요덴키가부시키가이샤 공기조화기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304713A (ja) * 2000-04-17 2001-10-31 Mitsubishi Electric Corp 空気調和装置および開閉弁

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571405A3 (en) * 2004-02-25 2006-06-21 Lg Electronics Inc. Control method for heat pumps
US7272943B2 (en) 2004-02-25 2007-09-25 Lg Electronics Inc. Control method for multiple heat pump
CN100363689C (zh) * 2004-08-04 2008-01-23 三星电子株式会社 多空调系统及其操作方法
US7380407B2 (en) 2004-08-04 2008-06-03 Samsung Electronics Co., Ltd. Multi air conditioning system and method for operating the same
CN105485868A (zh) * 2015-12-23 2016-04-13 宁波奥克斯电气股份有限公司 多联机的内机电子膨胀阀的复位控制方法
CN105485868B (zh) * 2015-12-23 2018-05-22 宁波奥克斯电气股份有限公司 多联机的内机电子膨胀阀的复位控制方法

Also Published As

Publication number Publication date
EP1496316A1 (en) 2005-01-12
JP3772777B2 (ja) 2006-05-10
CN1294390C (zh) 2007-01-10
CN1643304A (zh) 2005-07-20
EP1496316A4 (en) 2012-02-01
JP2003287260A (ja) 2003-10-10
ES2510640T3 (es) 2014-10-21
AU2003213441A1 (en) 2003-10-08
EP1496316B1 (en) 2014-07-16
AU2003213441B2 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
WO2003081140A1 (fr) Climatiseur et procede de commande de climatiseur
JP5657110B2 (ja) 温度調節システム及び空気調和システム
US9927133B2 (en) Air conditioning system
JP6609417B2 (ja) 空気調和機
JPS6334459A (ja) 空気調和機
WO2012065275A1 (en) Device and method for controlling opening of a valve in an hvac system
JPH03282150A (ja) 空気調和機およびその制御方式
JPH06103130B2 (ja) 空気調和機
WO2013047582A1 (ja) 冷凍装置
US10401060B2 (en) Conditioner determining a closed condition of an expansion valve
WO2019193685A1 (ja) 空気調和システムの制御装置、室外機、中継機、熱源機、および空気調和システム
JPH06201176A (ja) 空気調和機
CN113439186A (zh) 用于控制hvac系统中的阀的孔口的设备和方法
JP4959297B2 (ja) マルチ型空気調和装置
KR100311859B1 (ko) 다실형 공기조화기
KR101611315B1 (ko) 공기조화기 및 그 동작방법
KR100839956B1 (ko) 공조기기의 운전방법
WO2005100875A1 (ja) 空調制御方法及び空調システム
JP5216813B2 (ja) 空調システムの制御方法
EP2622523B1 (en) Hot water prioritization
JPH08159590A (ja) 空気調和機
JPH08327122A (ja) 空気調和機
JP3835310B2 (ja) 空気調和機
US11598549B2 (en) Thermal cycling system and control method of the thermal cycling system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038065002

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003213441

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003708529

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003708529

Country of ref document: EP