WO2003068673A2 - Procede pour la production d'un composant a resistance thermique elevee, revetu d'une couche de protection thermique - Google Patents

Procede pour la production d'un composant a resistance thermique elevee, revetu d'une couche de protection thermique Download PDF

Info

Publication number
WO2003068673A2
WO2003068673A2 PCT/CH2003/000100 CH0300100W WO03068673A2 WO 2003068673 A2 WO2003068673 A2 WO 2003068673A2 CH 0300100 W CH0300100 W CH 0300100W WO 03068673 A2 WO03068673 A2 WO 03068673A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive layer
component
heat
nanocrystalline
Prior art date
Application number
PCT/CH2003/000100
Other languages
German (de)
English (en)
Other versions
WO2003068673A3 (fr
Inventor
Valery Shklover
Paul Bowen
Karima Belaroui
Heinrich Hofmann
Maxim Konter
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to AU2003202402A priority Critical patent/AU2003202402A1/en
Publication of WO2003068673A2 publication Critical patent/WO2003068673A2/fr
Publication of WO2003068673A3 publication Critical patent/WO2003068673A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Definitions

  • the present invention relates to the field of thermal machines. It relates to a method for producing a thermally highly resilient component coated with a heat protection layer according to the preamble of claim 1.
  • Such a method is e.g. known from US-A-5,759,640.
  • the adhesive layer is typically formed from an aluminum-containing, oxidation-resistant alloy of the type MCrAIY (M stands for iron, cobalt and / or nickel) (see US Pat. No. 5,759,640).
  • the two most important functions of the MCrAlY adhesive layer of a heat protection layer arrangement are (1) the compensation of the thermal mismatch between the heat protection layer (Y-stabilized Zr0) and the superalloy and (2) the provision of a protective Al 2 0 3 layer, which is due to the oxidation the adhesive layer is formed at high temperatures and leads to the formation of a thermally grown oxide layer (Thermally Grown Oxide TGO).
  • the AI 2 ⁇ 3 layer serves as oxidation protection for the system made of adhesive layer and super alloy.
  • FIG. 1 a shows the initial situation for a component 13 made of a superalloy, which is provided with a coating structure 10 consisting of an adhesive layer 12 and an overlying heat protection layer 11. Becomes If the component 13 is exposed to high temperatures from the side of the heat protection layer 11 in a heat treatment, an oxide layer 14 forms on the hot side of the adhesive layer 12 (sub-figure 1b).
  • the actual composition of the thermally grown oxide layer 14 is, however, very complex, because various other oxides (Cr 2 0 3 , NiO, Y 2 0 3 and others) also form at the high temperatures due to interdiffusion of the metals and subsequent interactions between the Oxides (e.g. AI 2 ⁇ 3 / Zr0 2 ) take place.
  • These solid-state chemical high-temperature processes are heterogeneous, take place with a significant change in volume, lead to the formation of mixed oxides with no protective effect and are ultimately responsible for micro-crack formation and the chipping of the heat protection layer.
  • microstructural changes e.g. by directional microcrystallization (using kinetic factors), such as, for example, an in-situ change of the surface of an EB-PVD NiCoCrAlY coating supported by argon plasma at 900 ° C.
  • kinetic factors such as, for example, an in-situ change of the surface of an EB-PVD NiCoCrAlY coating supported by argon plasma at 900 ° C.
  • microstructural change is the growth of a thin (0.1 to 2 ⁇ m) layer of a "naturally" grown oxide by treating the pre-cleaned surface of the adhesive layer with laser energy (UV laser) to form a diffusion barrier in the form of an aluminum oxide layer to produce with controlled thickness (see also the already mentioned US-A-5,759,640).
  • UV laser laser energy
  • Nanotechnology now offers new possibilities for changing a thermally grown oxide layer (TGO) by varying the synthesis methods or process conditions.
  • TGO thermally grown oxide layer
  • a nanocrystalline MCrAlY adhesive layer produced using "cryo milling” has been used in order to obtain a uniform, fine structure of the TGO layer with improved protective properties (V. Provenzano, GE Kim, EJ Lavernja, JM Schoenung and EV Barrera Abstr. Conf. "Novel Synthesis and Processing of Nanostructural Coatings for Protection against Degradation” August 12-17, 2001 Davos, Switzerland).
  • the tailoring of material properties by nanocrystallization has also been proposed elsewhere (US Pat. No. 5,994,164).
  • the growth of selected phases of nanocrystalline materials (aluminum oxide, titanium dioxide) with dimensions of less than 20 nm by controlling the oxidizing atmosphere is also known (US-A-5, 128,081).
  • the crystallization behavior and the phase transitions do not necessarily have to follow the conventional paths of the phase transitions.
  • the explanation of this unusual crystallization behavior can lie in the high surface energy of the nanocrystals.
  • TBCs thermal protection layers
  • the previously proposed methods for improving the service life of thermal protection layers (TBCs) on components that are subjected to high thermal loads have various disadvantages: For example, the service life of a TBC system which has been modified by a pre-oxidation process is limited to only a few thousand hours or less (MF Stroosnijder, R. Mevrel and MJ Bennet Mater. High Temp., 12, 53 (1994)).
  • the improvement in the protective function of the chemically modified adhesive layer is limited by the exhaustion of the reactive elements, the concentration of which must be limited in order to prevent the formation of undesired mixed oxide phases.
