WO2003067230A1 - Fluorescent image measuring method and device - Google Patents

Fluorescent image measuring method and device Download PDF

Info

Publication number
WO2003067230A1
WO2003067230A1 PCT/JP2003/001224 JP0301224W WO03067230A1 WO 2003067230 A1 WO2003067230 A1 WO 2003067230A1 JP 0301224 W JP0301224 W JP 0301224W WO 03067230 A1 WO03067230 A1 WO 03067230A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
fluorescence image
autofocus
image measurement
Prior art date
Application number
PCT/JP2003/001224
Other languages
French (fr)
Japanese (ja)
Inventor
Naohiro Noda
Mutsuhisa Hiraoka
Kazuhito Takahashi
Akihito NARIKUNI
Original Assignee
Fuji Electric Holdings Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co.,Ltd. filed Critical Fuji Electric Holdings Co.,Ltd.
Priority to AU2003207248A priority Critical patent/AU2003207248A1/en
Priority to JP2003566530A priority patent/JP4106626B2/en
Publication of WO2003067230A1 publication Critical patent/WO2003067230A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques

Definitions

  • This invention fluorescently labels (stains with a fluorescent reagent) cells such as microorganisms and tissue cells and fine particles such as mineral particles, and generates fluorescence by exciting the reagent.
  • the present invention relates to a fluorescence image measurement method and apparatus for generating fluorescence by exciting fluorescent molecules originally present in fine particles such as mineral particles and measuring the fluorescent image.
  • Fluorescence image measurement of microorganisms and tissue cells is used in many fields dealing with living organisms.
  • autofocus (AF) technology has come into general use with the development of image sensors and image processing technology in recent years.
  • the amount of high frequency components (contrast) contained in an image signal is determined, and the position where the contrast is maximized is determined as the focal point.
  • the microorganisms include prokaryotes such as bacteria and actinomycetes, eukaryotes such as yeast, fungi, lower algae, viruses, and the like.
  • the tissue cells include animal and plant-derived cultured cells and It contains pollen such as cedar and cypress. In addition, it is not limited only to living things, such as measuring dead bacteria.
  • staining can be performed with one or more color-forming substances capable of staining a detection target (for example, a microorganism).
  • the color-forming substance is not particularly limited as long as it is capable of forming a color by acting on cell components contained in a microorganism, and typical examples thereof include nucleic acids and proteins.
  • a fluorescent staining solution for staining when analyzing microorganisms in general, it can be used to analyze the structure of fluorescent nucleobase analogs, fluorescent dyes that stain nucleic acids, blue liquids that stain proteins, and proteins.
  • Environmentally friendly fluorescent probes used stains used for analysis of cell membrane and membrane potential, stains used for fluorescent antibody labeling, etc.For aerobic bacteria, stains that develop color by cell respiration are used.
  • stains that stain mitochondria stains that stain the Golgi apparatus, stains that stain the endoplasmic reticulum, a stain that reacts with intracellular esterase and its modifying compounds, etc.
  • a staining solution used for observing bone tissue a staining solution that is a nerve cell tracer, and the like can be mentioned.
  • the reagent After staining the microorganisms or the like with the staining reagent, the reagent is excited to generate fluorescence, and the fluorescence image is measured by an imaging device (for example, a CCD camera device), whereby the microorganisms and the like can be counted.
  • an imaging device for example, a CCD camera device
  • the color of the generated fluorescence (green, red, etc.) or the wavelength band of the fluorescence differs depending on the microorganism and the type of the staining reagent.
  • a total cell count detection for detecting all microorganisms an assay for staining and counting only microorganisms having respiratory activity, an assay for staining and counting only microorganisms having esterase activity, Alternatively, it can be applied to a wide range of fields, such as an assay that stains and counts microorganisms of a specific genus or species by using a multiple staining method that combines multiple chromogenic substances.
  • a focus detection device for a microscope has been proposed which solves the above problems and aims at improving the efficiency of autofocusing (for example, see Patent Document 1 described later).
  • the focus detection device for a microscope disclosed in Patent Document 1 states that “the incident light fluorescence that irradiates a sample with excitation light of a specific wavelength and collects light longer than the excitation light with an objective lens.
  • the image sensor is arranged on the short wavelength side and the long wavelength side, respectively, which are separated by the image sensor and captures the observation light image of the sample, and an image sensor for accumulating the observation light image of the sample.
  • Focus detection means for detecting the focus state of the observation light image, servo means for driving at least one of the objective lens and the sample side according to the degree of focus of the focus detection means, and a focus means and an image Capacitors, Oh in those with C P U to control the focus detection means "0.
  • the apparatus disclosed in Patent Document 1 described above is provided with a transmissive illumination means on the side facing the objective lens, and irradiates the specimen with light having a wavelength longer than the fluorescence observation wavelength by this transmissive illumination, thereby obtaining the specimen. It performs AF based on the observed image, has wavelength separation means for separating the fluorescence image and the AF image, and has two systems of imaging means for obtaining each image. In addition, when fluorescence image measurement is performed in a plurality of wavelength bands by switching the fluorescence image measurement wavelength, an in-focus position is adjusted by combining an optical path length correction unit.
