WO2003072394A2 - Airbelt inflator - Google Patents
Airbelt inflator Download PDFInfo
- Publication number
- WO2003072394A2 WO2003072394A2 PCT/US2003/005608 US0305608W WO03072394A2 WO 2003072394 A2 WO2003072394 A2 WO 2003072394A2 US 0305608 W US0305608 W US 0305608W WO 03072394 A2 WO03072394 A2 WO 03072394A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- inflator
- diameter
- ledge
- housing defining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/26—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
- B60R21/264—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
- B60R21/2644—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/04—Blasting cartridges, i.e. case and explosive for producing gas under pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/18—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags the inflatable member formed as a belt or harness or combined with a belt or harness arrangement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/231—Inflatable members characterised by their shape, construction or spatial configuration
- B60R21/23138—Inflatable members characterised by their shape, construction or spatial configuration specially adapted for side protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Definitions
- the present invention relates to vehicle occupant protection systems, and specifically to a gas generator or inflator that provides an adjustable gas output rate, and an enhanced thrust for airbelts or side impact airbags, for example, while minimizing the size of the inflator.
- an airbelt inflator (10) provided for supplying and directing gas from the combustion of pyrotechnic materials into an inflatable safety belt or airbag.
- the airbelt inflator (10) comprises a substantially cylindrical inflator body (12) having a first end (14) and a second end (16).
- An initiator assembly (18) is positioned in the inflator body (12) adjacent the first end (14), and rests upon an interior ledge (26).
- a filter assembly (48) is positioned in the inflator body (12) proximate the second end (16), and rests upon a second interior ledge (42), being separated from the initiator assembly (18) by a cavity containing gas generant tablets (32).
- An output enhancer (56) is placed in intimate association and in coaxial alignment with the filter assembly (48) and a gas output disk (52), the gas output disk itself being adjacent a nozzle adaptor (50) positioned at the second end (16). Crimping the second end (16) of the inflator body (12) secures the nozzle adaptor (50), gas output disk (52), the output enhancer (56), and the filter assembly (48). Assembly of the airbelt inflator (10) begins by inserting the pre- assembled initiator assembly (18) into the inflator body (12) until it rests upon the ledge (26), then crimping the end (14) of the inflator body (12) to hold the initiator (18) in place.
- the inflator body (12) can be inverted, and the main propellant tablets (32), filter assembly (48), output enhancer (56), and the nozzle adaptor (50) can be loaded into the inflator (10). Output enhancers having different densities may be incorporated into the inflator body to reduce or increase the relative rate of gas output. Finally, the second end (16) of the inflator body (12) is crimped to secure the components, completing assembly.
- Figure 1 is a cross-sectioned view of a gas generator in accordance with the present invention.
- FIG. 1 there is shown an airbelt inflator 10 according to a preferred constructed embodiment of the present invention.
- Inflator 10 is preferably designed for supplying and directing gas from the combustion of pyrotechnic materials into an inflatable vehicle safety airbelt, but is not thereby limited in use.
- Exemplary, but not limiting airbelts are described in U.S. Patent Nos. 6,439,601 ; 6,170,863; 6,145,873, and 6,142,512, the teachings of which are herein incorporated by reference.
- Inflator 10 includes a substantially cylindrical inflator body or housing 12, preferably metallic, having a first end 14 and a second end 16. It is contemplated that ceramic, polymeric, and other suitable materials may be useful in manufacturing the various components of inflator 10.
- An initiator assembly 18 having a first outer diameter is positioned in inflator body 12 within first end 14, and preferably held in place by crimping first end 14 in a conventional manner.
- Initiator assembly 18 includes an initiator body 20 with an attached igniter 22.
- the igniter 22 or squib has a set of electrical contacts 24 preferably accessible from first end 14.
- Igniter 22 is preferably a conventional igniter such as that taught in U.S. Patent Nos.
- body 20 rests upon a first interior ledge 26 of inflator body 12 and is held by a crimp at first end 14, although it should be appreciated that some other suitable affixing method such as threads or snap-fitting might be used without departing from the scope of the present invention.
- An elastomeric O-ring 28 is preferably positioned in an annulus 30 encircling initiator body 20 and creating a fluid-tight seal with inflator body 12.
- a first inner wall 34 is formed proximate the first end 14, and defines a first diameter about equal to the outer diameter of the initiator assembly.
- a second inner wall 36 is formed proximate the second end 16 and defines a second diameter. As shown in figure 1 , the first and second diameters are essentially equal, although the present invention is not thereby limited.
- a third inner wall 38 is formed intermediate of the first and second inner walls 34 and 36, and forms a third diameter thereby containing a bed of propellant tablets 32.
- a first ledge 26 is formed at a point 40 where the first inner wall 34 and the third inner wall 38 meet. If desired, a second ledge 42 is formed at a point 44 where the second inner wall 36 and the third inner wall 38 meet.
- Each ledge represents an integral structural obstruction within the housing 12 that facilitates discrete placement or orientation of inflator components without the need for welding.
- the plurality of tablets of a main propellant charge 32 are positioned within the interior of inflator body 12, and are ignitable by igniter 22 in a conventional manner.
- the charge or gas generant composition may be any suitable propellant known in the art, and is preferably a non-azide propellant. Exemplary, but not limiting, compositions are described in U.S. Patent Nos. 5,872,329, 5,756,929, and 5,386,775, herein incorporated by reference.
- a second charge consisting of an autoignition material 46 is preferably positioned within inflator body 12 adjacent the main charge 32, and is ignitable in a conventional manner.
- a filter 48 is positioned within inflator body 12 adjacent the propellant charges 32 and 46.
- filter 48 is a well-known conventional metallic mesh filter, however, some other suitable type of filter might be used.
- the second ledge 42 preferably abuts filter 48, and assists in maintaining the various components of inflator 10 in their desired positions.
- a preferably metallic nozzle adaptor 50 is fixed therein and directs the flow of combustion gases out of inflator body 12 and into an inflatable airbelt or airbag (not shown).
- Nozzle adaptor 50 is also preferably held in place by crimping the second end 16 of inflator body 12, however, it might also be affixed with threads, adhesives, welds or some other suitable attachment method.
- a perforated gas output disk 52 is positioned adjacent nozzle adaptor 50, and preferably has a second elastomeric O-ring 54 around its circumference, creating a fluid-tight seal at second end 16.
- an enhancer disc 56 is oriented intermediate of filter 48 and at end 16, and is juxtaposed against the filter 48 in coaxial alignment therewith.
- the metallic density of the enhancer disc 56 is tailored to accommodate the desired gas flow rate depending on design criteria.
- the present inflator may be tailored to modify the gas flow rate from the inflator by altering the metallic density of the enhancer disc 56.
- the metallic density of disc 56 generally exceeds that of filter 48, wherein the metallic density of disc 56 may be modified to be slightly greater to much greater relative to the metallic density of filter 48.
- Known suppliers such as Wayne Wire Cloth of Hillman, Michigan or Expan Metal of Saginaw, Michigan may supply filter 48 and the enhancer disc 56.
- a burst shim 58 seals the enhancer disc 56 thereby facilitating a pressure increase within the inflator 10 for combustion of propellant 32.
- Assembly of inflator 1 0 preferably begins by inserting the pre-assembled initiator assembly 1 8 into inflator body 1 2 until it rests upon ledge 26, then crimping the edges of the first end 14 toward the interior of inflator body 1 2 to secure initiator assembly 1 8 therein. Once initiator assembly 1 8 has been inserted, inflator body 1 2 is inverted, and the main propellant tablets 32 are loaded. Next, the autoignition material 46 is added, followed by the filter 48. The filter 48 is preferably biased against the second ledge 42 whereby the outer diameter 49 of the filter 48 is essentially equal to the second diameter defined by the inner wall 36.
- inflator 10 Assembly of inflator 10 is completed by serially loading the enhancer disk 56, burst shim 58, gas output disk 52, and finally nozzle adaptor 50.
- Nozzle adaptor 50 is preferably secured by crimping the edges of second end 1 6 about the adapter 50.
- the various components herein described as positioned in inflator body 1 2 are all preferably substantially discoidal.
- an electrical signal is sent to igniter 22 from an onboard electronic controller (not shown) in a conventional manner. Igniter 22 subsequently ignites the gas generant tablets 32 located within inflator body 1 2.
- a booster material (not shown) can be included in inflator 10 to facilitate ignition of the main charge 32.
- Ignition of tablets 32 results in the very rapid creation of combustion gases in inflator body 1 2, and a consequent very rapid rise in the internal gas pressure in inflator body 1 2.
- the internal gas pressure When the internal gas pressure has risen to a sufficient level, it ruptures burst shim 58.
- the combustion gas passes through filter 48, thereby removing slag, then through enhancer disk 56, gas output disk 52, and finally into an associated airbelt or airbag via nozzle adaptor 50.
- Airbelt inflator 10 represents a relatively simple design, is light in weight, and uses relatively few components. The manufacturing of inflator 10 is thus relatively easy and inexpensive. In addition, inflator 10 is capable of meeting any required gas output without compromising its structural integrity. Inflator 10 is preferably positioned in a vehicle B- pillar, and operable to direct inflation gas into an inflatable safety restraint belt when activated by a conventional vehicle sensing system known in vehicle occupant protection systems. However, inflator 10 might also be positioned in a vehicle C-pillar, or even elsewhere in the vehicle. Furthermore, inflator 10 is not limited in application to vehicle airbelts, and could be applicable to conventional vehicle airbags as well.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Bags (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003571116A JP4188842B2 (ja) | 2002-02-22 | 2003-02-24 | エアベルトインフレータ |
| EP03709316A EP1476327B1 (en) | 2002-02-22 | 2003-02-24 | Airbelt inflator |
| DE60307236T DE60307236T2 (de) | 2002-02-22 | 2003-02-24 | Luftgurtaufblasvorrichtung |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US35879002P | 2002-02-22 | 2002-02-22 | |
| US60/358,790 | 2002-02-22 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2003072394A2 true WO2003072394A2 (en) | 2003-09-04 |
| WO2003072394A3 WO2003072394A3 (en) | 2004-01-08 |
Family
ID=27765997
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/005608 Ceased WO2003072394A2 (en) | 2002-02-22 | 2003-02-24 | Airbelt inflator |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US6851373B2 (enExample) |
| EP (1) | EP1476327B1 (enExample) |
| JP (1) | JP4188842B2 (enExample) |
| DE (1) | DE60307236T2 (enExample) |
| WO (1) | WO2003072394A2 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008019863A1 (de) * | 2008-04-16 | 2009-11-05 | Takata-Petri Ag | Gasgenerator für ein Airbagmodul |
| US7669893B2 (en) | 2006-01-12 | 2010-03-02 | Takata-Petri Ag | Gas generator |
| US8276521B2 (en) | 2007-10-05 | 2012-10-02 | Takata AG | Gas generator for an airbag module |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10303377A1 (de) * | 2003-01-29 | 2004-08-05 | Dynamit Nobel Ais Gmbh Automotive Ignition Systems | Pyromechanisches Trennelement |
| US7017944B2 (en) * | 2004-01-16 | 2006-03-28 | Automotive Systems Laboratory, Inc. | Multiple chamber inflator |
| US20060011495A1 (en) * | 2004-06-28 | 2006-01-19 | Brian Hood | Pyrotechnic safety device and method of use |
| US20070001437A1 (en) * | 2005-07-01 | 2007-01-04 | Key Safety Systems, Inc. | Single stage inflator |
| US7344153B1 (en) * | 2005-07-18 | 2008-03-18 | Manneh Dimitri J | Multiple sensor controlled vehicle airbag deployment system |
| JP4800917B2 (ja) * | 2006-12-15 | 2011-10-26 | 日本化薬株式会社 | ガス発生器 |
| US8375862B2 (en) * | 2008-12-04 | 2013-02-19 | Tk Holdings, Inc. | Gas generating system |
| US9527470B2 (en) | 2013-08-20 | 2016-12-27 | Daicel Corporation | Gas generator |
| US10953842B2 (en) | 2016-04-18 | 2021-03-23 | Nippon Kayaku Kabushiki Kaisha | Gas generator |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3898048A (en) * | 1974-03-21 | 1975-08-05 | Us Navy | Light-weight rocket deployable gas generator |
| US4899663A (en) * | 1989-02-15 | 1990-02-13 | Automotive Systems Laboratory, Inc. | Percussion initiated inflator assembly |
| US5615912A (en) * | 1995-10-05 | 1997-04-01 | Trw Vehicle Safety Systems Inc. | Inflator for air bag |
| US5844164A (en) * | 1996-02-23 | 1998-12-01 | Breed Automotive Technologies, Inc. | Gas generating device with specific composition |
| US6662727B2 (en) * | 1996-03-14 | 2003-12-16 | Dynamit Nobel Gmbh | Gas generator, in particular for belt tighteners |
| FR2752293B1 (fr) * | 1996-08-09 | 1998-09-11 | Livbag Snc | Generateur hybride a injection gazeuse interne |
| US6120058A (en) * | 1996-08-23 | 2000-09-19 | Trw Vehicle Safety Systems Inc. | Air bag inflator |
| US5727813A (en) * | 1996-08-21 | 1998-03-17 | Automotive Systems Laboratory, Inc. | Air bag inflator |
| DE19726296A1 (de) * | 1997-06-20 | 1998-12-24 | Temic Bayern Chem Airbag Gmbh | Gasgenerator mit Kühlvorrichtung |
| JPH1159315A (ja) * | 1997-08-12 | 1999-03-02 | Daicel Chem Ind Ltd | エアバッグ用ガス発生器のクッション部材 |
| JP3465547B2 (ja) | 1997-09-02 | 2003-11-10 | タカタ株式会社 | エアベルト装置 |
| JP3465546B2 (ja) | 1997-09-02 | 2003-11-10 | タカタ株式会社 | エアベルト装置 |
| US6116137A (en) | 1998-05-21 | 2000-09-12 | Strahan; Travis R. | Slide and barrel coupler |
| DE69910304T2 (de) | 1998-06-09 | 2004-06-24 | Takata Corp. | Aufblasbare Sicherheitsgurtvorrichtung |
| FR2787149B1 (fr) * | 1998-12-09 | 2001-01-05 | Giat Ind Sa | Dispositif de deverrouillage pyrotechnique |
| JP4426079B2 (ja) * | 1999-09-27 | 2010-03-03 | ダイセル化学工業株式会社 | イニシエータ組立体 |
| JP3945100B2 (ja) | 1999-11-05 | 2007-07-18 | タカタ株式会社 | エアベルト及びエアベルト装置 |
| DE10028168A1 (de) * | 2000-06-09 | 2001-12-20 | Peter Lell | Gasgenerator, insbesondere zum Befüllen eines Gassacks |
| JP2002276896A (ja) * | 2001-03-14 | 2002-09-25 | Takata Corp | ストアーガスインフレータ |
-
2003
- 2003-02-24 WO PCT/US2003/005608 patent/WO2003072394A2/en not_active Ceased
- 2003-02-24 US US10/372,996 patent/US6851373B2/en not_active Expired - Fee Related
- 2003-02-24 JP JP2003571116A patent/JP4188842B2/ja not_active Expired - Fee Related
- 2003-02-24 EP EP03709316A patent/EP1476327B1/en not_active Expired - Lifetime
- 2003-02-24 DE DE60307236T patent/DE60307236T2/de not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7669893B2 (en) | 2006-01-12 | 2010-03-02 | Takata-Petri Ag | Gas generator |
| US8276521B2 (en) | 2007-10-05 | 2012-10-02 | Takata AG | Gas generator for an airbag module |
| DE102008019863A1 (de) * | 2008-04-16 | 2009-11-05 | Takata-Petri Ag | Gasgenerator für ein Airbagmodul |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4188842B2 (ja) | 2008-12-03 |
| EP1476327B1 (en) | 2006-08-02 |
| US6851373B2 (en) | 2005-02-08 |
| DE60307236D1 (de) | 2006-09-14 |
| DE60307236T2 (de) | 2007-10-18 |
| US20030159613A1 (en) | 2003-08-28 |
| EP1476327A2 (en) | 2004-11-17 |
| JP2005518299A (ja) | 2005-06-23 |
| EP1476327A4 (en) | 2005-04-20 |
| WO2003072394A3 (en) | 2004-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6871873B2 (en) | Airbelt inflator | |
| JP3181870B2 (ja) | エアバッグ用ハイブリッドインフレーター | |
| US6908104B2 (en) | Pyrotechnic side impact inflator | |
| US6032979A (en) | Adaptive output inflator | |
| US6854764B2 (en) | Flexible airbag inflator | |
| US5794973A (en) | Dual stage air bag inflator | |
| US6769714B2 (en) | Low onset dual stage hybrid inflator | |
| US7506891B2 (en) | Belt and side impact inflator | |
| KR100501963B1 (ko) | 에어백의 점진적인 전개 방법 및 이의 실시를 위한 화공 화약 | |
| WO2000050273A1 (en) | Dual stage inflator | |
| US6851373B2 (en) | Airbelt inflator | |
| EP1003653B1 (en) | Miniature inflator | |
| US20060091660A1 (en) | Center discharge hybrid inflator device | |
| US6981718B2 (en) | Projectile firing barrel | |
| US6832777B2 (en) | Gas generator | |
| KR20050023277A (ko) | 가스 발생제 필터 조립체, 필터와 클로저를 포함하는조합체 및 에어백 팽창기 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2003571116 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003709316 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2003709316 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2003709316 Country of ref document: EP |