  • the fine-grained TGO Layers obtained from a nanostructured MCrAlY adhesive layer V.
  • the object is achieved by the entirety of the features of claim 1.
  • the essence of the invention is to bring about a preferred formation of ⁇ -Al 2 O 3 phases by introducing a special auxiliary layer at the boundary between the adhesive layer and the heat protection layer during the subsequent oxidation of the adhesive layer, so that the oxide layer formed predominantly contains the stable ⁇ -Al 2 0 3 phase.
  • the special auxiliary layer consists of nanocrystalline ⁇ -Al 2 0 3 .
  • the auxiliary layer made of nanocrystalline ⁇ -Al 2 O 3 can be deposited directly on the surface of the adhesive layer.
  • the thickness of the auxiliary layer is approximately 10 ⁇ m.
  • FIG. 1 shows a schematic representation of the layer system of a thermally highly resilient component provided with a heat protection layer in the conventional manner before the heat treatment (FIG. 1 a) and after the heat treatment (FIG. 1 b);
  • FIG. 2 shows the layer system according to an exemplary embodiment of the invention in an illustration analogous to FIG. 1 before the heat treatment (FIG. 2a) and after the heat treatment (FIG. 2b);
  • FIG. 2 shows the layer system according to an exemplary embodiment of the invention before the heat treatment (FIG. 2a) and after the heat treatment (FIG. 2b) in an illustration analogous to FIG. 1.
  • a thin, preferably about 10 ⁇ m thick, auxiliary layer 24 is then produced on the surface of the adhesive layer 22 and consists of nanocrystalline ⁇ -Al 2 O 3 .
  • auxiliary layer is deposited 24 of nanocrystalline ⁇ -Al 2 0 3 on the surface of the adhesive layer 22, or by first komgrössenstabilinstrumentes for forming the auxiliary layer 24 nanocrystalline ⁇ -Al 2 0 3 on the Surface of the adhesive layer 22 is deposited, and that the ⁇ -Al 2 0 3 is then converted to ⁇ -Al 2 0 3 by heating to 1080 ° C in a vacuum.
  • the actual heat protection layer 21 is deposited thereon, which preferably consists of Y-stabilized zirconium dioxide.
  • the coating structure 20 then has the inner structure shown in FIG. 2a. If the component 23 coated in this way is then subjected to a heat treatment in the presence of 0 2 , an oxide layer 25 is again formed on the hot side of the adhesive layer 22 (FIG. 2 b).
  • the nanocrystalline ⁇ -Al 2 0 3 auxiliary layer 24 has the effect that predominantly -AI 2 0 3 phase forms in the thermally grown oxide layer 25.
  • the predominant content of ⁇ -AI 2 0 3 phase and the associated lack of a complex mixture of stable and metastable Al 2 0 3 phase reduces the number of phase transitions and the associated volume changes in the TGO layer during operation. This increases the stability of the coating and significantly extends its service life.
  • Step 1 Polished MK-4 material was coated with a thin layer (thickness d) of nanocrystalline ⁇ -Al 2 0 3 and oxidized at temperatures of 950 and 1050 ° C. The resulting TGO layer was then subjected to a phase analysis. The results were compared to those for a MK-4 sample oxidized without a nano-layer.
  • Step 2 The procedure was the same as in step 1, with the difference that the size-stabilized ⁇ -AI 2 0 3 was used to start the nano-coating and then converted to ⁇ -AI 2 0 3 by heating to 1080 ° C in a vacuum ,
  • Step 3 The procedure was the same as in step 1, with the difference that the nanocoating was applied to an MCrAlY adhesive layer (SV-20) on an MK-4 substrate.
  • Step 4 The procedure was the same as in step 2, with the difference that the nanocoating was applied to an MCrAlY adhesive layer (SV-20) on an MK-4 substrate.
  • Step 5 The procedure was the same as in step 3, with the difference that an upper TBC layer was applied and a possible change in the flaking behavior was analyzed.
  • Step 6 The procedure was the same as in step 3, with the difference that an upper TBC layer was applied and a possible change in the flaking behavior was analyzed.
  • Examples of the morphology of the layers of nanocrystalline Al 2 O 3 produced with different binder concentrations and sintered in two steps at 1200 ° C. and 1140 ° C. on a base made of polycrystalline Ni-based superalloy are shown in FIG. 3 on the basis of their SEM pattern and 4 reproduced. Nanocrystalline ⁇ -Al 2 0 3 powder with a 3% proportion of ⁇ -Al 2 0 3 was used for the coating.
  • the cross sections of FIGS. 3 and 4 show that the particle size varies within a wide range of 50-200 nm and 50-100 nm, depending on the binder concentration. The sintering leads to a certain increase in the grain size and to an improvement in the adhesion of the coating to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un procédé pour la production d'un composant (23) à résistance thermique élevée, revêtu d'une couche de protection thermique (21). Selon le procédé de l'invention, on dépose d'abord une couche adhésive (22) contenant de l'aluminium sur la surface du composant (23), puis on dépose la couche de protection thermique (21) sur la couche adhésive (22). Selon un tel procédé, on obtient une longévité accrue du revêtement en produisant, avant le dépôt de la couche de protection thermique (21) sur la surface de la couche adhésive (22), une mince couche auxiliaire (24) constituée d'alumine alpha nanocristalline.
PCT/CH2003/000100 2002-02-15 2003-02-11 Procede pour la production d'un composant a resistance thermique elevee, revetu d'une couche de protection thermique WO2003068673A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003202402A AU2003202402A1 (en) 2002-02-15 2003-02-11 Method for producing a component having a high thermal loading capacity and coated with a heat-protective layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2672002 2002-02-15
CH267/02 2002-02-15