  • the one disclosed in Patent Document 1 has various problems as described below. That is,
  • Patent Document 2 discloses an optical measurement method for accurately focusing an optical system. Describes the following method.
  • a plurality of excitation light sources having different wavelength regions are provided, and a light is generated from a first excitation light source among the plurality of excitation light sources.
  • a wavelength region substantially equal to the wavelength of the fluorescence is selected from the plurality of excitation light sources.
  • the optical measurement method disclosed in Patent Document 2 is mainly for reading a DNA array test piece, and the position where the amount of reflected light is maximum is defined as a focus position.
  • autofocus is not performed by detecting the focus state of the observation light image of the specimen or based on image information.
  • it is necessary to irradiate the light for autofocus on the same optical path as the excitation light, and for that purpose, it must be incident by a coaxial epi-optical system.
  • FIG. 4 of the publication and the description of the relevant part there is a problem that the device configuration is complicated and the cost is high, for example, it is necessary to rotate a plurality of types of dichroic mirrors with a motor.
  • the present invention has been made in view of the above points, and has a simple configuration having a small number of constituent elements.
  • a fluorescence image measurement method that enables AF based on image information without quenching even for specimens with low fluorescence intensity, and for specimens supplemented on the membrane filter surface or specimens with unclear contrast.
  • An object of the present invention is to provide a fluorescence image measurement device. Disclosure of the invention
  • the invention according to claim 1 provides a fluorescent image measurement method for performing autofocus based on image information obtained via an imaging unit. First, irradiate autofocusing light emitted in the fluorescence image measurement wavelength band, determine the degree of focusing based on the image information obtained as a result, and determine the degree of focusing based on the degree of focusing. Drive the at least one of them to search for the in-focus position, and after arriving at the in-focus position, stop irradiating the auto-focusing light. Then, irradiate the specimen with excitation light, and obtain a fluorescence image emitted from the specimen.
  • autofocus can be performed without irradiating the sample with excitation light, and autofocus can be performed using a simple configuration with few components, so that a decrease in light-receiving efficiency is minimized, and Thus, it is possible to measure a specimen having a low fluorescence intensity.
  • the measurement sample is a cell such as a microorganism or a tissue cell (the invention of claim 2).
  • the measurement sample includes a plurality of types of cells, and when the plurality of types of cells are measured, the measurement sample is set in advance according to the cells to be measured.
  • the autofocus light in a plurality of fluorescence image measurement wavelength bands is sequentially switched and irradiated to determine the degree of focusing, and measure a fluorescence image of each cell (claim 4).
  • the present invention can be applied to a system that performs image measurement with a plurality of excitation-fluorescence characteristics by switching light for autofocus.
  • a pattern close to the specimen may be provided, and autofocus may be performed based on image information of the pattern.
  • Invention of range 5 the contrast is evaluated.However, malfunction such as focusing on a position other than the sample holding position is prevented, and the contrast evaluation is performed. P Hiring 224
  • the method using patterns is effective for accurate and convenient flight.
  • the pattern can be provided on a surface of a slide glass holding a specimen (the invention according to claim 6). In the invention according to claim 5, the pattern can be provided on a surface of a filter that filters and supplements the sample (the invention according to claim 7). Further, in the invention of claims 5 to 7, the pattern includes a number or a figure, and by identifying these, it is possible to obtain positional information of the specimen. (Invention of paragraph 8). Further, as an apparatus for performing the fluorescence image measurement method, the inventions of the following claims 9 to 11 are preferable.
  • an autofocus light irradiation unit that irradiates a sample with light in a fluorescence image measurement wavelength band;
  • Excitation light irradiating means autofocus and fluorescence image measurement imaging means, fluorescence and excitation filters and a fluorescent filter block having a dichroic mirror, and a light receiving optical system or sample according to the degree of focus Focusing driving means for driving at least one of the following;
  • arithmetic control means wherein the arithmetic control means determines the degree of focus based on image information obtained by irradiating the autofocus light, At least one of the receiving optical system or the sample is driven according to the degree of focus to search for the in-focus position. Stopping the irradiation, then, irradiated with excitation light to the specimen, characterized in that it comprises a control function of measuring the fluorescence image emitted by the sample (the invention of Claim C.
  • the light source in the autofocus light irradiating means and / or the excitation light irradiating means is a light emitting diode or a semiconductor laser.
  • the autofocus light irradiation unit in order to perform autofocus by switching light in a plurality of fluorescence image measurement wavelength bands, includes a plurality of autofocus light irradiation units.
  • a light source, and a plurality of the fluorescent filter blocks are provided; and the arithmetic control means includes a light source of a plurality of predetermined fluorescence image measurement wavelength bands respectively corresponding to a plurality of types of cells.
  • a function of performing auto focus by sequentially switching (invention of claim 11).
  • FIG. 1 is a schematic configuration diagram of a fluorescence image measurement device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a fluorescence image measurement device according to a second embodiment of the present invention.
  • FIG. 3 is an explanatory diagram illustrating an example in which a pattern for AF is provided.
  • FIG. 4 is an explanatory diagram illustrating a different example in which an AF pattern is provided.
  • FIG. 5 is an explanatory diagram illustrating still another example in which positional information is provided in an AF pattern.
  • FIG. 1 is a schematic configuration diagram of a fluorescence image measurement device according to a first embodiment of the present invention.
