WO2003070921A1 - PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES ϜδT - Google Patents

PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES ϜδT Download PDF

Info

Publication number
WO2003070921A1
WO2003070921A1 PCT/FR2003/000585 FR0300585W WO03070921A1 WO 2003070921 A1 WO2003070921 A1 WO 2003070921A1 FR 0300585 W FR0300585 W FR 0300585W WO 03070921 A1 WO03070921 A1 WO 03070921A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
γδt
culture
lymphocytes
cytokine
Prior art date
Application number
PCT/FR2003/000585
Other languages
English (en)
Inventor
Francois Romagne
Catherine Laplace
Original Assignee
Innate Pharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innate Pharma filed Critical Innate Pharma
Priority to US10/505,252 priority Critical patent/US20050196385A1/en
Priority to CA002475437A priority patent/CA2475437A1/fr
Priority to EP03722666A priority patent/EP1476540A1/fr
Priority to AU2003229834A priority patent/AU2003229834B2/en
Priority to JP2003569814A priority patent/JP4445268B2/ja
Publication of WO2003070921A1 publication Critical patent/WO2003070921A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/42Organic phosphate, e.g. beta glycerophosphate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]

Definitions

  • the present application relates to methods for the production of lymphocyte cells, as well as the tools, reagents and kits which can be used for their implementation. It relates more particularly to methods for preparing ⁇ T lymphocytes, suitable for the industrial production of functional cells of pharmaceutical quality and in large quantities. It also relates to methods of activating ⁇ T cells, devices adapted to these methods, as well as the cell compositions obtained and their uses.
  • the present application is applicable to the production of human or animal ⁇ T lymphocytes, and can be used in the pharmaceutical, therapeutic, experimental, cosmetic, industrial research, etc. fields.
  • T ⁇ 9 ⁇ 2 lymphocytes (sometimes also called T ⁇ 2 ⁇ 2 lymphocytes) are ⁇ T lymphocytes carrying TCR receptors with variable regions V ⁇ 9 and V ⁇ 2. They represent the majority of T ⁇ lymphocytes in human blood. When activated, ⁇ T lymphocytes exert a powerful cytotoxic activity unrestricted by MHC, particularly effective in killing various types of cells, in particular pathogenic cells.
  • viruses can be cells infected by viruses (Poccia et al, J. Leukocyte Biology, 62, 1997, p. 1-5) or by other intracellular parasites, such as mycobacteria (Constant et al, Infection and Immunity, vol. 63, n ° 12, Dec. 1995, p. 4628-4633) or protozoa (Behr et al, Infection and Immunity, Vol. 64, n ° 8, 1996, p. 2892-2896). It can also be cancer cells (Poccia et al, J. Immunol., 159, p. 6009-6015; Fournie and Bonneville, Res.
  • application WO99 / 46365 proposes a method comprising a first culture of hemato-lymphoid cells in the presence of interleukin-12 and a CD2 ligand, followed by a second culture in the presence of a T cell mitogenic compound and interleukin-2.
  • This process is complex, requires several stages of cell processing and several metabolic activation pathways. In addition, it does not provide cellular compositions sufficiently enriched in ⁇ T cells.
  • the present application now describes a new process for producing ⁇ T cells.
  • the process is suitable for industrial production of large quantities of cells, allows the production of functional and pharmaceutical-grade ⁇ T lymphocytes.
  • the method can be implemented directly on cytapheresis, from large and heterogeneous quantities of cells, and allows very significant stimulation and expansion in ⁇ T cells, leading to compositions which may comprise more than 90% of ⁇ T cells.
  • the method of the invention is simplified since it requires only one step or one metabolic activation pathway. The method makes it possible to produce cellular compositions suitable for various uses, in particular therapeutic.
  • a first object of the invention lies more particularly in a process for the preparation of a composition of ⁇ T lymphocytes, comprising at least one stage of culture of a biological preparation comprising at least 50 million mononuclear cells in the presence of an activating compound synthesis of ⁇ T lymphocytes at the initiation of culture, followed by culture, typically 10 to 25 days, in the presence of a cytokine.
  • the compositions obtained advantageously have the following specifications:
  • the cells are kept in culture at a cell density of less than approximately 5.10 E 6 cells / ml, preferably at approximately 3.10 B 6, more preferably at approximately 2.10 E 6 cells / ml.
  • the examples provided indeed show that such a density ensures efficient expansion of the cells.
  • Another subject of the invention relates to a process for the preparation of a cell composition comprising functional ⁇ T lymphocytes, characterized in that it comprises:
  • the culture of a preparation of blood cells typically of cells originating from a cytapheresis
  • a synthetic activator compound of the ⁇ T lymphocytes and of a cytokine chosen from interleukin-2 and interleukin-15 said culture being carried out in conditions ensuring the maintenance of a cell density essentially lower than 5.10 E 6 cells / ml, preferably around 3.10 B 6 cells / ml, and
  • Maintaining cell density can be achieved in different ways, such as by successive dilution (s), addition of medium (s), device transfer, etc.
  • Another object of the invention resides in a method of enriching blood cells with ⁇ T lymphocytes, comprising at least one stage of culture of a biological preparation comprising at least 50 million blood mono-nucleated cells in the presence of a compound synthetic activator of ⁇ T lymphocytes at the initiation of culture, followed by a culture, typically of 10 to 25 days, in the presence of a cytokine.
  • the preparations obtained by such a process can comprise more than 80% of ⁇ T cells, or even more than 90%.
  • the cells used are preferably human, can come from frozen biological samples, and are cultivated preferentially for a period of time greater than 10 days, preferably between 10 and 30 days.
  • compositions characterized in that it comprises a population of cells composed of more than 80% of functional ⁇ T lymphocytes and in that it comprises more than 100 million ⁇ T cells.
  • the composition also comprises a pharmaceutically acceptable agent or vehicle and, more preferably, a stabilizing agent, such as human serum albumin.
  • the cells are preferably autologous, that is to say from the same biological preparation (or from the same donor). They are more preferably obtained by a process as described above.
  • Another subject of the invention relates to a culture of blood cells in vitro or ex vivo, characterized in that it comprises at least 80% of functional ⁇ T lymphocytes and more than 100 million ⁇ T cells.
  • the invention also relates to the use of a cell culture as defined above for the preparation of a pharmaceutical composition intended for the stimulation of the immune defenses of a subject, more particularly for the treatment of infectious diseases, parasites or cancers.
  • the invention also relates to a method for treating a pathology capable of being improved by increasing the activity of ⁇ T cells, in particular by increasing the immune defenses of a subject, comprising the administration to a subject of an effective amount of a pharmaceutical composition or of a cellular composition as defined above.
  • the administration is preferably carried out by injection, in particular by systemic injection (intravenous, intraperitoneal, intramuscular, intraarterial, subcutaneous, etc.) or local (eg, intra-tumor or in a surrounding area or irrigating a tumor). Repeated injections can be given.
  • the injected cells are preferably autologous (or syngeneic), that is to say are prepared from a biological preparation originating from the patient himself (or from a twin).
  • the method is applicable to the treatment of various pathologies, such as cancers, infectious or parasitic diseases.
  • the present invention can be used in the pharmaceutical, therapeutic, experimental, cosmetic, industrial research, etc. fields. It is particularly suitable for the production of cellular compositions for pharmaceutical use, in particular for the increase of an immune response in a subject, for example for the treatment of pathologies such as cancers and infectious or parasitic diseases.
  • the process of the invention is advantageous insofar as it allows efficient production of ⁇ T cells from a biological preparation comprising large quantities of unsorted blood cells. It can therefore be implemented directly from a blood, plasma, or serum sample, for example from a cytapheresis.
  • a preparation of monomiclated blood cells, in particular peripheral blood is used.
  • a peripheral blood cell preparation usually has 30 to 70% T or B lymphocytes, 5 to 15% NK cells and 1 to 5% ⁇ T cells. It is of course possible to treat the biological preparation before implementing the process of the invention, for example to select certain subpopulations, or to deplete certain subpopulations. However, such a pre-treatment is not necessary to produce compositions of functional ⁇ T cells according to the invention.
  • the method is typically implemented directly from a sample of blood cells taken from a subject, in particular from a sample of total mono-nucleated cells (that is to say unfractionated).
  • a sample can be obtained by conventional methods known to those skilled in the art and commonly practiced in human clinics worldwide, such as by cytapheresis or ficoll gradient on whole blood (PBMC).
  • PBMC ficoll gradient on whole blood
  • a preferred source of cells for the implementation of the invention is composed of total peripheral mononuclear cells as obtained by cytapheresis.
  • the method of the invention comprises a first stage of culture of a cytapheresis, or of an aliquot of a cytapheresis, under the conditions described above.
  • Cytapheresis typically provides more than 10 B 9 mononuclear cells. From a cytapheresis, it is thus possible to prepare several aliquots, which can be treated separately by the method of the invention. Thus, for the same patient, several batches of ⁇ T cells according to the invention can be produced, separately and spaced over time. This sampling makes it possible to carry out quality and functionality tests on the cells, and to ensure greater security for the compositions.
  • the present application shows that functional ⁇ T cells can be produced from preparations of mono-nucleated cells previously frozen.
  • the results presented in the examples indeed show that a cytapheresis can be frozen with a view to its preservation for long periods, and that the cells, once thawed, can be activated. and efficiently propagated to produce functional ⁇ T cell compositions.
  • This possibility of production from previously frozen samples gives a very important advantage to the invention, in particular in the context of the preparation of autologous cell banks.
  • a particular embodiment of the method of the invention therefore comprises the preparation of ⁇ T cells from a biological preparation (in particular mono-nucleated cells) previously frozen.
  • a particular subject of the invention also relates to a process for the production of functional ⁇ T cells, comprising (i) the culture of previously frozen blood mononuclear cells in the presence of a synthetic activating compound for ⁇ T lymphocytes and a cytokine under conditions ensuring proliferation of ⁇ T cells and (ii) recovery or conditioning of the ⁇ nousesT cells obtained.
  • the mono-nucleated blood cells come from a cytapheresis.
  • Another particular object of the invention relates to a process for producing functional ⁇ T cells, comprising (i) (obtaining and) freezing of mono-nucleated blood cells from a subject, typically in the form of doses comprising approximately 10 E 7 to 5.10 E 9 cells per ml, (ii) thawing of cells or individual doses and their culture in the presence of a synthetic activating compound for ⁇ T lymphocytes and a cytokine under conditions ensuring proliferation of ⁇ T cells and, (iii) recovery or conditioning of the ⁇ T cells obtained.
  • the blood mononuclear cells come from a cytapheresis.
  • the cells can be frozen using different techniques.
  • a preferred method uses a stabilizing agent such as DMSO (dimethyl sulfoxide) and / or glycerol.
  • DMSO dimethyl sulfoxide
  • glycerol a stabilizing agent that stabilizes the membranes cellular and allows efficient freezing of cells, in terms of viability of cells when thawed.
  • Other techniques or media can be used, using gelatins, polymers, proteins, etc.
  • a particularly suitable medium is a 90/10 volume over volume solution of serum and DMSO, where the serum used is also used for cell proliferation.
  • the percentage of DMSO can vary between 5 and 15% of the volume of the solution.
  • the serum can be replaced by a solution of human albumin at 4%, for example Albumin-LFB 4% (Marketing Authorization No. 558632-9).
  • the percentage of human albumin can however be higher, for example up to 20%.
  • the cells are suspended in a medium suitable for freezing, as defined above, then are placed in a freezing atmosphere, such as vapors of liquid nitrogen, for example. Freezing is advantageously carried out in tubes or in suitable bags, under sterile conditions, in the form of aliquots of the same preparation of blood cells.
  • the cells thus frozen can be stored for very long periods of time, thus allowing the production of ⁇ T cells at significant time intervals, without the need for repeated samples from a subject.
  • the method preferably uses a biological preparation comprising more than 50 ⁇ 10 6 E mononuclear cells, typically between 50 and 1000 million cells, for example 50, 100, 200 or 300 million cells approximately.
  • the biological preparation comprises more than 100 million cells. It is understood that larger quantities can be used.
  • a typical biological preparation initially comprises less than 10% of ⁇ T cells, more often less than 5% of ⁇ T cells, a biological preparation of 100 million cells typically contains from 1 to 5 million ⁇ T cells. From such a preparation, the process of the invention makes it possible to obtain compositions comprising 10 E 8 or more functional ⁇ T cells.
  • compositions obtained by the process of the invention comprise more than 80% of ⁇ T cells, or even more than 90%.
  • the process of the invention is therefore particularly effective and suitable for the production of cells in pharmaceutical quantities and quality.
  • An advantageous aspect of the process of the invention lies in the use of a synthetic activating compound for ⁇ T lymphocytes.
  • the invention shows that an efficient and oriented activation and expansion of ⁇ T cells can be obtained by a single metabolic activation by means of a synthetic compound.
  • the term synthetic activator compound indicates that the invention uses an artificially produced molecule capable of activating ⁇ T lymphocytes. It is typically a ligand (eg, a chemical molecule) capable of binding the T receptor of ⁇ T lymphocytes.
  • the activating compound can be of a varied nature, such as peptide, lipid, chemical, etc. It may be a purified or chemically produced endogenous ligand, or a fragment or derivative of such a ligand, or an antibody having the same antigenic specificity. It is preferably a synthetic chemical compound, capable of selectively binding the TCR receptor and activating ⁇ T cells.