Publications (2)

Publication Number Publication Date
WO2003068673A2 true WO2003068673A2 (fr) 2003-08-21
WO2003068673A3 WO2003068673A3 (fr) 2003-10-16

Family

ID=27672004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000100 WO2003068673A2 (fr) 2002-02-15 2003-02-11 Procede pour la production d'un composant a resistance thermique elevee, revetu d'une couche de protection thermique

Country Status (2)

Country Link
AU (1) AU2003202402A1 (fr)
WO (1) WO2003068673A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752999B2 (en) 2016-04-18 2020-08-25 Rolls-Royce Corporation High strength aerospace components
US10763715B2 (en) 2017-12-27 2020-09-01 Rolls Royce North American Technologies, Inc. Nano-crystalline coating for magnet retention in a rotor assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700879A1 (fr) * 1994-09-10 1996-03-13 Bayerische Motoren Werke Aktiengesellschaft Revêtement en oxyde d'aluminium résistant aux rayures sur un substrat en verre et procédé pour sa production
US5516588A (en) * 1991-03-27 1996-05-14 Widia Gmbh Composite body, its use and a process for its production
EP0780484A1 (fr) * 1995-12-22 1997-06-25 General Electric Company Articles avec revêtement de barrière thermique et procédé de revêtement
US5683761A (en) * 1995-05-25 1997-11-04 General Electric Company Alpha alumina protective coatings for bond-coated substrates and their preparation
EP0937786A2 (fr) * 1998-02-21 1999-08-25 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Système de revêtement de barrière thermique avec une couche d'alumine intégrée
JP2000017458A (ja) * 1998-06-29 2000-01-18 Mitsubishi Heavy Ind Ltd 高温部材およびその製造方法
EP1127959A1 (fr) * 2000-02-23 2001-08-29 Howmet Research Corporation Revêtement de barrière thermique et article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516588A (en) * 1991-03-27 1996-05-14 Widia Gmbh Composite body, its use and a process for its production
EP0700879A1 (fr) * 1994-09-10 1996-03-13 Bayerische Motoren Werke Aktiengesellschaft Revêtement en oxyde d'aluminium résistant aux rayures sur un substrat en verre et procédé pour sa production
US5683761A (en) * 1995-05-25 1997-11-04 General Electric Company Alpha alumina protective coatings for bond-coated substrates and their preparation
EP0780484A1 (fr) * 1995-12-22 1997-06-25 General Electric Company Articles avec revêtement de barrière thermique et procédé de revêtement
EP0937786A2 (fr) * 1998-02-21 1999-08-25 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Système de revêtement de barrière thermique avec une couche d'alumine intégrée
JP2000017458A (ja) * 1998-06-29 2000-01-18 Mitsubishi Heavy Ind Ltd 高温部材およびその製造方法
EP1127959A1 (fr) * 2000-02-23 2001-08-29 Howmet Research Corporation Revêtement de barrière thermique et article