  • Fig. 1 is a sample
  • 2 is a light source for AF
  • 3 is a dichroic mirror
  • 4 is a filter
  • 5 is an objective lens
  • 6 is an imaging lens
  • 7 is an image sensor
  • 8 is a calculation unit
  • 9 is a stage movement.
  • 10 is a light source for excitation
  • 11 is a condenser lens
  • 13 is a fluorescence filter block.
  • the sample 1 is irradiated obliquely from above.
  • a method of performing AF with incident light and performing fluorescence image measurement using an epi-illumination optical system is not limited to this method.
  • a modification in which excitation light and AF light are irradiated from an oblique direction Includes an example in which the light for AF is transmitted light, but the structure shown in FIG. 1 is the simplest in structure and can reduce the cost.
  • a general method using contrast between pixels is used.
  • the specimen 1 is irradiated from the AF light source 2 with light containing a wavelength in the fluorescence image measurement wavelength band, so as to suppress the fading of the specimen.
  • the fluorescence image measurement wavelength band is determined by the spectral transmission characteristics of the dichroic mirror 3 and the spectral transmission characteristics of the fluorescent light receiving filter 4.
  • a light emitting diode (LED) or a semiconductor laser is suitable.
  • the reason is that the light emission spectrum can be variously selected by selecting the element, and the characteristics are not easily deteriorated even if ONZOFF is repeated. Furthermore, because these elements are small and lightweight, they can be easily assembled as light sources for AF.
  • an image for AF can be obtained in the fluorescence image measurement wavelength band
  • a wavelength separating unit and two image pickup devices as in the device disclosed in Patent Document 1 are not required, and the devices described in Patent Documents 1 and 2 are required.
  • the device configuration can be simplified. It is also possible to obtain a desired wavelength by using a white lamp as the light source for AF and combining an optical filter, and to perform irradiation and non-irradiation by opening and closing the shutter. Further, the angle of irradiation of the AF light is preferably such that the inclination angle with respect to the sample surface is about 5 to 45 °.
  • the image of the specimen at the time of irradiating the AF light is captured by the image sensor 7 via the objective lens 5, the dichroic mirror 13, the fluorescent light receiving side filter 4, and the imaging lens 6.
  • the imaging element a CCD camera element or a CMOS camera element is suitable.
  • the image obtained by the image sensor 7 is used as the arithmetic control means.
  • the contrast is evaluated by a general AF method, for example, calculating as a luminance difference between adjacent pixels, and setting a position where the contrast becomes maximum as a focal point position.
  • the processing up to the in-focus position is generally as follows.
  • stage moving mechanism 9 is not an essential requirement, as long as it can search the focal point by driving at least one of the sample 1 and the light receiving system.
  • the AF light is turned off, and then the excitation light source 10 is turned on.
  • the light from the excitation light source 10 irradiates the sample 1 via the condenser lens 11, the excitation side filter 12, the dichroic mirror 3, and the objective lens 5, thereby enabling fluorescence image measurement. .
  • a high-pressure mercury lamp is often used as the excitation light source.
  • the characteristics of the high-pressure mercury lamp deteriorate significantly when ONZNZ OFF is repeated in a short time.
  • a shutter is required. Therefore, if the wavelength characteristics and the amount of light can be satisfied, it is desirable to use a light emitting diode (LED) or a semiconductor laser as the excitation light source, similarly to the AF light source.
  • LED light emitting diode
  • the wavelength of the branch point between the reflectance and the transmittance is 505 nm (that is, the transmittance is about 50% at 505 nm, and the transmittance decreases at wavelengths shorter than 505 nm (reflectance)
  • the transmittance is about 50% at 505 nm
  • the transmittance decreases at wavelengths shorter than 505 nm (reflectance)
  • FIG. 2 a fluorescence image measurement device according to a second embodiment of the present invention shown in FIG. 2 will be described. 2, the same functional members as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 2 shows a case where a plurality of living cells, for example, a plurality of bacteria are simultaneously measured, or a case where the same bacterium contains live and dead bacteria.
  • 1 shows an apparatus according to the invention of item 1.
  • a plurality of staining reagents are used depending on the type of bacteria, and the fluorescent color differs depending on the type of bacteria and the staining agent.
  • the three elements of the excitation side filter 12, the dichroic mirror 3, and the image measurement side filter 4 are usually combined into one unit.
  • a plurality of fluorescent filter blocks 13 are provided. By switching these, it is possible to perform image measurement with multiple excitation-fluorescence characteristics using white light emitted from a high-pressure mercury lamp.
  • An example in which the present invention is applied to a fluorescence image measurement system having such an image measurement condition switching mechanism will be described below with reference to FIG. In FIG.
  • a position recognition mechanism 14 is provided for five fluorescent filter blocks 13, and when a block is switched, its output is taken in, so that the calculation unit 8 automatically recognizes the block setting status. To do it. Further, the calculating unit 8 determines the set fluorescence image measurement wavelength of the fluorescence filter block 13 and irradiates the sample 1 with AF light suitable for the wavelength.
  • the AF light source 15 a plurality of types of light-emitting diode semiconductor lasers may be switched and used, or a switching mechanism of a white light source and an optical filter having a predetermined spectral transmittance and a shutter mechanism may be combined. May be used.
  • the excitation light source 10 is turned on, or the excitation light source is turned on in advance, and the specimen 1 is irradiated with the excitation light by opening the shirt that has blocked the excitation light, and fluorescence image measurement is performed.
  • the excitation light source may be, in addition to the white light, a plurality of LEDs that emit excitation light according to the measurement sample.
  • a pattern is drawn on the surface of the slide glass G in advance.
  • the pattern is drawn using non-fluorescent paint or non-fluorescent metal deposition.
  • the thickness and density of the pattern shall be set so that at least a part of the boundary appears in the field of view when the image is captured.
  • Specimens such as fluorescently labeled microorganisms and tissue cells are dropped on slide glass, covered with a cover glass, and used as a measurable sample. At this time, the specimen 1224
  • Irradiate light for AF Since at least a part of the pattern is shown in the AF image, autofocus is performed with that part as the target. Subsequently, the excitation light source is turned on and fluorescence image measurement is performed in the same manner as in the embodiment shown in FIGS.
  • the pattern which is the reference of the autofocus
  • the sample are close to or close to each other.
  • the distance between the pattern and the specimen should be shorter than the depth of focus of the light receiving system composed of the objective lens, lens barrel, imaging lens, and image sensor.
  • FIG. 4 When measuring microorganisms and tissue cells, the process of capturing a sample by filtration through a membrane filter and measuring it is an extremely common operation.
  • a fluorescent image measurement method for providing a pattern on the surface of the membrane filter will be described with reference to FIG.
  • the pattern is drawn on the surface of the membrane filter F by depositing a non-fluorescent paint or a non-fluorescent metal.
  • the thickness and density of the pattern should be set so that at least some of the boundaries are visible in the field of view when the image is captured.
  • Samples of fluorescently labeled microorganisms and tissue cells are filtered through a membrane filter.
  • the sample captured on the membrane filter is used as a sample for measurement. At this time, the sample is in close proximity to the surface of the membrane filter.
  • the differential interference method is used for a sample having no coloration and a refractive index close to water.
  • Image measurement using is an essential requirement.
  • the operation of supplementing the sample by filter filtration and measuring the sample is an extremely well performed operation, but in this state, it is difficult to obtain a differential interference image. That is, what is disclosed in the gazette of Patent Document 1 cannot be applied to the sample supplemented on the filter.
  • FIG. 5 When measuring specimens such as microorganisms and tissue cells, it is not uncommon to scan a sample on a plane perpendicular to the fluorescence image measurement direction and measure the image on multiple screens in order to reduce statistical variations. In such a case, if the pattern is not a simple line, but a form that can obtain positional information, for example, as shown in Fig. 5, for example, by drawing a combination of sections and serial numbers on the surface of the membrane filter F, The location of a specimen such as an object or a tissue cell can be grasped.
  • microorganisms or tissue cells change over time, this method can be used to recognize individual specimens individually and track those changes.
  • Typical examples are applications that capture the growth of microorganisms and cases where the effects of drugs on tissue cells are evaluated.
  • Such positional information may be formed on the surface of the slide glass.
  • the present invention can be used for a measurement method and an apparatus for labeling a sample containing fine particles such as cells such as microorganisms and tissue cells and mineral particles with a staining reagent and measuring a fluorescent image emitted from the sample.
  • Main measurement method and apparatus The fields of application include medical care, food production, and water and sewage.
  • autofocus can be performed without irradiating the sample with excitation light, and a reduction in light receiving efficiency can be minimized by realizing a simple mechanism with few components.
  • it can measure samples with low fluorescence intensity.
  • the present invention can be applied to a system that performs image measurement with a plurality of excitation-fluorescence characteristics while switching the fluorescence filter block. Furthermore, even for a sample whose contrast is unclear, autofocus can be performed by using a pattern provided close to the sample.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A fluorescent image measuring method and device in which auto-focusing (AF) is carried out according to image information obtained through imaging means. A sample used as a measurement specimen is irradiated with light for auto-focusing in a fluorescent image measurement wavelength band, and the focused state is judged from the image information obtained by the irradiation. According to the focused state, at least one of a light-receiving optical system and the sample is driven, the focus position is searched for, the irradiation of the auto-focusing light is stopped after the focus position is reached, the sample is irradiated with excitation light, and a fluorescent image formed by the light emitted from the specimen is measured. Thus AF can be carried out according to image information by means of a simple structure having a small number of constituent elements without causing extinction for even a sample of low fluorescence intensity.

Description

明細 ; 蛍光画像計測方法および装置 技術分野 Description ; Fluorescence image measurement method and device
この発明は、 微生物や組織細胞等の細胞や鉱物粒子などの微粒子を蛍 光標識 (蛍光試薬で染色) し、 試薬を励起することで蛍光を発生させ、 あるいは、 微生物や組織細胞等の細胞や鉱物粒子などの微粒子が元々有 する蛍光性分子を励起することで蛍光を発生させ、 その蛍光画像を計測 する蛍光画像計測方法および装置に関する。 背景技術  This invention fluorescently labels (stains with a fluorescent reagent) cells such as microorganisms and tissue cells and fine particles such as mineral particles, and generates fluorescence by exciting the reagent. The present invention relates to a fluorescence image measurement method and apparatus for generating fluorescence by exciting fluorescent molecules originally present in fine particles such as mineral particles and measuring the fluorescent image. Background art
微生物や組織細胞などの蛍光画像計測は、 生物を扱う多くの分野で用 いられている。 このような画像計測においても、 近年の撮像素子や画像 処理技術の進展に伴い、 オー トフォーカス (A F ) の技術が汎用される ようになつてきた。 一般的なオー トフォーカスは、 画像信号に含まれる 高周波成分量 (コン トラス ト) を求め、 コン トラス トが最大になる位置 を合焦点位置とするものである。  Fluorescence image measurement of microorganisms and tissue cells is used in many fields dealing with living organisms. In such image measurement, autofocus (AF) technology has come into general use with the development of image sensors and image processing technology in recent years. In general auto focus, the amount of high frequency components (contrast) contained in an image signal is determined, and the position where the contrast is maximized is determined as the focal point.
本発明において、 前記微生物には、 細菌や放線菌などの原核生物、 酵 母ゃカビなどの真核生物、 下等藻類、 ウィルスなどが含まれ、 前記組織 細胞には、 動植物由来の培養細胞及びスギゃヒノキなどの花粉などが含 まれる。なお、死菌を計測するなど、生きている物のみに限定されない。 また、 本発明の計測方法においては、 検出対象 (例えば、 微生物) を 染色し得る 1種以上の発色性物質にて染色を施すことができる。 発色性 物質としては、 微生物に含まれる細胞成分と作用して発色するものであ れば特に限定されないが、 その代表的なものとして、 核酸やタンパク質 を染色する蛍光染色液が挙げられる。 さらに具体的な発色性染料として は、 微生物一般を対象とする場合は、 蛍光性核酸塩基類似体、 核酸を染 色する蛍光染色剤、 タンパク質を染色する ¾色液、 タンパク質などの構 造解析に用いられる環境性蛍光プローブ、 細胞膜や膜電位の解析に用い られる染色液、 蛍光抗体の標識に用いられる染色液などが、 好気性細菌 を対象とする場合は細胞の呼吸によって発色する染色液などが、 真核微 生物を対象とする場合はミ トコンドリアを染色する染色液、 ゴルジ体を 染色する染色液、 小胞体を染色する染色液、 細胞内エステラーゼと反応 する染色液及びその修飾化合物などが、 高等動物細胞を対象とする場合 は骨組織の観察に用いられる染色液、 神経細胞ト レーサである染色液な どが挙げられる。 In the present invention, the microorganisms include prokaryotes such as bacteria and actinomycetes, eukaryotes such as yeast, fungi, lower algae, viruses, and the like.The tissue cells include animal and plant-derived cultured cells and It contains pollen such as cedar and cypress. In addition, it is not limited only to living things, such as measuring dead bacteria. Further, in the measurement method of the present invention, staining can be performed with one or more color-forming substances capable of staining a detection target (for example, a microorganism). The color-forming substance is not particularly limited as long as it is capable of forming a color by acting on cell components contained in a microorganism, and typical examples thereof include nucleic acids and proteins. And a fluorescent staining solution for staining More specifically, in the case of microbes in general, when analyzing microorganisms in general, it can be used to analyze the structure of fluorescent nucleobase analogs, fluorescent dyes that stain nucleic acids, blue liquids that stain proteins, and proteins. Environmentally friendly fluorescent probes used, stains used for analysis of cell membrane and membrane potential, stains used for fluorescent antibody labeling, etc.For aerobic bacteria, stains that develop color by cell respiration are used. In the case of eukaryotic microbes, stains that stain mitochondria, stains that stain the Golgi apparatus, stains that stain the endoplasmic reticulum, a stain that reacts with intracellular esterase and its modifying compounds, etc. When targeting higher animal cells, a staining solution used for observing bone tissue, a staining solution that is a nerve cell tracer, and the like can be mentioned.
前記染色試薬で微生物等を染色後、 試薬を励起することで蛍光を発生 させ、 その蛍光画像を撮像素子 (例えば、 C C Dカメラ素子) で計測す ることにより、 微生物等を計数することができる。 なお、 発生する蛍光 の色 (緑色、 赤色等) あるいは蛍光の波長帯域は、 微生物と染色試薬の 種類によって異なる。  After staining the microorganisms or the like with the staining reagent, the reagent is excited to generate fluorescence, and the fluorescence image is measured by an imaging device (for example, a CCD camera device), whereby the microorganisms and the like can be counted. The color of the generated fluorescence (green, red, etc.) or the wavelength band of the fluorescence differs depending on the microorganism and the type of the staining reagent.
前記発色性物質の種類を選択することによって、 すべての微生物を検 出する全菌数測定、 呼吸活性を持つ微生物のみを染色し計数する検定、 エステラーゼ活性を持つ微生物のみを染色し計数する検定、 あるいは複 数の発色性物質を組み合わせた多重染色法を用いることによる特定の属 や種の微生物を染色し計数する検定など、 幅広い分野への適用が可能と なる。  By selecting the type of the chromogenic substance, a total cell count detection for detecting all microorganisms, an assay for staining and counting only microorganisms having respiratory activity, an assay for staining and counting only microorganisms having esterase activity, Alternatively, it can be applied to a wide range of fields, such as an assay that stains and counts microorganisms of a specific genus or species by using a multiple staining method that combines multiple chromogenic substances.
ところで、 微生物や組織細胞の計測においては、 蛍光試薬によって標 本を標識する手法が広く用いられているが、 この場合、 下記のような問 題がある。 まず、 計測対象の蛍光量が小さい場合が多いので、 蛍光画像 で A Fを行おうとすると、 A F用の撮像素子で検知可能な入射光量を得 るのに長い蓄積時間が必要となり、 その結果、 A Fに要する時間が長く なる。また、 A Fの間に励起光の照射によって標本が消光し輝度が低下、 極端な場合には計測不能となる。 By the way, in the measurement of microorganisms and tissue cells, a method of labeling a sample with a fluorescent reagent is widely used, but in this case, there are the following problems. First, since the amount of fluorescence in the measurement target is often small, when performing AF on a fluorescence image, the incident light amount that can be detected by the AF image sensor is obtained. This requires a long accumulation time, and as a result, the time required for AF becomes longer. In addition, the sample is quenched by the excitation light irradiation during AF, and the brightness decreases. In extreme cases, measurement becomes impossible.
上記のような問題を解決し、 オートフォーカスの効率向上を目的とし た顕微鏡用焦点検出装置が提案されている (例えば、 後記の特許文献 1 参照)。  A focus detection device for a microscope has been proposed which solves the above problems and aims at improving the efficiency of autofocusing (for example, see Patent Document 1 described later).
特許文献 1に開示された顕微鏡用焦点検出装置は、 同公報の記載によ れば、 「特定波長の励起光を標本に照射し、該励起光より波長の長い光を 対物レンズで集める落射蛍光観察手段と、 透過照明手段の中にあって、 蛍光より長い波長の光を透過するフィルタと、 フィルタを透過した光の うち一方を透過し、 他方を反射するダイクロイツクミラーと、 ダイク口 イツクミラ一により分離された短波長側及び長波長側に夫々配され、 標 本の観察光像を撮像する力メラ及び標本の観察光像の蓄積を行うィメー ジセンサと、 ィメージセンサの出力に基づいて標本の観察光像の焦点状 態を検出する焦点検出手段と、 焦点検出手段の合焦度に応じて対物レン ズ、 標本側の少なく とも一方を駆動して合焦点サーチを行うサーボ手段 及びイメージセンサ、 焦点検出手段を制御する C P Uを備えたもの」 で あ 0。  According to the description of the publication, the focus detection device for a microscope disclosed in Patent Document 1 states that “the incident light fluorescence that irradiates a sample with excitation light of a specific wavelength and collects light longer than the excitation light with an objective lens. A filter that transmits light having a wavelength longer than the fluorescent light in the observation means and the transmitted illumination means, a dichroic mirror that transmits one of the lights transmitted through the filter and reflects the other, and a dich-opening mirror. The image sensor is arranged on the short wavelength side and the long wavelength side, respectively, which are separated by the image sensor and captures the observation light image of the sample, and an image sensor for accumulating the observation light image of the sample. Focus detection means for detecting the focus state of the observation light image, servo means for driving at least one of the objective lens and the sample side according to the degree of focus of the focus detection means, and a focus means and an image Capacitors, Oh in those with C P U to control the focus detection means "0.
即ち、 上記特許文献 1に開示されたものは、 対物レンズと対向する側 に透過照明手段を設け、 この透過照明によって蛍光観察波長よりも長波 長の光を標本に照射し、 それによつて得られる観察像に基づいて A Fを 行なうものであり、 蛍光画像と A F用画像とを分離するために波長分離 手段を有し、各画像を得るために 2系統の撮像手段を備えている。また、 蛍光画像計測波長を切り替えて複数の波長帯域で蛍光画像計測を行なう 場合は、 光路長補正ュニッ トを組み合せて合焦位置を調節するようにし ている。 しかしながら、上記特許文献 1に開示されたものは、下記のような種々 の問題がある。 即ち、 That is, the apparatus disclosed in Patent Document 1 described above is provided with a transmissive illumination means on the side facing the objective lens, and irradiates the specimen with light having a wavelength longer than the fluorescence observation wavelength by this transmissive illumination, thereby obtaining the specimen. It performs AF based on the observed image, has wavelength separation means for separating the fluorescence image and the AF image, and has two systems of imaging means for obtaining each image. In addition, when fluorescence image measurement is performed in a plurality of wavelength bands by switching the fluorescence image measurement wavelength, an in-focus position is adjusted by combining an optical path length correction unit. However, the one disclosed in Patent Document 1 has various problems as described below. That is,
1 ) 光学フ ィルタやミラーが多いだけでなく、 複数の撮像素子や光路長 補正ュニッ トを必要とするため、 構成が複雑でコスト高になる。  1) Not only are there many optical filters and mirrors, but also multiple image sensors and optical path length correction units are required, which complicates the configuration and increases costs.
2 ) 光学素子が多く受光効率が低下するため、 輝度の低い標本の計測が 困難である。 2) Since there are many optical elements and the light receiving efficiency is low, it is difficult to measure samples with low brightness.
3 ) 透過照明による計測画像を A Fに用いているため、 光を透過しない メンブレンフィルタ (標本のろ過, 補足用フィルタ) などの表面に補足 された標本にはフォ一カスが行なえない。  3) Since the image measured by the transmitted illumination is used for AF, it is impossible to focus on a sample captured on the surface such as a membrane filter (filter for sample, filter for capturing) that does not transmit light.
4 ) コントラス トが不鮮明でフォーカスのターゲッ トが明瞭でない標本 に対しては A Fが難しい。 4) AF is difficult for specimens with unclear contrast and unclear focus targets.
また、 上記特許文献 1のように、 標本の観察光像の焦点状態を検出す るものではないが、 光学系の焦点合わせを正確に行なう光計測方法に関 して、 後記の特許文献 2には、 下記の方法が記載されている。  Further, unlike Patent Document 1, the method does not detect the focus state of an observation light image of a specimen, but Patent Document 2 described below discloses an optical measurement method for accurately focusing an optical system. Describes the following method.
特許文献 2に開示された光計測方法は、同公報の記載によれば、 「異な る波長領域を備えた複数の励起光源を備え、 該複数の励起光源の中の第 1の励起光源から発生した第 1の励起光を試料に照射し、 該照射により 前記試料から発生した蛍光をレンズを通して検出する光計測方法におい て、 前記複数の励起光源の中から前記蛍光の波長とほぼ等しい波長領域 を備えた第 2の励起光源を選択し、 該第 2の励起光源から発生した第 2 の励起光を前記試料に照射し、 該試料で反射した第 2の励起光を前記レ ンズを通して検出し、 該検出される値が最大となるように前記レンズの 位置を調節してフォーカシングを行うことを特徴とする光計測方法」 で ある。  According to the optical measurement method disclosed in Patent Document 2, according to the description of the publication, “a plurality of excitation light sources having different wavelength regions are provided, and a light is generated from a first excitation light source among the plurality of excitation light sources. In the optical measurement method of irradiating the sample with the first excitation light thus obtained and detecting the fluorescence generated from the sample by the irradiation through a lens, a wavelength region substantially equal to the wavelength of the fluorescence is selected from the plurality of excitation light sources. Selecting a second excitation light source provided, irradiating the sample with second excitation light generated from the second excitation light source, detecting the second excitation light reflected by the sample through the lens, An optical measurement method, wherein focusing is performed by adjusting the position of the lens so that the detected value is maximized.
上記特許文献 2に開示された光計測方法は、 主として、 D N Aアレイ 試験片の読み取りを対象とし、 反射光量最大の位置をフォーカス位置と 判断しており、 前述のように、 標本の観察光像の焦点状態を検出するこ とにより、 もしくは画像情報に基づいてォートフォーカスするものでは ない。 また、 反射光量を検量するために、 オー トフォーカス用の光を励 起光と同じ光路で照射する必要があり、 そのために同軸落射光学系で入 射させなくてはならない。 さらに、 同公報の図 4および当該部の説明か ら明らかなように、 複数種類のダイクロイツクミラーをモータにより回 転させる必要がある等、 装置構成が複雑で高コストとなる問題がある。 The optical measurement method disclosed in Patent Document 2 is mainly for reading a DNA array test piece, and the position where the amount of reflected light is maximum is defined as a focus position. As described above, autofocus is not performed by detecting the focus state of the observation light image of the specimen or based on image information. In addition, in order to calibrate the amount of reflected light, it is necessary to irradiate the light for autofocus on the same optical path as the excitation light, and for that purpose, it must be incident by a coaxial epi-optical system. Further, as is apparent from FIG. 4 of the publication and the description of the relevant part, there is a problem that the device configuration is complicated and the cost is high, for example, it is necessary to rotate a plurality of types of dichroic mirrors with a motor.
〔特許文献 1〕  (Patent Document 1)
特開 2 0 0 1— 9 1 8 2 2号公報 (第 1一 4頁、 図 1 )  Japanese Patent Application Laid-Open No. 2001-91182 (page 114, FIG. 1)
〔特許文献 2〕  (Patent Document 2)
特開 2 0 0 1— 7 4 6 5 8号公報 (第 2— 4頁、 図 1、 図 4 ) 本発明は上記のような点に鑑みなされたもので、 構成要素の少ないシ ンプルな構成で、 蛍光強度の低い標本についても消光を起こさせること なく、 さらに、 メンブレンフィルタ表面に補足した標本やコントラス ト が不鮮明な標本についても、 画像情報に基づいて A Fを可能とする蛍光 画像計測方法および蛍光画像計測装置を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a simple configuration having a small number of constituent elements. A fluorescence image measurement method that enables AF based on image information without quenching even for specimens with low fluorescence intensity, and for specimens supplemented on the membrane filter surface or specimens with unclear contrast. An object of the present invention is to provide a fluorescence image measurement device. Disclosure of the invention
上記のような課題を解決するため、 請求の範囲第 1項の発明では、 撮 像手段を介して得た画像情報に基づきォートフォーカスを行なう蛍光画 像計測方法において、 計測試料としての標本に対して、 まず蛍光画像計 測波長帯域で発光するォートフォーカス用光を照射し、 その結果得た画 像情報に基づいて合焦度を判定し、 その合焦度に応じて受光光学系また は標本の少なくとも一方を駆動して合焦点位置をサーチし、 合焦点位置 に到達した後オー トフォーカス用光の照射を止め、 その後に、 前記標本 に対して励起光を照射し、 試料が発する蛍光画像を計測することを特徴 とする。 これにより、 標本に励起光を照射せずにオートフォーカスが可 能であり、 また、 構成要素の少ないシンプルな構成によりオートフォー カスが可能となるので、 受光効率低下が最小限に抑えられ、 特に、 蛍光 強度の低い標本の計測が可能となる。 In order to solve the above-mentioned problems, the invention according to claim 1 provides a fluorescent image measurement method for performing autofocus based on image information obtained via an imaging unit. First, irradiate autofocusing light emitted in the fluorescence image measurement wavelength band, determine the degree of focusing based on the image information obtained as a result, and determine the degree of focusing based on the degree of focusing. Drive the at least one of them to search for the in-focus position, and after arriving at the in-focus position, stop irradiating the auto-focusing light. Then, irradiate the specimen with excitation light, and obtain a fluorescence image emitted from the specimen. Feature to measure And As a result, autofocus can be performed without irradiating the sample with excitation light, and autofocus can be performed using a simple configuration with few components, so that a decrease in light-receiving efficiency is minimized, and Thus, it is possible to measure a specimen having a low fluorescence intensity.