  • Selective binding indicates that the compound interacts with a higher affinity on the TCR of ⁇ T cells than on other membrane receptors, and therefore leads to selective or oriented activation of the proliferation and activity of ⁇ T lymphocytes.
  • Different synthetic activating compounds can be used, such as the phosphohalohydrin compounds (PHD) described in application WO00 / 12516, the phosphoepoxide compounds (PED) described in application WO00 / 12519, or the biphosphonate compounds as described by Kunzmann et al. (Blood 96 (2000) 384).
  • X is a halogen atom (preferably chosen from an iodine, bromine or chlorine atom)
  • RI is a methyl or ethyl group
  • Cat + represents one (or more) organic cation (s) or mineral (s) (including the proton) identical or different
  • n is an integer between 2 and 20.
  • a PED or PHD compound is used.
  • Specific compounds are the following products: 3- (bromomethyl) -3-butanol-1-yl-diphosphate (BrHPP) 3- (iodomethyl) -3-butanol- 1-yl-diphosphate (IHPP) 3- (chloromethyl) -3-butanol-l-yl- di ⁇ hosphate (ClHPP) 3- (bromomethyl) -3-butanol- 1 -yl-triphosphate (BrHPPP) 3- (iodomethyl) -3-butanol-l-yl-tri ⁇ hos ⁇ hate (IHPPP) ⁇ , ⁇ -di- [3- ( bromomethyl) -3-butanol-1-yl] -triphosphate (diBrHTP) ⁇ , ⁇ -di- [3- (iodomethyl) -3-butanol-1-yl] -triphosphate (di
  • aminobiphosphonate compounds are used, such as for example l-hydroxy-3- (methylpentylan ⁇ o) propylidene-biphosphonic acid.
  • the synthetic activator is (E) -4-hydroxy-3-methyl-but-2-enyl pyrophosphate, as described by Hintz et al (FEBS Lett. Dec 7 2001; 509 (2): 317-22)
  • the dose of activating compound can be adapted by a person skilled in the art depending on the quantity of cells and the nature of the compound used. Generally, the compound is used at the initiation of the culture at a dose less than or equal to about 10 ⁇ M.
  • An important advantage of the process of the invention lies in the fact that a single selective metabolic activation is necessary, at the start of culture. Thus, once the culture has been initiated, it is no longer necessary to add the synthetic activator compound again to the medium.
  • the method of the invention uses a cytokine (alone or optionally combined or associated with other biologically active agents), in particular an interleukin.
  • cytokine alone or optionally combined or associated with other biologically active agents
  • it is interleukin-2 or interleukin-15.
  • the interleukin used can be of human or animal origin, preferably of human origin. It can be a wild protein or any biologically active variant or fragment, that is to say capable of binding to its receptor and of inducing the activation of ⁇ T cells under the conditions of the process of l 'invention.
  • variant designates in particular all natural variants, resulting for example from polymorphism (s), splicing (s), mutations (s), etc. Such natural variants can therefore comprise one or more mutations or substitutions, a deletion of one or more residues, etc. compared to the wild sequence.
  • variant also designates polypeptides originating from another species, for example rodents, cattle, etc.
  • a cytokine of human origin is nevertheless used.
  • variant also includes any synthetic variant of a cytokine, and in particular any polypeptide comprising one or more mutations, deletions, substitutions and / or additions of one or more amino acids with respect to the wild-type sequence.
  • Preferred variants advantageously have at least 75% identity with the primary sequence of the wild-type cytokine, preferably at least 80%, more preferably at least 85%. Even more preferably, the preferred variants have at least 90% identity with the primary sequence of the wild cytokine.
  • the degree of identity can be determined by different methods and by means of software known to those skilled in the art, such as for example according to the CLUSTAL method.
  • any fragment of a cytokine retaining the biological activity defined above preferably contain at least one region or functional domain of the cytokine, such as for example a catalytic domain, a receptor binding site, a secondary structure (loop, sheet, etc.), a consensus site, etc. .
  • the fragments used advantageously retain the property of interleukin-2 or of interleukin-15 to bind the membrane receptor and to stimulate the development of ⁇ T lymphocytes.
  • the cytokines used can also comprise heterologous residues added to the wild amino acid sequence, such as amino acids, lipids, sugars, etc. It can also be a chemical, an enzymatic, a radioactive group, etc.
  • the heterologous part can in particular constitute a stabilizing agent, an agent facilitating the penetration of the polypeptide into the cells or improving its affinity, etc.
  • Cytokines can be in soluble, purified, fused or complexed form with another molecule, such as for example a biologically active peptide, polypeptide or protein. Cytokines can be prepared by any biological, genetic, chemical or enzymatic technique known to those skilled in the art, and in particular by expression in a suitable cellular host of a corresponding nucleic acid. Cytokines such as 1TL-2 and 1TL-15 can also be obtained from commercial sources. Preferably, a recombinant human cytokine is used, typically a recombinant human interleukin-2 or a recombinant human interleukin-15.
  • cytokines used in the process of the invention can vary depending on the nature of the starting cells.
  • the cytokine concentration can be changed during culture.
  • cytokines are used at doses of between 100 and 500 U / ml, typically between 150 and 500 U / ml approximately.
  • the cytokine concentration can be adjusted, for example by adding culture medium.
  • doses of cytokine of between 150 and 400 U / ml are used.
  • a particular object of the invention lies in a process for preparing a composition of ⁇ T lymphocytes from a sample of mononuclear cells, comprising at least:
  • the present application indeed shows that the use of a synthetic activator compound promotes the expression of receptors of high affinity for the cytokine IL2 on the surface of ⁇ T cells, and that low doses of IL2 are sufficient to allow proliferation. specific for ⁇ T cells, this low dose does not promote the growth of cells carrying receptors of lower affinity.
  • the high affinity receptor disappears after 7 to 10 days of culture and is replaced by a lower affinity receptor. The cells must then be cultured in the presence of a second higher dose of cytokine, in order to improve the performance of the process and the proliferation of functional ⁇ T cells.
  • the first dose of cytokine is preferably a dose less than or equal to approximately 300 U / ml, preferably of the order of approximately 150 U / ml
  • the second dose of cytokine is preferably a dose greater than about 300 U / ml, preferably about 350 U / ml, typically of the order of 400 U / ml.
  • the cytokine concentration is maintained essentially constant during the process, for example by adding fresh medium containing the cytokine at different intervals.
  • the cytokine concentration is maintained between 250 and 500 U / ml, for example between 300 and 450 U / ml.
  • the method of the invention comprises culturing the cells in the presence of an activating compound (at the initiation of culture) and of a cytokine, for a period of time and under conditions allowing activation and amplification selective ⁇ T cells.
  • the cells can be cultured in various media and devices suitable for the culture of human cells, in particular blood cells. These can be defined, supplemented media, etc.
  • media which can be used are in particular the commercial media RPMI, Prolifix S3, S6, Ampicell X3 (Bio Media), X-VIVO-10 and 15 (Biowhittaker), AIM N (Invitrogen), Medium I and II (Sigma), StemSpan H200 (Stem cell), CellGro SCGM (CellGenix), etc.
  • These media can be supplemented with antibiotics, human serum or animal origin, preferably approved for use for cell culture for therapeutic purposes, amino acids and / or vitamins, etc.
  • a preferred medium is RPMI medium, preferably supplemented with fetal calf serum.
  • a particularly preferred medium is an irradiated calf serum, approved by regulatory agencies for the cultivation of cells for therapeutic purposes.
  • This type of serum is commercially available from several suppliers.
  • Cultures can be carried out in different devices, such as boxes, bags, flasks, bottles, tubes, ampoules, biological reactors, etc.
  • the cultures are advantageously carried out in sterile devices which can be closed.
  • the cultures need not be shaken.
  • Gas permeable pockets are particularly suitable.
  • device changes can be made during the culture, in particular to dilute the cells and promote their expansion. However, such a change is not mandatory, and devices of large volume can be implemented from the initiation of the process and kept until its completion.
  • the biological preparation or the cells are contained in a volume of medium such that the initial cell density is between 0.2 and 3.10 E 6 cells / ml.
  • the applicants have in fact shown that maintaining a cell density between 0.2 and 3.10 6 cells / ml, more preferably close to 2.10 E 6 cells / ml, greatly promotes the expansion of ⁇ T cells. Higher cell concentrations could presumably be obtained using biological reactors.
  • Maintaining cell density can be achieved in different ways, such as by successive dilution (s), addition of medium (s), device transfer, etc.
  • cell density cannot be kept constant during the process, since cells divide continuously.
  • the density is therefore controlled or adjusted to different time intervals, so as to maintain as best as possible a density between 0.5 and 3.10 E 6 cells / ml.
  • the process can be carried out over variable periods of time and / or following several cycles. Generally, the duration of the process is greater than approximately 10 days, typically between approximately 10 and 30 days or between approximately 10 and 25 days. Different variants can be envisaged.
  • a first phase to carry out the culture in the presence of the activating compound alone and in the absence of cytokine.
  • This first phase can last, for example, between 1 hour and 72 hours, typically less than 48 hours.
  • This phase is intended to stimulate ⁇ T cells and to induce a certain expression of receptors of high affinity for cytokines by these cells.
  • the culture is continued in a medium comprising the cytokine, but without the need to add the activator compound again.
  • fresh medium containing the cytokine, but devoid of the activator compound is added to the cells.
  • the culture is then continued for a period of time greater than approximately 10 days, typically between 10 and 25 days.
  • the cell density is preferably controlled and / or adjusted during the culture, and the dose of cytokine used can be maintained or modified.
  • the method of the invention makes it possible to obtain compositions of cells advantageously having the following specifications:
  • the process is simple, requires only rapid metabolic activation, and involves a very limited number of cell manipulations. It can also be implemented from previously frozen cells. This process is therefore particularly advantageous for pharmaceutical exploitation of ⁇ T cells.
  • the cells produced can be used extemporaneously or treated for conservation.
  • the cells are conditioned in a medium comprising a stabilizing agent, such as in particular a polymer or a neutral protein.
  • a stabilizing agent such as in particular a polymer or a neutral protein.
  • HSA human albumin
  • the results presented show that the cells can be conditioned in a solution of human albumin at 4 ° C, for their injection.
  • a particular object of the invention resides in a composition comprising ⁇ T cells and human serum albumin, typically from 2 to 10%, advantageously approximately 4%.
  • Another object of the invention lies in a pharmaceutical composition, characterized in that it comprises a population of cells composed of more than 80% of functional ⁇ T lymphocytes and comprising more than 100 million ⁇ T cells.
  • the composition comprises more than 85% of functional ⁇ T lymphocytes, or even more than 90%.
  • the composition further comprises a pharmaceutically acceptable agent or vehicle and, more preferably, a stabilizing agent, such as human serum albumin. More preferably, the cells are obtained or capable of being obtained by a process as described above.
  • Another subject of the invention relates to a process for the preparation of a pharmaceutical composition based on ⁇ T lymphocytes, the process comprising:
  • packaging the cells in a pharmaceutically acceptable vehicle or excipient packaging the cells in a pharmaceutically acceptable vehicle or excipient.
  • Another subject of the invention relates to a culture of blood cells in vitro or ex vivo, characterized in that it comprises at least 80% of functional ⁇ T lymphocytes.
  • the invention also relates to the use of a cell culture as defined above for the preparation of a pharmaceutical composition intended for the stimulation of the immune defenses of a subject, more particularly for the treatment of infectious diseases, parasitic, cancer, autoimmune or inflammatory diseases.
  • the invention also relates to a method of treating cancer or an infectious or parasitic pathology, comprising the administration to a subject of an effective amount of a pharmaceutical composition or of a cellular composition as defined above. before.
  • treatment means a reduction or suppression of the symptoms, causes or foci of the disease, a regression or a slowing down of the progression of a disease, for example of tumor growth, an improvement in the condition of the patients, a reduction in viral or parasitic load, a decrease in pain or suffering, an increase in lifespan, etc.
  • the term effective amount more particularly designates an amount effective for stimulating the patient's immune response against cancerous or infected cells.
  • the doses of cells administered are typically between 10 E 6 and 10 E 10 cells per dose, although different amounts can be envisaged. It is understood that the quantity of cells used can be adjusted by the practitioner according to the pathology and the clinical protocol (in particular the number and site of injections).
  • the administration is preferably carried out by injection, in particular by systemic injection (intravenous, intraperitoneal, intramuscular, intraarterial, subcutaneous, etc.) or local (eg, intra-tumor or in a surrounding area or irrigating a rumor).
  • systemic injection intravenous, intraperitoneal, intramuscular, intraarterial, subcutaneous, etc.
  • local eg, intra-tumor or in a surrounding area or irrigating a rumor.
  • Allogenic compositions can be envisaged.
  • repeated injections are carried out, with an escalation of doses, each dose level itself being able to comprise several injections (typically from one to four) at time intervals which can vary between one and six weeks per example.
  • the initial dose is typically greater than 100 million cells, for example between 100 million and 5 billion, and an escalation of doses up to 10 billion cells can be achieved.
  • a specific clinical protocol provides for a dose escalation (each dose level comprising three successive injections three weeks apart) starting at 1 billion, then 4 billion then 8 then 12 billion cells.
  • the gamma 9 delta 2 cells being dependent, for their proliferation and survival, on the activity of cytokines and preferably, on interleukin 2, co-therapy is advantageously carried out.
  • the cells obtained by the method of the invention are injected with a co-therapy of cytokine, in particular of IL2.
  • a preferred administration scheme consists of daily subcutaneous injections for approximately 7 days of approximately 1 million units of cytokine per square meter of body surface.
  • a particular object of the invention therefore also resides in a composition comprising cells as defined above and a cytokine, preferably 1TL-2 or 1TL-15, more preferably 1TL-2, for their simultaneous, separate use or spaced over time.
  • Another subject of the invention resides in a method of treatment comprising the administration to a subject of a cellular composition as defined above and of a cytokine, preferably of IL-2, the cells and the cytokine being administered simultaneously, separately or spaced over time.
  • the ⁇ T cells can be genetically modified, prior to their administration, for example so that they express a stimulating factor, a growth factor, a cytokine, a toxin, etc.
  • the present invention can be used (alone or in combination with other therapies) for the treatment of various pathologies capable of being improved by an increase in the activity of ⁇ T cells (and in particular in which cells sensitive to cytolytic activity ⁇ T cells are involved).
  • ⁇ T cells and in particular in which cells sensitive to cytolytic activity ⁇ T cells are involved.
  • gamma 9 delta 2 cells obtained by the method of the invention.
  • Cancers of different histologies can also be treated, in which the gamma delta cells exert cytolytic activity: myeloma, bladder cancer, melanoma, astrocytoma, neuroblastoma. This list is not exhaustive, and other types of cancer susceptible to gamma delta lysis can also be treated (lung, liver, head and neck cancers, colon, etc.).
  • gamma delta cells In the case of infectious diseases, gamma delta cells have been shown to be lyrical towards many bacteria or intracellular mycobacteria. Thus, the activity of gamma 9 delta 2 cells against cells infected with the tuberculosis agent or the plague agent is well known. These cells also respond to other infectious pathologies such as thularemia. Antiviral activity has also been demonstrated against cells infected with the HIV virus, influenza, Sendai, coxsackie, vaccinia, vesicular stomatitis virus (VSV), and herpes simplex virus-1 (HSV-1) (Sciammas et al, 1999, TcR gamma delta and viruses, Microbes Infect 1: 203).
  • EXAMPLE I Expansion of gamma 9 delta 2 cells from more than 50 million unfractionated PBMC cells so as to obtain, after 10 to 20 days of culture, a gamma 9 delta 2 purity of more than 80% and more than 100 million of gamma 9 delta 2 cells.
  • CMNs mono-nucleated cells
  • RPMI medium SIGMA, ref R0883
  • L-glutamine 0.3 g / 1 final
  • the media were supplemented with serum, of human or animal origin.
  • irradiated fetal calf serum was used (lots of irradiated “Fetal Clone-I” (25 kGy) from Hyclone (ref SH 30080.03 IR)), as well as human serum.
  • the human serum used during these studies comes from a pool of healthy donors' serum prepared by the France transfusion center. This therapeutic grade serum (approved by the French regulatory agency) is used in cell therapy protocols aimed at injecting conventional alpha beta T cells.
  • the recombinant human interleukin-2 used is Proleukin (Aldesleukin) at 18 million IU from CHIRON BV (ref FRC01A) and stored in aliquots at a concentration of 360,000 IU / ml in RPMI / SH medium 10% to - 20 ° C.
  • the Ficoll (“Medium separation lymphocyte”) was used at a density of 1.077 ⁇ 0.001 (SIGMA, ref 913353).
  • Human albumin is albumin-LFB 4%, Marketing Authorization No. 558632-9.
  • DMSO and saline are from Braun medical.
  • CMN lymphocytes from CMN
  • This procedure includes a first phase of "de-plateletization" of the sample, which is carried out on each cytapheresis pocket, according to the following procedure.
  • the contents of the cytapheresis bag are transferred into 50 ml tubes, into which 2 volumes of RPMI medium are added.
  • the tubes are centrifuged at 200 g, then the supernatant is removed.
  • the pellets are pooled (pooled) and resuspended in RPMI medium (qs 50 ml).
  • the cells are counted, then a new centrifugation is carried out at approximately 400 g (at 20 ° C.).
  • CMNs can be frozen in a 5-15% DMSO freezing solution (in 4% human albumin, or SVF), or directly cultured.
  • cells suspended in 4% human albumin or SVF are diluted volume to volume in the refrigerated freezing solution (20% DMSO and 4% human albumin or SVF).
  • the tube containing the cell suspension is agitated for the entire duration of the operation and advantageously rests on a refrigerated container or on crushed ice.
  • the homogenized mixture is distributed into 1.8 ml cryotubes (1 ml / tube), which are stored in a freezer box, and placed at - 80 ° C. The cryotubes are then transferred and stored in a nitrogen tank (at least 4 hours later).
  • CMNs and the PBMCs are rapidly thawed (by immersion in a water bath at 37 ° C.), then transferred to 15 ml tubes containing 12 ml of RPMI medium.
  • the cells are washed in RPMI-10% FCS medium to remove the DMSO.
  • the cell count is carried out using a "Coulter" (on 3 different samples for the same condition and for the same donor).
  • CMNs seeded in the various containers was chosen in proportion to the “number of lymphocytes / surface area of one well” ratio used during the 24-well plate cultures, ie 1.10 6 cells / 1, 9 cm 2 approximately (see Table 4).
  • the mononuclear cells of each donor are cultured in the containers under the same volume and the same number of cells at the start, ie 100 million cells per container, in 50 ml of RPMI culture medium / 10% FCS / 3 ⁇ M BrHPP , 120 IU / ml IL-2 (i.e. an initial cell concentration of 2 million / ml).
  • the same medium containing 360 IU / ml of IL2 is added during the culture as indicated for each manipulation.
  • PBMC and CMN are cultured in 24-well plates at a rate of 1 million cells per well in 1.5 ml of RPMI / 10% SVF / 3 ⁇ M BrHPP culture medium / 120 IU / ml IL-2 (i.e. a cell concentration of 0.6 million / ml) Maintaining culture
  • the cells are kept in culture at 37 ° C. in a humid atmosphere and in the presence of 5% of CO 2 in RPMI / 10% SVF / 360 IU / ml IL-2 medium.
  • the first medium change occurs by adding medium on day 4, then regularly every 3 days.
  • the IL2 concentration increases during the culture.
  • the cells cultivated in the 24-well plates are transferred into 25 cm 2 flasks in an vertical position when the cell density becomes greater than 3. 10 6 cells / ml.
  • Counts may be made at other times, in the event of strong cellular expansion in order to supplement with fresh medium. Functional analysis of cells
  • Cytotoxicity test For this test, the target cells are labeled with a 51 Cr isotope (10 ⁇ l of 51 Cr / 1 million target cells in a 24-well plate), then incubated for 1 hour at 37 ° C. The cells are distributed (in duplicate) at the rate of 3000 cells / well in RPMI / 10% FCS (50 ⁇ l), and the spontaneous and maximum release of 51 Cr are determined. The effector cells ( ⁇ T of the invention) are then added (50 ⁇ l in RPMI / SVF 10%) to each target, according to the following Effector / Target (E / T) ratios: 30/1, 3/1, 0.3 / 1, and incubated 3 to 4 hours at 37 ° C. The cytotoxic activity (lysis of the target cells) is determined by measuring, on 25 ⁇ l of supernatant in a ⁇ -plate counter, the radioactivity released.
  • TNF release test The cells are washed twice in RPMI and then cultured in 96-well plates in RPMI medium, 10% FCS in the presence of 3 ⁇ M of BrHPP for 24 hours. TNF is assayed in the supernatant by the BeckmanCoulter Kit Immunotech kit, reference IM 11121.
  • the media supplemented with human serum are considered to be the most favorable for cultivating human lymphocytes and in particular gamma 9 delta 2 cells, in particular because the serum growth factors often have a species specificity.
  • such media are very difficult to prepare and use in the clinic, due to the biological risk and the availability of large quantities of human sera.
  • These experiments were carried out on a small scale, in 24-well plates, from whole blood from three different donors with initial stimulation with EpoxPP (see materials and methods for activation conditions).
  • the rate and the number of gamma delta T lymphocytes are monitored on a culture of approximately 30 days, by counting and flow cytometry.
  • the results of a proliferation comparison test in RPMI medium supplemented either in human serum or in SVF, as well as in two synthetic media (XVIVO10 and 15) on three healthy donors are collated in Table 5.
  • the best medium for the growth of gamma 9 delta 2 is RPMI medium supplemented with SVF.
  • the medium supplemented with human serum also provides a very significant amplification of the gamma 9 delta 2 cells, however this is more limited and variable from donor to donor.
  • the purity and the number of cells become less good compared to the medium supplemented with FCS.
  • the synthetic media tested (without serum) provide less amplification.
  • gamma delta cells have a very significant long-term proliferation potential, in a favorable environment.
  • SVF short-term proliferation potential
  • Other media could presumably reveal the high growth potential of gamma delta cells, such as media with less serum, combinations of the best synthetic media with low amounts of serum, or combinations of synthetic media.
  • the objective being to produce at the end of the culture large quantities of gamma 9 delta 2 cells, it is advantageous to be able to have, at the start, a large source of cells, possibly freezable, in order to be able to have cell banks .
  • a possible source is represented by the mononuclear cells obtained by cytapheresis.
  • this procedure can however damage the cells and prevent their satisfactory proliferation.
  • CMNs have been tested in proliferation, either just after plateletization or after plateletization and treatment with Ficoll (see materials and methods). We therefore tested whether cytapheresis cells could proliferate satisfactorily. This test was first performed on a small scale (24-well plate, see equipment and methods), and the results from three different donors are compiled in Table 6.
  • CMNs after ficoll also provide less proliferation than untreated CMNs.
  • CMNs from healthy donors (DlOO, D119, D127).
  • the culture is initiated with 100 million cells originating from CMN at a rate of 2 million cells per ml (initial total volume 50 ml).
  • the stimulation is carried out with BrHPP at 3 ⁇ M.
  • Addition of 50 ml of fresh medium (containing 350 U / ml of IL2) is carried out on days 4 and 7. From day 10, the cells are analyzed and counted, and reduced to 2 million cells per ml. They are then diluted every three days so as to reduce the cell concentration to 2 million cells per ml. The results obtained are compiled in Table 7.
  • CMNs from three new donors (D623, D762, D711).
  • the materials and methods are identical to Example I except when the conditions are specified.
  • the conditions for starting the culture are identical.
  • An addition of 50 ml of medium is made on day 4 and on day 7.
  • the cells are analyzed and counted.
  • the culture is carried out in triplicate up to day 10 (3 identical cultures per donor).
  • the cell concentration is then reduced to 3 concentrations (0.2, 0.5 and 1 million cells per ml, each concentration coming from one of the three triplicates), in order to study the effect of the cell concentration parameter.
  • the cultures are then analyzed every three days, and the concentration is reduced to the concentration of day 10 when the cells exceed the concentration of 2 million cells per ml.
  • Natural gamma 9 delta 2 cells produce, after stimulation, cytokines such as TNF ("tumor necrosis factor”) and are cytotoxic against many cancer cells.
  • cytokines such as TNF ("tumor necrosis factor") and are cytotoxic against many cancer cells.
  • TNF tumor necrosis factor
  • gamma 9 delta 2 cells are known to specifically lyse the Daudi line (myeloma), and not the RAJI line.
  • the functionality of the cells obtained by the cell culture method of the invention was tested according to two parameters: the capacity for cytotoxicity with respect to a renal carcinoma tumor line (Line 786-0, ATCC, reference CRL- 1932) and a myeloma line (RAJI cells serving as a negative control).
  • the cells obtained by the method are effectively cytotoxic with respect to the renal and Daudi carcinoma lines and, as expected, do not exhibit significant cytotoxicity with respect to the line Raji.
  • the cells are cytotoxic towards the renal carcinoma line 786-0.
  • a particularly practical way of implementing the method would be to be able to start from frozen cells. Indeed a cytapheresis can provide from 2 to 4 billion cells that it would be interesting to be able to aliquot and freeze in order to be able to carry out several cultures from the same cytapheresis. The freezing of cells can however greatly alter their viability and their growth capacity after thawing.
  • Example II The three CMNs obtained for the experiments of Example II were frozen in 10% o DMSO, HSA 4%. A new expansion was carried out using this frozen material (same protocol as for Example II. The results of the expansion are compiled in Table 10.
  • the functionality of fresh cells compared to frozen cells was also evaluated in parallel on cells obtained from fresh cells and from frozen cells. Two tests were performed: the cytotoxicity test and the TNF release test. The results of the cytotoxicity test carried out in parallel on fresh cells and frozen cells at day 21 are compiled in Table 11.
  • EXAMPLE IV Formulation of cells for an injectable preparation.
  • the SVF For injection into humans, the SVF must be removed and the cells taken up in a pharmaceutically acceptable buffer. The 4% HSA medium was tested.
  • the expansion protocol is the same as in Example II, except that the cells are maintained at 0.5 million cells per ml from Day 7.
  • the volume of the compositions can be reduced using “CytoMate®”, then the cells are conditioned in Human Albumin 4%.
  • the pellet is resuspended in 100 to 200 ml of human albumin 4%, so as to obtain a cell suspension whose concentration is between 10 and 100 million cells / ml.
  • a count and a measure of the viability of cells are produced, then the cells are stored in a pocket at 5 ° C. ⁇ 3, in order to test the stability of the preparation.
  • the formulated cell product was tested for its viability (counting on trypan blue malassez cell) at times 2 h, 4 h, 8 h, 22 h after formulation.
  • the cell product is more than 80% viable cells until at least 22 hours after formulation.
  • the formulated cell product was tested for functionality by the TNF release test at various times to assess the stability of the formulated cell preparation.
  • the formulated cells are still capable of producing TNF under BrHPP stimulation, even 22 hours after formulation. On the other hand, there is no significant difference in the production of TNF until 8 h after formulation.
  • CMN-FICOLL 3.84 60.17 9.27 95.83 95.58 95.6 71, 81 58.93 54.63 CMN-FICOLL 0.05 4.04 0.191 25.3 30.6 25.2384 1 , 9 1, 27 3,277
  • CMN-FICOLL 1 08 59.27 3.27 96.22 96.51 96.55 73.78 14.71 18.47 CMN-FICOLl 0.02 7.11 0.0523 91, 41 85.5 72, 9918 1.66 0.06 1.477

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Pulmonology (AREA)
  • Pain & Pain Management (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente demande concerne des méthodes pour la production de cellules lymphocytaires, ainsi que les outils, réactifs et kits utilisables pour leur mise en ouvre. Elle concerne plus particulièrement des méthodes de préparation de lymphocytes ϜδT, adaptées à une production industrielle de cellules fonctionnelles de qualité pharmaceutique et en quantités importantes. Elle concerne également des méthodes d'activation des cellules ϜδT, des dispositifs adaptés à ces méthodes, ainsi que les compositions cellulaires obtenues et leurs ϜδT humaines ou animaux, et peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc.

Description

Procédés de production de lymphocytes γδT
La présente demande concerne des méthodes pour la production de cellules lymphocytaires, ainsi que les outils, réactifs et kits utilisables pour leur mise en œuvre. Elle concerne plus particulièrement des méthodes de préparation de lymphocytes γδT, adaptées à une production industrielle de cellules fonctionnelles de qualité pharmaceutique et en quantités importantes. Elle concerne également des méthodes d'activation des cellules γδT, des dispositifs adaptés à ces méthodes, ainsi que les compositions cellulaires obtenues et leurs utilisations. La présente demande est applicable à la production de lymphocytes γδT humains ou animaux, et peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc.
Les lymphocytes γδT représentent habituellement de 1 à 5 % des lymphocytes du sang périphérique, chez un individu sain (humains, singes). Ils sont impliqués dans le développement d'une réponse immune protectrice, et il a été démontré qu'ils reconnaissent leurs ligands antigéniques par une interaction directe avec l'antigène, sans présentation par les molécules du CMH d'une cellule présentatrice. Les lymphocytes Tγ9δ2 (parfois aussi désignés lymphocytes Tγ2δ2) sont des lymphocytes γδT porteurs de récepteurs TCR à régions variables Vγ9 et Vδ2. Ils représentent la majorité des lymphocytes Tγδ dans le sang humain. Lorsqu'ils sont activés, les lymphocytes γδT exercent une puissante activité cytotoxique non restreinte par le CMH, particulièrement efficace pour tuer divers types de cellules, notamment des cellules pathogènes. Il peut s'agir de cellules infectées par des virus (Poccia et al, J. Leukocyte Biology, 62, 1997, p. 1-5) ou par d'autres parasites intracellulaires, tels que les mycobactéries (Constant et al, Infection and Immunity, vol. 63, n° 12, Dec. 1995, p. 4628-4633) ou les protozoaires (Behr et al, Infection and Immunity, Vol. 64, n° 8, 1996, p. 2892-2896). Il peut aussi s'agir de cellules cancéreuses (Poccia et al, J. Immunol., 159, p. 6009-6015 ; Fournie et Bonneville, Res. Immunol., 66th FORUM IN IMMUNOLOGY, 147, p. 338-347). La possibilité de moduler in vitro, ex vivo ou in vivo l'activité de ces cellules fournirait donc de nouvelles approches thérapeutiques efficaces dans le traitement de pathologies variées telles que les maladies infectieuses (notamment virales ou parasitaires), les cancers, les allergies, voire les maladies auto-immunes et/ou inflammatoires.
Différentes méthodes ont été envisagées dans l'art antérieur pour la production ex vivo ou in vitro de ces cellules. Ainsi, la demande WO99/46365 propose un procédé comprenant une première culture de cellules hémato-lymphoïdes en présence d'interleukine-12 et d'un ligand du CD2, suivie d'une deuxième culture en présence d'un composé mitogène des cellules T et d'interleukine-2. Ce procédé est complexe, requiert plusieurs étapes de traitement des cellules et plusieurs voies métaboliques d'activation. En outre, il ne fournit pas des compositions cellulaires suffisamment enrichies en cellules γδT.
Les demandes WO00/12516 et WO00/12519 décrivent des composés chimiques capables d'activer les cellules γδT. Ces demandes proposent l'utilisation de ces composés pour activer une réponse immunitaire in vivo, et prévoient en outre d'utiliser ces composés dans des méthodes d'activation ex vivo ou in vitro des cellules γδT. Toutefois, ces demandes ne décrivent pas de procédé industriel permettant de générer des populations cellulaires composées essentiellement de cellules γδT.
Pour envisager l'utilisation de cellules γδT à usage de thérapie cellulaire, il est nécessaire de disposer d'un procédé de culture et de conditionnement des cellules permettant d'obtenir un grand nombre de cellules de pureté élevée en cellules γδT. Les exemples d'injections de cellules LAK ou clones T montrent que l'efficacité de ces traitements n'apparaît que quand des quantités importantes de cellules sont injectées (bordignon 1999, haematologica. 84 :1110-1149 pour revue). Typiquement et d'après ces exemples, on doit disposer d'une méthode permettant d'obtenir de panière reproductible et dans des conditions acceptées par la pharmacopée au moins 100 millions de cellules de pureté supérieure à 80%.
La présente demande décrit à présent un nouveau procédé de production de cellules γδT. Le procédé est adapté à une production industrielle de quantités importantes de cellules, permet la production de lymphocytes γδT fonctionnels et de qualité pharmaceutique. Le procédé peut être mis en œuvre directement sur des cytaphérèses, à partir de quantités importantes et hétérogènes de cellules, et permet une stimulation et une expansion très importantes en cellules γδT, conduisant à des compositions pouvant comprendre plus de 90% de cellules γδT. En outre, le procédé de l'invention est simplifié puisqu'il ne nécessite qu'une étape ou qu'une voie d'activation métabolique. Le procédé permet de produire des compositions cellulaires adaptées à différentes utilisations, notamment thérapeutiques.
Un premier objet de l'invention réside plus particulièrement dans un procédé de préparation d'une composition de lymphocytes γδT, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mononucléées en présence d'un composé activateur synthétique des lymphocytes γδT à l'initiation de la culture, suivie d'une culture, typiquement de 10 à 25 jours, en présence d'une cytokine. Les compositions obtenues présentent avantageusement les spécifications suivantes :
- elles comprennent plus de 80% de cellules γδT, et
- elles comprennent plus de 100 millions de cellules γδT viables et fonctionnelles. Une caractéristique avantageuse du procédé de l'invention réside dans la possibilité de partir de quantités importantes de cellules non fractionnées, pour aboutir à des préparations très enrichies en cellules γδT fonctionnelles. Avantageusement, les cellules sont maintenues en culture à une densité cellulaire inférieure à environ 5.10E6 cellules/ml, de préférence à environ 3.10B6, plus préférentiellement à environ 2.10E6 cellules/ml. Les exemples fournis montrent en effet qu'une telle densité assure une expansion efficace des cellules.
Un autre objet de l'invention concerne un procédé de préparation d'une composition cellulaire comprenant des lymphocytes γδT fonctionnels, caractérisé en ce qu'il comprend :
. la culture d'une préparation de cellules sanguines (typiquement de cellules provenant dune cytaphérèse) en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine choisie parmi l'interleukine-2 et Pinterleukine-15, ladite culture étant réalisée dans des conditions assurant le maintien d'une densité cellulaire essentiellement inférieure à 5.10E6 cellules/ml, de préférence à environ 3.10B6 cellules/ml, et
. la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels.
Le maintien de la densité cellulaire peut être réalisé de différentes façons, comme par exemple par dilution(s) successive(s), ajout(s) de milieu, transfert de dispositif, etc.
Un autre objet de l'invention réside dans un procédé d'enrichissement de cellules sanguines en lymphocytes γδT, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mono- nucléées sanguines en présence d'un composé activateur synthétique des lymphocytes γδT à l'initiation de la culture, suivie d'une culture, typiquement de 10 à 25 jours, en présence d'une cytokine. Les préparations obtenues par un tel procédé peuvent comprendre plus de 80% de cellules γδT, voire plus de 90%.
Comme il sera indiqué dans la suite du texte, les cellules utilisées sont préférentiellement humaines, peuvent provenir d'échantillons biologiques congelés, et sont cultivées préférentiellement pendant une période de temps supérieure à 10 jours, de préférence entre 10 et 30 jours.
Un autre objet de l'invention réside dans une composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes γδT fonctionnels et en ce qu'elle comprend plus de 100 millions de cellules γδT. Préférentiellement, la composition comprend en outre un agent ou véhicule acceptable sur le plan pharmaceutique et, plus préférentiellement, un agent de stabilisation, tel que la sérum-albumine humaine. Les cellules sont préférentiellement autologues, c'est-à-dire issues d'une même préparation biologique (ou d'un même donneur). Elles sont plus préférentiellement obtenues par un procédé tel que décrit ci-avant.
Un autre objet de l'invention concerne une culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes γδT fonctionnels et plus de 100 millions de cellules γδT.
L'invention est également relative à l'utilisation d'une culture de cellules telle que définie ci-avant pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, plus particulièrement au traitement de maladies infectieuses, parasiraires ou de cancers.
L'invention concerne également une méthode de traitement d'une pathologie susceptible d'être améliorée par augmentation de l'activité des cellules γδT, notamment par augmentation des défenses immunitaires d'un sujet, comprenant l'administration à un sujet d'une quantité efficace d'une composition pharmaceutique ou d'une composition cellulaire telles que définies ci-avant. L'administration est réalisée préférentiellement par injection, notamment par injection systémique (intra-veineuse, intra-péritonéale, intra-musculaire, intra- artérielle, sous-cutanée, etc.) ou locale (e.g., intra-tumorale ou dans une zone environnant ou irriguant une tumeur). Des injections répétées peuvent être réalisées. Les cellules injectées sont préférentiellement autologues (ou syngéniques), c'est-à-dire sont préparées à partir d'une préparation biologique provenant du patient lui-même (ou d'un jumeau). La méthode est applicable au traitement de diverses pathologies, telles que les cancers les maladies infectieuses ou parasitaires.
Comme indiqué, la présente invention peut être utilisée dans les domaines pharmaceutiques, thérapeutiques, expérimentaux, cosmétiques, de recherche industrielle, etc. Elle est particulièrement adaptée à la production de compositions cellulaires à usage pharmaceutique, notamment pour l'augmentation d'une réponse immune chez un sujet, par exemple pour le traitement de pathologies telles que les cancers et maladies infectieuses ou parasitaires.
Préparation biologique
Le procédé de l'invention est avantageux dans la mesure où il permet une production efficace de cellules γδT à partir d'une préparation biologique comprenant des quantités importantes de cellules sanguines non triées. Il peut donc être mis en œuvre directement à partir d'un échantillon de sang, de plasma, ou de sérum, par exemple d'une cytaphérèse. Typiquement, on utilise une préparation de cellules monomicléées du sang, notamment du sang périphérique. Une préparation de cellules du sang périphérique comporte généralement de 30 à 70% de lymphocytes T ou B, de 5 à 15% de cellules NK et de 1 à 5% de cellules γδT. Il est bien entendu possible de traiter la préparation biologique préalablement à la mise en œuvre du procédé de l'invention, par exemple pour sélectionner certaines sous populations, ou pour dépléter certaines sous- populations. Toutefois, un tel pré-traitement n'est pas nécessaire pour produire des compositions de cellules γδT fonctionnelles selon l'invention. Ainsi, le procédé est typiquement mis en œuvre directement à partir d'un échantillon de cellules sanguines prélevé chez un sujet, notamment d'un échantillon de cellules mono-nucléées totales (c'est-à-dire non fractionnées). Un tel échantillon peut être obtenu par des méthodes classiques connues de l'homme de l'art et couramment pratiquées en clinique humaine dans le monde entier, telles que par cytaphérèse ou gradient ficoll sur sang total (PBMC). Une source préférée de cellules pour la mise en œuvre de l'invention est composée de cellules mononucléées périphériques totales telles qu'obtenues par cytaphérèse. Ainsi, dans un mode particulier de mise en œuvre, le procédé de l'invention comprend une première étape de culture d'une cytaphérèse, ou d'une aliquote d'une cytaphérèse, dans les conditions décrites ci-avant. Une cytaphérèse permet typiquement d'obtenir plus de 10B9 cellules mononucléées. A partir d'une cytaphérèse, il est ainsi possible de préparer plusieurs aliquotes, qui peuvent être traitées séparément par le procédé de l'invention. Ainsi, pour un même patient, il peut être produit plusieurs lots de cellules γδT selon l'invention, de manière séparée et espacée dans le temps. Cet échantillonnage permet d'effectuer des tests de qualité et de fonctionnalité sur les cellules, et d'assurer une plus grande sécurité aux compositions.
A cet égard, la présente demande montre que des cellules γδT fonctionnelles peuvent être produites à partir de préparations de cellules mono-nucléées préalablement congelées. Les résultats présentés dans les exemples montrent en effet qu'une cytaphérèse peut être congelée en vue de sa conservation pendant de longues périodes, et que les cellules, une fois décongelées, peuvent être activées et multipliées efficacement pour produire des compositions de cellules γδT fonctionnelles. Cette possibilité de production à partir d'échantillons préalablement congelés confère un avantage très important à l'invention, notamment dans le cadre de la préparation de banques de cellules autologues.
Un mode de réalisation particulier du procédé de l'invention comprend donc la préparation de cellules γδT à partir d'une préparation biologique (notamment de cellules mono-nucléées) préalablement congelée. Un objet particulier de l'invention concerne également un procédé de production de cellules γδT fonctionnelles, comprenant (i) la culture de cellules mononucléées sanguines préalablement congelées en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine dans des conditions assurant la prolifération de cellules γδT et (ii) la récupération ou le conditionnement des cellules γδT obtenues. Préférentiellement, les cellules mono-nucléées sanguines proviennent d'une cytaphérèse.
Un autre objet particulier de l'invention concerne un procédé de production de cellules γδT fonctionnelles, comprenant (i) (l'obtention et) la congélation de cellules mono-nucléées sanguines à partir d'un sujet, typiquement sous forme de doses comprenant environ 10E7 à 5.10E9 cellules par ml, (ii) la décongélation des cellules ou de doses individuelles et leur culture en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine dans des conditions assurant la prolifération de cellules γδT et, (iii) la récupération ou le conditionnement des cellules γδT obtenues. Préférentiellement, les cellules mononucléées sanguines proviennent d'une cytaphérèse.
La congélation des cellules peut être effectuée selon différentes techniques. Une méthode préférée utilise un agent stabilisant tel que le DMSO (diméthylsulfoxyde) et/ou le glycérol. Un tel agent stabilise les membranes cellulaires et permet une congélation efficace des cellules, en terme de viabilité des cellules à la décongélation. D'autres techniques ou milieux peuvent être utilisés, mettant en œuvre des gélatines, des polymères, des protéines, etc. Un milieu particulièrement adapté est une solution 90/10 volume sur volume de sérum et de DMSO, où le sérum utilisé sert également à la prolifération des cellules. Le pourcentage de DMSO peut varier entre 5 et 15 % du volume de la solution. Le sérum peut être remplacé par une solution d'albumine humaine à 4%, par exemple Albumine-LFB 4 % (médicament AMM n°558632-9). Le pourcentage d'albumine humaine peut cependant être plus élevé, par exemple jusqu'à 20%. Typiquement, les cellules sont mises en suspension dans un milieu adapté à la congélation, tel que défini ci-dessus, puis sont placées dans une atmosphère de congélation, telle que des vapeurs d'azote liquide, par exemple. La congélation est avantageusement réalisée en tubes ou en poches adaptées, en conditions stériles, sous forme d'aliquotes d'une même préparation de cellules sanguines. Les cellules ainsi congelées peuvent être conservées pendant des périodes de temps très longues, permettant ainsi la production de cellules γδT à intervalles de temps importants, sans nécessité de prélèvements répétés chez un sujet.
Une caractéristique importante du procédé de l'invention réside dans la quantité de matériel biologique traité. Ainsi, le procédé utilise préférentiellement une préparation biologique comprenant plus de 50.10E6 cellules mononucléées, typiquement entre 50 et 1000 million de cellules, par exemple 50, 100, 200 ou 300 millions de cellules environ. Dans un procédé typique, la préparation biologique comprend plus de 100 millions de cellules. Il est entendu que des quantités supérieures peuvent être mises en œuvre. Dans la mesure où une préparation biologique typique comprend au départ moins de 10% de cellules γδT, le plus souvent moins de 5% de cellules γδT, une préparation biologique de 100 millions de cellules contient typiquement de 1 à 5 millions de cellules γδT. A partir d'une telle préparation, le procédé de l'invention permet d'obtenir des compositions comprenant 10E8 cellules γδT fonctionnelles ou plus. En outre, alors que les préparations de départ ne contiennent que 1 à 5% environ de cellules γδT, les compositions obtenues par le procédé de l'invention comprennent plus de 80% de cellules γδT, voire plus de 90%. Le procédé de l'invention est donc particulièrement efficace et adapté à la production de cellules en quantités et qualité pharmaceutiques.
Composé activateur synthétique des lymphocytes γδT
Un aspect avantageux du procédé de l'invention réside dans l'utilisation d'un composé activateur synthétique des lymphocytes γδT. Ainsi, l'invention montre qu'une activation et une expansion efficaces et orientées des cellules γδT peuvent être obtenues par une seule activation métabolique au moyen d'un composé synthétique.
Le terme composé activateur synthétique indique que l'invention utilise une molécule produite artificiellement, capable d'activer les lymphocytes γδT. Il s'agit typiquement d'un ligand (e.g., d'une molécule chimique) capable de lier le récepteur T des lymphocytes γδT. Le composé activateur peut être de nature variée, telle que peptidique, lipidique, chimique, etc. Il peut s'agir d'un ligand endogène purifié ou produit par voie chimique, ou d'un fragment ou dérivé d'un tel ligand, ou d'un anticorps ayant la même spécificité antigénique. Il s'agit préférentiellement d'un composé chimique de synthèse, capable de lier de manière sélective le récepteur TCR et d'activer les cellules γδT. La liaison sélective indique que le composé interagit avec une affinité supérieure sur le TCR des cellules γδT que sur d'autres récepteurs membranaires, et conduit donc à une activation sélective ou orientée de la prolifération et de l'activité des lymphocytes γδT. Différents composés activateurs synthétiques peuvent être utilisés, tels que les composés phosphohalohydrines (PHD) décrits dans la demande WO00/12516, les composés phosphoépoxydes (PED) décrits dans la demande WO00/12519, ou les composés biphosphonates tels que décrits par Kunzmann et al. (Blood 96 (2000) 384).
Des composés activateurs synthétiques particuliers utilisables de façon avantageuse dans la mise en œuvre de l'invention sont les phosphohalohydrines et les phosphoépoxydes de formule (I) et (II) suivantes, respectivement :
Figure imgf000012_0001
Figure imgf000012_0002
dans lesquelles X est un atome d'halogène (choisi de préférence parmi un atome d'iode, de brome ou de chlore), RI est un groupe méthyle ou éthyle, Cat+ représente un (ou des) cation(s) organique(s) ou minéral(aux) (y compris le proton) identiques ou différents, et n est un nombre entier compris entre 2 et 20. Ces composés peuvent être produits par différentes techniques de chimie connues de l'homme du métier, et notamment les méthodes décrites dans les demandes WO00/12516 et WO00/12519. Des composés particuliers sont des composés di- ou tri-phosphate de formule (I) ou (II) ci-dessus.
Dans un mode préféré de mise en œuvre, on utilise un composé PED ou PHD. Des composés particuliers sont les produits suivants : 3-(bromométhyl)-3-butanol-l-yl-diphosphate (BrHPP) 3-(iodométhyl)-3-butanol- 1-yl-diphosphate (IHPP) 3-(chlorométhyl)-3-butanol-l-yl-diρhosphate (ClHPP) 3-(bromométhyl)-3-butanol- 1 -yl-triphosphate (BrHPPP) 3-(iodométhyl)-3-butanol-l-yl-triρhosρhate (IHPPP) α,γ-di-[3-(bromométhyl)-3-butanol-l-yl]-triphosphate (diBrHTP) α,γ-di-[3-(iodométhyl)-3-butanol-l-yl]-triphosphate (diIHTP) 3 ,4,-époxy-3 -méthyl- 1 -butyl-diphosphate (Epox-PP) 3,4,-époxy-3-méthyl-l-butyl-triphosphate (Epox-PPP) α,γ-di-3 ,4,-époxy-3-méthyl- 1 -butyl-triphosphate (di-Epox-TP)
Dans un autre mode particulier, on utilise des composés aminobiphosphonates, tels que par exemple l'acide l-hydroxy-3-(méthylpentylanώιo)propylidène- biphosphonique.
Dans une autre variante, l'activateur synthétique est le (E)-4-hydroxy-3-methyl- but-2-enyl pyrophosphate, tel que décrit par Hintz et al (FEBS Lett. Dec 7 2001 ; 509(2):317-22)
Bien que moins efficaces, d'autres composés utilisables dans la mise en œuvre de l'invention sont des phosphoantigènes décrits dans la demande WO95/20673 ou l'isopentényl pyrophosphate (IPP) (US5,639,653).
La dose de composé activateur peut être adaptée par l'homme du métier en fonction de la quantité de cellules et de la nature du composé utilisé. Généralement, le composé est mis en œuvre à l'initiation de la culture à une dose inférieure ou égale à environ 10 μM. Un avantage important du procédé de l'invention réside dans le fait qu'une seule activation métabolique sélective est nécessaire, en début de culture. Ainsi, une fois la culture initiée, il n'est plus nécessaire d'ajouter à nouveau dans le milieu le composé activateur synthétique. Cytokine
Le procédé de l'invention utilise une cytokine (seule ou éventuellement combinée ou associée à d'autres agents biologiquement actifs), en particulier une interleukine. Il s'agit avantageusement d'interleukine-2 ou d'interleukine-15. La présente demande montre en effet que ces interleukines, qui utilisent le même récepteur, permettent une production efficace de cellules γδT, dans les conditions décrites ci-avant.
L'interleukine utilisée peut être d'origine humaine ou animale, de préférence d'origine humaine. Il peut s'agir d'une protéine sauvage ou de tout variant ou fragment biologiquement actif, c'est-à-dire capable de se fixer à son récepteur et d'induire l'activation de cellules γδT dans les conditions du procédé de l'invention.
Le terme « variant » désigne en particulier tous les variants naturels, résultant par exemple de polymorphisme(s), épissage(s), mutations(s), etc. De tels variants naturels peuvent donc comprendre une ou plusieurs mutations ou substitutions, une délétion d'un ou plusieurs résidus, etc. par rapport à la séquence sauvage. Le terme variant désigne également les polypeptides ayant pour origine une autre espèce, par exemple de rongeurs, bovins, etc. Avantageusement, on utilise néanmoins une cytokine d'origine humaine. Le terme « variant » inclut également tout variant synthétique d'une cytokine, et notamment tout polypeptide comprenant une ou plusieurs mutations, délétions, substitutions et/ou additions d'un ou plusieurs acides aminés par rapport à la séquence sauvage. Des variants préférés comportent avantageusement au moins 75% d'identité avec la séquence primaire de la cytokine sauvage, préférentiellement au moins 80%, plus préférentiellement au moins 85%. Encore plus préférentiellement, les variants préférés comportent au moins 90% d'identité avec la séquence primaire de la cytokine sauvage. Le degré d'identité peut être déterminé par différentes méthodes et au moyen de logiciels connus de l'homme du métier, comme par exemple selon la méthode CLUSTAL.
Comme indiqué, il est également possible d'utiliser dans le cadre de la présente invention tout fragment d'une cytokine conservant l'activité biologique définie ci-avant. De tels fragments contiennent de préférence au moins une région ou un domaine fonctionnel de la cytokine, comme par exemple un domaine catalytique, un site de liaison à un récepteur, une structure secondaire (boucle, feuillet, etc.), un site consensus, etc. Pour la mise en œuvre de la présente invention, les fragments utilisés conservent avantageusement la propriété de l'interleukine-2 ou de l'interleukine-15 de lier le récepteur membranaire et de stimuler le développement de lymphocytes γδT.
Les cytokines utilisées peuvent en outre comprendre des résidus heterologues ajoutés à la séquence d'acides aminés sauvage, tels que des acides aminés, lipides, sucres, etc. Il peut également s'agir de groupe(s) chimique(s), enzymatique(s), radioactif(s), etc. La partie hétérologue peut en particulier constituer un agent stabilisateur, un agent facilitant la pénétration du polypeptide dans les cellules ou améliorant son affinité, etc..
Les cytokines peuvent se présenter sous forme soluble, purifiée, fusionnée ou complexée avec une autre molécule, telle que par exemple un peptide, polypeptide ou une protéine biologiquement active. Les cytokines peuvent être préparées par toute technique biologique, génétique, chimique ou enzymatique connue de l'homme de l'art, et notamment par expression dans un hôte cellulaire approprié d'un acide nucléique correspondant. Les cytokines telles que 1TL-2 et 1TL-15 peuvent également être obtenues à partir de sources commerciales. De manière préférée, on utilise une cytokine recombinante humaine, typiquement une interleukine-2 recombinante humaine ou une interleukine- 15 recombinante humaine.
Les doses de cytokines utilisées dans le procédé de l'invention peuvent varier en fonction de la nature des cellules de départ. En outre, la concentration en cytokine peut être modifiée en cours de culture. Typiquement, les cytokines sont utilisées à des doses comprises entre 100 et 500 U/ml, typiquement entre 150 et 500 U/ml environ. Au cours du procédé, la concentration en cytokine peut être ajustée, par exemple par ajout de milieu de culture. De manière préférée, on utilise des doses de cytokine comprises entre 150 et 400 U/ml. Dans un mode particulier, il est possible d'initier la culture en présence d'une première dose de cytokine, puis de la poursuivre en présence d'une deuxième dose, supérieure à la première, afin d'augmenter la prolifération des cellules. Ainsi, un objet particulier de l'invention réside dans un procédé de préparation d'une composition de lymphocytes γδT à partir d'un échantillon de cellules mononucléées, comprenant au moins :
. une première étape de culture des cellules mononucléées en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine, ladite cytokine étant présente à une première dose efficace, et . une deuxième étape de culture desdites cellules en présence d'une deuxième dose efficace de ladite cytokine, ladite deuxième dose efficace étant supérieure à ladite première dose efficace.
La présente demande montre en effet que l'utilisation d'un composé activateur synthétique favorise l'expression de récepteurs de haute affinité pour la cytokine IL2 à la surface des cellules γδT, et que des doses faibles d'IL2 sont suffisantes pour permettre la prolifération spécifique des cellules γδT, cette dose faible ne favorisant pas la pousse des cellules portant des récepteurs de plus faible affinité. Le récepteur de haute affinité disparaît cependant après 7 à 10 jours de culture et est remplacé par un récepteur d'affinité moindre. Les cellules doivent alors être cultivées en présence d'une deuxième dose plus élevée de cytokine, afin d'améliorer les performances du procédé et la prolifération des cellules γδT fonctionnelles. Dans ce mode de réalisation, la première dose de cytokine est préférentiellement une dose inférieure ou égale à environ 300 U/ml, de préférence de l'ordre de 150 U/ml environ, et la deuxième dose de cytokine est préférentiellement une dose supérieure à environ 300 U/ml, de préférence à environ 350 U/ml, typiquement de l'ordre de 400 U/ml.
Dans un autre mode de réalisation, la concentration en cytokine est maintenue essentiellement constante durant le procédé, par exemple par ajout de milieu frais contenant la cytokine à différents intervalles. Préférentiellement, dans ce mode de réalisation, la concentration en cytokine est maintenue entre 250 et 500 U/ml, par exemple entre 300 et 450 U/ml.
Culture
Le procédé de l'invention comprend la culture des cellules en présence d'un composé activateur (à l'initiation de la culture) et d'une cytokine, pendant une période de temps et dans des conditions permettant l'activation et l'amplification sélectives des cellules γδT.
Les cellules peuvent être cultivées dans différents milieux et dispositifs adaptés à la culture de cellules humaines, notamment de cellules sanguines. Il peut s'agir de milieux définis, supplémentés, etc. Des exemples de milieux utilisables sont notamment les milieux commerciaux RPMI, Prolifix S3, S6, Ampicell X3 (Bio Media), X-VIVO-10 et 15 (Biowhittaker), AIM N (Invitrogen), Médium I et II (Sigma), StemSpan H200 (Stem cell), CellGro SCGM (CellGenix), etc. Ces milieux peuvent être supplémentés par des antibiotiques, du sérum humain ou d'origine animale, de préférence agréés pour une utilisation pour la culture cellulaire à visée thérapeutique, des acides aminés et/ou des vitamines, etc. Un milieu préféré est le milieu RPMI, de préférence supplémenté par du sérum de veau fœtal. Un milieu particulièrement préféré est un sérum de veau irradié, agréé par les agences réglementaires pour la culture de cellules à visée thérapeutique. Ce type de sérum est commercialement disponible chez plusieurs fournisseurs. Les cultures peuvent être réalisées dans différents dispositifs, tels que des boites, poches, flasques, bouteilles, tubes, ampoules, réacteurs biologiques, etc. Les cultures sont avantageusement réalisées dans des dispositifs stériles et qui peuvent être obturés. Il n'est pas nécessaire que les cultures soient agitées. Des poches perméables aux gaz sont particulièrement adaptées. Selon le déroulement du procédé, des changements de dispositif peuvent être effectués au cours de la culture, notamment pour diluer les cellules et favoriser leur expansion. Un tel changement n'est cependant pas obligatoire, et des dispositifs de volume important peuvent être mis en œuvre dès l'initiation du procédé et conservés jusqu'à son terme.
Typiquement, si des poches sont utilisées, la préparation biologique ou les cellules sont contenues dans un volume de milieu tel que la densité cellulaire initiale soit comprise entre 0.2 et 3.10E6 cellules/ml. Les demandeurs ont en effet montré que le maintien d'une densité cellulaire comprise entre 0.2 et 3.10 6 cellules/ml, plus préférentiellement proche de 2.10E6 cellules/ml, favorise grandement l'expansion des cellules γδT. Des concentrations cellulaires supérieures pourraient vraisemblablement être obtenues à l'aide de réacteurs biologiques.
Le maintien de la densité cellulaire peut être réalisé de différentes façons, comme par exemple par dilution(s) successive(s), ajout(s) de milieu, transfert de dispositif, etc. Bien entendu, la densité cellulaire ne peut être maintenue constante au cours du procédé, dans la mesure où les cellules se divisent en permanence. Avantageusement, la densité est donc contrôlée ou ajustée à différents intervalles de temps, de manière maintenir le mieux possible une densité comprise entre 0.5 et 3.10E6 cellules/ml.
Le procédé peut être réalisé sur des périodes de temps variables et/ou suivant plusieurs cycles. D'une manière générale, la durée du procédé est supérieure à 10 jours environ, typiquement comprise entre environ 10 et 30 jours ou entre environ 10 et 25 jours. Différentes variantes peuvent être envisagées. Ainsi, il est possible, dans une première phase, d'effectuer la culture en présence du composé activateur seul et en absence de cytokine. Cette première phase peut durer par exemple entre lh et 72h, typiquement moins de 48h. Cette phase est destinée à stimuler les cellules γδT et à induire une certaine expression de récepteurs de haute affinité pour les cytokines par ces cellules. A l'issue de cette première phase, la culture est poursuivie dans un milieu comprenant la cytokine, mais sans qu'il soit nécessaire d'ajouter à nouveau le composé activateur. Typiquement, à l'issue de cette phase, du milieu frais contenant la cytokine, mais dépourvu du composé activateur est ajouté aux cellules. La culture est alors poursuivie pendant une période de temps supérieure à environ 10 jours, typiquement entre 10 et 25 jours. Comme indiqué, la densité cellulaire est préférentiellement contrôlée et/ou ajustée pendant la culture, et la dose de cytokine utilisée peut être maintenue ou modifiée.
Selon une autre variante, il est possible d'initier la culture en présence du composé activateur et de la cytokine, et de la poursuivre pendant une période comprise typiquement entre 10 et 30 jours, en contrôlant la densité et la concentration en cytokine. Ainsi, en fonction de la densité cellulaire, du milieu frais contenant la cytokine (mais typiquement dépourvu du composé activateur) est ajouté aux cellules. En outre, comme indiqué ci-avant, les cellules peuvent être séparées ou transférées en cours de procédure dans des dispositifs de volume plus grand, si nécessaire. Comme indiqué, le procédé de l'invention permet d'obtenir des compositions de cellules présentant avantageusement les spécifications suivantes :
- elles comprennent plus de 80% de cellules γδT, avantageusement plus de
85%, voire plus de 90%, et - elles comprennent plus de 100 millions de cellules γδT viables et fonctionnelles.
Pour obtenir de manière reproductible de telles caractéristiques chez la plupart des donneurs, il est nécessaire de mettre en culture au départ un nombre élevé de cellules, de l'ordre de 50 millions de PBMC obtenues par exemple de cytaphérèse.
Le procédé est simple, ne nécessite qu'une activation métabolique, rapide, et comporte un nombre très limité de manipulations des cellules. Il peut en outre être mis en œuvre à partir de cellules préalablement congelées. Ce procédé est donc particulièrement avantageux pour une exploitation pharmaceutique des cellules γδT.
Utilisations / Conditionnement
Les cellules produites peuvent être utilisées extemporanement ou traitées en vue de leur conservation. Généralement, les cellules sont conditionnées dans un milieu comprenant un agent stabilisant, tel que notamment un polymère ou une protéine neutre. On peut utiliser avantageusement de l'albumine humaine (HSA), disponible commercialement en qualité injectable. Les résultats présentés montrent que les cellules peuvent être conditionnées dans une solution d'albumine humaine à 4°C, en vue de leur injection. A cet égard, un objet particulier de l'invention réside dans une composition comprenant des cellules γδT et de la sérum albumine humaine, typiquement de 2 à 10%, avantageusement à 4% environ. Un autre objet de l'invention réside dans une composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes γδT fonctionnels et comprenant plus de 100 millions de cellules γδT. Préférentiellement, la composition comprend plus de 85% de lymphocytes γδT fonctionnels, voire plus de 90%. Généralement, la composition comprend en outre un agent ou véhicule acceptable sur le plan pharmaceutique et, plus préférentiellement, un agent de stabilisation, tel que la sérum-albumine humaine. Plus préférentiellement, les cellules sont obtenues ou susceptibles d'être obtenues par un procédé tel que décrit ci-avant.
Un autre objet de l'invention concerne un procédé de préparation d'une composition pharmaceutique à base de lymphocytes γδT, le procédé comprenant :
. la culture de cellules selon le procédé décrit dans la présente demande, . la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels, et
. le conditionnement des cellules dans un véhicule ou excipient acceptable sur le plan pharmaceutique.
Un autre objet de l'invention concerne une culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes γδT fonctionnels.
L'invention est également relative à l'utilisation d'une culture de cellules telle que définie ci-avant pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, plus particulièrement au traitement de maladies infectieuses, parasitaires, de cancers, de maladies auto-immunes ou inflammatoires. L'invention concerne également une méthode de traitement d'un cancer ou d'une pathologie infectieuse ou parasitaire, comprenant l' administration à un sujet d'une quantité efficace d'une composition pharmaceutique ou d'une composition cellulaire telles que définies ci-avant.
Le terme traitement désigne une réduction ou une suppression des symptômes, des causes ou de foyers de la maladie, une régression ou un ralentissement de la progression d'une maladie, par exemple de la croissance tumorale, une amélioration de l'état des patients, une réduction de la charge virale ou parasitaire, une baisse de la douleur ou de la souffrance, une augmentation de la durée de vie, etc.
Le terme quantité efficace désigne plus particulièrement une quantité efficace pour stimuler une réponse immune du patient contre les cellules cancéreuses ou infectées. Les doses de cellules administrées sont typiquement comprises entre 10E6 et 10E 10 cellules par doses, même si des quantités différentes peuvent être envisagées. Il est entendu que la quantité de cellules utilisées peut être ajustée par le praticien en fonction de la pathologie et du protocole clinique (notamment du nombre et du site d'injections).
L'administration est réalisée préférentiellement par injection, notamment par injection systémique (intra-veineuse, intra-péritonéale, intra-musculaire, intra- artérielle, sous-cutanée, etc.) ou locale (e.g., intra-tumorale ou dans une zone environnant ou irriguant une rumeur). Des injections répétées peuvent être réalisées. Les cellules injectées sont préférentiellement autologues (ou syngéniques), c'est-à-dire sont préparées à partir d'une préparation biologique provenant du patient lui-même (ou d'un jumeau). Des compositions allogéniques peuvent être envisagées. Dans un mode de réalisation typique, des injections répétées sont réalisées, avec une escalade de doses, chaque palier de doses pouvant lui-même comprendre plusieurs injections (typiquement de une à quatre) à des intervalles de temps pouvant varier entre une et six semaines par exemple. La dose initiale est typiquement supérieure à 100 millions de cellules, par exemple comprise entre 100 millions et 5 milliards, et une escalade de doses jusqu'à 10 milliards de cellules peut être réalisée. Un protocole clinique particulier prévoit une escalade de dose (chaque palier de dose comportant trois injections successives à trois semaines d'intervalle) partant de 1 milliard, puis 4 milliard puis 8 puis 12 milliards de cellules.
En outre, les cellules gamma 9 delta 2 étant dépendantes, pour leur prolifération et leur survie, de l'activité de cytokines et de manière préférentielle, d' interleukine 2, une co-thérapie est avantageusement réalisée. Ainsi, dans un mode préféré, les cellules obtenues par le procédé de l'invention sont injectées avec une co-thérapie de cytokine, notamment d'IL2. Un schéma d'administration préféré consiste en des injections sous cutanées journalières pendant environ 7 jours d'environ 1 million d'unités de cytokine par mètre carré de surface corporelle.
Un objet particulier de l'invention réside donc également dans une composition comprenant des cellules telles que définies ci-avant et une cytokine, de préférence 1TL-2 ou 1TL-15, plus préférentiellement 1TL-2, en vue de leur utilisation simultanée, séparée ou espacée dans le temps. Un autre objet de l'invention réside dans une méthode de traitement comprenant l' administration à un sujet d'une composition cellulaire telle que définie ci-avant et d'une cytokine, de préférence d'IL-2, les cellules et la cytokine étant administrées de façon simultanée, séparée ou espacée dans le temps. D'autre part, les cellules γδT peuvent être modifiées génétiquement, préalablement à leur administration, par exemple pour qu'elles expriment un facteur de stimulation, un facteur de croissance, une cytokine, une toxine, etc.
La présente invention est utilisable (seule ou en association avec d'autres thérapies) pour le traitement de différentes pathologies susceptibles d'être améliorées par une augmentation de l'activité des cellules γδT (et notamment dans lesquelles des cellules sensibles à l'activité cytolytique des cellules γδT sont impliquées). Ainsi, la plupart des lignées tumorales de carcinome rénal sont tuées efficacement in vitro par les cellules gamma 9 delta 2 obtenues par le procédé de l'invention. Des cancers de différentes histologies peuvent également être traités, dans lesquels les cellules gamma delta exercent une activité cytolytiques : myélome, cancer de la vessie, mélanome, astrocytome, neuroblastome. Cette liste n'est pas limitative, et d'autres types de cancers susceptibles à la lyse gamma delta peuvent également être traités (cancers du poumon, du foie, tête et cou, colon etc.). S'agissant des maladies infectieuses, les cellules gamma delta ont été montrées comme lyriques vis à vis de nombreuses bactéries ou mycobactéries intracellulaires. Ainsi, l'activité des cellules gamma 9 delta 2 contre les cellules infectées par l'agent de la tuberculose ou l'agent de la peste est bien connue. Ces cellules répondent également à d'autres pathologies infectieuses comme la thularémie. Une activité antivirale a également été démontrée contre les cellules infectées par le virus HIV, influenza, Sendai, coxsackie, vaccinia, vesicular stomatitis virus(VSV), and herpès simplex virus- 1 (HSV-1) (Sciammas et al, 1999, TcR gamma delta and viruses, Microbes Infect 1 :203).
D'autres aspects et avantages de la présente demande apparaîtront à la lecture des exemples qui suivent, qui doivent être considérés comme illustratifs et non limitatifs.
EXEMPLES EXEMPLE I : Expansion des cellules gamma 9 delta 2 à partir de plus de 50 millions de cellules PBMC non fractionnées de manière à obtenir après 10 à 20 jours de culture une pureté en gamma 9 delta 2 de plus de 80% et plus de 100 millions de cellules gamma 9 delta 2.
IA - Matériels
Echantillons de sang
Des tubes de sang total de 6 ml (sur ACD : Acid Citrate Dextrose) sont prélevés sur chacun des 3 donneurs sains et sont stockés à température ambiante. Le sang sera traité environ 18 heures après le prélèvement.
Poches de cytaphérèse
Une poche de cytaphérèse (1/2 masse corporelle) est prélevée sur des donneurs sains et stockée à température ambiante. Les CMN (cellules mono-nucléées) sont traités environ 18 heures après le prélèvement.
Milieux de culture
Différents milieux de culture ont été utilisées, synthétiques ou non. Les cellules ont ainsi été cultivées en milieu RPMI (SIGMA, réf R0883), éventuellement supplémenté par ajout de L-glutamine (0.3 g/1 final) extemporanement.
Différents milieux synthétiques ont également été testés, qui sont rassemblés dans le tableau 1.
Dans certains cas, les milieux ont été supplémentés par du sérum, d'origine humaine ou animale. A cet égard, du sérum de veau fœtal irradié a été utilisé (lots de « Fetal Clone-I » irradié (25 kGy) provenant de chez Hyclone (réf SH 30080.03 IR)), ainsi que du sérum humain.
Le sérum humain utilisé au cours de ces études provient de pool de sérum de donneurs sains préparé par le centre de transfusion de Nantes. Ce sérum de grade thérapeutique (agréé par l'agence réglementaire Française) est utilisé dans des protocoles de thérapie cellulaire visant à l'injection de cellules T alpha béta classiques.
Composés et réactifs
L'interleukine-2 recombinante humaine utilisée est la Proleukin (Aldesleukine) à 18 millions UI provenant de chez CHIRON BV (réf FRC01A) et stockée en aliquotes à la concentration de 360 000 Ul/ml dans du milieu RPMI/SH 10 % à - 20°C. Le Ficoll (« Lymphocyte séparation médium ») a été utilisé à une densité 1.077 ± 0.001 (SIGMA, réf 913353). L'albumine humaine est l'albumine-LFB 4 %, médicament AMM n°558632-9. Le DMSO et la solution saline proviennent de Braun médical.
Dispositifs de culture Les dispositifs de culture utilisés sont indiqués dans le Tableau 2.
Anticorps
Les anticorps utilisés sont répertoriés dans le Tableau 3.
IB - Méthodes
Isolement des lymphocytes à partir de Sang total + Ficoll Cette procédure est couramment utilisée dans les laboratoire de biologie cellulaire. Brièvement, le sang total est « Ficollé », puis les PBMC sont récupérées sur le gradient de Ficoll. Le Ficoll est rincé, et une numération cellulaire est réalisée au « Coulter Multisizer II » (sur 3 prélèvements différents pour une même condition et pour un même donneur). Les PBMC sont congelées dans une solution de congélation à 10 % de DMSO (dans de l'albumine humaine 4 % ou dans du SVF).
Isolement des lymphocytes à partir de CMN (cytaphérèse) Cette procédure comporte une première phase de « dé-plaquettisation » de l'échantillon, qui est réalisée, sur chaque poche de cytaphérèse, selon la procédure suivante. Le contenu de la poche de cytaphérèse est transféré dans des tubes de 50 ml, dans lesquels 2 volumes de milieu RPMI sont ajoutés. Les tubes sont centrifugés à 200 g, puis le surnageant est éliminé. Les culots sont poolés (regroupés) et remis en suspension dans du milieu RPMI (qsp 50 ml). Les cellules sont comptées, puis une nouvelle centrifugation est réalisée à 400 g environ (à 20°C). Le surnageant est à nouveau éliminé, et le culot mis en suspension dans du sérum de veau fœtal de manière à avoir une concentration cellulaire finale de 500 millions cellules/ml environ. Les cellules sont comptées et la concentration cellulaire est ajustée à 300 millions cellules/ml environ avec du sérum de veau fœtal. Les suspensions cellulaires sont généralement placées sur la glace ( à 4°C). Les CMN peuvent être congelées dans une solution de congélation à 5 à 15 % de DMSO (dans de l'albumine humaine 4 %, ou du SVF), ou directement mises en culture.
Congélation des cellules
Pour optimiser les paramètres de la congélation, les cellules suspendues dans de l'albumine humaine à 4 % ou du SVF sont diluées volume à volume dans la solution de congélation réfrigérée (20 % de DMSO et 4% d'albumine humaine ou SVF). Le tube contenant la suspension cellulaire est agité pendant toute la durée de l'opération et repose avantageusement sur un bac réfrigéré ou sur de la glace pilée. Le mélange, homogénéisé, est réparti dans des cryotubes de 1.8 ml (1 ml/tube), qui sont rangés dans une boite de congélation, et placées à - 80°C. Les cryotubes sont ensuite transférés et stockés dans une cuve d'azote (au minimum 4 heures plus tard).
Les CMN et les PBMC sont rapidement décongelées (par immersion au bain- Marie à 37°C), puis transférées dans des tubes de 15 ml contenant 12 ml de milieu RPMI. Les cellules sont lavées en milieu RPMI- 10 % SVF pour éliminer le DMSO. La numération cellulaire est effectuée au « Coulter » (sur 3 prélèvements différents pour une même condition et pour un même donneur).
Mise en culture dans des flasques et des poches (le jour de l'isolement)
Le nombre de CMN ensemencées dans les différents contenants (ou dispositifs de culture) a été choisi de manière proportionnelle au rapport « nombre de lymphocytes/ surface d'un puits » utilisé lors des cultures en plaque 24 puits, soit 1.106 cellules/ 1,9 cm2 environ (voir Tableau 4).
Les cellules mononuclées de chaque donneur sont mises en culture dans les contenants sous un même volume et un même nombre de cellules au départ, soit 100 millions de cellules par contenant, dans 50 ml de milieu de culture RPMI / 10 % SVF / 3 μM BrHPP, 120 Ul/ml IL-2 (soit une concentration cellulaire initiale de 2 million/ml). Le même milieu contenant 360 Ul/ml d'IL2 est ajouté au cours de la culture comme cela est indiqué pour chaque manipulation.
Mise en culture dans des plaques 24 puits (après décongélation) Les PBMC et les CMN sont mise en culture dans des plaques 24 puits à raison de 1 million de cellules par puits dans 1.5 ml de milieu de culture RPMI / 10 % SVF / 3μM BrHPP / 120 Ul /ml IL-2 (soit une concentration cellulaire de 0.6 million/ml) Maintien de la culture
Les cellules sont maintenues en culture à 37°C en atmosphère humide et en présence de 5 % de CO2 dans du milieu RPMI / 10 % SVF / 360 Ul/ml IL-2. Le premier changement de milieu intervient par ajout de milieu à jour 4, puis régulièrement tous les 3 jours. Ainsi, la concentration en IL2 augmente au cours de la culture.
Les cellules cultivées dans les plaques 24 puits sont transférées dans des flasques de 25 cm2 en position verticale lorsque la densité cellulaire devient supérieure à 3. 106 cellules/ml.
Pour les cellules cultivées en flasque ou en poche, la densité cellulaire est maintenue à 2. 106 cellules/ml en ajoutant du milieu de culture : Vmax = 150 ml. Sachant que le contenant ayant servi à la mise en culture des cellules est conservé tout au long de la culture, lorsque le volume maximal est atteint, il faut procéder par élimination d'une partie des cellules pour maintenir la densité cellulaire à 2. 106 cellules/ml (et ajout de milieu frais).
Comptage, phénotypage (analyse par cytométrie en flux
Plusieurs comptages cellulaires et phénotypages sont effectués au cours des 3 semaines de culture, en particulier aux jours J10, J15, J20. Les comptages et phénotypages sont réalisés comme suit :
- Comptage au Coulter de la totalité des cellules vivantes
- Double marquage CD56/CD3
- Triple marquage VÔ2/CD3/CD69
- Contrôles isotypiques : IgGlk-FITC/R-PE/cyC - Acquisition des données par cytométrie en flux (FACScan-Becton Dickinson)
Des comptages pourront être faits à d'autres temps, en cas d'expansion cellulaire forte afin de compléter avec du milieu frais. Analyse fonctionnelle des cellules
Différents tests sont réalisés sur les cellules obtenues, afin de vérifier leur caractère fonctionnel. Ces tests portent notamment sur l'activité cytotoxique des cellules et sur leur production de TNF.
. Test de cytotoxicité. Pour ce test, les cellules cibles sont marquées avec un isotope 51Cr (10 μl de 51Cr / 1 million de cellules cibles en plaque 24 puits), puis incubées 1 heure à 37°C. Les cellules sont distribuées (en double) à raison de 3000 cellules / puits dans du RPMI/10 % SVF (50 μl), et la libération spontanée et maximale de 51Cr sont déterminées. Les cellules effectrices (γδT de l'invention) sont alors ajoutées (50 μl dans du RPMI/SVF 10 %) sur chaque cible, selon les ratios Effecteur/Cible (E/T) suivants : 30/1, 3/1, 0.3/1, et incubées 3 à 4 heures à 37°C. L'activité cytotoxique (la lyse des cellules cibles) est déterminée par mesure, sur 25 μl de surnageant dans un compteur de plaque β, de la radioactivité libérée.
. Test de relargage de TNF. Les cellules sont lavées deux fois en RPMI puis mises en culture dans des plaques 96 puits en milieu RPMI, 10% FCS en présence de 3μM de BrHPP pendant 24 heures. Le TNF est dosé dans le surnageant par le kit BeckmanCoulter Kit Immunotech, référence IM 11121.
IC - Résultats
Choix d'un milieu
Les milieux supplémentés en sérum humains sont considérés comme les plus favorables pour cultiver les lymphocytes humains et notamment les cellules gamma 9 delta 2, notamment du fait que les facteurs de croissance sérique ont souvent une spécificité d'espèce. Cependant de tels milieux sont très difficiles à préparer et à utiliser en clinique, du fait du risque biologique et de la disponibilité de quantité importante de sera humains. Nous avons donc tenté de cultiver ces cellules en milieu d'obtention plus facile. Ces expériences ont été menées à petite échelle, en plaques 24 puits, à partir de sang total de trois différents donneurs avec une stimulation initiale avec l'EpoxPP (voir matériels et méthodes pour les conditions d'activation). Le taux et le nombre de lymphocytes T gamma delta sont suivis sur une culture de 30 jours environ, par comptage et cytométrie de flux. Les résultats d'un test de comparaison de prolifération en milieu RPMI supplémenté soit en sérum humain soit en SVF, ainsi que sur deux milieux synthétiques (XVIVO10 et 15) sur trois donneurs sains sont rassemblés dans le Tableau 5.
De manière surprenante, le meilleur milieu pour la pousse des gamma 9 delta 2 est le milieu RPMI supplémenté avec du SVF. Le milieu supplémenté en sérum humain fournit également une amplification très significative des cellules gamma 9 delta 2, cependant celle-ci est plus limitée et variable de donneur à donneur. De plus, au cours du temps, la pureté et le nombre des cellules deviennent moins bonnes par rapport au milieu complémenté en SVF. Les milieux synthétiques testés (sans sérum) fournissent une amplification inférieure. Il s'agit pourtant des meilleurs milieux synthétiques pour la pousse des gamma 9 delta 2 (résultats d'un autre expérience non montrée).
En conclusion, les cellules gamma delta ont un potentiel de prolifération à long terme très important, dans un milieu favorable. Nous avons choisi le SVF pour la suite car il donne des résultats très intéressants et reproductibles d'un lot à l'autre (résultats non montrés). Il est également disponible sous forme de lots irradiés agréés pour la manipulation de cellules à visée thérapeutique. D'autres milieux pourraient vraisemblablement révéler le fort potentiel de pousse des cellules gamma delta, comme des milieux avec moins de sérum, des combinaisons des meilleurs milieux synthétiques avec des quantités faibles de sérum, ou des combinaison de milieux synthétiques. PBL versus cytaphérèse
L'objectif étant de produire à la fin de la culture des quantités importantes de cellules gamma 9 delta 2, il est intéressant de pouvoir disposer au départ d'une source de cellules en nombre important, éventuellement congelable, pour pouvoir disposer de banques de cellules. Une source possible est représentée par les cellules mononuclées obtenues par cytaphérèse. Toutefois, cette procédure peut cependant altérer les cellules et empêcher leur prolifération satisfaisante. Les cytaphérèses contenant souvent de nombreux globules rouges, les CMN ont été testées en prolifération, soit juste après déplaquettisation soit après déplaquettisation et traitement sur Ficoll (voir matériels et méthodes). Nous avons donc testé si des cellules de cytaphérèse pouvaient proliférer de manière satisfaisante. Ce test a été effectué tout d'abord à petite échelle (plaque 24 puits, voir matériel et méthodes), et les résultats provenant de trois donneurs différents sont compilés dans le Tableau 6.
On constate de manière surprenante que les cytaphérèses ont également un potentiel de prolifération très important, même s'il est inférieur à celui des PBMC provenant de sang total. Les CMN après ficoll fournissent par ailleurs une prolifération moins importante que les CMN non traitées. Malgré la prolifération moins importante, et au vu des quantités de cellules nécessaires au départ pour obtenir un grand nombre de cellules, nous avons tenté d'effectuer une culture à plus grande échelle à partir de CMN fraîches non ficollées.
Nous avons donc effectué un essai de prolifération à partir de CMN fraîches provenant de donneur sains (DlOO, D119, D127). Nous avons testé différents contenants de cultures (voir matériel et méthode). La culture est initiée avec 100 millions de cellules provenant de CMN à raison de 2 millions de cellules par ml (volume total initial 50 ml). La stimulation est effectuée avec BrHPP à 3 μM. Un ajout de 50 ml de milieu frais (contenant 350 U/ml d'IL2) est effectué aux jours 4 et 7. A partir de jour 10, les cellules sont analysées et comptées, et ramenées à 2 millions de cellules par ml. Elles sont ensuite diluées tous les trois jours de façon à ramener la concentration cellulaire à 2 millions de cellules par ml. Les résultats obtenus sont compilés dans le Tableau 7.
Ces résultats montrent que, dans les conditions de l'invention, des valeurs de 100 millions de cellules gamma 9 delta 2 avec plus de 80% de pureté sont atteintes dès J10 pour certains donneurs dans certains contenants (DlOO et Dl 19 dans les poches NEXELL par exemple). Ces résultats démontrent l'efficacité des méthodes de l'invention dans la production de cellules γδT fonctionnelles en qualité pharmaceutique.
EXEMPLE II : Etude de la concentration de maintien des cellules après jour 10
IIA - Expansion des cellules gamma 9 delta 2
Une nouvelle expérience, basée sur le protocole précédent, a été effectuée avec des CMN de trois nouveaux donneurs (D623, D762, D711). Les matériels et méthodes sont identiques à l'exemple I sauf quand les conditions sont précisées. Les conditions de départ de la culture sont identiques. On effectue un ajout de 50 ml de milieu à jour 4 et à jour 7. A jour 10, les cellules sont analysées et comptées. La culture est réalisée en triplicate jusqu'à jour 10 (3 cultures identiques par donneur). On ramène alors la concentration cellulaire à 3 concentrations (0.2, 0.5 et 1 million de cellules par ml, chaque concentration provenant d'un des trois triplicats), en vue d'étudier l'effet du paramètre concentration cellulaire. Les cultures sont ensuite analysées tous les trois jours, et la concentration est ramenée à la concentration de jour 10 quand les cellules dépassent la concentration de 2 millions de cellules par ml. Les résultats sont compilés dans le Tableau 8. On constate que les rendements et les puretés des cellules sont très supérieurs après jour 10 à ceux obtenus dans l'exemple I. La concentration cellulaire est donc un facteur important dans la conduite de la culture à partir de cette date. Nous découvrons ainsi que le potentiel de prolifération des cellules gamma delta est excellent. Partant de 1 à 4 millions de cellules gamma delta au départ on obtient de 11 à 13 milliards de cellules à jour 21 de pureté supérieure à 90%. On peut noter de manière importante que le nombre de cellules obtenues ne semble pas dépendre du nombre de cellules gamma delta initial.
IIB - Fonctionnalité des cellules obtenues
Les cellules gamma 9 delta 2 naturelles produisent, après stimulation, des cytokines comme le TNF (« tumor necrosis factor ») et sont cytotoxiques vis-à- vis de nombreuses cellules cancéreuses. Notamment, les cellules gamma 9 delta 2 sont connues pour lyser spécifiquement la lignée Daudi (myélome), et non la lignée RAJI.
La fonctionnalité des cellules obtenues par le procédé de culture cellulaire de l'invention a été testée suivant deux paramètres : la capacité de cytotoxicité vis- à-vis d'une lignée tumorale de carcinome rénal (Lignée 786-0, ATCC, référence CRL-1932) et d'une lignée de myélome (les cellules RAJI servant de contrôle négatif).
Les résultats d'un test de cytotoxicité avec les cellules obtenues par le procédé (test du maintien de la concentration cellulaire à 0.2, 0.5, 1 millions de cellules par ml, voir plus haut) à jour 23, vis-à-vis de ces trois lignées sont compilés dans le Tableau 9.
On constate que les cellules obtenues par le procédé sont effectivement cytotoxiques vis-à-vis des lignées de carcinome rénal et Daudi et, comme attendu, ne présentent pas de cytotoxicité significative vis-à-vis de la lignée RAJI. Nous montrons par ailleurs que les cellules sont cytotoxiques vis-à-vis de la lignée de carcinome rénal 786-0.
EXEMPLE III : Etude de la prolifération de cellules de CMN congelées.
Une manière particulièrement pratique de mettre en œuvre le procédé serait de pouvoir partir de cellules congelées. En effet une cytaphérèse peut fournir de 2 à 4 milliards de cellules qu'il serait intéressant de pouvoir aliquoter et congeler pour pouvoir effectuer plusieurs cultures à partir de la même cytaphérèse. La congélation des cellules peut cependant altérer fortement leur viabilité et leur capacité de pousse après décongélation.
Les trois CMN obtenues pour les expériences de l'exemple II ont été congelées en 10%o DMSO, HSA 4%. Une nouvelle expansion a été effectuée à partir de ce matériel congelé (même protocole que pour l'exemple II. Les résultats de l'expansion sont compilés dans le Tableau 10.
On constate que les cellules congelées peuvent également générer des nombres importants de cellules de très bonne pureté.
La fonctionnalité des cellules fraîches par rapport aux cellules congelées a par ailleurs été évaluée en parallèle sur cellules obtenues à partir de cellules fraiches et à partir de cellules congelées. Deux tests ont été effectués : le test de cytotoxicité et le test de relargage de TNF. Les résultats du test de cytotoxicité réalisé en parallèle sur les cellules fraiches et les cellules congelées à jour 21 sont compilés dans le Tableau 11.
Les résultats du test de relargage de TNF réalisé en parallèle sur les cellules fraîches et sur cellules congelées à jour 21 sont compilés dans le Tableau 12. On constate que les cellules provenant de cellules congelées ne sont pas significativement différentes d'un point de vue fonctionnel par rapport aux cellules provenant de cellules fraîches. Différents milieux de congélation pourraient améliorer le rendement en cellules.
EXEMPLE IV ; Formulation des cellules pour une préparation injectable.
En vue de l'injection chez l'homme, le SVF doit être éliminé et les cellules reprises dans un tampon pharmaceutiquement acceptable. Le milieu HSA à 4% a été testé.
Une nouvelle expansion a été effectuée à partir d'une nouvelle cytaphérèse congelée. 6 conditions de congélation ont été testées :
Deux milieux de congélation : 10% DMSO dans une solution de HSA à 4%,
7.5% DMSO dans du SVF. Ces deux milieux ont été testés avec trois concentrations cellulaires 25, 50, 150 millions de cellules par ml.
Le protocole d'expansion est le même que dans l'exemple II, sauf que les cellules sont maintenues à 0.5 million de cellules par ml à partir de Jour 7.
Les résultats de l'expansion sont compilés dans le Tableau 13. On constate peu de différence entre ces différentes conditions de congélation, avec une légère amélioration pour le milieu de congélation SVF à 7.5% DMSO.
La préparation cellulaire issue de la condition 150 million de cellules par ml en
SVF, 7.5% DMSO a été formulée en HSA 4%.
Le volume des compositions peut être réduit à l'aide du « CytoMate®», puis les cellules sont conditionnées en Albumine Humaine 4 %. Pour cela, le culot est remis en suspension dans 100 à 200 ml d'albumine humaine 4 % , de manière à obtenir une suspension cellulaire dont la concentration est comprise entre 10 et 100 millions cellules/ml. Une numération et une mesure de la viabilité des cellules sont réalisées, puis les cellules sont conservées dans une poche à 5°C ± 3, afin de tester la stabilité de la préparation.
Le produit cellulaire formulé a été testé pour sa viabilité (comptage sur cellule de malassez au bleu trypan) aux temps 2 h, 4h, 8h, 22h après formulation. Le produit cellulaire est à plus de 80% de cellules viables jusqu'à au moins 22h après formulation.
Le produit cellulaire formulé a été testé en fonctionnalité par le test de relargage TNF à différents temps pour évaluer la stabilité de la préparation cellulaire formulée.
Les résultats sont compilés dans le Tableau 14.
On constate que les cellules formulées sont toujours capables de produire du TNF sous stimulation BrHPP, même 22h après formulation. D'autre part, on ne constate pas de différence significative de la production de TNF jusqu'à 8 h après formulation.
Tableau 1
Figure imgf000038_0001
Tableau 2
Figure imgf000038_0002
Tableau 3
Figure imgf000039_0001
Tableau 4
Figure imgf000039_0002
Tableau 5
Figure imgf000040_0001
Tableau 6
Expansion de cellules γδT à partir de différentes sources (expériences en triple à partir de 3 donneurs sains
% Vd2 enCULTURE SPECIFlC Vd2 (millions)
J 10 D62 D70 D89 J 10 D62 D70 D89
I II III I II III I II I II III I Il III I II III
PBMC 64,84 71 ,45 56,33 92,68 93,7 93,75 91 ,59 90,36 90,49 PBMC 2,59 2,29 1 ,8026 7,044 5,25 6,375 6,59 9,04 5,429
CMN-FICOLL 25,91 59,06 23,72 91 ,39 90,33 90,7 73,01 72,42 70,21 CMN-FICOLL 0,3 2,13 0,3795 6,946 6,14 6,1676 0,93 1 ,16 0,982
CMN 71 ,09 47,11 58,49 95,18 92,74 92,74 82,24 81 ,98 81 ,19 CMN 1 ,68 0,9 1 ,8717 8,757 8,16 9,274 1 ,81 4,92 2,273
J14 I II III I III I II III J14
PBMC 65,09 76,2 54,73 93,25 98,02 97,8 91 ,5 94,04 92,52 PBMC 6,51 12,2 6,7865 22,38 27,4 31 ,296 16,1 16,9 18,50
CMN-FICOLL 3,84 60,17 9,27 95,83 95,58 95,6 71 ,81 58,93 54,63 CMN-FICOLL 0,05 4,04 0,191 25,3 30,6 25,2384 1 ,9 1 ,27 3,277
CMN 76,83 45,56 62,48 97,25 96,83 96,72 81 ,31 78,1 76,55 CMN 5,84 2,19 4,7485 37,34 33,3 34,04544 2,54 8,04 7,348
J19 I II I II III I II III J19
PBMC 86,1 77,79 68,91 98,31 98,31 98,31 92,72 93,02 92,47 PBMC 23,8 32,8 17,779 61 ,54 66,2 74,32236 51 ,2 40,3 48,82
CMN-FICOLL 1 ,08 59,27 3,27 96,22 96,51 96,55 73,78 14,71 18,47 CMN-FICOLl 0,02 7,11 0,0523 91 ,41 85,5 72,9918 1 ,66 0,06 1 ,477
CMN 78,69 39,61 69,06 97,08 97,59 96,38 80,66 75,75 73,19 CMN 11 ,1 2,14 13,052 90,19 85,4 69,77912 4,92 10 17,85
Tableau 7
% Vd2 en CULTURE TOTAL LYMPHOS Vd2 SPECIFIQUE
(millions) (millions)
J10 D100 D119 D127 D100 D119 D127 D100 D119 D127
FLASK 64,89 79,05 27,91 160,5 263,52 266,22 104 208 74
STEDIM 72,81 79,81 61,49 174 307,47 340,2 127 245 209
CELLGENIX 79,97 85,25 58,89 257,87 451,52 363 206 385 214
NEXELL 80,14 84,52 73,06 262,26 398,75 382,11 210 337 279
J14 D100 D119 D127 D100 D119 D127 D100 D119 D127
FLASK 84,94 90,84 90,27 274,99 431,68 313,5 234 421 308
STEDIM 83,78 51,62 81,3 281,88 385,9 340,3 236 199 277
CELLGENIX 87,86 84,63 1,57 405 513,04 408 356 434 6
NEXELL 35,64 57,62 31,85 420 502,35 439,9 150 289 140
J20 D100 D119 D127 D100 D119 D127 D100 D119 D127
FLASK 71 5,8 0,57 430 533,4 456 305 31 3
STEDIM 81,38 31,11 3,85 351 511,7 420 286 159 16
ELLGENIX 75,13 78,43 7,01 580,8 699,2 591,6 436 548 41
NEXELL 84,14 78,83 20,62 607,20 741,00 396,50 511 584 82
Tableau 8
% Vd2 en CULTURE TOTAL LYMPHOS Vd2 SPECIFIQUE
(millions) (millions)
J0 D623 D762 D711 D623 D 62 D711 D623 D762 D711 initial 2,17 3,61 1,01 100 100 100 2,17 3,61 1,01
J10 D623 D762 D711 D623 D762 D711 D623 D762 D711
(triplicates)
I 91,28 92,05 89,45 541 586 615 494 539 550
II 91,48 91,76 89,43 552 562 604 505 516 540
III 91,85 91,79 90,11 579 576 625 532 557 609
J15 D623 D762 D711 D623 D 62 D711 D623 D762 D711
Milliard Milliard
0,2 million/ ml 97,75 95,55 95,1 2,869 1,525 2,127 2,80 1,46 2,02
0,5 million/ ml 97,54 97,09 96,21 3,047 2,341 2,759 2,97 2,27 2,65
1,5 million/ ml 96,87 95,96 95,57 1,552 1,376 1,576 1,50 1,32 1,51
J21 D623 D762 D711 D623 D762 D711 D623 D762 D711
0,2 million/ ml 97,8 94 94,2 7,699 5,761 5,553 7,53 5,42 5,23
0,5 million/ ml 98,23 94,69 95,88 13,43 11,16 11,76 13,19 10,56 11,28
1,5 million/ ml 97,79 96,52 96,67 4,926 3,879 4,92 4,82 3,74 4,76 Tableau 9
Figure imgf000043_0001
Tableau 14
Figure imgf000043_0002
Tableau 10
% Vd2 en CULTURE TOTAL LYMPHOS SPECIFIC Vd2
(milliards) (milliards)
D 623 D 762 D 711 D 623 D 62 D 11 D 623 D 62 D 11
J O 2,17 3,61 1 ,01 0,100 0,100 0,100 0,0022 0,0036 0,0010 J 11 94,82 92,4 92,13 0,623 0,609 0,579 0,590 0,563 0,533 J17 97,27 88,02 94,18 1 ,196 0,657 1 ,125 1 ,1633 0,5783 1 ,0595
Tableau 11
Cytotoxicité de cellules obtenues à partir de CMN congelées ou fraîches sur la lignée mRCC
786-0 D 711 D 711 D 762 D 762 D623 D623 contol + control - fraîche congel fraiche congel fraiche congel G12 A4,5 RATIO 0,3/1 5,06495 4,6827 5,256 11,671 7,2152 9,85516 0,7645214 1,1945647 RATIO 3/1 21,765 26,257 25,25 24,011 29,183 33,2089 6,163954 3,0103031
RATIO 30/1 49,9806 59,513 73,59 86,033 52,812 57,5541 38,512767 7,7407795
Tableau 12
Production de TNF alpha en pg/ml sur 25 000 cellules
D711 D762 D623 fraiche congel fraiche congel fraiche congel stimul. BrHPP 903,3 1336,16 782,08 973,7 1332,7 1442,36
Sans BrHPP <20 <20 <20 <20 <20 <20
Tableau 13
%Vd2 en CULTURE TOTAL LYMPHOS (milliards) Vd SPECIFIQUE (milliards) condition de congélation 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 J
150 50 25 150 50 25 150 50 25 150 50 25 150 50 25 150 50 25
HSA HSA HSA FOI- FC-I- FOI- HSA HSA HSA FOI- FOI- FOI- HSA HSA HSA FOI- FOI- FOI-
Jour
0 6,7 7,57 7,07 7,07 6,92 7,05 0,1 0,1 0,1 0,1 0,1 0,1 0,007 0,008 0,007 0,007 0,007 0,007 0
7 92,88 94,1293,8891,8794,4193,02 0,5 0,52 0,49 0,55 0,48 0,51 0,471 0,489 0,4600,505 0,4530,474 7
10 97,75 98,1 98,3 98,1798,11 98,4 2,66 2,37 2,43 2,58 2,4 2,85 2,6 2,3 2,4 2,5 2,4 2,8 10
17 97,88 98,44 98,4 98,2198,45- 98,7 14,2 15,36 12,6 20,6 12,1 25,85 13,9 15,1 12,4 20,2 11,9 25,5 17

Claims

REVENDICATIONS
1. Procédé de préparation d'une composition de lymphocytes γδT, comprenant au moins une étape de culture d'une préparation biologique comprenant au moins 50 millions de cellules mono-nucléées en présence d'un composé activateur synthétique des lymphocytes γδT à l'initiation de la culture, suivie d'une culture en présence d'une cytokine.
2. Procédé selon la revendication 1, caractérisé en ce que la préparation biologique est un échantillon de sang, de plasma ou de sérum.
3. Procédé selon la revendication 2, caractérisé en ce que la préparation biologique est issue d'une cytaphérèse.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la préparation biologique comprend plus de 10.10E7 cellules.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la préparation biologique a été préalablement congelée.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les cellules sont maintenues pendant la culture à une densité inférieure à environ 5.10 6 cellules/ml.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que les cellules sont cultivées pendant une période de temps supérieure ou égale à environ 10 jours, de préférence entre 10 et 25 jours.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé activateur synthétique des lymphocytes γδT est un ligand du récepteur T des lymphocytes γδT.
9. Procédé selon la revendication 8, caractérisé en ce que le composé activateur synthétique des lymphocytes γδT est choisi parmi les composés phosphohalohydrines, les composés phosphoépoxydes et les composés biphosphonates.
10. Procédé selon la revendication 9, caractérisé en ce que le composé activateur synthétique des lymphocytes γδT est choisi parmi les composés suivants : 3-(bromométhyl)-3-butanol- 1 -yl-diphosphate (BrHPP) 3-(iodométhyl)-3-butanol- 1 -yl-diphosphate (IHPP) 3-(chlorométhyl)-3-butanol- 1 -yl-diphosphate (C1HPP) 3-(bromométhyl)-3-butanol-l-yl-triphosphate (BrHPPP) 3-(iodométhyl)-3-butanol- 1 -yl-triphosphate (IHPPP) α,γ-di-[3-(bromométhyl)-3-butanol-l-yl]-triphosphate (diBrHTP) α,γ-di-[3-(iodométhyl)-3-butanol- l-yl]-triphosphate (dilHTP) 3,4,-époxy-3-méthyl-l-butyl-diphosphate (Epox-PP) 3,4,-époxy-3-méthyl-l-butyl-triphosphate (Epox-PPP) α,γ-di-3,4,-époxy-3-méthyl-l-butyl-triphosphate (di-Epox-TP)
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la cytokine est choisie parmi interleukine-2 et l'interleukine-15.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la cytokine est utilisée à une dose comprise environ 150 U/ml et environ 500 U/ml.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition obtenue présente les spécifications suivantes :
- elle comprend plus de 80% de cellules γδT, et
- elle comprend plus de 100 millions de cellules γδT viables et fonctionnelles.
14. Procédé de préparation d'une composition cellulaire comprenant des lymphocytes γδT fonctionnels, caractérisé en ce qu'il comprend au moins :
. la culture de cellules provenant d'une cytaphérèse en présence d'un composé activateur synthétique des lymphocytes γδT et d'une cytokine choisie parmi l'interleukine-2 et rinterleukine-15, ladite culture étant réalisée dans des conditions assurant le maintien d'une densité cellulaire essentiellement inférieure à 5.10E6 cellules/ml, et
. la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels.
15. Procédé de préparation d'une composition pharmaceutique à base de lymphocytes γδT, le procédé comprenant :
. la culture de cellules selon le procédé décrit dans l'une des revendications 1 à 14,
. la récupération des cellules obtenues ou d'une partie d'entre elles, ces cellules comprenant des lymphocytes γδT fonctionnels, et
. le conditionnement des cellules dans un véhicule ou excipient acceptable sur le plan pharmaceutique.
16. Composition pharmaceutique, caractérisée en ce qu'elle comprend une population de cellules composée à plus de 80% de lymphocytes γδT fonctionnels et comprenant plus de 100 millions de lymphocytes γδT.
17. Composition selon la revendication 16, caractérisée en ce qu'elle comprend en outre de la sérum-albumine humaine.
18. Composition selon la revendication 16 ou 17, caractérisée en ce qu'elle comprend en outre une cytokine choisie de préférence parmi IL-2 et IL- 15, en vue d'une utilisation simultanée, séparée ou espacée dans le temps.
19. Culture de cellules sanguines in vitro ou ex vivo, caractérisée en ce qu'elle comprend au moins 80% de lymphocytes γδT fonctionnels et plus de 100 millions de lymphocytes γδT.
20. Utilisation d'une culture de cellules selon la revendication 19 pour la préparation d'une composition pharmaceutique destinée à la stimulation des défenses immunitaires d'un sujet, notamment au traitement de maladies infectieuses ou parasitaires ou de cancers.
PCT/FR2003/000585 2002-02-22 2003-02-21 PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES ϜδT WO2003070921A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/505,252 US20050196385A1 (en) 2002-02-22 2003-02-21 Methods for producing gamma delta t cells
CA002475437A CA2475437A1 (fr) 2002-02-22 2003-02-21 Procedes de production de lymphocytes .gamma..delta.t
EP03722666A EP1476540A1 (fr) 2002-02-22 2003-02-21 Procedes de production de lymphocytes gamma delta t
AU2003229834A AU2003229834B2 (en) 2002-02-22 2003-02-21 Methods for producing gamma delta T cells
JP2003569814A JP4445268B2 (ja) 2002-02-22 2003-02-21 γδT細胞を製造するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/02305 2002-02-22
FR0202305A FR2836483B1 (fr) 2002-02-22 2002-02-22 Procedes de production de lymphocytes gamma delta t

Publications (1)

Publication Number Publication Date
WO2003070921A1 true WO2003070921A1 (fr) 2003-08-28

Family

ID=27676024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000585 WO2003070921A1 (fr) 2002-02-22 2003-02-21 PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES ϜδT

Country Status (7)

Country Link
US (1) US20050196385A1 (fr)
EP (1) EP1476540A1 (fr)
JP (1) JP4445268B2 (fr)
AU (1) AU2003229834B2 (fr)
CA (1) CA2475437A1 (fr)
FR (1) FR2836483B1 (fr)
WO (1) WO2003070921A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006720A1 (fr) * 2004-07-13 2006-01-19 Medinet., Co.Ltd MÉTHODE POUR FAIRE LA CULTURE DES CELLULES ϜδT, LES CELLULES ϜδT ET UN REMÈDE/TRAITEMENT PRÉVENTIF
WO2006067635A2 (fr) * 2004-12-20 2006-06-29 Innate Pharma S.A. Utilisation d'activateurs de lymphocytes g? t comme adjuvants de vaccins
WO2007099117A1 (fr) * 2006-03-01 2007-09-07 C4T S.C. A R.L. Composés organiques de type thiopyrophosphate, méthode de synthèse desdits composés et compositions les incluant
WO2008059052A1 (fr) 2006-11-17 2008-05-22 Innate Pharma Procédés améliorés d'utilisation d'un phosphoantigène dans le traitement d'un cancer
WO2009037723A1 (fr) * 2007-08-10 2009-03-26 Istituto Nazionale Per Le Malattie Infettive Procédé pour la génération et l'expansion de lymphocytes t régulateurs gamma/delta, cellules ainsi obtenues et leurs utilisations
WO2012131419A1 (fr) 2011-03-25 2012-10-04 Txcell Méthode d'utilisation des lymphocytes t régulateurs en thérapie

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE441420T1 (de) * 2002-12-02 2009-09-15 Innate Pharma Interleukin-2 und gamma delta t zellaktivator enthaltende zusammensetzungen und deren verwendungen
WO2005077411A2 (fr) * 2004-02-10 2005-08-25 Innate Pharma Composition et procede pour le traitement de carcinome
US20090208517A1 (en) * 2004-08-19 2009-08-20 Bernhard Moser Preparation Of Antigen-Presenting Human Gamma-Delta T Cells And Use In Immunotherapy
DE602005022728D1 (de) * 2004-08-19 2010-09-16 Univ Cardiff Präparation antigenpräsentierender menschlicher gamma delta t-zellen und verwendung in der immuntherapie
US8338173B2 (en) * 2005-08-11 2012-12-25 University College Cardiff Consultants Limited Preparation of antigen-presenting human γδ T cells and use in immunotherapy
US20080233132A1 (en) * 2006-11-03 2008-09-25 Miller Stephen D Multiple sclerosis therapy
US20090175838A1 (en) * 2007-01-26 2009-07-09 Newell Rogers M Karen Methods of modulating immune function
US8957031B2 (en) * 2007-10-23 2015-02-17 Regents Of The University Of Colorado, A Body Corporate Competitive inhibitors of invariant chain expression and/or ectopic clip binding
CN107106578B (zh) * 2014-08-12 2020-12-25 香港大学 治疗厄泼斯坦-巴尔病毒相关疾病的双膦酸盐化合物和γδT细胞-介导的疗法
GB201421716D0 (en) 2014-12-05 2015-01-21 King S College London Cell expansion procedure
KR20210069665A (ko) 2018-09-27 2021-06-11 포스포감, 인크. 동종이계 감마/델타-t 세포의 확장 및 사용을 위한 방법 및 조성물
KR20220054282A (ko) * 2019-06-14 2022-05-02 지 테크 바이오 엘엘씨 활성화 림프구성 세포 및 암 및 감염 질환을 치료하기 위해 그를 사용하는 방법
WO2023196903A1 (fr) 2022-04-06 2023-10-12 Regeneron Pharmaceuticals, Inc. Molécules bispécifiques de liaison à l'antigène qui se lient et cd3 et antigènes associés à une tumeur (taa) et leurs utilisations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902793A (en) * 1993-07-19 1999-05-11 Albert Einstein College Of Medicine Of Yeshiva University Method for proliferating Vγ2Vδ2 T cells
WO2000012516A1 (fr) * 1998-09-01 2000-03-09 Institut National De La Sante Et De La Recherche Medicale Phosphohalohydrines, procede de fabrication et applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782722B1 (fr) * 1998-09-01 2001-01-12 Inst Nat Sante Rech Med Nouveaux composes phosphoepoxydes, procede de fabrication et applications
DK1408984T3 (da) * 2001-07-20 2009-02-09 Bioagency Ag Organofosforforbindelser til aktivering af gamma/delta T celler
WO2003038072A1 (fr) * 2001-10-31 2003-05-08 Universite Libre De Bruxelles Generation et utilisation de nouveaux types de cellules dendritiques
ATE441420T1 (de) * 2002-12-02 2009-09-15 Innate Pharma Interleukin-2 und gamma delta t zellaktivator enthaltende zusammensetzungen und deren verwendungen
WO2005077411A2 (fr) * 2004-02-10 2005-08-25 Innate Pharma Composition et procede pour le traitement de carcinome

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902793A (en) * 1993-07-19 1999-05-11 Albert Einstein College Of Medicine Of Yeshiva University Method for proliferating Vγ2Vδ2 T cells
WO2000012516A1 (fr) * 1998-09-01 2000-03-09 Institut National De La Sante Et De La Recherche Medicale Phosphohalohydrines, procede de fabrication et applications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE [online] February 1997 (1997-02-01), LI X ET AL: "[Establishment of a novel culture system for specific expansion of human gamma delta T cell and study of its biological properties]", XP002223786, Database accession no. NLM9596941 *
KUNZMANN VOLKER ET AL: "Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma.", BLOOD, vol. 96, no. 2, 15 July 2000 (2000-07-15), pages 384 - 392, XP002223785, ISSN: 0006-4971 *
ZHONGHUA YI XUE ZA ZHI. CHINA FEB 1997, vol. 77, no. 2, February 1997 (1997-02-01), pages 111 - 114, ISSN: 0376-2491 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006720A1 (fr) * 2004-07-13 2006-01-19 Medinet., Co.Ltd MÉTHODE POUR FAIRE LA CULTURE DES CELLULES ϜδT, LES CELLULES ϜδT ET UN REMÈDE/TRAITEMENT PRÉVENTIF
JPWO2006006720A1 (ja) * 2004-07-13 2008-05-01 株式会社メディネット γδT細胞の培養方法、γδT細胞及び治療・予防剤
WO2006067635A2 (fr) * 2004-12-20 2006-06-29 Innate Pharma S.A. Utilisation d'activateurs de lymphocytes g? t comme adjuvants de vaccins
WO2006067635A3 (fr) * 2004-12-20 2006-08-24 Innate Pharma Sa Utilisation d'activateurs de lymphocytes g? t comme adjuvants de vaccins
WO2007099117A1 (fr) * 2006-03-01 2007-09-07 C4T S.C. A R.L. Composés organiques de type thiopyrophosphate, méthode de synthèse desdits composés et compositions les incluant
WO2008059052A1 (fr) 2006-11-17 2008-05-22 Innate Pharma Procédés améliorés d'utilisation d'un phosphoantigène dans le traitement d'un cancer
WO2009037723A1 (fr) * 2007-08-10 2009-03-26 Istituto Nazionale Per Le Malattie Infettive Procédé pour la génération et l'expansion de lymphocytes t régulateurs gamma/delta, cellules ainsi obtenues et leurs utilisations
WO2012131419A1 (fr) 2011-03-25 2012-10-04 Txcell Méthode d'utilisation des lymphocytes t régulateurs en thérapie

Also Published As

Publication number Publication date
AU2003229834A1 (en) 2003-09-09
FR2836483B1 (fr) 2006-09-15
CA2475437A1 (fr) 2003-08-28
FR2836483A1 (fr) 2003-08-29
US20050196385A1 (en) 2005-09-08
JP2005517440A (ja) 2005-06-16
AU2003229834B2 (en) 2008-01-03
EP1476540A1 (fr) 2004-11-17
JP4445268B2 (ja) 2010-04-07

Similar Documents

Publication Publication Date Title
WO2003070921A1 (fr) PROCÉDÉS DE PRODUCTION DE LYMPHOCYTES ϜδT
JP6869994B2 (ja) Nk細胞培養用培地添加キット、及びキットを用いるnk細胞培養方法
EP3316684B1 (fr) Procédé de cryoconservation de cellules a visée thérapeutique
JP2019535293A (ja) 無血清免疫細胞培養培地添加キット、そのキットを使用することによって免疫細胞を培養するための方法、そのキットにより得られた無血清免疫細胞培養物又は培養方法、及びその培養物を含む化粧用組成物
US20240182854A1 (en) Methods to Expand a T Regulatory Cell Master Cell Bank
ZA200309435B (en) Re-activated T-cells for adoptive immunotherepay
JP3056230B2 (ja) 末梢血液リンパ球細胞増殖刺激法
JP2011529341A (ja) ナチュラルキラー細胞の増殖方法
US20030134415A1 (en) Th1 cell adoptive immunotherapy
KR20080018089A (ko) 면역치료용 활성화 림프구 제조방법
US20240197848A1 (en) Therapeutic vaccine for treatment of diabetes type 1 in children, application of the cell sorter and the method of multiplying treg cells to produce therapeutic vaccine for treatment of diabetes type 1
CA2322712A1 (fr) Methodes d&#39;activation de cellules tueuses naturelles (nk)
CN112074280A (zh) 前列腺癌特异性骨髓浸润淋巴细胞及其用途
JP2001149069A (ja) ナチュラルキラー細胞の増殖方法
EP0690125B1 (fr) Procédé de culture d&#39;induction de lymphocytes T cytotoxiques capable de détruire des cellules tumorales
US20030134341A1 (en) Th1 cell adoptive immunotherapy
CN113613672A (zh) 用于治疗胰腺癌的药物组合物
EP2606125B1 (fr) Cellules exprimant les caractéristiques et les propriétés cytolytiques de thl
US7867488B2 (en) Use of dendritic cells (DCs) expressing interleukin 12 (IL-12)
JP2002528115A (ja) TcRγδT細胞の生産方法
CN106795493A (zh) 使用双膦酸盐、抗cd3抗体和il‑2扩增t细胞群体
WO1990004633A1 (fr) ACTIVATION ET CROISSANCE DE LYMPHOCYTES HUMAINS INFILTRANT LES TUMEURS AU MOYEN D&#39;ANTICORPS ANTI-CD3 OU ANTI-TcR
RU2346041C2 (ru) Аутологичные клетки моноцитарного происхождения, индуцирующие аутотолерантность, и их применение в фармацевтических препаратах
CA2977202A1 (fr) Processus photodynamique ameliore et produit obtenu par ce processus
WO2008099088A2 (fr) Procede de culture in vitro de lymphocytes t, en particulier de lymphocytes t infiltrant les tumeurs dits til

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003722666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2475437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10505252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003569814

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003229834

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003722666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003229834

Country of ref document: AU

Date of ref document: 20030221

Kind code of ref document: B