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHOU T C ET AL: "MICROSTRUCTURAL EVOLUTION AND PROPERTIES OF NANOCRYSTALLINE ALUMINA MADE BY REACTIVE SPUTTERING DEPOSITION" THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, Bd. 205, Nr. 2, 1. Dezember 1991 (1991-12-01), Seiten 131-139, XP000261316 ISSN: 0040-6090 *
GUOFENG CHEN: "THE EFFECT OF NANOCRYSTALLIZATION ON THE OXIDATION RESISTANCE OF NI-5CR-5AL ALLOY" SCRIPTA MATERIA, Bd. 41, Nr. 8, - 1999 Seiten 883-887, XP004325825 ELSEVIER SCIENCE *
LEONARDO AJDELSTAJN: "OXIDATION BEHAVIOR OF HVOF SPRAYED NANOCRYSTALLINE NICRALY POWDER" MATERIALS SCIENCE AND ENGINEERING, Bd. A338, - 2002 Seiten 33-43, XP001148280 *
M.H. LI: "OXIDATION BEHAVIOR OF SPUTTER-DEPOSITED NICRALY COATING" SURFACE AND COATINGS TECHNOLOGY, Bd. 165, - 2003 Seiten 241-247, XP001148281 *
O.ZYWITZKI: "EFFECT OF PLASMA ACTIVATION ON THE PHASE TRANSFORMATIONS OF ALUMINUM OXIDE" SURFACE AND COATINGS TECHNOLOGY, Bd. 76-77, - 1995 Seiten 754-762, XP001148283 *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 04, 31. August 2000 (2000-08-31) & JP 2000 017458 A (MITSUBISHI HEAVY IND LTD), 18. Januar 2000 (2000-01-18) *
Z. LIU: "OXIDATION BEHAVIOUR OF NANOCRYSTALLINE FE-NI-CR-AL ALLOY COATINGS" MATERIALS SCIENCE AND TECHNOLOGY, Bd. 15, Nr. 12, 1999, Seiten 1447-1450, XP008019547 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752999B2 (en) 2016-04-18 2020-08-25 Rolls-Royce Corporation High strength aerospace components
US10763715B2 (en) 2017-12-27 2020-09-01 Rolls Royce North American Technologies, Inc. Nano-crystalline coating for magnet retention in a rotor assembly

Also Published As

Publication number Publication date
WO2003068673A3 (fr) 2003-10-16
AU2003202402A8 (en) 2003-09-04
AU2003202402A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
DE69916149T2 (de) Verbesserte Aluminid-Diffusionsverbundschicht für thermische Sperrschichtsysteme und Verfahren dazu
EP0944746B1 (fr) Produit pouvant etre expose a un gaz chaud, pourvu d'une couche calorifuge, et son procede de production
DE602004011309T2 (de) Verstärkte Bindungsschicht für eine Wärmedämmschicht
EP1029101B1 (fr) Produit, en particulier composant d'une turbine a gaz, a couche thermo-isolante en ceramique, et procede pour obtenir ladit produit
DE60034076T2 (de) Stabile Mehrphasen-Wärmedämmschichtmaterial für Hochtemperaturanwendung
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE60103526T2 (de) Wärmedämmschicht mit niedriger leitfähigkeit
DE69828941T2 (de) Hochtemperaturbeständiges, sprühbeschichtetes teil und verfahren zu deren herstellung
DE112004003138B4 (de) Aluminiumoxidschutzschicht und Herstellungsverfahren dafür
DE19807636C1 (de) Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
DE60002890T2 (de) Siliziumnitridbauteile mit schutzschicht
EP0984839A1 (fr) Materiau a gradient d'indice metal-ceramique, produit realise a partir dudit materiau et procede pour produire un materiau a gradient d'indice metal-ceramique
DE60021722T2 (de) Wärmedämmschicht
EP3426815B1 (fr) Couche d'adhésif destinée à se lier à une couche de protection à haute température sur un substrat et procédé de production
EP3458431B1 (fr) Procédé de fabrication d'un écran thermique céramique à revêtement de réaction
EP1463845B1 (fr) Production d'un materiau ceramique pour une couche calorifuge et couche calorifuge correspondante contenant ledit materiau
WO2003068673A2 (fr) Procede pour la production d'un composant a resistance thermique elevee, revetu d'une couche de protection thermique
EP1256636B1 (fr) Materiau thermo-isolant avec une structure cristalline essentiellement magnétoplumbitique
DE10254210A1 (de) Stabilisierter Zirconiumdioxid-Wärmesperrenüberzug mit Hafnium (IV)-oxid
EP1522603B1 (fr) Procédé pour revêtir un objet et objet
EP3500543A1 (fr) Écran thermique céramique à infiltration de surface servant à éviter la corrosion et les attaques par érosion
EP1900708B1 (fr) Matériau calorifuge doté d'une résistance à la température cyclique élevée
DE19801424B4 (de) Wärmedämmstoff für hohe Temperaturen und seine Verwendung
WO2008107293A1 (fr) Procédé pour appliquer un revêtement calorifuge, et éléments de turbine pourvus d'un revêtement calorifuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP