WO2003080530A1 - Substrat de verre et processus de production de ce substrat - Google Patents

Substrat de verre et processus de production de ce substrat Download PDF

Info

Publication number
WO2003080530A1
WO2003080530A1 PCT/JP2003/003578 JP0303578W WO03080530A1 WO 2003080530 A1 WO2003080530 A1 WO 2003080530A1 JP 0303578 W JP0303578 W JP 0303578W WO 03080530 A1 WO03080530 A1 WO 03080530A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
glass
oxide particles
glass substrate
transparent conductive
Prior art date
Application number
PCT/JP2003/003578
Other languages
English (en)
French (fr)
Inventor
Akira Fujisawa
Koichiro Kiyohara
Kiyotaka Ichiki
Toru Yamamoto
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to EP03712890A priority Critical patent/EP1500634A4/en
Priority to JP2003578294A priority patent/JP4430402B2/ja
Publication of WO2003080530A1 publication Critical patent/WO2003080530A1/ja
Priority to US10/951,038 priority patent/US7320827B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Definitions

  • the present invention relates to a glass substrate provided with a surface coating having high visible light transmittance, which is suitable for a window glass for buildings or vehicles. Further, the present invention relates to a method for manufacturing the glass substrate.
  • a transparent conductive film is provided to reflect the infrared rays.
  • This transparent conductive film is mainly composed of a metal oxide such as tin oxide, titanium oxide, zinc oxide or indium oxide, and is usually doped with fluorine or the like in order to increase its conductivity. Further, a glass provided with a similar transparent conductive film is used for the photoelectric conversion device.
  • a glass having a transparent conductive film is used as a substrate glass for attaching the thin film.
  • the transparent conductive film is formed between the glass and the photoelectric conversion layer and, if necessary, further on the photoelectric conversion layer, and is a thin film for extracting electrons and holes generated in the photoelectric conversion layer. Functions as an electrode.
  • it is necessary to guide more light to the photoelectric conversion layer and it is required that the transmittance of visible light and near-infrared light is high (the reflectance is low).
  • this transparent conductive film contains a metal oxide as a main component, and has a refractive index higher than that of glass and is about 1.8 to 2.6.
  • the refractive index of glass having a general soda-lime composition is about 1.5. If the transparent conductive film is formed directly on the glass surface, the adhesion of the transparent conductive film tends to be insufficient due to the difference in the coefficient of thermal expansion and the crystal form, and the reflectance increases due to the high refractive index of the transparent conductive film. Occurs. Furthermore, in the case of glass containing a large amount of an alkali component such as a soda lime glass composition, this component is diffused into the transparent conductive film with time, and the conductivity of the transparent conductive film is reduced. There is also a problem that the adhesive force is reduced.
  • the present inventors have a first layer and a sheet silica as a main component a metal oxide (S i 0 2) in order from the glass side between the glass and the transparent conductive film Developed a technology to improve the adhesion of the transparent conductive film by forming a base film consisting of the second layer, which is the main component, and providing moderate size irregularities on the surface of the first layer. (Japanese Unexamined Patent Publication No. 2000-26130).
  • the present inventors have proposed a light confinement effect (scattering incident light by increasing the surface roughness of the transparent conductive film).
  • a technique for forming a partial through-hole in the first layer of the base film has also been developed, and a patent application has already been filed (Japanese Patent Application Laid-Open No. 2000-101). — 5 3 3 0 7 publication).
  • the present invention has been completed based on the knowledge obtained from the results of the earnest research by the present inventors in consideration of the above problems.
  • the adhesive force between the glass and the transparent conductive film is high, and the surface of the transparent conductive film is
  • An object of the present invention is to provide a glass substrate having large irregularities, effectively exhibiting a light confinement effect, and having a low refractive index whose refractive index changes gradually.
  • Another object of the present invention is to provide a method for easily manufacturing such a glass substrate.
  • the present invention includes a glass plate, a group of metal oxide particles separated from each other from the glass plate side on the glass plate, and a thin film containing silica as a main component in this order.
  • a glass substrate having an average height of 100 to 100 nm.
  • the present invention further provides a method for producing the above glass substrate, wherein a group of metal oxide particles is formed by a thermal decomposition method containing a metal inorganic chloride as a raw material.
  • FIG. 1 is a schematic cross-sectional view of a glass substrate provided with the transparent conductive film of the present invention.
  • FIG. 2 is a schematic diagram showing one embodiment of an apparatus used in the online CVD method.
  • FIGS. 3A and 3B show a state in which a thin film mainly composed of silica is observed with a scanning electron microscope (SEM) after the transparent conductive film is removed by etching on the glass substrate manufactured in Example 1.
  • FIG. 3A shows a state in which the cross section of the glass substrate is observed at a magnification of X100000 and a dip angle of 5 °
  • FIG.3B shows a magnification near the observation point of FIG.3A. It shows the state observed at a dip angle of 30 °, respectively.
  • the occupied area ratio of the metal oxide particles and the occupied area ratio of the thin film containing silica as the main component on the surface of the glass plate are 50 to 90% and 10 to 90%, respectively. It is preferably 50%.
  • the outer shape of the metal oxide particles is preferably a dome shape, for example, a substantially hemispherical shape.
  • the refractive index of the metal oxide particles is preferably higher than the refractive index of the glass plate and the refractive index of the thin film containing silica as a main component.
  • the glass substrate of the present invention may further include a transparent conductive film on the thin film containing silica as a main component.
  • the thermal decomposition method may be a chemical vapor deposition method that is performed on a glass ribbon in a float bath to be a glass plate in a step of producing a glass plate by a float method.
  • the raw material gas may be sprayed at 30 to 60 cm / s onto the glass lipone having a surface temperature of 600 to 75 ° C.
  • a raw material gas containing 0.1 to 1.0 Omo 1% of an inorganic chloride of a metal it is preferable to use a raw material gas containing 0.1 to 1.0 Omo 1% of an inorganic chloride of a metal.
  • One embodiment of the glass substrate of the present invention has, in order from the glass plate side, a structure similar to a conventional underlayer consisting of a first layer mainly composed of a metal oxide and a second layer mainly composed of silica. A portion corresponding to the first layer is provided with a ground film, and a large number of metal oxide particles are present in a separated state.
  • “separated” or “separately independent” means that even if adjacent metal oxide particles are not in contact with each other or even if metal oxide particles are partially bonded, When the group is viewed as a whole, it is in a state of being divided.
  • the surface shape of a thin film mainly composed of silica is regarded as the surface shape of a glass substrate provided with a group of metal oxide particles separated from each other, and the surface shape of the thin film mainly composed of silicon force is considered. It is assumed that the surface shape of the glass substrate provided with the group of separated and independent metal oxide particles is measured by measuring. Since the thin film containing silica as a main component well follows the surface shape of a glass substrate provided with a group of metal oxide particles separated and independent as described later, This does not mean that there is no technical age.
  • FIG. 1 schematically shows a cross section of the glass substrate.
  • a group 2 of metal oxide particles separated from each other and a thin film 3 containing silica as a main component are formed in this order on the surface of a glass plate 1, and a transparent conductive film 4 is further formed on the thin film 3.
  • FIGS. 3A and 3B show the cross section and the surface of a glass substrate provided with a group of separated metal oxide particles and a thin film containing silica as a main component, observed by SEM. Looking at Figs. 3A and 3B, it can be seen that the substantially hemispherical metal oxide particles are partly joined but divided as a whole, and that they are densely scattered on the glass surface. .
  • metal oxide particles are conductive, but since glass is an insulator, if metal oxide particles are present separately and independently, a glass substrate provided with the metal oxide particles does not show conductivity.
  • the glass substrate provided with a group of metal oxide particles (a state before forming the film on the basis of silica), the surface resistivity 1 X 1 0 6 ⁇ / Sukue ⁇ (Omega / mouth) or Then, it can be said that the metal oxide particles are separated and independent.
  • the metal oxide particles are mainly composed of at least one of tin oxide, titanium oxide, zinc oxide, indium oxide, and zirconium oxide used in the conventional transparent conductive film.
  • the "main component" in the present invention means that its content is 50% by weight according to customary usage. Since all of the above metal oxides are crystalline, when metal oxide particles are formed on the glass surface using the chemical vapor deposition (CVD) method described below, first, crystal growth nuclei are formed on the glass surface. Then, the crystal growth proceeds rapidly from the nucleus. The generation of nuclei for this crystal growth If it is suppressed, a group of separated and independent metal oxide particles can be formed. The method of forming a group of separated and independent metal oxide particles using the CVD method will be described later in detail.
  • the group of separated and independent metal oxide particles is covered with a thin film mainly composed of silica.
  • This thin film is a delicate thin film that covers not only the metal oxide particles but also the entire bare glass surface. As a result, even when a transparent conductive film is formed on this thin film, it is possible to prevent the Al component in the glass from diffusing into the transparent conductive film and deteriorating its properties. Also, since the metal oxide particles are densely scattered on the glass surface, this thin film enters between the metal oxide particles and comes into contact with the glass surface at many points. Therefore, this thin film has a structure in which a number of anchors are implanted in the first layer of the conventional base film.
  • this thin film follows the surface shape of a glass substrate provided with a group of separated metal oxide particles well, the bonding area between the thin film and the glass substrate is such that the thin film is formed on a flat glass surface. It is extremely large compared to the case where it was formed.
  • the thin film can be firmly adhered to the glass substrate due to the configuration in which the numerous anchors are driven and the size of the bonding area.
  • the transparent conductive film can be firmly attached to the glass substrate for the same reason.
  • this thin film is common to glass in that Si and ⁇ have a component composition, the adhesion of this thin film to glass is stronger than that of metal oxide particles and glass. This is also the reason why the thin film and the transparent conductive film are firmly attached to the glass substrate.
  • the thin film containing silica as a main component follows the surface shape of the glass substrate provided with the group of metal oxide particles that are separated and independent as described above, the surface of the thin film (the surface farther from the glass) Is a grain of metal oxide particles Irregularities of approximately the same size as the diameter will be formed.
  • the size of the irregularities is several times larger than that described in JP-A-2000-261103, and the surface irregularities of the transparent conductive film formed on the thin film are also described in this publication. It is larger than the one described.
  • the refractive index of a metal oxide is larger than that of a thin film containing glass and silica as its main components.
  • a refractive index change layer described in JP-A-2001-48593 particularly a refractive index having a sufficient thickness with a moderate refractive index change It is effective to provide a change layer.
  • the glass substrate of the present invention has, at least in a preferred embodiment, a structure in which a thin film containing silica as a main component is interposed between separated metal oxide particles. The whole functions as a refractive index change layer, and reflection is effectively suppressed.
  • the surface of the thin film containing silica as a main component has irregularities of almost the same size as the metal oxide particles, and thus the surface of the transparent conductive film formed thereon has extremely large irregularities. Become. Therefore, according to the glass substrate of the present invention, in addition to the reduction of the reflectance due to the presence of the refractive index change layer between the glass and the transparent conductive film, the presence of the refractive index change layer on the surface of the transparent conductive film allows Its reflectivity is further reduced. In the base film described in Japanese Patent Application Laid-Open No. 2000-26113, the unevenness at the interface between the first layer and the second layer is small.
  • the base film described in JP-A-2001-53307 or JP-A-2001-48593 a through-hole is formed in the first layer. It is scattered in the first layer. That Therefore, the surface irregularities of the transparent conductive film provided on the base film described in these publications are small as a whole, even if they are of the same size in part as compared with that of the present invention. The magnitude of the surface irregularities in the entire transparent conductive film can be confirmed by measuring the haze ratio thereof. Therefore, the underlayer film described in JP-A-201-53307 or JP-A-2001-48593 does not function as a refractive index change layer as a whole. The refractive index change layer in the entire transparent conductive film formed thereon is smaller than that of the present invention.
  • the glass substrate described in JP-A-201-533307 or JP-A-2001-48593 has a higher reflectance than the glass substrate of the present invention.
  • INDUSTRIAL APPLICABILITY The glass substrate of the present invention can exhibit visible light transmittance, reduce reflection interference color, and exhibit an almost neutral appearance over a wide range of the thickness of the transparent conductive film due to the reduction in reflectance. .
  • the glass substrate of the present invention when used for a photoelectric conversion device, light scattering is likely to occur on the surface of the transparent conductive film due to the large unevenness, and the light confinement effect is effectively exhibited.
  • the reduction in the reflectance increases the amount of light incident on the photoelectric conversion layer, and improves the photoelectric conversion efficiency.
  • the average height of the metal oxide particles is from 10 to 100 nm.
  • the average height is less than 1 O nm, the surface of a group of separated metal oxide particles and a thin film containing silica as a main component (hereinafter sometimes collectively referred to as a “base film”). Since the unevenness is too small, various functions based on the refractive index change layer in the underlayer described above cannot be exhibited. On the other hand, if it exceeds 100 nm, the metal oxide particles become difficult to separate and become independent.
  • the thickness of the refractive index change layer of the base film is obtained by adding the average height of the metal oxide particles and the average thickness of the thin film containing silica as a main component.
  • this average height is Can be said to be an important factor in determining the thickness of the refractive index change layer.
  • the average height of the metal oxide particles can be determined, for example, based on an SEM photograph taken at a magnification of X100000 and a dip of 5 °.
  • the thin film containing silica as a main component may contain the above-mentioned metal oxide in addition to silica, in terms of oxide, at a predetermined concentration or less, for example, 1 Omo 1% or less.
  • a predetermined concentration or less for example, 1 Omo 1% or less.
  • the shape of the metal oxide particles is not particularly limited, a dome shape, particularly a substantially hemispherical shape is preferable. Although it depends on the method of forming the metal oxide particles, a dome shape is often easy to form.
  • a method of forming a group of separated and independent metal oxide particles in addition to a thermal decomposition method such as a CVD method or a spray method, a metal oxide powder is attached to a glass surface, and then heated together with the glass to oxidize the metal oxide. And the like. In the thermal decomposition method, the metal oxide grows around the generated nucleus, so that the outer shape of the particle tends to be dome-shaped.
  • the “dome shape” means that in an SEM photograph taken by the same means as described above, there is no sharp-angled portion on the outer periphery until it rises from the glass surface and reaches the glass surface.
  • the metal oxide particles is preferably exists in 5 0-1 5 0 Z ⁇ m 2.
  • the number of the metal oxide particles is measured by the number of the individual metal oxide particles. For example, two parts can be confirmed in appearance, and some parts are joined In the state (in the case of a dome shape, two peaks can be seen), it is counted that there are two metal oxide particles.
  • the occupied area ratio is preferably 50 to 90%. When the number of the metal oxide particles is too small, the particle size is too large or the occupied area ratio is too small. This means that the metal oxide particles may not be separated and independent, or the underlying film may not have surface irregularities.
  • the average thickness of the thin film containing silica as a main component is preferably smaller than the average height of the metal oxide particles. If the thin film containing silica as the main component is too thick, the unevenness due to the group of separated metal oxide particles is evened out, and the surface unevenness of the transparent conductive film formed thereon is reduced. On the other hand, in order to secure the alkali barrier function, the average thickness of the thin film is preferably 10 ⁇ m or more.
  • the occupied area ratio of the metal oxide particles and the occupied area ratio of the thin film containing silica as a main component on the glass surface are preferably 50 to 90% and 10 to 50%, respectively.
  • the glass substrate is is preferably c
  • This transparent conductive film comprising a transparent conductive film on the base film, derived from the large surface unevenness of the underlying film, uniform and large surface unevenness is formed.
  • a thick refractive index changing layer is formed on the surface of the transparent conductive film, and the above-described effects of reducing the reflectance, alleviating the reflection interference color based on this, and confining light by light scattering are achieved. Is done.
  • the transparent conductive film is preferably made of the same metal oxide as the separated and independent metal oxide particles.
  • the transparent conductive film has high visible light transmittance and high conductivity. It is preferably made of tin oxide doped with silicon. As the thickness of the transparent conductive film increases, the surface resistance decreases, but on the other hand, the amount of visible light absorbed increases. Therefore, when the transparent conductive film is used as a thin film electrode of a photoelectric conversion device, the thickness is from 200 to 200. nm is preferred.
  • the glass substrate provided with this transparent conductive film has a high heat resistance and abrasion resistance because the transparent conductive film is firmly attached to the glass, and has a low reflectance, so that the visible light transmittance is high, In addition, it has the characteristic that there are few reflected interference colors. Therefore, this glass substrate is suitable for use as window glass for buildings and vehicles. Further, this glass substrate is suitable for use as a glass substrate (including a cover glass) for a photoelectric conversion device because transmitted light and reflected light can be scattered by surface irregularities of a transparent conductive film.
  • the method for forming a group of separated and independent metal oxide particles is not particularly limited.
  • a fine powder of a metal oxide or a metal is coated on a glass surface.
  • a method of causing the fine powder to aggregate by heating the glass together with the glass is exemplified.
  • metal oxide particles may be grown by thermal decomposition using the aggregated fine powder as a nucleus.
  • the thermal decomposition method using a metal inorganic chloride as a raw material particularly the CVD method, a group of separated and independent metal oxide particles can be easily formed at a high deposition rate.
  • a CVD method (hereinafter, referred to as an “on-line CVD method”) in which a molten glass lipon is formed into a plate shape in a float bath is used, the heat of the raw material gas can be reduced. Since the energy required for the decomposition reaction can be obtained from the glass ribbon, it can be used to manufacture glass substrates. The required total energy cost can be suppressed. Furthermore, in the on-line CVD method, since the film is formed at a surface temperature of 560 to 75 ° C., the film deposition rate reaches 500 to 2000 nm / min. Since the film formation rate in thermal decomposition methods other than the online CVD method is usually 500 to 500 nm / min, the online CVD method is suitable for industrial mass production.
  • a metal inorganic chloride is used as a metal oxide raw material, and the content of the metal raw material in the raw material gas is reduced to 0. Achieved by adjusting to 1 to 1.0 mo 1%.
  • a metal organic chloride is usually used as a raw material of a metal oxide.
  • a metal organic chloride is usually used as a raw material of a metal oxide.
  • the organic compound of metal is less reactive than the inorganic chloride in the thermal decomposition reaction, so that the film formation is easy to control (the allowable setting range of the film formation conditions is wide).
  • the underlayer should be as flat as possible so as not to cause pinholes. For this reason, even when the film formation rate was reduced, it was reasonable to use a metal organic chloride as a raw material for the metal oxide.
  • the present inventors have dared to select a metal inorganic chloride as a raw material of a metal oxide, and as a result of diligently examining the film forming conditions, have determined that the content of the metal inorganic chloride in the raw material gas can be controlled. It has been found out that the metal oxide can be separated into particles and separated independently by the method. Although the technical basis is not always clear, the present inventors speculate as follows. That is, inorganic chloride of metal The substance is first mixed with an oxidizing material such as oxygen or water vapor contained in the material gas and heated to cause a thermal decomposition reaction to become a metal oxide.
  • an oxidizing material such as oxygen or water vapor contained in the material gas
  • the raw material gas applied to the glass surface does not have a completely uniform component but spreads over the glass surface while maintaining a constant concentration distribution. Therefore, first, metal oxides are generated where the concentration of the inorganic chloride of the metal is relatively high, and this functions as a nucleus for crystal growth, and in combination with the high reactivity of the inorganic chloride, crystal growth proceeds rapidly. Then metal oxide particles are formed. Then, before the scattered metal oxide particles grow and come into contact with each other, the supply of the raw material gas is stopped and the crystal growth is stopped, so that a group of separated and independent metal oxide particles can be formed. .
  • the content of the inorganic chloride of the metal in the source gas has a direct effect on the generation of crystal growth nuclei and the subsequent crystal growth rate.
  • the results of the experiments performed by the present inventors are in good agreement with the conclusions derived from this presumption.
  • the concentration of the inorganic chloride of the metal in the raw material gas is less than 0.1 mol%, the metal oxide particles are hardly found on the glass surface or are found only occasionally. This is because, in addition to the small number of crystal growth nuclei that occur, the crystal growth speed is slow, and the nuclei are exhausted out of the system together with the carrier gas without adhering to the glass surface.
  • the inorganic chloride of the metal is preferably tin chloride (11, IV) or titanium chloride (II, III, IV).
  • 0.1 to 1.0 mol% of metal inorganic chloride and 10 to 80 mol% of oxidizing raw material are contained in glass ripon with a surface temperature of 600 to 750.
  • the method for forming the thin film containing silica as a main component and the transparent conductive film is not particularly limited. However, in view of productivity, the same method as that for the group of the metal oxide particles which are separated and independent is preferable.
  • the same method as that for the group of the metal oxide particles which are separated and independent is preferable.
  • a plurality of layers for supplying a source gas to a glass surface are provided to form a series of film forming steps from a group of separated metal oxide particles to a transparent conductive film.
  • a thin film containing silica as a main component is formed by the CVD method
  • monosilane, disilane, trisilane, monochlorosilane, dichlorosilane, 1,2-dimethylsilane, 1,1,2-trimethyldisilane, 1, 1,2,2-Tetramethyldisilane, tetramethylorthosilicate or tetraethylorthosilicate can be used.
  • examples of the oxidizing material include oxygen, water vapor, dry air, carbon dioxide, carbon monoxide, nitrogen dioxide, and ozone.
  • silane is used, an unsaturated hydrocarbon gas such as ethylene, acetylene or toluene may be used in combination for the purpose of preventing the reaction of the silane before reaching the glass surface.
  • antimony or fluorine when a thin film mainly composed of tin oxide is used as a transparent conductive film, it is preferable to add antimony or fluorine in order to improve the conductivity.
  • these can be uniformly present in the transparent conductive film by adding a compound of antimony or fluorine to the source gas.
  • the antimony compound include antimony trichloride and antimony pentachloride
  • the fluorine compound include hydrogen fluoride, trifluoroacetic acid, bromotrifluoromethane, and chlorodifluoromethane.
  • the equipment used in the on-line CVD method flows from the melting furnace (float kiln) 11 into the float bath 12 and moves from the surface of the glass ribbon 10 moving in a strip shape over the melting soot 15.
  • a predetermined number of switches 16 (in the illustrated embodiment, three switches 16a, 16b, and 16c) are arranged in the float bath at a predetermined distance. From these reactors, gaseous raw materials are supplied, and a group of metal oxide particles that are continuously separated and independent on the glass ribbon 10, a thin film mainly composed of silica, and a transparent conductive film are formed. To go.
  • more coaters may be used.
  • An aluminum oxide thin film may be further formed on a silica-based thin film, or a plasma-resistant oxide may be further formed on a transparent conductive film.
  • a transparent conductive film made of zinc may be stacked.
  • Example 1 Various thin films were formed using the online CVD method with the following settings. ⁇ More specifically, the float bath space was maintained in the float bath space at a slightly higher pressure than the outside of the bath. By supplying 2% by volume of nitrogen and 2% by volume of hydrogen, the inside of the bath is kept in a non-oxidizing atmosphere, and tin tetrachloride (steam), oxygen, nitrogen A mixed source gas consisting of tin and helium was supplied to form a group of separated and independent metal oxide particles containing tin oxide as the main component on the glass lipon.
  • tin tetrachloride steam
  • nitrogen nitrogen
  • the concentration of tin tetrachloride and the concentration of the oxidizing raw material in the mixed raw material gas supplied from the first batch, the gas flow rate at which the mixed raw material gas is blown onto the glass lip, and the surface temperature of the glass lipon at that time are shown in the following Table. 1 ”.
  • a mixed gas comprising monosilane, ethylene, oxygen and nitrogen was supplied from the second day to form a thin film containing silica as a main component and having a thickness of 40 nm. Further, from the third day, a mixed gas consisting of tin tetrachloride (steam), oxygen, water vapor and nitrogen was supplied to form a 50 nm-thick transparent conductive film mainly composed of tin oxide.
  • a gas mixture consisting of tin tetrachloride (steam), water vapor, nitrogen, helium, and hydrogen fluoride was supplied at a glass ripon temperature of 630 using a heater installed on the downstream side.
  • Table 1 For a glass substrate equipped with this transparent conductive film, using a spectrophotometer, the reflectance at a wavelength of 400 nm to 110 nm at a glass surface incidence (light incidence from the surface without the transparent conductive film) Were measured, the measured values were sampled at a 10 nm pitch, and they were averaged. The average reflectance is shown in Table 1 below. Table 1 also shows the haze ratio measured on a glass surface based on the haze value measurement method (JISK 7105-1981). In addition, Table 1 also shows the adhesion strength measured based on the "Adhesion test of thin films using lath as a substrate" (JISR 3255-5-997).
  • the transparent conductive film was etched away using a dilute hydrochloric acid aqueous solution using zinc powder as a catalyst.
  • a cross section of the glass substrate on which the thin film containing silica as a main component was exposed was photographed using a SEM at a magnification of X1000 and a dip of 5 degrees.
  • the state is shown in Fig. 3A.
  • the average height of the metal oxide particles was determined.
  • the vicinity of the photographing location in FIG. 3A was photographed at a magnification of X4500 and a dip of 30 degrees.
  • the state is shown in Fig. 3B.
  • ratio of the area occupied by the thin film shall be the main component group and silica separate and independent metal oxide particles, as well as to determine the number number of 1 m 2 per metal oxide particles.
  • the portion where the base film was flat in FIG. 3B was the portion occupied by the thin film mainly composed of silica.
  • Example 1 each component concentration of the mixed raw material gas supplied from the first batch was changed in the same manner as above, except that the gas flow rate and the surface temperature of the glass lipon at that time were changed as described in Table 1 below. Then, a glass substrate provided with a transparent conductive film was prepared, and its characteristics were investigated. The measurement results are also shown in Table 1.
  • Example 1 tin tetrachloride in the mixed raw material gas supplied from the first batch was replaced with dimethyltin dichloride (DMT), and each component concentration, gas flow rate and surface temperature of the glass lipon were determined as shown in Table 1 below.
  • DMT dimethyltin dichloride
  • Table 1 A glass substrate provided with a transparent conductive film was prepared in the same manner except that the characteristics were changed as described in “2. The measurement results are also shown in Table 1. (table 1)
  • Example 1 By comparing Example 1 with Comparative Example 1, if the concentration of the inorganic chloride of the metal in the mixed raw material gas is 0.1 mo 1%, the metal oxide having an average height of 1 O nm or more can be separated and independent. It can be seen that a group of object particles is formed. When the average height of the metal oxide particles is less than 10 nm, the haze ratio of the glass substrate provided with the transparent conductive film and the adhesive force of the transparent conductive film are hardly improved.
  • Example 2 By comparing Example 2 with Comparative Example 2, if the concentration of the inorganic chloride of the metal in the mixed raw material gas exceeds 1.Omol%, metal oxide particles It turns out that the children are too high and too large to be separated and independent. Also, when the metal oxide particles are too large, not only the adhesion of the transparent conductive film does not improve much, but also the reflectance increases.
  • Example 1 By comparing Example 1 with Comparative Example 3, it can be seen that metal oxide particles are not formed when an organic chloride is used as a metal raw material in the CVD method.
  • the present invention having the above-described configuration has the following effects.
  • metal oxide particles with an average height of 100 to 100 nm are present in a group with separation and independence, and a thin film mainly composed of silica is formed on the glass according to the surface shape. Since it is laminated so as to cover, the base film having this configuration can strongly adhere to glass.
  • irregularities having the same size as the average height of the metal oxide particles are formed on the surface of the underlying film, the entire underlying film functions as a refractive index change layer, and a glass substrate having a low reflectance is obtained.
  • a transparent conductive film is formed on this underlayer, the surface irregularities become extremely large, so that a glass substrate having a lower reflectance and a reduced reflection interference color can be obtained. If a glass substrate provided with this transparent conductive film is used for a photoelectric conversion device, more light is guided to the photoelectric conversion layer by the high transmittance of the glass substrate, and a light confinement effect is exhibited by the transparent conductive film. Therefore, the photoelectric conversion efficiency of the photoelectric conversion device can be further increased.
  • a group of metal oxide particles separated and independent over a large area can be formed in a short time by using an inorganic chloride as a metal raw material in a raw material gas.
  • the separated metal acids can be separated. Group of oxide particles can be reliably formed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Non-Insulated Conductors (AREA)

Description

明 細 書 ガラス基板およびその製造方法
技術分野
この発明は、 建築物用もしくは車両用の窓ガラスに適した、 可視光透 過率の高い表面被膜を備えるガラス基板に関する。 さらには、 このガラ ス基板の製造方法に関する。
背景技術
建築物もしくは車両用の窓ガラスには、 その表面に、 屋外側からの入 射光についての可視光透過率を高く維持しつつ全太陽光透過率を低下さ せ、 かつ、 室内もしくは車内側から入射する赤外線を反射する透明導電 膜が設けられる。 この透明導電膜は、 酸化スズ、 酸化チタン、 酸化亜鉛 または酸化ィンジゥムなどの金属酸化物を主成分とするものであって、 通常その導電率を高めるためにフッ素などがド一プされる。 また、 光電 変換装置にも同様の透明導電膜を備えるガラスが利用される。たとえば、 非晶質シリコンもしくは微結晶シリコンの薄膜を光電変換層とする光電 変換装置では、 上記薄膜を付着させるための基板ガラスとして、 透明導 電膜を備えるガラスが利用される。 これらの光電変換装置において、 透 明導電膜は、 ガラスと光電変換層との間、 必要に応じてさらに光電変換 層の上に形成され、 光電変換層で発生した電子および正孔を取り出す薄 膜電極として機能する。 また、 光電変換効率を高めるには、 光電変換層 により多くの光を導く必要があり、 可視光および近赤外光の透過率が高 い (反射率が低い) ことが要求される。
この透明導電膜は、 上述のように金属酸化物を主成分とするものであ つて、 屈折率がガラスよりも高くおよそ 1 . 8〜2 . 6である。 ちなみ に、 一般的なソ一ダライム組成からなるガラスの屈折率はおよそ 1 . 5 である。 透明導電膜をガラス表面に直接形成すると、 熱膨張係数や結晶 形態の相違から透明導電膜の付着力が不足し易く、 かつ、 透明導電膜の 屈折率の高さから反射率が高くなる問題が生じる。 さらに、 ソ一ダライ ムガラス組成などアルカリ成分を大量に含有するガラスの場合は、 この アル力リ成分が経時的に透明導電膜中に拡散して、 透明導電膜の導電率 を低下させたり、 その付着力を低下させたりする問題も生じる。
このような問題を解決するために、 本発明者らは、 ガラスと透明導電 膜との間にガラス側から順に金属酸化物を主成分とする第一層およびシ リカ (S i 0 2 ) を主成分とする第二層からなる下地膜を形成し、 この 第一層の表面に適度な大きさの凹凸を設けることで、 透明導電膜の付着 力を向上させる技術を開発し、 既に特許出願を行った (特開 2 0 0 0— 2 6 1 0 1 3公報)。
また、 下地膜の表面凹凸を大きくすることにより、 透明導電膜の表面 凹凸も大きくできることから、 本発明者らは、 透明導電膜の表面凹凸を 大きくすることによる光閉じ込め効果 (入射光を散乱させ、 光電変換層 における光路長を長くする効果) の増大のため、 下地膜の第一層に部分 的な貫通孔を形成する技術も開発し、 既に特許出願を行った (特開 2 0 0 1— 5 3 3 0 7公報)。 さらに、 この透明導電膜の表面凹凸において屈 折率が緩やかに変化する屈折率変化層が形成されることに着目して、 屈 折率変化の状態を制御することにより、 透明導電膜の表面における反射 率を低下させる技術も開発し、 既に特許出願を行った (特開 2 0 0 1— 4 8 5 9 3公報)。
ところが、 特開 2 0 0 0— 2 6 1 0 1 3公報に記載の発明では、 厚さ 数十ナノメートルの下地層の第一層において、 その表面にのみ凹凸が形 成されるので、 凹凸の大きさが必ずしも十分とは言えず、 透明導電膜の 付着力を向上させることについて改善の余地があった。
また、 特開 2 0 0 1 _ 5 3 3 0 7公報に記載の発明では、 下地膜の第 一層に貫通孔が形成されているが、 この貫通孔は所々点在するものであ つた。 そのため、 貫通孔の直上においては透明導電膜の表面凹凸も大き くなるが、 その大きな表面凹凸が透明導電膜の全面に渡って形成される ことはなく、 光閉じ込め効果の増大についても改善の余地があった。 さらに、 特開 2 0 0 1—4 8 5 9 3公報に記載の発明では、 透明導電 膜の屈折率変化層にのみ着目しており、 下地膜の第一層と第二層との界 面、 ならびに下地膜と透明導電膜との界面における反射率については検 討されていなかった。 そして、 この発明も上記界面における反射率の低 下については改善の余地があった。
発明の開示
この発明は、 上記問題を考慮して、 本発明者らの鋭意研究の結果から 得られた知見に基づいて完成されたものである。 本発明は、 少なくとも その好ましい実施形態において、 ガラス表面に形成される下地膜の第一 層の形状を制御することにより、ガラスと透明導電膜との付着力が高く、 かつ、透明導電膜の表面凹凸が大きく、光閉じ込め効果が有効に奏され、 かつ、 屈折率が緩やかに変化する反射率の低いガラス基板を提供するこ とを目的とする。 さらには、 このようなガラス基板を簡便に製造できる 方法を提供することを目的とする。
本発明は、 ガラス板と、 このガラス板上に、 ガラス板側から、 互いに 分離した金属酸化物粒子の群と、 シリカを主成分とする薄膜と、 をこの 順で含み、 金属酸化物粒子の平均高さが 1 0〜 1 0 0 n mであるガラス 基板を提供する。 本発明は、 さらに、 上記ガラス基板の製造方法であって、 金属の無機 塩化物を原料として含む熱分解法により、 金属酸化物粒子の群を形成す る方法を提供する。
図面の簡単な説明
図 1は、 この発明の透明導電膜を備えるガラス基板の断面の模式図で ある。
図 2は、 オンライン C V D法で使用する装置の一形態を示す模式図で ある。
図 3 A , 図 3 Bは、 実施例 1で作製したガラス基板において、 透明導 電膜をエッチング除去した後、 シリカを主成分とする薄膜を走査型電子 顕微鏡 (S E M) で観察した状態を示す図である。 図 3 Aは、 ガラス基 板の断面を倍率 X 1 0 0 0 0 0、伏角 5 ° で観察した状態を、図 3 Bは、 図 3 Aの観察個所の近傍を倍率 X 4 5 0 0 0、 伏角 3 0 ° で観察した状 態をそれぞれ示すものである。
発明の実施の形態
本発明のガラス基板では、 ガラス板の表面において、 金属酸化物粒子 の占有面積率、 およびシリカを主成分とする薄膜の占有面積率が、 それ ぞれ、 5 0〜 9 0 %、 1 0〜 5 0 %であることが好ましい。
本発明のガラス基板では、 金属酸化物粒子の外形がドーム状、 たとえ ば略半球状であることが好ましい。
本発明のガラス基板では、 ガラス板の表面において、 金属酸化物粒子 が 5 0〜 1 5 0個 Z z m 2で存在することが好ましい。
本発明のガラス基板では、 金属酸化物粒子の屈折率が、 ガラス板の屈 折率およびシリカを主成分とする薄膜の屈折率よりも高いことが好まし い。 本発明のガラス基板は、 シリカを主成分とする薄膜上に、 透明導電膜 をさらに含んでいてもよい。
本発明の製造方法では、 熱分解法が、 フロート法によるガラス板の製 造工程において、 ガラス板となるフロートバス内のガラスリポン上で行 う化学気相成長法であってもよい。
この場合は、 表面温度が 6 0 0〜 7 5 0 °Cのガラスリポンに対して、 原料ガスを 3 0〜 6 0 c m/ sで吹き付けるとよい。
本発明の製造方法の熱分解法は、 金属の無機塩化物を、 0 . 1〜 1 . O m o 1 %含有する原料ガスを用いるとよい。
本発明のガラス基板の一形態は、 ガラス板側から順に、 金属酸化物を 主成分とする第一層とシリカを主成分とする第二層とからなる従来の下 地膜に準じた構造の下地膜を備え、 第一層に該当する部分が多数の金属 酸化物粒子が分離独立した状態で存在している。本明細書において、 「分 離した」 または 「分離独立した」 とは、 隣接する金属酸化物粒子が互い に接していない状態、あるいは一部で金属酸化物粒子が接合していても、 これらの群を全体として見れば分断されている状態をいう。
なお、 分離独立した金属酸化物粒子の群がシリカを主成分とする薄膜 で覆われた場合、 金属酸化物粒子にダメージを与えることなくシリカを 主成分とする薄膜だけを剥がすことは極めて困難である。 そのため、 本 明細書においては、 シリカを主成分とする薄膜の表面形状を、 分離独立 した金属酸化物粒子の群を備えるガラス基板の表面形状とみなし、 シリ 力を主成分とする薄膜の表面形状を測定することにより、 分離独立した 金属酸化物粒子の群を備えるガラス基板の表面形状を測定したものとす る。 シリカを主成分とする薄膜は、 後述するように分離独立した金属酸 化物粒子の群を備えるガラス基板の表面形状によく追随するので、 この ようにみなしても技術的な齪齢は生じない。
このガラス基板の断面を模式的に図 1に示す。 このガラス基板では、 ガラス板 1の表面に、 互いに分離した金属酸化物粒子の群 2と、 シリカ を主成分とする薄膜 3とがこの順に形成され、 この薄膜 3上に、 さらに 透明導電膜 4が形成されている。 また、 分離独立した金属酸化物粒子の 群とシリカを主成分とする薄膜とを備えるガラス基板の断面および表面 を S E Mで観察した状態を図 3 A , Bに示す。 図 3 A , Bを見ると、 略 半球状の金属酸化物粒子が一部で接合しながらも群全体としては分断さ れ、これらがガラス表面上に繊密に点在していることが判る。ちなみに、 金属酸化物粒子は導電性であるが、 ガラスが絶縁体であるから、 金属酸 化物粒子が分離独立して存在すれば、 それを備えるガラス基板は導電性 を示さない。 この特徴を利用して、 S E Mを用いることなく、 金属酸化 物粒子が分離独立しているか否かを確認することができる。 すなわち、 金属酸化物粒子の群を備えたガラス基板 (シリカを主成分とする薄膜を 形成する前の状態) について、 その表面抵抗値が 1 X 1 0 6 Ω /スクェ ァ (Ω /口) 以上であれば、 金属酸化物粒子が分離独立していると言え る。
この金属酸化物粒子は、 従来の透明導電膜に利用していた酸化スズ、 酸化チタン、 酸化亜鉛、 酸化インジウムまたは酸化ジルコニウムの少な くとも一種を主成分とするものである。 ここで、 この発明における 「主 成分」 とは、 慣用に従いその含有率が 5 0重量%であることをいう。 上 記金属酸化物はいずれも結晶性であるため、後述する化学気相成長法(C V D法) を用いてガラス表面に金属酸化物粒子を形成する場合は、 まず ガラス表面に結晶成長の核が発生し、 その核を起点として結晶成長が急 速に進行することになる。 この結晶成長の核の発生が何らかの原因によ り抑制されれば、 分離独立した金属酸化物粒子の群を形成することがで きる。 なお、 C V D法を用いた分離独立した金属酸化物粒子の群の形成 方法については、 後に詳述する。
分離独立した金属酸化物粒子の群は、 その表面をシリカを主成分とす る薄膜で覆われる。 この薄膜は、 繊密な薄膜であり、 金属酸化物粒子だ けでなく、 剥き出しのままのガラス表面も全て覆う。 これにより、 この 薄膜上に透明導電膜を形成した場合でも、 ガラス中のアル力リ成分が透 明導電膜中に拡散してその性質を劣化させることを防止できる。 また、 金属酸化物粒子はガラス表面に繊密に点在するため、 この薄膜は、 金属 酸化物粒子の間に入り込み、多くの点でガラス表面と接することになる。 そのため、 この薄膜は、 従来の下地膜の第一層に多数のアンカ一を打ち 込んだような構成となる。 また、 この薄膜は分離独立した金属酸化物粒 子の群を備えるガラス基板の表面形状によく追随することから、 この薄 膜とガラス基板との接合面積は、 この薄膜が平坦なガラス表面上に形成 された場合と比較して極めて大きい。 この多数のアンカーを打ち込んだ 構成と接合面積の大きさとに由来して、 この薄膜は、 ガラス基板に強固 に付着することができる。 この薄膜上に透明導電膜を形成した場合も同 様の理由により、 透明導電膜はガラス基板に強固に付着することができ る。 さらに、 この薄膜は、 S iや〇を成分組成とする点でガラスと共通 するため、 この薄膜のガラスとの付着力は、 金属酸化物粒子とガラスと のそれよりも強い。 この点もまた、 この薄膜および透明導電膜がガラス 基板に強固に付着する理由である。
また、 シリカを主成分とする薄膜は上述のように分離独立した金属酸 化物粒子の群を備えるガラス基板の表面形状によく追随することから、 この薄膜の表面 (ガラスから遠い方の表面) には、 金属酸化物粒子の粒 径とほぼ同じ大きさの凹凸が形成されることになる。 この凹凸の大きさ は上記特開 2 0 00— 26 1 0 1 3公報に記載のものよりも数倍大きく、 そのためこの薄膜上に形成される透明導電膜の表面凹凸もまた、 この公 報に記載のものより大きくなる。
上述のように、 金属酸化物の屈折率はガラスおよびシリカを主成分と する薄膜よりも大きいため、 上記透明導電膜を含むガラス基板の構成を 屈折率の高低で表すと、 低 (ガラス) /高 (分離独立した金属酸化物粒 子の群) Z低(シリカを主成分とする薄膜) Z高 (透明導電膜) となる。 このような構成からなるガラス基板の反射率を下げるには、 特開 2 00 1 - 48 5 9 3公報に記載の屈折率変化層、 とくに屈折率変化が緩やか な十分な厚さを有する屈折率変化層を設けることが有効である。 この発 明のガラス基板は、 少なくともその好ましい実施形態では、 分離独立し た金属酸化物粒子の間にシリカを主成分とする薄膜が入り込んだ構成と なることから、 従来の下地膜に該当する部分全体が屈折率変化層として 機能して、 反射が効果的に抑制される。
さらに、 上述のようにシリカを主成分とする薄膜の表面には、 金属酸 化物粒子とほぼ同じ大きさの凹凸が形成されるので、 その上に形成され る透明導電膜の表面凹凸も極めて大きくなる。 したがって、 この発明の ガラス基板であれば、 ガラス—透明導電膜間の屈折率変化層の存在によ る反射率の低減に加えて、 透明導電膜の表面における屈折率変化層の存 在によって、 その反射率がさらに低下する。 なお、 特開 200 0— 2 6 1 0 1 3公報に記載の下地膜では、 その第一層と第二層との界面におけ る凹凸が小さい。 また、 上記特開 2 00 1— 5 3 3 07公報または特開 200 1 -48 5 9 3公報に記載の下地膜では、 その第一層に貫通孔が 形成されているが、 この貫通孔は第一層に点在するものである。 そのた め、 これら公報に記載の下地膜の上に設けられた透明導電膜の表面凹凸 は、 この発明のそれと比較した場合、 部分的には同じ程度の大きさであ つても、 全体では小さい。 このような透明導電膜全体における表面凹凸 の大小は、 それらのヘイズ率を測定することにより確認できる。 したが つて、 上記特開 20 0 1— 53 30 7公報または特開 2 00 1— 48 5 9 3公報に記載の下地膜は、 それ全体が屈折率変化層として機能するも のではなく、 またその上に形成される透明導電膜全体における屈折率変 化層はこの発明のそれより小さい。 そのため、 上記特開 20 0 1— 5 3 3 0 7公報または特開 2 0 0 1 - 48 5 93公報に記載のガラス基板は、 この発明のガラス基板より反射率が高いものである。 この発明のガラス 基板は、 反射率の低減に由来して、 可視光透過率が増加し、 反射干渉色 が緩和され、 透明導電膜の広い膜厚範囲でニュートラルに近い外観を呈 することができる。
さらに、 この発明のガラス基板を光電変換装置に利用した場合、 透明 導電膜の表面において、 その大きな凹凸に由来して光散乱が生じ易くな り、 光閉じ込め効果が有効に奏される。 また、 反射率の低減により、 光 電変換層への入射光量が増加し、 その光電変換効率が向上する。
金属酸化物粒子の平均高さは、 1 0〜 1 00 nmである。 この平均高 さが 1 O nm未満の場合は、 分離独立した金属酸化物粒子の群およびシ リカを主成分とする薄膜 (以下、 これらをまとめて 「下地膜」 と称する ことがある) の表面凹凸が小さすぎるため、 上述の下地膜における屈折 率変化層に基づく諸機能が発揮されなくなる。 一方、 l O O nmを超え ると、 金属酸化物粒子が分離独立しにくくなる。 下地膜の屈折率変化層 の厚さは、 この金属酸化物粒子の平均高さとシリカを主成分とする薄膜 の平均厚さとを加えたものである。 したがって、 この平均高さは下地膜 の屈折率変化層の厚さを決定する重要な要素であると言える。 金属酸化 物粒子の平均高さは、 たとえば倍率 X 1 0 0 0 0 0、 伏角 5 ° で撮影し た S E M写真に基づいて判断することができる。
シリカを主成分とする薄膜は、 シリカ以外に上記の金属酸化物を酸化 物換算で表して、 所定濃度以下、 たとえば 1 O m o 1 %以下含有しても よい。 この薄膜に接する金属酸化物と同じ金属酸化物を含有することに より、 この薄膜の格子定数や熱膨張係数が分離独立した金属酸化物粒子 の群または透明導電膜のそれと近くなり、 クラックまたは剥離が生じ難 くなる。
金属酸化物粒子の形状は、 とくに限定されるものではないが、 ドーム 状、 特に略半球状が好ましい。 金属酸化物粒子の形成方法にもよるが、 ドーム状であれば、 形成が容易なことが多いからである。 分離独立した 金属酸化物粒子の群の形成方法としては、 C V D法またはスプレー法な どの熱分解法の他、 金属酸化物の粉末をガラス表面に付着させた後、 ガ ラスごと加熱して金属酸化物を凝集させる方法などが挙げられる。 熱分 解法においては、 金属酸化物は発生した核を中心に成長するため、 その 粒子の外形はドーム状となり易い。 また、 金属酸化物を凝集させる方法 においては、 比表面積が小さい略半球状に収斂し易い。 ここで、 「ドーム 状」 とは、 上記同様の手段で撮影した S E M写真において、 ガラス表面 から隆起してまたガラス表面に到達するまでの外周に鋭角部分が存在し ないことをいう。
ガラス表面において、 金属酸化物粒子は 5 0〜 1 5 0個 Z ^ m 2で存 在することが好ましい。 なお、 一部の金属酸化物粒子が接合している場 合、 この金属酸化物粒子の個数は、 個々の金属酸化物粒子の個数で測定 する。 たとえば、 外観上 2つの部位が確認でき、 かつ、 一部で接合した 状態 (ドーム状であれば、 2つの山が確認できる状態) では、 金属酸化 物粒子が 2つあると勘定する。 また、 その占有面積率は 5 0〜 9 0 %で あることが好ましい。 この金属酸化物粒子の数が少なすぎる場合は、 そ の粒径が大きすぎるか、 その占有面積率が小さすぎることになる。 これ は、 金属酸化物粒子が分離独立していないか、 下地膜に表面凹凸が形成 されていないおそれがあることを意味する。 一方、 金属酸化物粒子の数 が多すぎると、 その占有面積率が 9 0 %を超え、 シリカを主成分とする 薄膜がその間に入り込めなくなる。 その結果、 下地膜および透明導電膜 とガラスとの付着力が不足し易い。
一方、 シリカを主成分とする薄膜の平均厚さは、 金属酸化物粒子の平 均高さより薄いことが好ましい。 シリカを主成分とする薄膜が厚くなり すぎると、 分離独立した金属酸化物粒子の群による凹凸が均されてしま い、 その上に形成される透明導電膜の表面凹凸まで小さくなる。 一方、 アルカリバリア機能を担保するために、 この薄膜の平均厚さは、 1 0 η m以上であることが好ましい。
なお、 ガラスの表面において、 金属酸化物粒子の占有面積率、 および シリカを主成分とする薄膜の占有面積率は、 それぞれ 5 0〜 9 0 %、 1 0〜 5 0 %であることが好ましい。
このガラス基板は、 下地膜の上に透明導電膜を備えることが好ましい c この透明導電膜には、 下地膜の大きな表面凹凸に由来して、 均一で大き な表面凹凸が形成される。 その結果、 透明導電膜の表面に厚い屈折率変 化層が形成されることになり、 上記の反射率の低減、 これに基づく反射 干渉色の緩和、 ならびに光散乱による光閉じ込めの各効果が奏される。
この透明導電膜は、 分離独立した金属酸化物粒子と同様の金属酸化物 からなることが好ましく、 とくに可視光透過率および導電率の高いフッ 素をドープした酸化スズからなることが好ましい。 透明導電膜は、 厚く なるほど表面抵抗値が低くなるが、一方で可視光吸収量が増加するため、 光電変換装置の薄膜電極として利用する場合は、 その厚さは 2 0 0〜 2 0 0 0 n mが好ましい。
この透明導電膜を備えたガラス基板は、 透明導電膜がガラスに強固に 付着しているので、 耐熱性および耐磨耗性が高く、 また反射率が低いの で、 可視光透過率が高く、 かつ、 反射干渉色が少ないという特性を備え る。 したがって、 このガラス基板は、 建築物用および車両用の窓ガラス としての利用に適している。 また、 このガラス基板は、 透明導電膜の表 面凹凸で透過光および反射光を散乱させることができるので、 光電変換 装置用のガラス基板 (カバーガラスを含む) としての利用にも適してい る。
分離独立した金属酸化物粒子の群の形成方法は、 とくに限定されるも のではなく、 C V D法もしくはスプレー法などの公知の熱分解法の他、 ガラス表面に金属酸化物もしくは金属の微粉末を付着させ、 その後ガラ スごと加熱して前記微粉末を凝集させる方法などが例示される。 また、 この微粉末を凝集させた後に熱分解法により、 凝集した微粉末を核とし て、 金属酸化物粒子を結晶成長させてもよい。 これらの中でも、 金属の 無機塩化物を原料に用いた熱分解法、 とくに C V D法によれば、 高い成 膜速度で簡便に分離独立した金属酸化物粒子の群を形成することができ る。
また、 フロート法によるガラス板の製造工程において、 熔融状態のガ ラスリポンを板状に形成するフロートバス内で行う C V D法(以下、 「ォ ンライン C V D法」 と称する) を用いれば、 原料ガスの熱分解反応に必 要なエネルギーをガラスリポンから得られるので、 ガラス基板の製造に 必要なトータルエネルギーコストを抑制できる。 さらに、 オンライン C VD法では、 ガラスリポンの表面温度が 56 0〜7 5 0 °Cの範囲で成膜 が行われることから、 その成膜速度は 5 00 0〜 200 00 nm/m i nにも達する。 オンライン CVD法以外の熱分解法における成膜速度は 通常 500〜 5 0 00 nm/m i nであるから、オンライン C V D法は、 工業的な大量生産に適した方法であると言える。
CVD法により分離独立した金属酸化物粒子の群を形成するには、 金 属酸化物の原料として金属の無機塩化物を利用し、 かつ、 原料ガス中に おけるその金属原料の含有率を 0. 1〜 1. 0 mo 1 %に調節すること で達成される。 CVD法では、 通常は金属酸化物の原料として、 金属の 有機塩化物を使用する。 たとえば、 酸化スズの原料としては、 ジメチル スズジクロライドまたはモノプチルスズトリクロライドが利用され?)。 これは、 熱分解反応において、 金属の有機化合物の方が無機塩化物より 反応性が低いため、成膜を制御し易い(成膜条件の設定許容範囲が広い) からである。 従来、 下地膜は、 ピンホール (膜抜け) が生じないように できるだけ平坦な方がよいと考えられてきた。 そのため、 成膜速度が遅 くなつても、 金属酸化物の原料として、 金属の有機塩化物を利用するこ とにはそれなりの理があった。
しかし、 この発明では、 従来とは正反対に、 金属酸化物を粒子状に形 成し、 さらにその粒子を分離独立させる必要がある。 そこで、 本発明者 らは、 金属酸化物の原料として敢えて金属の無機塩化物を選択し、 その 成膜条件を鋭意検討した結果、 原料ガス中における金属の無機塩化物の 含有率を制御することにより、 金属酸化物を粒子状に、 かつ、 分離独立 させられることを見出した。その技術的根拠は必ずしも明確ではないが、 本発明者らは、 つぎのように推測している。 すなわち、 金属の無機塩化 物は、 原料ガスに含まれる酸素もしくは水蒸気などの酸化原料と混合さ れ加熱されることにより初めて熱分解反応を起こし金属酸化物となる。 この熱分解反応において、 ガラス表面に塗布される原料ガスは、 その含 有成分が完全に均一になることはなく、 一定の濃度分布を保ったままガ ラス表面に拡がっていく。 そのため、 まず金属の無機塩化物の濃度が比 較的高いところで金属酸化物が発生し、 これが結晶成長の核として機能 して、 無機塩化物の反応性の高さと相まって、 結晶成長が急激に進行し 金属酸化物粒子が形成される。 そして、 散在する金属酸化物粒子が成長 してそれらが接する前に、 原料ガスの供給が断たれ結晶成長が止められ ることにより、 分離独立した金属酸化物粒子の群を形成することができ る。
上記推測に従えば、 原料ガス中の金属の無機塩化物の含有率は、 結晶 成長の核の発生とその後の結晶成長速度とに直接的に影響を及ぼすこと になる。 本発明者らの行った実験の結果は、 この推測から導かれる結論 とよく一致する。 すなわち、 原料ガス中における金属の無機塩化物の濃 度が 0 . l m o l %未満の場合は、 ガラス表面に金属酸化物粒子が殆ど 見られないか、 所々散見される程度である。 これは、 発生する結晶成長 の核の数が少ないことに加えて、 結晶成長の速度が遅いため、 その核が ガラス表面に付着することなくキヤリァガスなどと一緒に系外に排気さ れてしまう、 あるいは一旦ガラス表面に付着していてもその後剥離して しまうからであると考えられる。 一方、 1 . 0 m o l %を超えると、 金 属酸化物粒子が成長しすぎるため、 通常の C V D法で使用する成膜装置 では、 それらを確実に分離独立させることが困難になる。 なお、 金属の 無機塩化物としては、 塩化スズ (1 1, IV) または塩化チタン (I I , I I I , IV) が好ましい。 また、 オンライン CVD法においては、 表面温度 60 0〜 7 5 0 の ガラスリポンに対して、 金属の無機塩化物を 0. 1〜 1. 0mo l %お よび酸化原料を 1 0〜80mo l %含有する原料ガスを 30〜 6 0 c m / sで吹き付けることにより、 確実に分離独立した金属酸化物粒子の群 を形成することができる。 なお、 CVD法においては、 気体状態の金属 の塩化物と酸化原料などとが成膜前にある程度反応が起こるように、 個々の原料を共通の経路で供給することが望ましい。
シリカを主成分とする薄膜および透明導電膜の形成方法は、 とくに限 定されるものではないが、 生産性を考慮すれば、 分離独立した金属酸化 物粒子の群と同じ方法が好ましい。 たとえば、 CVD法であれば、 ガラ ス表面に原料ガスを供給するコ一夕を複数設置することにより、 分離独 立した金属酸化物粒子の群から透明導電膜まで一連の成膜工程で形成す ることができる。
シリカを主成分とする薄膜を CVD法により形成する場合は、 その原 料としてモノシラン、 ジシラン、 トリシラン、 モノクロロシラン、 ジク ロロシラン、 1, 2ージメチルシラン、 1, 1 , 2—トリメチルジシラ ン、 1 , 1 , 2, 2—テトラメチルジシラン、 テトラメチルオルソシリ ケートまたはテトラェチルオルソシリゲートを利用することができる。 また、 この場合の酸化原料としては、 酸素、 水蒸気、 乾燥空気、 二酸化 炭素、 一酸化炭素、 二酸化窒素またはオゾンなどが挙げられる。 なお、 シランを使用した場合にガラス表面に到達するまでにシランの反応を防 止する目的で、 エチレン、 アセチレンまたはトルエンなどの不飽和炭化 水素ガスを併用してもかまわない。
また、 酸化スズを主成分とする薄膜を透明導電膜とする場合は、 その 導電性を向上させるために、 アンチモンやフッ素を添加することが好ま しい。 C V D法により透明導電膜を形成する場合には、 原料ガス中にァ ンチモンまたはフッ素の化合物を添加することにより、 これらを透明導 電膜中に均一に存在させることができる。アンチモンの化合物としては、 三塩化アンチモンや五塩化アンチモンなどが、フッ素の化合物としては、 フッ化水素、 トリフルォロ酢酸、 ブロモトリフルォロメタンまたはクロ 口ジフルォロメタンなどが挙げられる。
以下、 オンライン C V D法による実施の形態について、 さらに詳細に 説明する。オンライン C V D法で使用する装置では、図 2に示すように、 熔融炉 (フロート窯) 1 1からフロートバス 1 2内に流れ出し、 熔融ス ズ 1 5上を帯状に移動するガラスリポン 1 0の表面から所定距離を隔て、 所定個数のコ一夕 1 6 (図示した形態では 3つのコ一タ 1 6 a, 1 6 b , 1 6 c ) がフロートバス内に配置されている。 これらのコ一夕からは、 ガス状の原料が供給され、 ガラスリボン 1 0上に連続的に分離独立した 金属酸化物粒子の群、 シリカを主成分とする薄膜および透明導電膜が形 成されていく。 また、 図示しないが、 さらに多くのコータを利用しても よく、 シリカを主成分とする薄膜の上にさらに酸化アルミニウムの薄膜 を形成したり、 透明導電膜の上にさらに耐プラズマ性の高い酸化亜鉛か らなる透明導電膜を積層してもよい。 成膜が行われた後、 ガラスリポン 1 0は、 ローラ 1 7により引き上げられて、 徐冷炉 1 3へと送り込まれ る。 なお、 徐冷炉 1 3で徐冷されたガラスリポンは、 図示を省略する切 断装置により、 所定の大きさのガラス板に切断される。
実施例 .
以下、 実施例により、 この発明を具体的に説明する。 ただし、 以下の 実施例に限定するものではない。
(実施例 1 ) オンライン C V D法を利用して、 以下の設定で種々の薄膜を形成した < 具体的には、 フロートバス空間内が槽外よりもやや高圧に維持されるよ うに、 フロートバス空間内には 9 8体積%の窒素と 2体積%の水素とを 供給し、 バス内を非酸化性雰囲気に保持し、 最上流側に位置する第 1の コ一夕から、 四塩化スズ (蒸気)、 酸素、 窒素およびヘリウムからなる混 合原料ガスを供給し、 ガラスリポン上に酸化スズを主成分とする分離独 立した金属酸化物粒子の群を形成した。 なお、 この第 1のコ一夕から供 給した混合原料ガスにおける四塩化スズの濃度および酸化原料の濃度、 ならびに混合原料ガスをガラスリポンに吹き付けるガス流速およびその 時のガラスリポンの表面温度を下記 「表 1」 に記載した。
引き続き、 第 2のコ一夕から、 モノシラン、 エチレン、 酸素および窒 素からなる混合ガスを供給し、 膜厚 4 0 n mのシリカを主成分とする薄 膜を形成した。 さらに、 第 3のコ一夕から、 四塩化スズ (蒸気)、 酸素、 水蒸気および窒素からなる混合ガスを供給し、 膜厚 5 0 n mの酸化スズ を主成分とする透明導電膜を形成した。
さらに、 下流側に設置したコ一夕を使って、 ガラスリポン温度 6 3 0 で四塩化スズ (蒸気)、 水蒸気、 窒素、 ヘリウムおよびフッ化水素か らなる混合ガスを供給し、 膜厚 7 0 0 n mのフッ素をド一プした酸化ス ズを主成分とする透明導電膜を形成した。
この透明導電膜を備えるガラス基板について、 分光光度計を用いてガ ラス面入射 (透明導電膜を備えていない方の表面から光入射) で波長 4 0 0 n mから 1 1 0 0 n mの反射率を測定し、 1 0 n mピッチで測定値 をサンプリングして、 それらを平均化した。 この平均反射率を下記 「表 1」 に示す。 また、 ガラス面入射で、 曇価測定法 (J I S K 7 1 0 5— 1 9 8 1 ) に基づいて測定したヘイズ率も 「表 1」 に示す。 さらに、 「ガ ラスを基板とした薄膜の付着性試験」 (J I S R 3 2 5 5— 1 997) に 基づいて測定した付着強度も 「表 1」 に併せて示す
つぎに、 亜鉛粉末を触媒として、 希塩酸水溶液を使って、 透明導電膜 をエッチング除去した。 このシリカを主成分とする薄膜が露出したガラ ス基板の断面を、 S EMを用いて倍率 X 1 0 0 0 0 0、 伏角 5度で写真 撮影した。 その状態を図 3 Aに示す。 図 3 Aに基づき、 金属酸化物粒子 の平均高さを求めた。 また同様にして、 図 3 Aの撮影個所の近傍を、 倍 率 X4 50 00、 伏角 30度で撮影した。 その状態を図 3 Bに示す。 図 3 Bに基づき、 分離独立した金属酸化物粒子の群とシリカを主成分とす る薄膜との占有面積率、 ならびに 1 m2当たりの金属酸化物粒子の個 数を求めた。 なお、 占有面積比率の測定および算出では、 図 3 Bにおい て下地膜が平坦な個所をシリカを主成分とする薄膜の占有する部分とし た。
(実施例 2) および (比較例;!〜 2)
実施例 1において、 第 1のコ一夕から供給する混合原料ガスの各成分 濃度、 ならびにガス流速およびその時のガラスリポンの表面温度を下記 「表 1」 に記載のように変更した以外は同様にして、 透明導電膜を備え たガラス基板を作製し、 その特性を調査した。 その測定結果を 「表 1」 に併せて示す。
(比較例 3)
実施例 1において、 第 1のコ一夕から供給する混合原料ガス中の四塩 化スズをジメチルスズジクロライド (DMT) に代え、 各成分濃度、 ガ ス流速およびガラスリポンの表面温度を下記 「表 1」 に記載のように変 更した以外は同様にして、 透明導電膜を備えたガラス基板を作製し、 そ の特性を調査した。 その測定結果を 「表 1」 に併せて示す。 (表 1)
Figure imgf000021_0001
実施例および比較例を対比することにより、 つぎのことが判る。 実施 例 1と比較例 1とを対比することにより、 混合原料ガス中における金属 の無機塩化物の濃度が 0. 1 mo 1 %であれば、 平均高さ 1 O nm以上 の分離独立した金属酸化物粒子の群が形成されることが判る。 また、 金 属酸化物粒子の平均高さが 1 0 nm未満では、 透明導電膜を備えるガラ ス基板のヘイズ率および透明導電膜の付着力が殆ど向上しないことが判 る。
実施例 2と比較例 2とを対比することにより、 混合原料ガス中におけ る金属の無機塩化物の濃度が 1. Omo l %を超えると、 金属酸化物粒 子が高く、 かつ、 大きくなりすぎて、 分離独立できないことが判る。 ま た、 金属酸化物粒子が大きくなりすぎると、 透明導電膜の付着力があま り向上しないばかりか、 反射率が却って高くなることが判る。
実施例 1と比較例 3とを対比することにより、 C V D法において金属 原料として有機塩化物を使用すると、 金属酸化物粒子が形成されないこ とが判る。
この発明は、 以上のように構成されていることから、 つぎのような効 果を奏する。 ガラス上に、 平均高さ 1 0〜 1 0 0 n mの金属酸化物粒子 が分離独立しつつ群を成して存在し、 その上にシリカを主成分とする薄 膜がその表面形状に従って全てを覆うように積層されるので、 この構成 からなる下地膜は、 ガラスに強く付着することができる。 また、 この下 地膜の表面には、 金属酸化物粒子の平均高さと同じ大きさの凹凸が形成 されるので、 下地膜全体が屈折率変化層として機能して、 反射率の低い ガラス基板が得られる。 さらに、 この下地膜の上に透明導電膜を形成す れば、その表面凹凸も極めて大きくなることから、反射率がさらに低く、 かつ、 反射干渉色が緩和されたガラス基板が得られる。 この透明導電膜 を備えるガラス基板を光電変換装置に利用すれば、 ガラス基板の高い透 過率により光電変換層により多くの光が導かれ、 かつ、 透明導電膜によ り光閉じ込め効果が奏されることから、 光電変換装置の光電変換効率を 一層高めることができる。
また、 熱分解法とくにオンライン C V D法において、 原料ガス中の金 属原料として無機塩化物を使用することにより、 短時間で大面積に分離 独立した金属酸化物粒子の群を形成することができる。 さらに、 原料ガ ス中におけるその濃度、 原料ガスのガス流量および原料ガスを吹き付け る時のガラスリポンの温度を制御することにより、 分離独立した金属酸 化物粒子の群を確実に形成することができる

Claims

請求の範囲
1. ガラス板と、 前記ガラス板上に、 前記ガラス板側から、 互いに分離 した金属酸化物粒子の群と、 シリカを主成分とする薄膜と、 をこの順で 含み、 前記金属酸化物粒子の平均高さが 1 0〜 1 00 nmであるガラス
2. ガラス板の表面において、 金属酸化物粒子の占有面積率、 およびシ リカを主成分とする薄膜の占有面積率が、 それぞれ、 50〜90 %、 1 0〜 5 0 %である請求項 1に記載のガラス基板。
3. 金属酸化物粒子の外形がドーム状である請求項 1に記載のガラス基 板。
4. ガラス板の表面において、 金属酸化物粒子が 5 0〜 1 5 0個ノ m 2で存在する請求項 1に記載のガラス基板。
5. 金属酸化物粒子の屈折率が、 ガラス板の屈折率およびシリカを主成 分とする薄膜の屈折率よりも高い請求項 1に記載のガラス基板。
6. シリカを主成分とする薄膜上に、 透明導電膜をさらに含む請求項 1 に記載のガラス基板。
7. 請求項 1に記載のガラス基板の製造方法であって、 金属の無機塩化 物を原料として含む熱分解法により、 金属酸化物粒子の群を形成するガ ラス基板の製造方法。
8. 熱分解法を、 フロート法によるガラス板の製造工程において、 前記 ガラス板となるフロートバス内のガラスリポン上で行う化学気相成長法 である請求項 7に記載のガラス基板の製造方法。
9. 熱分解法が、 金属の無機塩化物を、 0. 1〜 1. 0mo l %含有す る原料ガスを用いる請求項 7に記載のガラス基板の製造方法。
1 0. 表面温度が 6 0 0〜 7 50 °Cのガラスリポンに対して、 原料ガス を 30〜6 0 cmZsで吹き付ける請求項 8に記載のガラス基板の製造 方法。
PCT/JP2003/003578 2002-03-26 2003-03-25 Substrat de verre et processus de production de ce substrat WO2003080530A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03712890A EP1500634A4 (en) 2002-03-26 2003-03-25 GLASS SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
JP2003578294A JP4430402B2 (ja) 2002-03-26 2003-03-25 ガラス基板およびその製造方法
US10/951,038 US7320827B2 (en) 2002-03-26 2004-09-24 Glass substrate and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-85445 2002-03-26
JP2002085445 2002-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/951,038 Continuation US7320827B2 (en) 2002-03-26 2004-09-24 Glass substrate and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2003080530A1 true WO2003080530A1 (fr) 2003-10-02

Family

ID=28449252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003578 WO2003080530A1 (fr) 2002-03-26 2003-03-25 Substrat de verre et processus de production de ce substrat

Country Status (4)

Country Link
US (1) US7320827B2 (ja)
EP (1) EP1500634A4 (ja)
JP (1) JP4430402B2 (ja)
WO (1) WO2003080530A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
WO2013161827A1 (ja) 2012-04-24 2013-10-31 旭硝子株式会社 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
JP2020508955A (ja) * 2017-02-09 2020-03-26 ピルキントン グループ リミテッド コーティングされたグレージング
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060216A (ja) * 2001-08-10 2003-02-28 Nippon Sheet Glass Co Ltd 光電変換装置用基板
EP1462540B1 (en) * 2001-12-03 2012-03-07 Nippon Sheet Glass Company, Limited Method for forming thin film.
US7923114B2 (en) 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
WO2007121211A2 (en) 2006-04-11 2007-10-25 Cardinal Cg Company Photocatalytic coatings having improved low-maintenance properties
WO2007124291A2 (en) 2006-04-19 2007-11-01 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
CA2664369A1 (en) 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US20090214770A1 (en) * 2008-02-21 2009-08-27 Dilip Kumar Chatterjee Conductive film formation during glass draw
KR20100125443A (ko) * 2008-03-25 2010-11-30 코닝 인코포레이티드 광전지용 기판
US20100126227A1 (en) * 2008-11-24 2010-05-27 Curtis Robert Fekety Electrostatically depositing conductive films during glass draw
US8558106B2 (en) * 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
US20110120555A1 (en) * 2009-11-23 2011-05-26 Nicholas Francis Borrelli Photovoltaic devices and light scattering superstrates
TW201327862A (zh) * 2011-12-28 2013-07-01 Ind Tech Res Inst 導電基板及其製造方法,以及太陽能電池
DE102012105457B3 (de) * 2012-06-22 2013-09-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schichtsystem für eine transparente Elektrode und Verfahren zu dessen Herstellung
DE102012112999B4 (de) * 2012-12-21 2017-05-11 Technische Universität Dresden Verfahren zum Herstellen eines organischen lichtemittierenden Bauelementes
US11014118B2 (en) 2015-12-11 2021-05-25 Vitro Flat Glass Llc Float bath coating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057796A1 (en) * 1999-05-31 2000-12-06 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
JP2002087846A (ja) * 2000-09-11 2002-03-27 Nippon Sheet Glass Co Ltd 薄膜付きガラス板の製造方法およびそのガラス板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP699798A0 (en) * 1998-11-06 1998-12-03 Pacific Solar Pty Limited Thin films with light trapping
JP3247876B2 (ja) 1999-03-09 2002-01-21 日本板硝子株式会社 透明導電膜付きガラス基板
JP3227449B2 (ja) 1999-05-28 2001-11-12 日本板硝子株式会社 光電変換装置用基板とその製造方法、およびこれを用いた光電変換装置
JP4788852B2 (ja) * 2000-07-25 2011-10-05 住友金属鉱山株式会社 透明導電性基材とその製造方法およびこの製造方法に用いられる透明コート層形成用塗布液と透明導電性基材が適用された表示装置
JP2002080830A (ja) * 2000-09-08 2002-03-22 Toto Ltd 親水性部材およびその製造方法
DE10063739B4 (de) * 2000-12-21 2009-04-02 Ferro Gmbh Substrate mit selbstreinigender Oberfläche, Verfahren zu deren Herstellung und deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1057796A1 (en) * 1999-05-31 2000-12-06 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
JP2002087846A (ja) * 2000-09-11 2002-03-27 Nippon Sheet Glass Co Ltd 薄膜付きガラス板の製造方法およびそのガラス板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1500634A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
WO2013161827A1 (ja) 2012-04-24 2013-10-31 旭硝子株式会社 無機微粒子含有酸化ケイ素膜付ガラス基板の製造方法
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology
JP2020508955A (ja) * 2017-02-09 2020-03-26 ピルキントン グループ リミテッド コーティングされたグレージング
JP7320451B2 (ja) 2017-02-09 2023-08-03 ピルキントン グループ リミテッド コーティングされたグレージング

Also Published As

Publication number Publication date
JPWO2003080530A1 (ja) 2005-07-21
US7320827B2 (en) 2008-01-22
EP1500634A4 (en) 2008-01-23
JP4430402B2 (ja) 2010-03-10
EP1500634A1 (en) 2005-01-26
US20050089693A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
WO2003080530A1 (fr) Substrat de verre et processus de production de ce substrat
JP5095776B2 (ja) 透明導電膜付き透明基体とその製造方法、およびこの基体を含む光電変換素子
WO2002043079A1 (fr) Film électro-conducteur, procédé de production, substrat ainsi pourvu, et convertisseur photoélectrique
US20080038541A1 (en) Method of forming thin film, substrate having thin film formed by the method, photoelectric conversion device using the substrate
US8093490B2 (en) Method for forming thin film, substrate having transparent electroconductive film and photoelectric conversion device using the substrate
WO2003017377A1 (fr) Plaque de verre pourvue d&#39;un film electro-conducteur
JP4362273B2 (ja) 基板の製造方法
JP2004362842A (ja) 透明導電膜付き透明基体、その製造方法、および光電変換素子用基板ならびに光電変換素子
JP2005330172A (ja) ガラス板およびその製造方法、低反射性透明ガラス板、低反射性透明導電基板およびその製造方法、ならびに、低反射性透明導電基板を用いた光電変換素子
WO2001047033A1 (fr) Transducteur photoelectrique et substrat pour transducteur photoelectrique
JP2002316837A (ja) ガラス板およびそれを用いた太陽電池
WO2003065461A1 (fr) Substrat pour dispositif de conversion photoelectrique
JP2000340815A (ja) 光電変換素子用基板
JP2024083022A (ja) 積層膜付き基材
JP2024083021A (ja) 膜付き基材
JP2024083020A (ja) 膜付き基材
CN118163438A (zh) 带有层叠膜的基材
JP2009239301A (ja) 基板およびそれを用いた光電変換装置
JP2002094083A (ja) 光電変換装置用基板
JP2001102607A (ja) 光電変換素子用基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578294

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10951038

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003712890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003712890

Country of ref document: EP