WO2003077323A1 - Dispositif de conversion photoelectrique - Google Patents

Dispositif de conversion photoelectrique Download PDF

Info

Publication number
WO2003077323A1
WO2003077323A1 PCT/JP2003/002726 JP0302726W WO03077323A1 WO 2003077323 A1 WO2003077323 A1 WO 2003077323A1 JP 0302726 W JP0302726 W JP 0302726W WO 03077323 A1 WO03077323 A1 WO 03077323A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
monovalent
organic residue
hydrocarbon group
Prior art date
Application number
PCT/JP2003/002726
Other languages
English (en)
French (fr)
Inventor
Souichi Uchida
Yoshinori Nishikitani
Tsuyoshi Asano
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to JP2003575427A priority Critical patent/JPWO2003077323A1/ja
Publication of WO2003077323A1 publication Critical patent/WO2003077323A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion element having a function of converting light into electric energy.
  • Photovoltaic devices using organic materials have attracted increasing interest because the devices announced by Tang in 1986 (CW Tang. Appl. Phys. Lett., 48, 183 (1986)) showed about 1% efficiency.
  • the photoelectric conversion efficiency has been improving year after year.
  • a so-called Balta heterojunction in which a conductive polymer having a donor property and a fullerene derivative having an acceptor property are mixed has been proposed (for example, US Pat. No. 5,545,880, US Pat.
  • the strong tendency of the molecules to self-organize indicates that the same molecules of the donor and sceptor may be gathered during the fabrication of the photoelectric conversion device, resulting in macro phase separation. ing.
  • macro phase separation occurs, unevenness occurs on the surface of the photoelectric conversion layer, which hinders carrier movement.
  • excitons generated by light absorption in the domain generated by phase separation are deactivated to the ground state before reaching the donor-xceptor interface, resulting in a decrease in photoelectric conversion characteristics. Connect.
  • the present invention has been made in view of such circumstances, and a photoelectric conversion material capable of producing a photoelectric conversion layer capable of suppressing macro phase separation and having good charge separation and carrier transfer functions, and a photoelectric conversion material using the same. It relates to a conversion element.
  • the present inventors have conducted intensive studies to solve the conventional problems as described above, and as a result, have found that the above problem can be solved by using a photocharge separation molecule having a specific organic residue structure.
  • the present invention has been completed.
  • the present invention relates to a photoelectric conversion element having a photoelectric conversion layer comprising a compound represented by the general formula (1).
  • ⁇ 1 represents an electron-accepting molecular structure
  • ⁇ 2 represents an electron-donating molecular structure
  • represents a connecting unit
  • the present invention has a photoelectric conversion layer comprising a compound represented by the general formula (2).
  • the present invention relates to a photoelectric conversion element characterized in that:
  • a 1 is a monovalent condensed polycyclic hydrocarbon group, having a vorphyrin complex structure—a monovalent organometallic group, a monovalent organic metal group having a phthalocyanine structure, and a monovalent having a coronene structure.
  • a 2 represents an organic residue selected from a heterocyclic hydrocarbon group and a monovalent heterocyclic hydrocarbon group having a pyreline structure, and A 2 represents a monovalent fused polycyclic hydrocarbon group or a porphyrin complex structure.
  • Monovalent organic metal group having a phthalocyanine structure monovalent organic metal group having a phthalocyanine structure, monovalent hydrocarbon group having a coronene structure, monovalent heterocyclic hydrocarbon group having a pyreline structure, and merocyanine structure Represents an organic residue selected from a monovalent heterocyclic hydrocarbon and a monovalent organic residue having a thiophene structure, and A 1 and A 2 are different monovalent groups; The potentials E A1 and E A2 are less than E A1 Located E becomes A2 relationship, B represents a linking group between A 1 and A 2.) Further, the present invention is, in the general formula (1) or the compound represented by the general formula (2), connecting The unit B has a non-conjugated molecular structure.
  • the present invention provides the compound represented by the general formula (1) or the general formula (2), wherein the connecting unit B is an ester bonding group (_COO—), an acid amide bonding group (1-CONH—), It must be a linking group selected from a urethane linking group (_NHCOO_), an ether linking group (1 O—), a divalent hydrocarbon group having 1 to 100 carbon atoms, or a divalent organic residue combining these.
  • the present invention relates to the above-mentioned photoelectric conversion element. Hereinafter, the present invention will be described in detail.
  • a 1 represents an electron-accepting molecular structure
  • a 2 represents an electron-donating molecular structure
  • B represents a connecting unit.
  • the electron-donating molecular structure of the present invention refers to a structure that has a small ionization potential and that easily supplies electrons to other molecules and becomes a positive ion by itself.
  • the term “molecular structure” refers to a structure that has a high electron affinity and easily accepts electrons from other molecules to form a negative ion state.
  • the electron donor molecular structure and the electron acceptor Since a compound having a molecular structure linked by a linking unit B is used, the electron-accepting or electron-donating property is naturally determined by the relative relationship between the molecular structures used, and the electron-accepting molecular structure
  • the redox potential of A 1 is set to E A1 , the electron donating molecule ⁇ +
  • the electron-accepting molecular structure is not particularly limited as long as it has an electron-accepting property.
  • Examples thereof include a poly- or oligo-arylenevinylene structure containing an electron-withdrawing group such as a cyano group and an electron-withdrawing group such as a cyano group.
  • electron-accepting molecular structure examples include those represented by the following formulas (3) to (8), and examples of the electron-donating molecular structure include those represented by the following formulas (9) to (15). Can be mentioned.
  • R 1 and R 4 to R 8 may be the same or different, and each is independently hydrogen or a linear or branched alkyl having 1 to 10 carbons.
  • R 2 and R 3 may be the same or different, and each independently represents a linear or branched alkyl or alkenyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms .
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an i-propynole group, a butyl group, an s-butyl group, a t-butyl group, a pentyl group, an isopentinol group, a neopentyl group, a t-pentyl group, Hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group, etc.
  • alkenyl group examples include vinyl group, aryl group, isopropyl group, butylenyl group, pentenyl group, hexenyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, a butoxy group, an S-butoxy group, a t-butoxy group, a pentoxy group, an isopentoxy group, and a neopentynole.
  • aryl groups include phenyl, xylyl, tolyl, tamenyl, and naphthyl; aralkyl groups include benzyl and trimethyl; Examples of the aryloxy group include a phenoxy group and a trioxy group.
  • X- and Y- may each be the same or different, each independently, Harogena - one, C 10 4 -, BF 4 one, PF 6 -, CH 3 COO- , CH 3 (C 6 H 4) S0 3 — Indicates an anion selected from.
  • n and n each represent an integer of 1 to 100, preferably 2 to 500.
  • an organic residue exhibit Sutatsukingusu Ru properties by self-assembly is elevation.
  • a property is, for example, schematically given that when molecules are assembled, they basically have such characteristics that the ⁇ electron system of the structural portion of each molecule overlaps like a coin. Become.
  • Such Alpha 1 monovalent condensed polycyclic hydrocarbon group, a monovalent organic metal base having Porubuirin complex structure, monovalent with phthalocyanine structure organometallic group, monovalent having a coronene structure
  • Examples include a heterocyclic hydrocarbon group and a monovalent heterocyclic hydrocarbon group having a pyreline structure.
  • the monovalent fused polycyclic hydrocarbon group is usually a polycyclic aromatic hydrocarbon group having 10 to 50 carbon atoms, preferably 14 to 40 carbon atoms, or a substituted polycyclic aromatic group obtained by partially substituting a hydrogen thereof.
  • the aromatic hydrocarbon group include, as typical examples of the polycyclic aromatic hydrocarbon group, a triphenylene group, a pyrenyl group, a coronenyl group, a perylenyl group, and the like.
  • Examples of the strong substituent include a halogen atom or an alkyl group, an alkoxy group, an alkenyl group having 1 to 18 carbon atoms, preferably 1 to 18 carbon atoms, an aryl group having 6 to 30 carbon atoms, and preferably 6 to 18 carbon atoms.
  • hydrocarbon groups such as an aralkyl group, an alkylaryl group and an aryloxy group. These may or may not have a branch, and the substituent may be singular or plural. Further, these hydrocarbon groups, for example, an alkyl group may be bonded to a polycyclic aromatic hydrocarbon group via a carbonyl group, a carbonyloxy group or an oxycarbonyl group, an amino group, or the like.
  • the terminal of a hydrocarbon group such as a group may be substituted with a hydroxyl group, a thiol group, a carboxyl group, a sulfonate group, a cyano group, an isocyanato group, an aldehyde group, an amino group, etc.
  • ester bond groups one COO—
  • acid amide bond groups one CONH—
  • urethane bond groups one NHCOO—
  • ether bond groups one ⁇ —
  • It may contain a repeating unit such as an ethylene oxide chain having a number of 1 to 15. Further, two or more substituents may form a bond at the terminal to form a ring.
  • cyclic ethers for example, cyclic ethers, cyclic esters, acid anhydrides, examples of the substituent include a carbodiimide.
  • a structure condensed with the above-mentioned polycyclic aromatic hydrocarbon group may be used.
  • Examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a 2-ethylpropyl group, and a cyclohexyl group.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an i-propyl group, a butoxy group, a t-butyloxy group, a 2-ethylpropyloxy group, and a cyclohexyloxy group.
  • Examples of the alkenyl group include a butyl group, an aryl group, an isopropyl group, a butylenyl group, a pentenyl group, and a hexenyl group.
  • Examples of the aryl group include a phenyl group, a xylyl group, a tolyl group, and a tamyl group.
  • Examples of the aryl group include a benzyl group and a trimethyl group.
  • Examples of the aryloxy group include a phenyl group and a trioxy group.
  • a 1 Specific examples of the A 1, include, for example, an organic residue as described below.
  • n 1 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable aromatic condensed rings, and R 1 is a hydrogen atom, a halogen atom or a carbon number of 1 to 30,
  • a hydrocarbon group such as an alkyl group, an alkoxy group, an alkenyl group, having 6 to 30 carbon atoms, preferably an aryl group, an aralkyl group, an alkylaryl group, an aryloxy group having 6 to 18 carbon atoms, Or an organic residue selected from a partially substituted substituted hydrocarbon group (the hydrocarbon group may or may not have a branch; It may be bonded to a polycyclic aromatic hydrocarbon group via a carbonyl group, a carbonyloxy group or an oxycarbonyl group, an amino group, or the like.
  • n 2 is an integer of 0 or 1 or more, with the upper limit being the total number of substituents on the aromatic condensed ring, and R 2 represents the same organic residue as R 1 . If n 2 is in the 2 or more, R 2 to each other may be the same or different.
  • n 3 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable aromatic condensed rings, and R 3 represents the same organic residue as R 1 . If n 3 is on the 2 or more, R 3 together may be the same or different.
  • n 4 is 0 or an integer of 1 or more to a maximum the sum of the substitutable number of complex fused ring
  • R 4 represents the same organic residues and the R 1.
  • n 4 When R is 2 or more, R 4 may be the same or different, and M represents two protons or a metal cation (for example, M is, for example, Mg, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In,
  • Mg 2 + as divalent cations
  • a 1 2 +, Mn 2 +, F e 2+, N i 2+, C u 2 +, Z n is preferably one with 2 + or
  • n 5 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 5 represents the same organic residue as R 1 . If n 5 is 2 or more, R 5 together may be the same or different. Further, M represents the same as M that put the organic residue 4.
  • n 6 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 6 represents the same organic residue as R 1 . If n 6 is 2 or more, R 6 to each other may be the same or different. Further, M represents the same as M that put the organic residue 4.
  • n 7 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 7 represents the same organic residue as R 1 . If n 7 is 2 or more, R 6 to each other may be the same or different. Further, M represents the same as M that put the organic residue 4.
  • n 8 is an integer of 0 or 1 or more, with the upper limit being the total number of the substitutable heterocyclic rings, and R 8 represents the same organic residue as R 1 . If n 8 is 2 or more, each other R 8 may be the same or different. Further, M represents the same as M that put the organic residue 4.
  • n 9 is an integer of 0 or 1 or more, with the upper limit being the sum of the numbers capable of substituting the present hetero-condensed ring, and R 9 represents the same organic residue as R 1 .
  • R 9 's may be the same or different, and M represents the same as M in the organic residue 4.
  • n 1 G is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 1 Q , 11 and R 12 are each the same organic as R 1. Represents a residue, and may be the same or different, and when n 1 G is 2 or more, R 1 Gs may be the same or different.
  • n 11 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 13 and R 14 each represent the same organic residue as R 1 above. it may be the same or different, and when n 11 is 2 or more, R 13 to each other may be made different in the same.
  • n 12 is an integer of 0 or 1 or more, with the upper limit being the sum of the numbers capable of substituting the present condensed heterocyclic ring
  • R 15 , R 16 , and R 17 each represent the same organic residue as R 1.
  • n 13 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 18 and R 19 each represent the same organic residue as R 1 above. And each may be the same or different, and when n 13 is 2 or more, R 18 may be the same or different.
  • n 14 is an integer of 0 or 1 or more, with the upper limit being the total number of substitutable heterocyclic condensed rings, and R 2G represents the same organic residue as R 1 above, and n 14 Is 2 or more, R 2 ° may be the same or different.
  • the electron-donating molecular structure of A 2 is not particularly limited as I have an electron-donating in the molecular structure portion, for example, poly or oligo ⁇ Lee vinylene les emission structure, poly or Origoanirin connection structure, poly or Examples include an oligothiophene linked structure, a poly or oligopyrrole linked structure, a poly or oligoamine linked structure, a phthalocyanine structure, and a naphthalocyanine structure.
  • the organic residue A 2 can be selected various organic residues or we appropriately according at the A 1 as described above, further, a monovalent heterocyclic hydrocarbon having merocyanine structure, monovalent having Chiofen structure Organic residues.
  • the organic residue having a merocyanine structure is particularly preferably an organic residue having a plurality of heterocycles containing both S and N.
  • the A 2 in addition to the organic residue and the A, can be further illustrate the following organic residues.
  • R 21 is the aforementioned R 1
  • R 22 represents the same organic residue as R described above.
  • n 17 is:! ⁇ 30, preferably a 1 to 1 5 integers, R 23, R 24 represents the same organic residues and the R 1.
  • R 25 represents the same organic residue as R 1 above.
  • the above A 1 and A 2 are bonded by a bonding group B.
  • the bonding group may have a non-conjugated molecular structure or a conjugated molecular structure.
  • Non-conjugated molecular structures include ester bonding groups (—COO—), acid amide bonding groups (—CON H—), urethane bonding groups (one NHCOO—), ether bonding groups (one O—), It is a divalent hydrocarbon group having 1 to 100 carbon atoms, preferably 1 to 50 carbon atoms, more preferably 1 to 20 carbon atoms, or a divalent organic residue obtained by combining these.
  • the divalent hydrocarbon group is preferably an alkylene group having 2 to 50, preferably 2 to 20 carbon atoms.
  • Preferred examples of these divalent organic residues include the following.
  • n is an integer in the range of 1 to 100, preferably 1 to 50, and more preferably 1 to 20.
  • Examples of the bonding group having a conjugated molecular structure include an arylene group and an olefin group.
  • Examples of the compound represented by the general formula (1) of the present invention preferably, porphyrin derivatives as A 1 (organic residues 4, 5), a phthalocyanine derivative (organic residues 6-9), or a perylene derivative ( It contains organic residues 12 to 13).
  • a 1 organic residues 4, 5
  • a phthalocyanine derivative organic residues 6-9
  • a perylene derivative It contains organic residues 12 to 13.
  • the organic residue A 2 as long as satisfying the E A1 ⁇ E A2 as described above In particularly it is it is not limited, for example, in addition to those exemplified in A 1, molecule shown in organic residues 1 2 to 1 5 are preferred.
  • As the bonding group B used in this case it is preferable to use the organic residue described above, and it is particularly preferable that A 1 and A 2 do not form a ⁇ -conjugated system.
  • the compound having such a structure is not particularly limited, but the following compounds are exemplified.
  • the method for producing them is not particularly limited, and an addition reaction, a condensation reaction, a substitution reaction and the like can be used.
  • an addition reaction to a double bond or a triple bond, a dehydration condensation reaction between a hydroxyl group, an amino group, a thiol group and the like with a hydroxyl group or a carboxyl group, a substitution reaction using a halide, and the like can be used.
  • B in A 1 is a procedure for producing a method of binding using a method of combining in the order of A 2, the method for coupling to the A 2 B, in the order of A 1, the AA 2 B, AA 2 And a method of reacting the derivative of the above to obtain a bond by forming B.
  • the present invention is characterized in that the compound represented by the general formula (1) is used as a photoelectric conversion layer.
  • the photoelectric conversion element of the present invention basically comprises forming at least one thin film of the compound represented by the general formula (1) of the present invention on a conductive substrate, and further forming a conductive film on the thin film. It is made with.
  • the method of forming the compound thin film represented by the general formula (1) is not particularly limited, but is usually a vacuum deposition method, or a dry film formation method such as a molecular beam epitaxy method, an ion plating method, or a CVD method. Other methods include dissolving in a suitable solvent to form a solution, obtaining a thin film by casting, spin coating, dip coating, per coating, screen printing, or immersing in a solution layer and adsorbing or bonding. Can be used.
  • the thickness of the photoelectric conversion layer is not particularly limited, the upper limit is usually 100 im, preferably 20 m, more preferably 10 ⁇ m, and the lower limit is usually 100 nm, preferably, It is preferably about 10 nm, more preferably about 1 nm, and more preferably about 1 nm to 20 ⁇ m.
  • the conductive substrate on which the photoelectric conversion layer is formed is not particularly limited as long as conductivity can be obtained by an appropriate method, but it is usually manufactured by laminating a transparent electrode layer on a transparent substrate.
  • the transparent substrate is not particularly limited, and the material, thickness, dimensions, shape, and the like can be appropriately selected according to the purpose. For example, colorless or colored glass, netted glass, glass block, or the like is used. Alternatively, a resin having colored transparency may be used.
  • polyesters such as polyethylene terephthalate, polyamides, polysulfones, polyether sulfones, polyether ether ketones, polyphenylene sulfides, polycarbonates, polyimides, polymethyl methacrylates, polystyrene, cellulose triacetate, Examples include polymethylpentene.
  • transparent in the present invention refers to having a transmittance of 10 to 100%
  • substrate in the present invention refers to a substrate having a smooth surface at room temperature, and the surface is flat or curved. Or may be deformed by stress.
  • the transparent conductive film forming the conductive layer of the electrode is not particularly limited as long as the object of the present invention is achieved, and includes, for example, a metal thin film such as gold, silver, chromium, copper, and tungsten, and a metal oxide.
  • the metal oxide such as tin oxide, zinc oxide or, these doped trace components Indium Tin Oxide (I TO (I n 2 0 3: S n)), Fluorine doped Tin Oxide (F TO (S n 0 2: F)), Aluminum doped Zinc Oxide (AZO (Z n O: A 1)) or the like is used as a preferable.
  • Their film thickness is usually 100 to 5000 ⁇ , preferably 500 to 3000 / im.
  • the surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention, but is usually 0.5 to 500 ⁇ / sq, and preferably 0.5 to 50 QZsq.
  • the method for forming the transparent electrode film is not particularly limited, and a known method is appropriately selected and used depending on the type of the above-described metal or metal oxide used as the conductive layer. Usually, a vacuum evaporation method, an ion plating method, or the like is used. Method, CVD or sputtering method is used. In any case, the substrate temperature is formed within the range of 20 to 700 ° C. Is desirable.
  • a semiconductor layer may be provided between the conductive substrate and the photoelectric conversion layer.
  • the material used to fabricated a semiconductor layer B i 2 S 3, C d S, C d S e, C dT e, Cu I n S 2, Cu I n S e 2, F e 2 0 3, Ga P, G aA s , I n P, Nb 2 ⁇ 5, P b S, S i , S n0 2, T I_ ⁇ 2, WO 3, Z n O , Z n S and the like, preferably is C d S, C d S e , Cu I n S 2, Cu I n S e 2, F e 2 0 3, G aA s, I n P, Nb 2 0 5, P b S, S N_ ⁇ 2 , Ti 0 2 , W 0 3 , and ZnO, which may be used in combination. Particularly preferably T i O 2, Z nO, a S N_ ⁇ 2, Nb
  • the semiconductor used in the present invention may be single crystal or polycrystal.
  • a crystal system an anatase type, a rutile type, a pulchite type and the like are mainly used, and an anatase type is preferred.
  • a known method can be used for forming the semiconductor layer.
  • the semiconductor layer can be obtained by applying a nanoparticle dispersion liquid, a sol solution, or the like of the semiconductor on a substrate by a known method.
  • the coating method in this case is not particularly limited, and includes a method of obtaining a thin film state by a casting method, a spin coating method, a dip coating method, a bar coating method, and various printing methods such as a screen printing method. Can be.
  • the thickness of the semiconductor layer is arbitrary, but is 0.5 m or more and 50 im or less, preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the specific surface area of the conductive layer can be generally increased by providing the semiconductor layer.
  • conductive film formed on the compound thin film represented by the general formula (1) metals such as aluminum, magnesium, gold, silver, platinum, indium, copper, chromium, and alloys such as magnesium: silver are used.
  • conductive carbon and metal pastes such as silver, gold, and copper may be used.
  • a method for forming the conductive film As a method for forming the conductive film, a known method is appropriately selected and used depending on the above-mentioned material used as the conductive film. Usually, a dry film formation method such as a vacuum evaporation method, an ion plating method, a CVD method, or a sputtering method is used. Or spin coating method, In addition to the Ibcoat method, the percoat method and the dispenser method, various printing methods such as a screen printing method can be mentioned.
  • Their thickness is usually from 100 to 5000 m, preferably from 500 to 3000 m.
  • the surface resistance (resistivity) is appropriately selected depending on the application of the substrate of the present invention, but is usually 0.5 to 500 sq, preferably 2 to 50 sq).
  • a counter substrate a photoelectric conversion layer made of a compound represented by the general formula (1), and a conductive substrate may be stacked using a counter electrode substrate. it can.
  • Examples of the counter electrode substrate include a support substrate having conductivity by itself, and a substrate in which a conductive film is formed on a support substrate.
  • the support substrate for the counter electrode substrate is not particularly limited as the substrate, and the material, thickness, dimensions, shape, and the like can be appropriately selected depending on the purpose.
  • the support substrate may or may not be conductive.
  • metals such as gold and platinum
  • colorless or colored glass, screened glass, glass blocks, etc. are used, and colorless or colored transparency
  • a resin having the following may be used.
  • polyester such as polyethylene terephthalate, polyamide, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene sulfide, polycarbonate, polyimide, polymethyl methacrylate, polystyrene, cellulose triacetate, polymethyl Penten and the like.
  • the substrate in the present invention has a smooth surface at room temperature, and the surface may be a flat surface or a curved surface, or may be a substrate deformed by stress.
  • a film can be formed by a known method such as a method, and a counter electrode substrate can be obtained.
  • an electrolyte layer may be provided between the photoelectric conversion layer and the counter electrode substrate.
  • the electrolyte layer is an ion-conductive material containing at least one substance selected from the group consisting of (a) a polymer matrix, (b) a plasticizer, and (c) a supporting electrolyte. (C) or (d) a redox agent that is reversible Characteristic.
  • a material that can be used as a polymer matrix includes a polymer matrix alone, a solid state or a gel state formed by the addition of a plasticizer, the addition of a supporting electrolyte, or the addition of a plasticizer and a supporting electrolyte.
  • a plasticizer for polymer a plasticizer alone, a solid state or a gel state formed by the addition of a plasticizer, the addition of a supporting electrolyte, or the addition of a plasticizer and a supporting electrolyte.
  • Examples of the polymer compound exhibiting the properties as the polymer matrix include hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile, vinylidene chloride, acrylic acid, methacrylic acid, methyl atalylate, and ethyl acrylate. And high molecular compounds such as methyl methacrylate and styrene polyvinylidene fluoride. These polymers may be used alone, mixed, or copolymerized. Next, the plasticizer used in the present invention will be described.
  • any solvent can be used as long as it is a solvent generally used in electrochemical cells and batteries.
  • One type of plasticizer may be used alone, or two or more types may be used in combination. Next, the supporting electrolyte used in the present invention will be described.
  • salts, acids, alkalis and room-temperature molten salts which are usually used in the field of electrochemistry or battery field can be used.
  • the salts are not particularly limited, and examples thereof include inorganic ion salts such as alkali metal salts and alkaline earth metal salts; quaternary ammonium salts; cyclic quaternary ammonium salts; and quaternary phosphonium salts. Li salts are preferred.
  • salts include halogen ions, SCN-, CIOBFC
  • the acids are not particularly limited, and inorganic acids, organic acids, and the like can be used, and specific examples thereof include sulfuric acid, hydrochloric acid, phosphoric acids, sulfonic acids, and carboxylic acids.
  • the alkalis are not particularly limited, and any of sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used.
  • the room temperature molten salt is not particularly limited, but the room temperature molten salt in the present invention is a salt consisting of an ion pair that is molten at room temperature consisting of only an ion pair containing no solvent component (that is, a liquid state). And usually a salt comprising an ion pair having a melting point of 20 ° C or less and being liquid at a temperature exceeding 20 ° C.
  • One of the room-temperature molten salts can be used alone, or a mixture of two or more can be used.
  • room temperature molten salt examples include, for example, the following.
  • R represents C2-20, preferably an alkyl group. 2 to 1 0 X one is a halogen ion, S CN-, C 10 4 _ , BF 4 -., (CF 3 S 0 2) 2 N-, (C 2 F 5 S 0 2 ) 2 N ⁇ PF 6 _, As F 6- , CH 3 COO—, CH 3 (C 6 H 4 ) S0 3 ⁇ , and (C 2 F 5 S0 2 ) represents an anion selected from 3 C—
  • R 1 and R 2 are each an alkyl group having 1 to 10 carbon atoms (preferably a methyl group or an ethyl group), or an aralkyl group having 7 to 20 carbon atoms, preferably 7 to 13 carbon atoms (preferably Namib shows a Njiru group), may be the same or different from each other
  • X- represents a counter Anion, specifically a halogen ion, S CN-, C 10 4 - ., BF 4 -, (CF 3 S 0 2) 2 N - , (C 2 F 5 S0 2) 2 N -, PF 6 -, A s F CH 3 COO-, CH 3 (C 6 H 4) S0 3 one, (C 2 F 5 S0 2 ) 3 C— etc. are shown.)
  • R 3 , R 4 , R 5 , and R 6 are each an alkyl group having 1 or more carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms (e.g., a fuel group) or indicates such main bets Kishimechiru groups may be the same or different from each other,
  • X- is Taia -. indicates oN, specifically a halogen ion, S CN-, C 10 4 - , BF 4 -, (CF 3 S0 2) 2 N -, (C 2 F 5 S0 2) 2 N-, PF 6 -, A s F 6 -, CH 3 COO-, CH 3
  • the amount of the above supporting electrolyte is optional, usually, 0.1 mass% or more in the ion-conducting film, preferably 1 mass 0/0 or more, further good Preferably it is 10% by mass or more and 70% by mass or less, preferably 60% by mass or less, more preferably 50% by mass or less.
  • the redox material used in the present invention will be described.
  • the redox material is capable of performing a reversible electrochemical oxidation-reduction reaction, and the type thereof is not particularly limited.
  • the redox material either one of the oxidized form and the reduced form may be used alone, or the oxidized form and the reduced form may be mixed at an appropriate molar ratio and added.
  • an oxidation-reduction pair of the polymer matrix, the plasticizer, and the supporting electrolyte may be added so that the polymer matrix, the plasticizer, and the supporting electrolyte exhibit electrochemical responsiveness.
  • halogen ions SCN -, C 1 0 4 -, BF 4 _, CF 3 S 0 3 _, (CF 3 S0 2) 2 N-, (C 2 F 5 S0 2 ) 2 N-, anion selected from PF 6 —, As F 6 —, CH 3 COO—, CH 3 (C 6 H 4 ) S 0 3 —, and (C 2 F 5 S 0 2 ) 3 C
  • metallocenium salts such as ferrosenium having the above
  • halogens such as iodine, bromine and chlorine can also be used.
  • the electrolyte of the present invention may further contain other components.
  • Other components that can be included include ultraviolet absorbers.
  • the ultraviolet absorber that can be used is not particularly limited, but organic ultraviolet absorbers such as a compound having a benzotriazole skeleton and a compound having a benzophenone skeleton can be used.
  • a compound represented by the following general formula (16) is preferably exemplified.
  • R 81 represents a hydrogen atom, a halogen atom or a C 1 0, preferably an 1-6 alkyl group. Fluorine as a halogen atom, Chlorine, bromine and iodine can be mentioned. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a t-butyl group, a cyclohexyl group and the like.
  • the substitution position of R 81 is a 4- or 5-position of Benzotoriazo Le skeleton, a halogen atom Contact Yopi alkyl group are usually located at the 4-position.
  • R 82 represents a hydrogen atom or an alkyl group having 1 to 10, preferably 1 to 6 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a t-butyl group, and a cyclohexyl group.
  • R 83 represents an alkylene group or an alkylidene group having 1 to 10, preferably 1 to 3 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, and a propylene group.
  • the alkylidene group include an ethylidene group and a propylidene group.
  • Specific examples of the compound represented by the general formula (16) include 3- (5-chloro-2H-benzotriazole-2-yl) -1-5- (1,1-dimethylethyl) -4-hydroxy.
  • Benzenepropanoic acid 3- (2H-benzotriazole-12-yl) -15- (1,1-dimethylethyl) -14-hydroxy-1-benzeneethanic acid
  • Preferred examples of the compound having a benzophenone skeleton include compounds represented by the following general formulas (17) to (19).
  • R 92 , R 93 , R 95 , R 96 , R 98 , and R 99 are the same or different from each other, and are a hydroxy group, a carbon group, Number: represents! To 10, preferably 1 to 6, alkyl or alkoxy groups.
  • alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, a t-butyl group, and a cyclohexyl group.
  • alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an i-propoxy group, and a butoxy group.
  • R 91 , R 94 , and R 97 each represent an alkylene group or an alkylidene group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms.
  • the alkylene group include a methylene group, an ethylene group, a trimethylene group, and a propylene group.
  • the alkylidene group include an ethylidene group and a propylidene group.
  • pl, p2, p3, ql, q2, and q3 each independently represent an integer of 0 to 3.
  • Preferred examples of the compound having a benzophenone skeleton represented by the above general formulas (17) to (19) include 2-hydroxy-4-methoxybenzophenone-15-force rubonic acid, 2,2, and jihi. 4-hydroxy-4-phenoxybenzophenone 5-canoleponic acid, 4- (2-hydroxybenzoyl) -13-hydroxybenzenepropanoic acid, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-1-4-methoxybenzophenone-1 5-snolefonic acid, 2-hydroxy-1-4-1n-ota Toxicbenzophenone, 2,2, dihydroxy_4,4, dimethoxybenzophenone, 2,2 ', 4,4, tetrahydroxybenzophenone, 2-hydroxy-14-methoxy-2,1 force / Repoxybenzophenone.
  • the use of the ultraviolet absorber is optional, and the amount of the ultraviolet absorber used is not particularly limited. However, when it is used, it is used in the redox electrolyte film in an amount of 0.1% by mass or more, preferably 1% by mass or more. Yes, it is desirable to contain it in an amount of 20% by mass or less, preferably 10% by mass or less.
  • the electrolyte layer in the present invention may be manufactured as a redox electrolyte film.
  • the method for producing the redox electrolyte film will be described below.
  • the redox electrolyte film is obtained by forming a mixture obtained by blending optional components such as a plasticizer, a supporting electrolyte, a redox material, and an ultraviolet absorber into a polymer matrix component into a film by a known method. Things come out.
  • the molding method in this case is not particularly limited, and examples thereof include a method of obtaining a film state by extrusion molding, a casting method, a spin coating method, and a dip coating method.
  • Extrusion molding can be carried out by a conventional method.
  • a polymer matrix is mixed with optional components such as a plasticizer, a supporting electrolyte, a redox material, and an ultraviolet absorber, and after being heated and melted, a film is formed.
  • a polymer matrix is mixed with optional components such as a plasticizer, a supporting electrolyte, a redox material, and an ultraviolet absorber, and the viscosity is adjusted with an appropriate diluent.
  • a film can be formed by coating with a coater and drying.
  • a doctor coater, a blade coater, a rod coater, a knife coater, a reverse roll coater, a gravure coater, a spray coater, and a curtain coater can be used, and can be selectively used depending on the viscosity and film thickness.
  • a polymer matrix is mixed with optional components such as a plasticizer, a supporting electrolyte, a redox material, and an ultraviolet absorber, the viscosity is adjusted with an appropriate diluent, and a commercially available spin coater is used.
  • a film can be formed by coating and drying.
  • the polymer matrix is mixed with optional components such as a plasticizer, a supporting electrolyte, a redox material, and an ultraviolet absorber, and the viscosity is adjusted with an appropriate diluent to prepare a mixed solution.
  • a film can be formed by lifting a suitable substrate from the mixture solution and drying it.
  • Redox electrolyte film obtained by the above method the ion conductivity, usually at room temperature 1 X 1 0- TSZcm or more, preferably 1 X 1 0- 6 SZcm more, preferably a further 1 X 1 0- 5 Indicates SZcm or more.
  • the ionic conductivity can be determined by a general method such as the complex impedance method.
  • the thickness of the redox electrolyte film is not particularly limited, but the lower limit is usually l / zm or more, preferably 10 ⁇ or more, and the upper limit is usually 3 mm or less, preferably 1 mm or less.
  • the photoelectric conversion element of the present invention has a layer structure represented by the structure shown in FIG.
  • the oxidation-reduction potential was determined by cyclic voltammetry using Ag / Ag C1 as a reference electrode. As a result, the compound A was 0.5 V and the compound B was IV.
  • Compound A Compound B then about 1 00 nm stacked in the A 1 1. 33 X 1 0- 3 P a (1 X 1 0 _5 T orr) (30 A / s) in the photoelectric conversion layer, the photoelectric conversion An element was manufactured.
  • This element was irradiated with light from a 100W tungsten lamp that had been made uniform through a diffuser plate, and the current value at the time of short circuit was measured.As a result, a current value of 2.1 ⁇ A was obtained. It was confirmed that the film exhibited characteristics.
  • a photoelectric conversion layer was prepared in the same manner as in Example 1 except that compounds A and B represented by the following formula were used as the compounds used for preparing the photoelectric conversion layer.
  • the thickness of the layer was about 200 nm. Observation of the surface condition of this layer revealed that a homogeneous and non-cloudy film was formed.
  • the obtained photoelectric conversion layer was left at 80 ° C. for 20 hours, but no particular change was observed.
  • This element was irradiated with light from a 100W tungsten lamp, which was made uniform through a diffuser, and the current value at the time of short-circuit was measured.A current value of 3.1 ⁇ A was obtained, indicating good characteristics of the photoelectric conversion element. could be confirmed.
  • Compound A An element of the A 1 1. 33 X 1 0 _3 P a (1 X 1 0- 5 T orr) about l OO nm laminated in (30 A / s), to produce a photoelectric conversion element. The device was irradiated with light from a uniform 10 OW tungsten lamp through a diffusion plate, and the current value at the time of short circuit was measured. The obtained current value was 0.6 ⁇ .
  • a photoelectric conversion layer was prepared in the same manner as in Example 1 except that a compound ⁇ _ ⁇ represented by the following formula was used as a compound used for preparing the photoelectric conversion layer.
  • the thickness of the layer is about 2 O O nm. Observation of the surface condition of this layer revealed that a homogeneous and non-cloudy film was formed. Further, the obtained photoelectric conversion layer was left at 80 to 20 hours, but no particular change was observed.
  • This element was irradiated with light from a 100W tungsten lamp, which had been made uniform through a diffuser, and the current value at the time of short circuit was measured.A current value of 2.7 ⁇ A was obtained, and a good photoelectric conversion element was obtained. It was confirmed that the film exhibited characteristics.
  • the photoelectric conversion element of the present invention suppresses the occurrence of macro phase separation in the photoelectric conversion layer, Producing a photoelectric conversion layer with good charge separation and carrier transfer functions enables highly efficient photovoltaic power generation.
  • the photoelectric conversion element has features that it can be manufactured relatively easily, and that the environmental load at the time of manufacture and disposal is small.
  • FIG. 1 is a diagram showing a typical layer structure as a photoelectric conversion element in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)

Description

明 細 書 光電変換素子
[技術分野]
本発明は、光を電気エネルギーに変換する機能を有する光電変換素子に関する。 [背景技術]
近年、 環境問題に対する意識の高まりもあり、 地球温暖化への影響があるとさ れる二酸化炭素を排出する化石燃料に対して、 安価でかつクリーンなエネルギー 資源である太陽エネルギーが注目されている。 太陽エネルギーを、 他のエネルギ 一、 例えば電気エネルギーへと変換することが、 その有効活用のために重要であ り、 シリコンを初めとした無機半導体型の光発電素子が開発され、 実用化されて きた。 しかしながら、 これらの光発電素子は、 製造にかかるエネルギーが莫大で あり、より低エネルギーで安価に製造できる光電変換素子の開発が望まれている。 有機化合物は安価であり、 また使用後焼却等により処分しても、 環境に対する 負荷は小さい。 このような背景から、 有機光電変換分子を用いた光電変換素子の 開発は最も重要なエネルギー対策の一つである。
有機物を用いた光電変換素子は、 1986年の Tang (C. W. Tang. Appl. Phys. Lett. , 48, 183 (1986) ) の発表した素子が約 1 %の効率を示したことから関心が高ま り、 その後も光電変換効率は年々改善されている。 有機光電変換素子においては 電子供与性の有機半導体 (ドナー) と、 電子受容性の有機半導体 (ァクセプター) を組み合わせ、 いわゆるヘテロジャンクション構造を作ることが、 高効率化のた めに必要である。効果的な電荷分離はドナーとァクセプタ一の界面近傍で生じる。 このような考えのもと、 ドナー性の導電性ポリマーとァクセプター性のフラーレ ン誘導体を混合したいわゆるバルタへテロジャンクションが提案され(例えば、 米国特許第 5 4 5 4 8 8 0号、 米国特許第 5 3 3 1 1 8 3号)、 さらに高密度な ドナー zァクセプター界面を有する光電変換素子が開発され、 その光電変換効率 も大きくなつた。 このように、 近年の有機光電変換素子の開発は、 ドナーとァク セプターの電荷分離界面を如何に設計するかが鍵となっている。
また、 電荷分離後に生じたキャリア (電子、 ホール) の効率的な輸送も高効率 化のための重要な開発のポイントである。 Friend らは (L. Schmidt- Mende, A. Fecntenkotter, K. Miillern, E. Moons, R. H. Friend, J. D. MacKenzie, Science, 293, 1119 (2001) )、 自己組織化によってスタツキングする電子供与性のベンゾ コロネンと電子受容性のペリレン色素を用いることによって、 キヤリァの移動効 率の高い構造を作ることに成功した。 π共役系がスタツキングすることによって、 その積層方向に対して大きなキヤリァ移動度を示すものである。
一方で、 分子が自己組織化する傾向が強いことは、 光電変換素子を作製する際 にドナーおょぴァクセプターそれぞれの同一分子が集まってしまい, マクロな相 分離を起こす可能性があることを示している。 マクロ相分離が生じると、 光電変 換層の表面に凹凸が生じ、 キャリア移動を妨げることになる。 また, 相分離によ り生じたドメイン中で, 光吸収により生成したエキシトン (電子一ホール対) が, ドナー Ζァクセプター界面に到達する前に基底状態に失活し, 光電変換特性の低 下に繋がる。
本発明はこのような実状に鑑み成されたものであり、 マクロな相分離を抑え、 良好な電荷分離, キヤリァ移動機能を有する光電変換層を作製できる光電変換材 料と、 それを用いた光電変換素子に関するものでる。
[発明の開示]
本発明者らは上記のような従来の問題点を解決すべく鋭意研究を重ねた結果、 特定の有機残基構造をもつた光電荷分離分子を用いることによって、 上記課題を 解決できることを見出し、 本発明を完成するに至った。
すなわち、 本発明は、 一般式 (1 ) で表される化合物からなる光電変換層を有 することを特徴とする光電変換素子に関する。
Α 1— Β— A 2 ( 1 )
(式中、 Α 1は、 電子受容性分子構造、 Α 2は、 電子供与性分子構造、 Βは連結 ュニットを表す。 )
また, 本発明は, 一般式 (2 ) で表される化合物からなる光電変換層を有する ことを特徴とする光電変換素子に関する。
A1— B— A2 (2)
(式中、 A1は、 一価の縮合多環式炭化水素基、 ボルフイリン錯体構造を有する —価の有機金属基、 フタロシアニン構造を有する一価の有機金属基、 コロネン構 造を有する一価の複素環炭化水素基およぴピレリン構造を有する一価の複素環炭 化水素基から選ばれる有機残基を表し、 A2は、 一価の縮合多環式炭化水素基、 ポルフィ リン錯体構造を有する一価の有機金属基、 フタロシアニン構造を有する 一価の有機金属基、 コロネン構造を有する一価の 素環炭化水素基、 ピレリン構 造を有する一価の複素環炭化水素基、 メロシアニン構造を有する一価の複素環炭 化水素およぴチォフェン構造を有する一価の有機残基から選ばれる有機残基を表 し、 且つ、 A1と A2は異なる一価基であり、 それぞれの酸化還元電位 EA1およ び EA2が EA1く EA2なる関係にあり, Bは、 A1と A2との連結基を表す。 ) また、 本発明は、 前記一般式 (1) または前記一般式 (2) で表される化合物 において、 連結ュニット Bが非共役系分子構造であることを特徴とする前記光電 変換素子に関する。
また、 本発明は、 前記一般式 (1) または前記一般式 (2) で表される化合物 において、 連結ユニット Bが, エステル結合基 (_COO— )、 酸アミ ド結合基 (一 CONH—)、 ウレタン結合基 (_NHCOO_)、 エーテル結合基 (一 O—)、 炭素数 1〜1 00の 2価の炭化水素基、 またはこれらを組み合わせた 2価の有機 残基から選ばれる連結基であることを特徴とする前記光電変換素子に関する。 以下、 本発明について詳細に説明する。
まず、 本発明の一般式 (1) で表される化合物について説明する。
一般式 (1 ) において、 A1は、 電子受容性分子構造、 A 2は、 電子供与性分 子構造、 Bは連結ユニットを各々表す。 本発明の電子供与性分子構造とは、 ィォ ン化ポテンシャルが小さく、 他の分子に電子を供給して自らは正のイオンになり やすい性質を示す構造をいい、 また、 本発明の電子受容性分子構造とは、 電子親 和力が大きく、 他の分子から電子を受け取って自らは負のイオン状態になりやす い性質を示す構造をいう。 本発明においては、 電子供与性分子構造と電子受容性 分子構造が連結ュニット Bで連結された化合物を用いるため、 前記の電子受容性 または電子供与性の性質は、 用いるそれらの分子構造間での相対的な関係により 自ずと'決まり、 電子受容性分子構造 A 1の酸化還元電位を EA1, 電子供与性分子 ー +
構造 A2の酸化還N /元電位を EA2とした場合, EA1<EA2の関係が成り立つ。 な お, 酸化還元電位の測定を行う際は A1および A2それぞれを単体分子の状態で 測定すればよい。 その方法は、例えば A. J.Bardら著『Electrochemical Methods: Fundamentals and Applications』 の CHAPTER 6 (p226~) 【こ記載されて ヽるよ うに、 可溶な溶媒中でサイクリックボルタンメ トリー測定等を行うことで決定す ることができる。
電子受容性分子構造としては、 電子受容性を有しておれば特に限定されないが、 例えば、 シァノ基等の電子吸引性基を含有したポリまたはオリゴァリレーンビニ レン構造、 シァノ基等の電子吸引性基を含有したポリまたはオリゴチオフヱン構 造、 シァノ基等の電子吸引性基を含有したポリまたはオリゴピロール構造、 ポリ またはオリゴフエ-ルキノリン, さらにはビォロゲン構造、 ペリレン等の多環式 芳香族構造、 フラーレン構造等が挙げられる。
具体的な電子受容性分子構造の例としては下記式 (3) 〜 (8) に示すものを、 また電子供与性分子構造の例としては下記式 (9) 〜 (1 5) に示すものを挙げ ることができる。
(3)
/ ε o
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0003
Figure imgf000007_0004
Figure imgf000007_0005
ZLZ0/£0dT/13d £Z£LL0/£0 OAV
Figure imgf000008_0001
一般式 (3) 〜 (1 5) 中、 R1および R4〜R8は各々同一でも異なっていて もよく、 各々個別に、 水素または直鎖おょぴ分岐した炭素数 1〜10のアルキル 基、 アルケニル基、 アルコキシル基または炭素数 6〜12のァリール基、 ァラル キル基、 ァリールォキシ基、 ァラルキル基を示す。
R2および R3は各々同一でも異なっていてもよく、 各々個別に、 直鎖および 分岐した炭素数 1〜10のアルキル基もしくはアルケニル基または炭素数 6〜 1 2のァリ一ル基を示す。
同一構造式中に、 複数の!^1〜!^7が存在する場合、 それらは同一でも異なつ てもよい。
前記アルキル基としては、 例えば、 メチル基、 ェチル基、 プロピル基、 i—プ ロピノレ基、 ブチル基、 s—ブチル基、 t一ブチル基、 ペンチル基、 イソペンチノレ 基、 ネオペンチル基、 t—ペンチル基、 へキシル基、 イソへキシル基、 ヘプチル 基、 ォクチル基、 ノニル基、 デシル基などが挙げられ、 アルケニル基としては、 ビニル基、 ァリル基、 イソプロぺニル基、 プチレニル基、 ペンチレュル基、 へキ セニル基などが挙げられ、 アルコキシ基としては、 メ トキシ基、 エトキシ基、 プ 口ポキシ基、 i一プロポキシ基、 ブトキシ基、 S—ブトキシ基、 t一ブトキシ基、 ペントキシ基、 イソペントキシ基、 ネオペンチノレォキシ基、 t一ペンチノレォキシ 基、 へキシルォキシ基、 イソへキシルォキシ基、 ヘプチルォキシ基、 ォクチルォ キシ基、 ノニルォキシ基、 デシルォキシ基等が挙げられ、 ァリール基としては、 フヱ-ル基、 キシリル基、 トリル基、 タメ二ル基、 ナフチル基等が、 ァラルキル 基としては、 ベンジル基、 トリメチル基等が、 ァリールォキシ基としては、 フエ ノキシ基、 トリルォキシ基などが挙げられる。
X—および Y—は各々同一でも異なっていてもよく、 各々個別に、 ハロゲンァ -オン、 C 104—、 BF4一、 P F6—、 CH3COO—、 CH3 (C6H4) S03— から選ばれる対ァニオンを示す。
また、 式中 m、 nは、 各々 1〜1 0 0 0、 好ましくは 2〜5 0 0の整数を表す ものである。
また, A 1電子受容性分子構造としては、 自己組織化によってスタツキングす る性質を発揮する有機残基を挙であることが好ましい。 なお、 係る性質について は、 模式的に一例をあげれば、 分子を集合させたときに、 基本的には、 各分子の 構造部分の π電子系がコインのように重なるような特性を有することになる。
このような Α 1としては、 一価の縮合多環式炭化水素基、 ポルブイリン錯体構 造を有する一価の有機金属基、 フタロシアニン構造を有する一価の有機金属基、 コロネン構造を有する一価の複素環炭化水素基およぴピレリン構造を有する一価 の複素環炭化水素基などが挙げられる。
前記一価の縮合多環式炭化水素基としては、 通常炭素数 1 0〜5 0、 好ましく は 1 4〜4 0の多環芳香族炭化水素基またはその水素一部を置換した置換多環芳 香族炭化水素基が挙げられ、 前記多環芳香族炭化水素基としては、 トリフ ニレ ニル基、 ピレニル基、 コロネ二ル基、 ペリレニル基などが代表的なものとして挙 げられる。 また、 力かる置換基としては、 ハロゲン原子または炭素数 1〜3 0、 好ましくは 1〜 1 8のアルキル基、 アルコキシ基、 アルケニル基、 炭素数 6〜3 0、 好ましくは 6〜1 8のァリール基、 ァラルキル基、 アルキルァリール基、 ァ リールォキシ基等の炭化水素基が挙げられ、 これらは分岐があってもなくてもよ く、 置換基は単数でも複数でもよい。 またこれらの炭化水素基、 例えばアルキル 基が、 カルボニル基、 カルボニルォキシ基またはォキシカルボニル基、 アミノ基 等を介して多環芳香族炭化水素基に結合されていてもよく、 また、 上記アルキル 基等の炭化水素基の末端が、 ヒ ドロキシル基、 チオール基、 カルボキシル基、 ス ルホン酸基、 シァノ基、 イソシアナ一ト基、 アルデヒ ド基、 アミノ基などで置換 されていても良く、 また、 アルキル鎖の途中に、 エステル結合基 (一 C O O—)、 酸アミ ド結合基 (一 C O N H—)、 ウレタン結合基 (一 N H C O O— )、 エーテル 結合基 (一 Ο—) などを含んでも良く、 炭素数 1〜1 5のエチレンォキシド鎖な どの繰り返し単位を含んでもよい。 また、 2つ以上の置換基が末端で結合をつく り環状となっていても良い。 例えば、 環状エーテル、 環状エステル、 酸無水物、 カルポジイミ ドなどを挙げることができ、 さらに環状置換基の場合は前記の多環 芳香族炭化水素基と縮環している構造でもよい。
前記ハロゲン原子としては、 例えば、 フッ素、 塩素、 臭素、 ヨウ素を挙げるこ とができる。 前記アルキル基としては、 例えば、 メチル基、 ェチル基、 プロピル 基、 i一プロピル基、 2—ェチルプロピル基、 シクロへキシル基等を拳げること ができる。 前記アルコシキ基としては、 メ トキシ基、 エトキシ基、 プロピルォキ シ基、 i-プロピル基、 ブトキシ基、 t—プチルォキシ基、 2—ェチルプロピルォ キシ基、 シクロへキシルォキシ基等をあげることができる。 前記アルケニル基と しては、 ビュル基、 ァリル基、 イソプロぺニル基、 プチレニル基、 ペンチレニル 基、 へキセニル基などが挙げられ、 前記ァリール基としては、 フエニル基、 キシ リル基、 トリル基、 タメ二ル基、 ナフチル基等が、 前記ァラルキル基としては、 ベンジル基、 トリメチル基等が、 ァリールォキシ基としては、 フヱノキシ基、 ト リルォキシ基などが挙げられる。
上記 A 1の具体例としては、 例えば下記のような有機残基が挙げられる。
Figure imgf000010_0001
(有機残基 1 )
(ここで、 n 1は本芳香族縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R 1は、 水素原子、 ハロゲン原子または炭素数 1〜3 0、 好ましくは 1〜 1 8のアルキル基、 アルコキシ基、 アルケニル基、 炭素数 6〜 3 0、 好ましくは 6〜1 8のァリール基、 ァラルキル基、 アルキルァリール基、 ァ リールォキシ基等の炭化水素基、 またはこれらの一部置換した置換炭化水素基か ら選ばれる有機残基を表す。 (前記炭化水素基は分岐があってもなくてもよく、 また、 これらの炭化水素基、 例えばアルキル基が、 カルボニル基、 カルボニルォ キシ基またはォキシカルボニル基、 アミノ基等を介して多環芳香族炭化水素基に 結合されていてもよく、 また、 上記アルキル基等の炭化水素基の末端が、 ヒ ドロ キシル基、 チオール基、 カルボキシル基、 スルホン酸基、 シァノ基、 イソシアナ ート基、 アルデヒド基、 アミノ基などで置換されていても良く、 また、 アルキル 鎖の途中に、 エステル結合基 (一 COO—)、 酸アミ ド結合基 (一 CONH—)、 ウレタン結合基 (一 NHCOO—)、 エーテル結合基 (一 O—) などを含んでも 良く、炭素数 1〜1 5のエチレンォキシド鎖などの繰り返し単位を含んでもよい。 また、 2つ以上の置換基が末端で結合をつく り環状となっていても良い。例えば、 環状エーテル、 環状エステル、 酸無水物、 カルポジイミ ドなどを挙げることがで き、 さらに環状置換基の場合は前記の多環芳香族炭化水素基と縮環している構造 でもよい。) また、 n1が 2以上の場合、 R1同士は同一でも異なってもよい。)
Figure imgf000011_0001
(有機残基 2)
(ここで、 n 2は本芳香族縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R 2は前記 R1と同様の有機残基を表す。 また、 n2が 2以 上の場合、 R2同士は同一でも異なってもよい。)
Figure imgf000011_0002
(有機残基 3 )
(ここで、 n 3は本芳香族縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R3は前記 R1の同様の有機残基を表す。 また、 n3が 2以 上の場合、 R3同士は同一でも異なってもよい。)
Figure imgf000012_0001
(有機残基 4)
(ここで、 n 4は複素縮合環を置換可能な数の総和を上限とする 0または 1以上 の整数であって、 R4は前記 R1と同様の有機残基を表す。 また、 n4が 2以上の 場合、 R4同士は同一でも異なってもよい。 また、 Mはプロトン 2個または金属 カチオンを表す (前記 Mとしては、 例えば、 Mg、 A l、 S i、 P、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Z n、 G a、 G e、 Z r、 N b、 Mo、 Ru、 Rh、 P d、 Ag、 C d、 I n、 S n、 S b、 W、 R e、 O s、 I r、 P t、 Au、 Hg、 P b、 B iなどのカチオンを 1つまたは 2つ以上用いることが できる。 好ましくは、 プロトン 2個か 2価の金属カチオンを一つ用いた場合であ つて、 2価カチオンとしては Mg 2 +、 A 1 2 +、 Mn 2 +、 F e 2+、 N i 2+、 C u2 +、 Z n 2 +または C o 2 +を用いたものが好ましく、 さらに好ましくは Cu2 + または Z n 2 +である。)。)
Figure imgf000012_0002
(有機残基 5 )
(ここで、 n 5は本複素縮合環を置換可能な数の総和を上限とする 0または 1以 上の整数であって、 R 5は前記 R1と同様の有機残基を表す。 また、 n5が 2以上 の場合、 R 5同士は同一でも異なってもよい。 また、 Mは前記有機残基 4におけ る Mと同様のものを表す。)
Figure imgf000013_0001
(有機残基 6)
(ここで、 n 6は本複素縮合環を置換可能な数の総和を上限とする 0または 1以 上の整数であって、 R 6は前記 R1と同様の有機残基を表す。 また、 n6が 2以上 の場合、 R 6同士は同一でも異なってもよい。 また、 Mは前記有機残基 4におけ る Mと同様のものを表す。)
Figure imgf000013_0002
(有機残基 7)
(ここで、 n 7は本複素縮合環を置換可能な数の総和を上限とする 0または 1以 上の整数であって、 R 7は前記 R1と同様の有機残基を表す。 また、 n 7が 2以上 の場合、 R6同士は同一でも異なってもよい。 また、 Mは前記有機残基 4におけ る Mと同様のものを表す。)
Figure imgf000014_0001
(有機残基 8 )
(ここで、 n 8は本複素縮合環を置換可能な数の総和を上限とする 0または 1以 上の整数であって、 R 8は前記 R 1と同様の有機残基を表す。 また、 n 8が 2以上 の場合、 R 8同士は同一でも異なってもよい。 また、 Mは前記有機残基 4におけ る Mと同様のものを表す。)
Figure imgf000014_0002
(有機残基 9 )
(ここで、 n 9は本複素縮合環を置換可能な数の総和を上限とする 0または 1以 上の整数であって、 R 9は前記 R 1と同様の有機残基を表す。 また、 n 9が 2以上 の場合、 R 9同士は同一でも異なってもよい。 また、 Mは前記有機残基 4におけ る Mと同様のものを表す。)
Figure imgf000015_0001
(有機残基 10 )
(ここで、 n 1 Gは本複素縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R1 Q11、 R12は各々前記 R1と同様の有機残基を表 し、 各々同一でも異なってもよく、 また、 n1 Gが 2以上の場合、 R1 G同士は同 一でも異なってもよい。)
Figure imgf000015_0002
(有機残基 1 1 )
(ここで、 n 11は本複素縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R13、 R14は各々前記 R1と同様の有機残基を表し、 各々 同一でも異なってもよく、 また、 n 11が 2以上の場合、 R13同士は同一でも異 なってもよい。)
Figure imgf000015_0003
(有機残基 1 2 )
(ここで、 n 12は本複素縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R15、 R16、 R17は各々前記 R1と同様の有機残基を表 し、 各々同一でも異なってもよく、 また、 n12が 2以上の場合、 R15同士は同 一でも異なってもよい。)
Figure imgf000016_0001
(有機残基 13 )
(ここで、 n 13は本複素縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R18、 R19は各々前記 R1と同様の有機残基を表し、 各々 同一でも異なってもよく、 また、 n13が 2以上の場合、 R18同士は同一でも異 なってもよい。)
Figure imgf000016_0002
(有機残基 14)
(ここで、 n 14は本複素縮合環を置換可能な数の総和を上限とする 0または 1 以上の整数であって、 R2Gは各々前記 R1と同様の有機残基を表し、 n14が 2 以上の場合、 R2°同士は同一でも異なってもよい。)
A2の電子供与性分子構造としては、 当該分子構造部分において電子供与性を 有しておれば特に限定されないが、 例えば、 ポリまたはオリゴァリーレンビニレ ン構造、 ポリまたはオリゴァニリン連結構造、 ポリまたはオリゴチォフェン連結 構造、 ポリまたはオリゴピロール連結構造、 ポリまたはオリゴァミン連結構造, フタロシアニン構造, ナフタロシアニン構造等が挙げられる。 また, A2として は、 前記 A1と異なるものであり、 電子受容性分子構造 A 1の酸化還元電位を EA い 電子供与性分子構造 A2の酸化還元電位を EA2とした場合, EA1<EA2の条 件を満たしていれば、 前記 A 1にて記載した有機残基から適宜選択することがで さる。 A2の有機残基としては、 前述のとおり前記 A1にて記載した各種有機残基か ら適宜選択できるが、 さらに、メロシアニン構造を有する一価の複素環炭化水素、 チォフェン構造を有する一価の有機残基を挙げることができる。 なお、 メロシア ニン構造を有する有機残基としては、 好ましくは Sおよび Nを共に含有する複素 環を複数有するものが特に好ましい。
A2としては、 前記 A と同様の有機残基に加え、 さらに次の有機残基を例示 することができる。
しくは 5の整数であって、 R21は前記 R 1
Figure imgf000017_0001
(有機残基 16 )
(こ で、 11 1 6は1〜10、 好ましくは 1〜 5の整数であって、 R22は前記 R と同様の有機残基を表す。)
Figure imgf000017_0002
(有機残基 1 7 )
(ここで、 n17は:!〜 30、 好ましくは 1〜1 5の整数であって、 R23、 R24 は前記 R1と同様の有機残基を表す。)
Figure imgf000018_0001
(有機残基 1 8 )
(ここで、 R25は前記 R1と同様の有機残基を表す。) 上記 A1と A2は結合基 Bにより結合される。 その結合基としては、 非共役系 の分子構造であっても共役系の分子構造であっても構わない。 非共役系分子構造 の結合基としては, エステル結合基 (― COO—)、 酸アミ ド結合基 (—CON H—)、 ウレタン結合基 (一NHCOO—)、 エーテル結合基 (一 O— )、 炭素数 1〜 1 00、 好ましくは炭素数 1〜 50、 さらに好ましくは 1〜20の 2価の炭 化水素基、 またはこれらを組み合わせた 2価の有機残基である。
2価の炭化水素基としては、 好ましくは炭素数 2〜 50、 好ましくは 2〜 20 のアルキレン基があげられる。 これらの 2価の有機残基として、 好適なものとし ては、 例えば次のようなものが挙げられる。
Figure imgf000018_0002
-CH2CH20」 — O CH,CH20-
Figure imgf000018_0003
(式中 nは、 各々 1〜 1 00の範囲の整数であり、 好ましくは 1〜50、 さらに 好ましくは 1〜20である。)
共役系分子構造の結合基としては, ァリーレン基, ォレフィン基等が挙げられ る。
本発明の一般式 (1) で表される化合物としては、 好ましくは、 A1としてポ ルフィリン誘導体 (有機残基 4、 5)、 フタロシアニン誘導体 (有機残基 6〜 9)、 または、 ペリレン誘導体 (有機残基 1 2〜1 3) を含むものである。 対応する、 有機残基 A2としては、 前述したような EA1<EA2の条件を満たすものであれ ば特に制限されることはないが、 例えば A 1に例示されているもののほか、 有機 残基 1 2〜1 5に示す分子が好ましい。 この場合に用いる結合基 Bとしては、 上 記記載の有機残基を用いるのが好ましく、 特に好ましいのは A 1と A 2が π共役 系を形成しないものであることが望ましい。
このような構造を有する化合物としては、 特に限定されないが以下のようなも のが例示される。
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0004
Figure imgf000022_0001
Figure imgf000022_0002
ZLZ0/£0d£/∑Jd £Z£LLO/£0 OAV
Figure imgf000023_0001
Figure imgf000024_0001
ΨΖ
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0003
Figure imgf000025_0004
Figure imgf000025_0005
ZLZ0/£0d /13d ε ん慮 0 OAV Z
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
ZLZ0/£0dt/lJd 9Z
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0003
ZLZ0/£0dT/lDd £Z£LL0/£0 OAV
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0003
Figure imgf000028_0004
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
Figure imgf000029_0004
Figure imgf000029_0005
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
Figure imgf000031_0004
τε
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000032_0003
ZLZ0/£0d /lDd Z LLO/£0 OAV
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0003
Figure imgf000034_0001
Figure imgf000035_0001
(前記式中の M 1および M 2は、 各々前記有機残基 4〜 9における Mと同一の金 属カチオンまたはプロトン 2個を表し、 各々同一でも異なってもよい。)
これらの化合物は、 公知の方法により容易に得ることが出来る。 それらの製造 方法としては特に限定されなく、 付加反応、 縮合反応、 置換反応等を用いること ができる。 例えば、 二重結合や三重結合への付加反応、 水酸基、 アミノ基、 チォ ール基などと、 水酸基やカルボキシル基との脱水縮合反応、 ハロゲン化物を用い る置換反応などを利用することができる。 また、 製造する際の手順としては A 1 に B、 A 2の順で結合する方法、 A 2に B、 A 1の順で結合する方法、 A A 2 を Bを用いて結合する方法、 A A 2の誘導体を反応させ Bの形成により結合 を得る方法等をあげることができる。 本発明においては、 前記一般式 (1 ) で表される化合物を光電変換層として用 いることを特徴とする。
本発明の光電変換素子は、 基本的には、 本発明の一般式 (1 ) で表される化合 物の薄膜を導電基板上に 1層以上形成し、 さらに導電膜をその上に形成すること で作製される。 この一般式 (1 ) で表される化合物薄膜の形成方法としては特に 制限されないが、 通常、 真空蒸着法の他、 分子ビームェピタキシャル法、 イオン プレーティング法、 C V D法などのドライ成膜法の他、 適当な溶媒に溶解して溶 液とし、 キャスト法により薄膜を得る方法、 スピンコート法、ディップコート法、 パーコート法、 スクリーン印刷法、 または溶液層に浸漬して吸着あるいは結合さ せる方法などを用いることができる。
光電変換層の厚さは特に限定されないが、 上限は通常、 1 0 0 i m、 好ましく は 2 0 m、 さらに好ましくは 1 0 μ m、 下限は通常 1 0 0 n m、 好ましくは、 10 nm、 さらに好ましくは 1 nm程度が望ましく、 好ましい範囲としては、 1 n m〜 20 μ m程度が望ましい。
またこの光電変換層を形成する導電基板としては、 適当な方法により導電性が 得られれば特に制限されることはないが、 通常は、 透明基板上に透明電極層を積 層させて製造される。 透明基板としては、 特に限定されず、 材質、 厚さ、 寸法、 形状等は目的に応じて適宜選択することができ、例えば無色あるいは有色ガラス、 網入りガラス、 ガラスブロック等が用いられる他、 無色あるいは有色の透明性を 有する樹脂でも良い。 具体的には、 ポリエチレンテレフタレートなどのポリエス テル、 ポリアミ ド、 ポリスルホン、 ポリエーテルサルホン、 ポリエーテルエーテ ルケトン、 ポリフエ二レンサルファイ ド、 ポリカーボネート、 ポリイミ ド、 ポリ メチルメタタリレート、 ポリスチレン、 トリ酢酸セルロース、 ポリメチルペンテ ンなどが挙げられる。 なお、 本発明における透明とは、 1 0〜1 00%の透過率 を有することであり、 また、 本発明における基板とは、 常温において平滑な面を 有するものであり、 その面は平面あるいは曲面であってもよく、 また応力によつ て変形するものであってもよい。
また、 電極の導電層を形成する透明導電膜としては、 本発明の目的を果たすも のである限り特に限定されないが、 例えば金、 銀、 クロム、 銅、 タングステンな どの金属薄膜、 金属酸化物からなる導電膜などが挙げられる。 金属酸化物として は、例えば、酸化錫、酸化亜鉛や、これらに微量成分をドープした Indium Tin Oxide ( I TO ( I n203 : S n))、 Fluorine doped Tin Oxide (F TO (S n 02: F))、 Aluminum doped Zinc Oxide (AZO (Z n O : A 1 )) などが好適なもの として用いられる。 これらの膜厚は通常、 100〜5000 μπχ、 好ましくは 5 00〜3000 /imである。 また、 表面抵抗 (抵抗率) は、 本発明の基板の用途 により適宜選択されるところであるが、 通常、 0. 5〜500 Ω/s q、 好まし くは 0. 5〜50 QZs qである。
透明電極膜の形成法としては、 特に限定されなく、 導電層として用いる前述の 金属や金属酸化物の種類により適宜公知の方法が選択使用されるところであるが、 通常、 真空蒸着法、 イオンプレーティング法、 CVDあるいはスパッタリング法 などが用いられる。 いずれの場合も基板温度 20〜700°Cの範囲内で形成され るのが望ましい。
また、 必要に応じて、 導電基板と光電変換層の間に半導体層を設けてもよい。 半導体層を作製されるのに用いられる材料としては、 B i 2S3、 C d S、 C d S e、 C dT e、 Cu I n S2、 Cu I n S e 2、 F e 203、 Ga P、 G aA s、 I n P、 Nb 25、 P b S、 S i、 S n02、 T i〇2、 WO3、 Z n O, Z n S等が挙げられ、 好ましくは C d S、 C d S e、 Cu I n S2、 Cu I n S e 2、 F e 203、 G aA s、 I n P、 Nb 205、 P b S、 S n〇2、 T i 02、 W03、 ZnOであり、 これらを複数組み合わせて用いてもよい。 特に好ましくは T i O 2、 Z nO、 S n〇2、 Nb 25であり、 最も好ましくは T i〇2、 Z n Oであ る。
本発明に用いる半導体は単結晶でも多結晶でも良い。 結晶系としては、 アナタ ーゼ型、 ルチル型、 プルッカイト型などが主に用いられるが、 好ましくはアナタ ーゼ型である。 半導体層の形成には公知の方法を用いることができる。
半導体層の形成方法としては、 上記半導体のナノ粒子分散液、 ゾル溶液等を、 公知の方法により基板上に塗布することで得ることが出来る。 この場合の塗布方 法としては特に限定されずキャスト法による薄膜状態で得る方法、 スピンコート 法、 ディップコート法、 バーコート法のほか、 スクリーン印刷法を初めとした各 種の印刷方法を挙げることができる。
半導体層の厚みは任意であるが 0. 5 m以上 50 i m以下、 好ましくは 1 μ m以上 20 μ m以下である。
なお、 半導体層を設けることにより、 通常、 導電層の比表面積を大きくするこ とができる。
また一般式 (1) で表される化合物薄膜上に形成する導電膜としてはアルミ二 ゥム、 マグネシウム、 金、 銀、 白金、 インジウム、 銅、 クロムなどの金属や、 マ グネシゥム:銀などの合金の他、 導電性のカーボンや銀、 金、 銅等の金属ペース ト等が挙げられる。
この導電膜の形成方法としては導電膜として用いる前述の材料により適宜公知 の方法が選択使用されるところであるが、 通常、 真空蒸着法、 イオンプレーティ ング法、 CVDあるいはスパッタリング法等のドライ成膜やスピンコート法、 デ イッブコート法、 パーコート法、 ディスペンサー法のほか、 スクリーン印刷法を 初めとした各種の印刷方法を挙げることができる。
これらの膜厚は通常、 1 00〜5000 m、 好ましくは 500〜3000 μ mである。 また、 表面抵抗 (抵抗率) は、 本発明の基板の用途により適宜選択さ れるところであるが、 通常、 0. 5〜500 s q、 好ましくは 2〜50 s qであ^)。
また、本発明の光電変換素子の別の態様として、対極基板を用いて、対向基板、 一般式 (1) で表される化合物からなる光電変換層および導電性基板を積層する 形態をとることもできる。
対極基板としては、 それ自体で導電性を有する支持基板、 または支持基板上に 導電膜を形成したものを挙げることが出来る。
対極基板の支持基板は基板としては、 特に限定されず、 材質、 厚さ、 寸法、 形 状等は目的に応じて適宜選択することができ。 支持基板には導電性があっても無 くてもよく、 金、 白金などの金属のほか、 例えば無色あるいは有色ガラス、 網入 りガラス、 ガラスブロック等が用いられる他、 無色あるいは有色の透明性を有す る樹脂でも良い。具体的には、ポリエチレンテレフタレートなどのポリエステル、 ポリアミ ド、 ポリスルホン、 ポリエーテルサルホン、 ポリエーテルエーテルケト ン、 ポリフエ二レンサルファイ ド、 ポリカーボネート、 ポリイミ ド、 ポリメチル メタタリ レート、 ポリスチレン、 トリ酢酸セルロース、 ポリメチルペンテンなど が挙げられる。
なお、.本発明における基板とは、 常温において平滑な面を有するものであり、 その面は平面あるいは曲面であってもよく、 また応力によって変形するものであ つてもよい。 また、 支持基板表面には金、 白金などの金属や、 I n 203 : S n、 S n02 : F、 Ζ ηθ : A 1などの薄膜を真空蒸着法、 電子ビーム真空蒸着法、 スパッタリング法等の公知の方法で成膜し、 対極基板とすることができる。
対極基板を用いる場合には、 光電変換層と対極基板の間に、 電解質層を設けて も良い。 電解質層は (a) 高分子マトリ ックス、 (b) 可塑剤、 (c) 支持電解質、 から選ばれる少なくとも 1種以上の物質を含有してなるイオン伝導性材料であつ て、 上記 (a) 〜 (c) あるいは (d) レドックス剤によって可逆な酸化還元特 性を示すことを特徴とする。
本発明において高分子マトリックスとして使用できる材料としては、 高分子マ トリックス単体で、 あるいは可塑剤の添加や、 支持電解質の添加、 または可塑剤 と支持電解質の添加によって固体状態またはゲル状態が形成されれば特に制限は 無く、 一般的に用いられるいわゆる高分子化合物を用いることができる。
上記高分子マトリックスとしての特性を示す高分子化合物としては、 へキサフ ロロプロピレン、 テトラフロロエチレン、 トリフロロエチレン、 エチレン、 プロ ピレン、 アクリロニトリル、 塩化ビニリデン、 アクリル酸、 メタクリル酸、 メチ ルアタリレート、 ェチルァクリ レート、 メチルメタクリ レート、 スチレンポリフ ッ化ビニリデンなどの高分子化合物をあげることができる。 またこれらの高分子 は単独で用いても、 混合しても、 また共重合させても良い。 次に、 本発明において用いる可塑剤について説明する。
本発明において、 (a ) 成分おょぴ (c ) 成分における可塑剤としては、 一般 に電気化学セルや電池に用いられる溶媒であればいずれも使用することができる。 具体的には、 無水酢酸、 メタノール、 エタノール、 テトラヒ ドロフラン、 プロピ レンカーボネート、 ニ トロメタン、 ァセトニトリノレ、 ジメチルホルムァミ ド、 ジ メチルスルホキシド、 へキサメチルホスホアミ ド、 エチレンカーボネート、 ジメ トキシェタン、 γ—プチ口ラタ トン、 一バレロラタ トン、 スノレホラン、 ジメ ト キシェタン、 プロピオンニトリル、 グルタロニトリル、 アジポニトリル、 メ トキ シァセトニトリル、 ジメチルァセトアミ ド、 メチルピロリジノン、 ジメチルスル ホキシド、 ジォキソラン、 スルホラン、 リン酸トリメチル、 リン酸トリェチル、 リン酸トリプロピル、 リン酸ェチルジメチル、 リン酸トリブチル、 リン酸トリべ ンチル、 リン酸トリへキシル、 リン酸トリへプチル、 リン酸トリオクチル、 リン 酸トリノニル、 リン酸トリデシル、 リン酸トリス (トリフフロロメチル)、 リン 酸トリス (ペンタフロロェチル)、 リン酸トリフエ-ルポリエチレングリコール、 及びポリエチレングリコール等が使用可能である。 特に、 プロピレンカーボネー ト、 エチレンカーボネート、 ジメチルスルホキシド、 ジメ トキシェタン、 ァセト 二トリノレ、 Ύ一プチ口ラタ トン、 スノレホラン、 ジォキソラン、 ジメチノレホノレムァ ミ ド、 ジメ トキシェタン、 テトラヒ ドロフラン、 アジポニトリル、 メ トキシァセ トェトリル、 ジメチルァセトアミ ド、 メチルピロリジノン、 ジメチルスルホキシ ド、 ジォキソラン、 スルホラン、 リン酸トリメチル、 リン酸トリェチルが好まし い。 可塑剤はその 1種を単独で使用しても良いし、 また 2種以上を混合して使用 しても良い。 次に、 本発明において用いる支持電解質について説明する。
本発明において用いられる支持電解質としては、 電気化学の分野又は電池の分 野で通常使用される塩類、 酸類、 アルカリ類、 常温溶融塩類が使用できる。
塩類としては、 特に制限はなく、 例えば、 アルカリ金属塩、 アル力リ土類金属 塩等の無機イオン塩; 4級アンモニゥム塩;環状 4級アンモニゥム塩; 4級ホス ホニゥム塩などが使用でき、 特に L i塩が好ましい。
塩類の具体例としては、 ハロゲンイオン、 S CN -、 C I O B F C
F ¾ S O (CF SO ) 2N一、 (C F5SO2 ) 2N P F A s F
CH3COO—、 CH3 (C 6H4) S 03—、 および (C2F5S02) 3C—力、ら選 ばれる対ァ-オンを有する L i塩、 N a塩、 あるいは K塩が挙げられる。
またハロゲンイオン、 S CN―、 C 104—、 B F4— C F , S O (CF S 02) 2N一、 (C 2 F 5 S 02) 2N一、 P F 6 -、 A s F 6_、 CH3COO—、 CH3 (C6H4) S03—、 および (C2F5S02) 3C—から選ばれる対ァニオンを有 する 4級アンモ-ゥム塩、 具体的には、 (CH3) 4NB F4、 (C2H5) 4NB F 4、 (n— C4H9) 4NB F4、 (C2H5) 4NB r、 (C2H5) 4NC 1 04、 (n 一 C4H9) 4NC 104、 CH3 (C2H5) 3NB F4、 (CH3) 2 (C2H5) 2N BF4、 (CH3) 4NS03CF3、 (C2H5) 4NS〇3CF3、 (n_C4H9) 4 NS03CF3、 さらには、
BF,
Figure imgf000040_0001
Figure imgf000041_0001
等が挙げられる。 またハロゲンイオン、 S CN―、 C 104一、 BF4—、 C F 3 S 03-、 (CF3S02) 2N -、 (C2F5S 02) 2N -、 P F6-、 A s F6_、 CH3 COO—、 CH3 (C6H4) S03—、 および (C2F5S〇2) 3C—から選ばれる 対ァニオンを有するホスホ-ゥム塩、 具体的には、 (CH3) 4PBF4、 (C2H 5) 4PB F4、 (C3H7) 4P B F4、 (C4H9) 4 P B F 4等が挙げられる。
また、 これらの混合物も好適に用いることができる。
酸類も特に限定されず、 無機酸、 有機酸などが使用でき、 具体的には硫酸、 塩 酸、 リン酸類、 スルホン酸類、 カルボン酸類などが使用できる。
アルカリ類も特に限定されず、 水酸化ナトリウム、 水酸化カリウム、 水酸化リ チウムなどがいずれも使用可能である。
常温溶融塩類も特に限定されることは無いが、本発明における常温溶融塩とは、 溶媒成分が含まれないイオン対のみからなる常温において溶融している (即ち液 状の) イオン対からなる塩であり、 通常、 融点が 20°C以下であり、 20°Cを越 える温度で液状であるイオン対からなる塩を示す。
常温溶融塩はその 1種を単独で使用することができ、 また 2種以上を混合して も使用することもできる。
常温溶融塩の例としては、 例えば、 以下のものが挙げられる。
Figure imgf000042_0001
(ここで、 Rは炭素数 2〜20、 好ましくは 2〜 1 0のアルキル基を示す。 X一 はハロゲンイオン、 S CN―、 C 104 _、 B F4—、 (C F 3 S 02) 2N―、 (C2 F 5 S 02) 2Nヽ PF6_、 A s F6-、 CH3COO—、 CH3 (C6H4) S03 ―、 および (C2F5S02) 3C—から選ばれる対ァニオンを表す。)
Figure imgf000042_0002
X
(ここで、 R 1および R 2は各々炭素数 1〜1 0のアルキル基 (好ましくはメチ ル基またはェチル基)、 または炭素数 7〜 20、 好ましくは 7〜1 3のァラルキ ル基 (好ましくはべンジル基) を示しており、 互いに同一でも異なっても良い。 また、 X—は対ァニオンを示し、 具体的にはハロゲンイオン、 S CN―、 C 104 -、 B F4-、 (C F 3 S 02) 2N -、 (C2F5S02) 2N -、 P F6-、 A s F CH3COO—、 CH3 (C6H4) S03一、 (C2F5S02) 3C—などを示す。)
Figure imgf000042_0003
(ここで、 R3、 R4、 R5、 R6は、 各々炭素数 1以上、 好ましくは炭素数 1〜 6のアルキル基、 炭素数 6〜1 2のァリール基 (フエ-ル基など)、 またはメ ト キシメチル基などを示し、 互いに同一でも異なってもよい。 また、 X—は対ァ- オンを示し、 具体的にはハロゲンイオン、 S CN―、 C 104-、 BF4—、 (C F3 S02) 2N -、 (C2F5S02) 2N―、 PF6—、 A s F6—、 CH3COO—、 CH3
(C6H4) S03一、 (C 2F 5 S 02) 3C—など示す。)
以上の支持電解質の使用量については特に制限はなく、 任意であるが、 通常、 イオン伝導フィルム中に 0. 1質量%以上、 好ましくは 1質量0 /0以上、 さらに好 ましくは 1 0質量%以上であり、 かつ 70質量%以下、 好ましくは 60質量%以 下、 さらに好ましくは 50質量%以下の量で含有させることができる。 次に、 本発明において用いるレドックス材について説明する。
レドックス材は可逆な電気化学的酸化還元反応を行うことができるものであつ て、 特にその種類を制限するものではない。 レドックス材は、 酸化体、 還元体の どちらか一方のみを用いてもよいし、 酸化体と還元体を適当なモル比で混合し、 添加することもできる。
また、 高分子マトリ ックス、 可塑剤、 支持電解質が電気化学的応答性を示すよ うに、 これら高分子マトリ ックス、 可塑剤、 支持電解質の酸化還元対を添加する などしても良い。 そのような性質を示す材料としては、 ハロゲンイオン、 SCN ―、 C 1 04—、 B F4_、 CF3S 03_、 (CF3S02) 2N―、 (C2F5 S02) 2 N一、 PF6—、 A s F6—、 CH3COO—、 CH3 (C6H4) S 03—、 および (C 2F5 S 02) 3 C から選ばれる対ァニオンを有するフエロセニゥムなどのメタ ロセニゥム塩などのほか、 ヨウ素、 臭素、 塩素などのハロゲン類を用いることも できる。
本発明の電解質には、 更に他の成分を含有させることができる。 含有させる ことができる他の成分としては、 紫外線吸収剤を挙げることができる。 用いるこ とができる紫外線吸収剤としては、 特に限定されないが、 ベンゾトリアゾール骨 格を有する化合物、 ベンゾフエノン骨格を有する化合物等の有機紫外線吸収剤が 代表的な物として拳げられる。
ベンゾトリアゾール骨格を有する化合物としては、 例えば、 下記の一般式 ( 1 6) で表される化合物が好適に挙げられる。
Figure imgf000043_0001
-般式 (1 6) において、 R81は、 水素原子、 ハロゲン原子または炭素数 1 0、 好ましくは 1〜6のアルキル基を示す。 ハロゲン原子としてはフッ素、 塩素、 臭素、 ヨウ素を挙げることができる。 アルキル基としては、 例えば、 メチ ル基、 ェチル基、 プロピル基、 i一プロピル基、 プチル基、 t一プチル基、 シク 口へキシル基等を挙げることができる。 R 81の置換位置は、 ベンゾトリァゾー ル骨格の 4位または 5位であるが、 ハロゲン原子およぴアルキル基は通常 4位に 位置する。 R82は、 水素原子または炭素数 1〜 10、 好ましくは 1〜6のアル キル基を示す。 アルキル基としては、 例えば、 メチル基、 ェチル基、 プロピル基、 i一プロピル基、 プチル基、 t一プチル基、 シクロへキシル基等を挙げることが できる。 R83は、 炭素数 1〜10、 好ましくは 1〜 3のアルキレン基またはァ ルキリデン基を示す。 アルキレン基としては、 例えば、 メチレン基、 エチレン基、 トリメチレン基、 プロピレン基等を挙げることができ、 またアルキリデン基とし ては、 例えば、 ェチリデン基、 プロピリデン基等が挙げられる。
一般式 (1 6) で示される化合物の具体例としては、 3— (5—クロロー 2H 一べンゾトリァゾールー 2—ィル) 一 5— (1, 1ージメチルェチル) —4ーヒ ドロキシーベンゼンプロパン酸、 3— ( 2 H—べンゾトリアゾール一 2—ィル) 一 5— (1, 1ージメチルェチル) 一 4ーヒ ドロキシ一ベンゼンエタン酸、 3— ( 2 H—ベンゾトリァゾールー 2—ィル) 一4—ヒ ドロキシベンゼンエタン酸、
3 - ( 5—メチルー 2 H—べンゾト リァゾーノレ一 2—ィノレ) 一 5— (1—メチノレ ェチル) 一 4ーヒ ドロキシベンゼンプロパン酸、 2— (2, ーヒ ドロキシ一 5' ーメチノレフエ-ル) ベンゾトリァゾール、 2 - (2, ーヒ ドロキシー 3,, 5, 一ビス (α, α—ジメチノレべンジノレ) フエ二ノレ) ベンゾト リァゾーノレ、 2 - (2 ' ーヒ ドロキシ _ 3,, 5 ' ージ一 t一プチノレフエ二ノレ) ベンゾトリァゾーノレ、 2 ― (2, ーヒ ドロキシー 3, 一 t—ブチノレー 5, ーメチノレフエ二ノレ) ー5—クロ 口べンゾトリァゾーノレ、 3— ( 5—クロロー 2 H—ベンゾトリァゾーノレ一 2—ィ ル) 一 5— (1, 1ージメチルェチル) 一 4—ヒ ドロキシーベンゼンプロパン酸 ォクチルエステル等が挙げられる。
ベンゾフエノン骨格を有する化合物としては、 例えば、 下記の一般式 (1 7) 〜 (1 9) で示される化合物が好適に挙げられる。
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0003
上記一般式 (1 7) 〜 (1 9) 'において、 R92、 R93、 R95、 R96、 R98、 及ぴ R 99は、 互いに同一もしくは異なる基であって、 ヒ ドロキシル基、 炭素数 :!〜 1 0、 好ましくは 1〜6のアルキル基またはアルコキシ基を示す。 アルキル 基としては、 例えば、 メチル基、 ェチル基、 プロピル基、 i一プロピル基、 プチ ル基、 t一プチル基、 及ぴシクロへキシル基を挙げることができる。 またアルコ キシ基としては、 例えば、 メ トキシ基、 エトキシ基、 プロポキシ基、 i一プロボ キシ基、 及ぴブトキシ基を挙げることができる。
R91、 R94、 及び R 97は、 炭素数 1〜1 0、 好ましくは 1〜3のアルキレン 基またはアルキリデン基を示す。 アルキレン基としては、 例えば、 メチレン基、 エチレン基、 トリメチレン基、 及びプロピレン基を挙げることができる。 アルキ リデン基としては、 例えば、 ェチリデン基、 及びプロピリデン基が挙げられる。 p l、 p 2、 p 3、 q l、 q 2、 及ぴ q 3は、 それぞれ別個に 0乃至 3の整数 を表す。
上記一般式 (1 7) 〜 (1 9) で表されるベンゾフエノン骨格を有する化合物 の好ましい例としては、 2—ヒ ドロキシー 4—メ トキシベンゾフエノン一 5—力 ルボン酸、 2 , 2, ージヒ ドロキシ一 4ーメ トキシベンゾフエノン一 5—カノレポ ン酸、 4一 (2—ヒ ドロキシベンゾィル) 一 3—ヒ ドロキシベンゼンプロパン酸、 2, 4ージヒ ドロキシベンゾフエノン、 2—ヒ ドロキシー 4ーメ トキシべンゾフ ェノン、 2—ヒ ドロキシ一 4ーメ トキシベンゾフエノン一 5—スノレホン酸、 2 - ヒ ドロキシ一 4一 n—オタ トキシベンゾフエノン、 2 , 2, ージヒ ドロキシ _ 4, 4, ージメ トキシベンゾフエノン、 2 , 2 ' , 4, 4, ーテ トラヒ ドロキシベン ゾフエノン、 2—ヒ ドロキシ一 4ーメ トキシー 2, 一力/レポキシベンゾフエノン 等が挙げられる。
もちろん、 これらを二種以上組み合わせて使用することができる。
紫外線吸収剤の使用は任意であり、 また使用する場合の使用量も特に制限され るものではないが、 使用する場合はレドックス電解質フィルム中に 0 . 1質量% 以上、 好ましくは 1質量%以上であり、 2 0質量%以下、 好ましくは 1 0質量% 以下の範囲の量で含有させることが望ましい。
本発明における電解質層は、レドックス電解質フィルムとして製造しても良い。 レドックス電解質フィルムの製造方法について以下に説明する。
レドックス電解質フィルムは、所望により可塑剤、支持電解質、 レドックス材、 紫外線吸収剤等の任意成分を高分子マトリックス成分中に配合することにより得 られる混合物を、 公知の方法によりフィルムに成形することにより得ることが出 来る。 この場合の成形方法としては特に限定されず、 押出し成型、 キャスト法に よるフィルム状態で得る方法、 スピンコート法、 ディップコート法などを挙げる ことができる。
押出し成型については常法により行うことができ、 高分子マトリックスと可塑 剤、 支持電解質、 レドックス材、 紫外線吸収剤等の任意成分を混合し、 過熱溶融 した後、 フィルム成型することが行われる。
キャス ト法については、 高分子マトリックスと可塑剤、 支持電解質、 レドック ス材、 紫外線吸収剤等の任意成分を混合し、 さらに適当な希釈剤にて粘度調整を 行い、 キャス ト法に用いられる通常のコ一タにて塗布し、 乾燥することで成膜す ることができる。 コータとしては、 ドクタコータ、 ブレードコータ、 ロッドコー タ、 ナイフコータ、 リバースロールコータ、 グラビアコータ、 スプレイコータ、 カーテンコータを用いることができ、 粘度おょぴ膜厚により使い分けることがで きる。 スピンコート法については、 高分子マトリックスと可塑剤、 支持電解質、 レド ックス材、 紫外線吸収剤等の任意成分を混合し、 さらに適当な希釈剤にて粘度調 整を行い、 市販のスピンコーターにて塗布し、 乾燥することで成膜することがで きる。
ディップコート法については、 高分子マトリックスと可塑剤、 支持電解質、 レ ドックス材、 紫外線吸収剤等の任意成分を混合し、 さらに適当な希釈剤にて粘度 調整を行って混合物溶液を作製し、 適当な基盤を混合物溶液より引き上げた後、 乾燥することで成膜することができる。
以上の方法により得られたレドックス電解質フィルムは、 イオン伝導度が、 通 常室温で 1 X 1 0— TSZcm以上、 好ましくは 1 X 1 0— 6SZcm以上、 さら に好ましくは 1 X 1 0— 5SZcm以上を示す。 イオン伝導度は、 複素インピー ダンス法などの一般的な手法で求めることができる。
レドックス電解質フィルムの厚さは、 特に限定されないが、 下限としては、 通 常 l /zm以上、 好ましくは 1 0 μπι以上であり、 上限としては通常 3 mm以下、 好ましくは lmm以下である。
本発明における光電変換素子としては、 図 1に示すような構造に代表される層 構造をもっている。
[発明を実施するための最良の形態]
以下に実施例を挙げ、 本発明を具体的に説明するが、 本発明はこれらになんら 制限されるものではない。
(実施例 1 )
アルカリ洗浄、 プラズマ一オゾン洗浄し、 清浄化したフィルム抵抗値 1 0 Ω/ s qの 5 c m角 I TOガラス (ガラス基板上に S nドープ I n 203膜を形成し た透明導電性ガラス) 上に、 下記式で示される化合物 A— Bのクロロフオルム溶 液 (約 l O g/L) をスピンコートした。 十分乾燥した後、 光電変換層を作製し た。 なお、 層の膜厚は約 500 nmであった。 この層の表面状態を観察したとこ ろ、均質で曇りのない膜が成膜されていた。また、得られた光電変換層を、 80°C に 20時間放置したが、 特に変化は認められなかった。
また, 本実施例の化合物の電子受容性分子構造からなる化合物 Aおよび電子供 与性分子構造からなる化合物 Bを用いて, Ag/Ag C 1を参照電極としてサイ クリックボルタンメ トリーにより酸化還元電位を測定したところ, 化合物 Aは一 0. 5 V, 化合物 Bは I Vであった。
Figure imgf000048_0001
化合物 A— B
Figure imgf000048_0002
化合物 A 化合物 B 次にこの光電変換層上に A 1を 1. 33 X 1 0— 3P a (1 X 1 0_5T o r r ) (30 A/s) で約 1 00 nm積層し、 光電変換素子を作製した。
この素子に、 拡散板を通し均一化した 1 00Wタングステンランプの光を照射 し、 短絡時の電流値を測定したところ、 2. 1 μ Aの電流値が得られ、 良好な光 電変換素子の特性を示すことが確認できた。
(実施例 2)
光電変換層作製に用いる化合物として, 下記式で示される化合物 A— Bを用い た以外は実施例 1と同様にして, 光電変換層を作製した。 なお、 層の膜厚は約 2 O O nmであった。 この層の表面状態を観察したところ、 均質で曇りのない膜が 成膜されていた。 また、 得られた光電変換層を、 80°Cに 20時間放置したが、 特に変化は認められなかった。
Figure imgf000049_0001
化合物 A— B 次にこの光電変換層上に A 1を 1. 3 3 X 1 0— 3P a ( 1 X 1 0— 5To r r) (3 OA/s) で約 100 nm積層し、 光電変換素子を作製した。
この素子に、 拡散板を通し均一化した 100Wタングステンランプの光を照射 し、 短絡時の電流値を測定したところ、 3. 1 μ Aの電流値が得られ、 良好な光 電変換素子の特性を示すことが確認できた。
(比較例 1 )
アルカリ洗浄、 プラズマ一オゾン洗浄し、 清浄化したフィルム抵抗値 10 Ω/ s qの 5 c m角 I TOガラス (ガラス基板上に S nドープ I n 203膜を形成し た透明導電性ガラス) 上に、 下記式で示される化合物 Aと化合物 Bの混合物のク ロロフオルム溶液 (等モル混合後で約 10 gZL) の溶液をスピンコートし、 十 分乾燥することにより光電変換層を作製した。 なお、 層の膜厚は約 500 nmで あった。 この層の表面状態を乾燥すると見た目にも濁りがあるのがはっきりわか つた。 得られた光電変換層を 80°Cに 20時間放置したが、 濁りは改善されなか つた。
Figure imgf000049_0002
化合物 A 化合物 B 光電変換層に、 A 1を 1. 33 X 1 0_3P a (1 X 1 0— 5T o r r) (30 A /s) で約 l O O nm積層し、 光電変換素子を作製した。 この素子に拡散板を通 し均一化した 10 OWタングステンランプの光を照射し、 短絡時の電流値を測定 したところ、 得られた電流値は 0. 6 μΑであった。
(実施例 3)
光電変換層作製に用いる化合物として, 下記式で示される化合物 Α_Βを用い た以外は実施例 1と同様にして, 光電変換層を作製した。 なお、 層の膜厚は約 2 O O nmであつだ。 この層の表面状態を観察したところ、 均質で曇りのない膜が 成膜されていた。 また、 得られた光電変換層を、 80 に 20時間放置したが、 特に変化は認められなかった。
Figure imgf000050_0001
化合物 A— B 次にこの光電変換層上に A 1を 1. 3 3 X 1 0— 3P a (1 X 1 0_5T o r r ) (30 A/s) で約 1 00 nm積層し、 光電変換素子を作製した。
この素子に、 拡散板を通し均一化した 1 00Wタングステンランプの光を照射 し、 短絡時の電流値を測定したところ、 2. 7 μ Aの電流値が得られ、 良好な光 電変換素子の特性を示すことが確認できた。
[産業上の利用可能性]
本発明の光電変換素子は、光電変換層におけるマクロな相分離の発生を抑制し、 良好な電荷分離, キャリア移動機能を有する光電変換層を作製することで、 高効 率な光発電が可能である。
また、 本光電変換素子は、 比較的容易に製造でき、 また製造時や廃棄時におけ る環境負荷が小さいなどの特長を有する。
[図面の簡単な説明]
図 1は、本発明における光電変換素子としての代表的な層構造を示す図である。

Claims

請 求 の 範 囲
1. 一 式 (1) で表される化合物からなる光電変換層を有することを特 徴とする光電変換素子。
A1— B— A2 (1)
(式中、 A1は、 電子受容性分子構造、 A 2は、 電子供与性分子構造、 Bは連結 ュニットを表す。 )
2. 前記一般式 (1) で表される化合物において、 連結ユニット Bが非共 役系分子構造であることを特徴とする請求の範囲第 1項記載の光電変換素子。
3. 前記一般式 (1) で表される化合物において、 連結ユニット Bが, ェ ステル結合基 (一 COO—)、 酸アミド結合基 (_CONH—)、 ウレタン結合基
(— NHCOO— )、 エーテル結合基 (— 0—)、 炭素数 1〜; 1 00の 2価の炭化 水素基、 またはこれらを組み合わせた 2価の有機残基から選ばれる連結基である ことを特徴とする請求の範囲第 1項記載の光電変換素子。
4. 前記化合物が, 一般式 (2) で表される化合物であることを特徴とす る請求の範囲第 1項記載の光電変換素子。
A1— B— A2 (2)
(式中、 A1は、 一価の縮合多環式炭化水素基、 ボルフイリン錯体構造を有する 一価の有機金属基、 フタロシアニン構造を有する一価の有機金属基、 コロネン構 造を有する一価の複素環炭化水素基およびピレリン構造を有する一価の複素環炭 化水素基から選ばれる有機残基を表し、 A2は、 一価の縮合多環式炭化水素基、 ポルフィリン錯体構造を有する一価の有機金属基、 フタロシアニン構造を有する 一価の有機金属基、 コロネン構造を有する一価の複素環炭化水素基、 ピレリン構 造を有する一価の複素環炭化水素基、 メロシアニン構造を有する一価の複素環炭 化水素およびチォフエン構造を有する一価の有機残基から選ばれる有機残基を表 し、 且つ、 A1と A2は異なる一価基であり、 それぞれの酸化還元電位 EA1およ び EA2が EA1く EA2なる関係にあり, Bは、 A1と A2との連結基を表す。 )
5. 前記一般式 (2) で表される化合物において、 連結ユニット Bが非共 役系分子構造であることを特徴とする請求の範囲第 4項記載の光電変換素子。
6. 前記一般式 (2) で表される化合物において、 エステル結合基 (—C OO—)、 酸アミ ド結合基 (一 CONH—)、 ウレタン結合基 (一 NHCOO—)、 エーテル結合基 (一 O—)、 炭素数 1〜1 00の 2価の炭化水素基、 またはこれ らを組み合わせた 2価の有機残基から選ばれることを特徴とする請求の範囲第 4 項記載の光電変換素子。
PCT/JP2003/002726 2002-03-11 2003-03-07 Dispositif de conversion photoelectrique WO2003077323A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003575427A JPWO2003077323A1 (ja) 2002-03-11 2003-03-07 光電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002065995 2002-03-11
JP2002/65995 2002-03-11

Publications (1)

Publication Number Publication Date
WO2003077323A1 true WO2003077323A1 (fr) 2003-09-18

Family

ID=27800244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002726 WO2003077323A1 (fr) 2002-03-11 2003-03-07 Dispositif de conversion photoelectrique

Country Status (2)

Country Link
JP (1) JPWO2003077323A1 (ja)
WO (1) WO2003077323A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532301A (ja) * 2005-03-04 2008-08-14 へリアテック ゲーエムベーハー 有機光活性装置
JP2008214227A (ja) * 2007-03-01 2008-09-18 Nippon Oil Corp 新規ディスコティック液晶性化合物
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
JP2009043980A (ja) * 2007-08-09 2009-02-26 Ricoh Co Ltd 光電変換素子とその製造方法及び光電変換素子を用いた太陽電池
JP2012111716A (ja) * 2010-11-25 2012-06-14 Saitama Univ C60−ポルフィリン共有結合体
JP2013193957A (ja) * 2012-03-15 2013-09-30 Saitama Univ 有機太陽電池用色素として有用な分子内ドナーアクセプター型分子
JP2014507382A (ja) * 2010-12-15 2014-03-27 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子
CN116410748A (zh) * 2021-12-30 2023-07-11 苏州星烁纳米科技有限公司 磷化铟纳米晶的制备方法及磷化铟纳米晶

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360703A (en) * 1981-04-28 1982-11-23 National Research Council Of Canada Photovoltaic cell having P-N junction of organic materials
US4514584A (en) * 1982-12-09 1985-04-30 University Of Miami Organic photovoltaic device
JPH09139532A (ja) * 1995-09-13 1997-05-27 Toshiba Corp 有機薄膜素子
WO1999003154A1 (en) * 1997-07-11 1999-01-21 University Of Southern California Charge generators in heterolamellar multilayer thin films
JPH11284250A (ja) * 1998-03-27 1999-10-15 Sharp Corp フェナジノン誘導体およびそれを用いる光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360703A (en) * 1981-04-28 1982-11-23 National Research Council Of Canada Photovoltaic cell having P-N junction of organic materials
US4514584A (en) * 1982-12-09 1985-04-30 University Of Miami Organic photovoltaic device
JPH09139532A (ja) * 1995-09-13 1997-05-27 Toshiba Corp 有機薄膜素子
WO1999003154A1 (en) * 1997-07-11 1999-01-21 University Of Southern California Charge generators in heterolamellar multilayer thin films
JPH11284250A (ja) * 1998-03-27 1999-10-15 Sharp Corp フェナジノン誘導体およびそれを用いる光電変換素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUJIHIRA ET AL.: "Photoinduced intramolecular electron transfer across monolayers consisting of linear A-S-D traid amphiphilic molecules", THIN SOLID FILMS, vol. 179, 1989, pages 471 - 476, XP000099681 *
SUN ET AL.: "Design and synthesis of novel block copolymers for efficient opto-electronic applications", PROCEEDING OF SPIE, vol. 4465, February 2002 (2002-02-01), pages 121 - 128, XP002967609 *
TADA ET AL.: "Electronic devices using polymer donor-acceptor systems", PROCEEDINGS OF 1998 INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATING MATERIALS, 27 September 1998 (1998-09-27) - 30 September 1998 (1998-09-30), pages 815 - 818, XP002967610 *
WANG ET AL.: "Synthesis and characterization of new C60-PPV dyads containing carbazole moiety", POLYMER, vol. 43, 2002, pages 2049 - 2054, XP004332954 *
YOSHINO ET AL.: "Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 44, no. 8, August 1997 (1997-08-01), pages 1315 - 1324, XP000658336 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532301A (ja) * 2005-03-04 2008-08-14 へリアテック ゲーエムベーハー 有機光活性装置
US8426727B2 (en) 2005-03-04 2013-04-23 Heliatek Gmbh Organic photoactive device
JP2008214227A (ja) * 2007-03-01 2008-09-18 Nippon Oil Corp 新規ディスコティック液晶性化合物
WO2009007340A1 (de) * 2007-07-10 2009-01-15 Basf Se Mischungen zur herstellung von photoaktiven schichten für organische solarzellen und organische photodetektoren
JP2009043980A (ja) * 2007-08-09 2009-02-26 Ricoh Co Ltd 光電変換素子とその製造方法及び光電変換素子を用いた太陽電池
JP2012111716A (ja) * 2010-11-25 2012-06-14 Saitama Univ C60−ポルフィリン共有結合体
JP2014507382A (ja) * 2010-12-15 2014-03-27 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子
US9193902B2 (en) 2010-12-15 2015-11-24 Merck Patent Gmbh Organic electroluminescent device
JP2013193957A (ja) * 2012-03-15 2013-09-30 Saitama Univ 有機太陽電池用色素として有用な分子内ドナーアクセプター型分子
CN116410748A (zh) * 2021-12-30 2023-07-11 苏州星烁纳米科技有限公司 磷化铟纳米晶的制备方法及磷化铟纳米晶

Also Published As

Publication number Publication date
JPWO2003077323A1 (ja) 2005-07-07

Similar Documents

Publication Publication Date Title
Niu et al. Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells
Pious et al. Zero-dimensional methylammonium bismuth iodide-based lead-free perovskite capacitor
Agresti et al. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area
Cui et al. Color-tuned perovskite films prepared for efficient solar cell applications
Sadasivuni et al. Flexible, biodegradable and recyclable solar cells: a review
Xu et al. A power pack based on organometallic perovskite solar cell and supercapacitor
EP1566845A1 (en) Photoelectric conversion element
Trifiletti et al. NiO/MAPbI3-xCl x/PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells
Boschloo et al. Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells
Jovanovski et al. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells
Mejía Escobar et al. ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells
JP4583025B2 (ja) ナノアレイ電極の製造方法およびそれを用いた光電変換素子
Albadri et al. Unraveling the impact of rubidium incorporation on the transport-recombination mechanisms in highly efficient perovskite solar cells by small-perturbation techniques
Wang et al. Bifunctional polymer nanocomposites as hole-transport layers for efficient light harvesting: application to perovskite solar cells
EP1511116A1 (en) Photoelectric transducer
Man et al. Use of a ruthenium-containing conjugated polymer as a photosensitizer in photovoltaic devices fabricated by a layer-by-layer deposition process
Xia et al. Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability
JP4126019B2 (ja) 光電変換素子
JP2009269987A (ja) 新規化合物、光電変換素子及び太陽電池
JP2006339199A (ja) 光電変換素子とその製造方法及び光電変換素子を用いた太陽電池
Liu et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes
Hu et al. Transparent conductive oxide layer and hole selective layer free back-contacted hybrid perovskite solar cell
Nguyen et al. Solar-powered supercapacitors integrated with a shared electrode
JP4528082B2 (ja) 導電性パターンを有する電極基板および太陽電池
WO2013099614A1 (ja) 光電気素子及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003575427

Country of ref document: JP

122 Ep: pct application non-entry in european phase