前記請求の範囲第 1項の発明の実施態様としては、 下記請求の範囲第 2項ないし第 8項の発明が好ましい。 即ち、 前記計測試料は、 微生物や 組織細胞等の細胞とする (請求の範囲第 2項の発明)。  As an embodiment of the invention described in claim 1, the inventions in claims 2 to 8 described below are preferable. That is, the measurement sample is a cell such as a microorganism or a tissue cell (the invention of claim 2).
また、 請求の範囲第 1項または第 2項記載の蛍光画像計測方法におい て、 前記オートフォーカス用光は、 前記標本に対して励起光照射側と同 じ側であって、 かつ励起光照射軸と所定の傾斜角を有する照射軸方向か ら照射する (請求の範囲第 3項の発明)。 これにより、 装置構成がシンプ ルとなり、 また、 メンブレンフィルタ表面に補足した標本についても、 オートフォーカスが可能である。  3. The fluorescence image measurement method according to claim 1, wherein the autofocus light is on the same side as the excitation light irradiation side with respect to the specimen, and further includes an excitation light irradiation axis. Irradiation is performed from the direction of the irradiation axis having a predetermined inclination angle (the invention according to claim 3). This simplifies the device configuration, and enables autofocusing of a sample captured on the surface of the membrane filter.
さらにまた、 請求の範囲第 2項記載の蛍光画像計測方法において、 前 記計測試料は複数種の細胞を含み、この複数種の細胞を計測する場合に、 計測する細胞に応じて予め設定された複数の蛍光画像計測波長帯域のォ 一トフォーカス用光を、 順次切り替えて照射して前記合焦度を判定し、 各細胞の蛍光画像を計測する(請求の範囲第 4項の発明)。これによれば、 オートフォーカス用の光を切り替えることにより、 複数の励起一蛍光特 性で画像計測を行なうシステムに対しても、 この発明を適用することが できる。  Furthermore, in the fluorescence image measurement method according to claim 2, the measurement sample includes a plurality of types of cells, and when the plurality of types of cells are measured, the measurement sample is set in advance according to the cells to be measured. The autofocus light in a plurality of fluorescence image measurement wavelength bands is sequentially switched and irradiated to determine the degree of focusing, and measure a fluorescence image of each cell (claim 4). According to this, the present invention can be applied to a system that performs image measurement with a plurality of excitation-fluorescence characteristics by switching light for autofocus.
また、 請求の範囲第 1項ないし第 4項のいずれかの発明においては、 前記標本に近接する模様を設け、 この模様の画像情報に基づいてォート フォーカスを行なうようにすることができる (請求の範囲第 5項の発明 :)。 A Fのためには、 コン トラス トの評価を行なうが、 標本保持位置以外 にフォーカスしてしまうといった誤動作を防ぎ、 コントラスト評価を箇 P 删雇 224 In any one of the first to fourth aspects of the present invention, a pattern close to the specimen may be provided, and autofocus may be performed based on image information of the pattern. Invention of range 5 :). For AF, the contrast is evaluated.However, malfunction such as focusing on a position other than the sample holding position is prevented, and the contrast evaluation is performed. P Hiring 224
7 便かつ正確に行なうには、 模様を用いる方法が有効である。  The method using patterns is effective for accurate and convenient flight.
この請求の範囲第 5項の発明において、 前記模様は、 標本を保持する スライ ドガラス表面に設けることができる (請求の範囲第 6項の発明) 。 また、 請求の範囲第 5項の発明において、 前記模様は、 前記標本をろ 過, 補足するフィルタの表面に設けることができる (請求の範囲第 7項 の発明)。 さらに、 前記請求の範囲第 5項ないし第 7項の発明において、 前記模様は、 数字や図形を含み、 これらを識別することで標本の位置情 報を得ることを可能とすることができる (請求の範囲第 8項の発明)。 また、 前記蛍光画像計測方法を実施するための装置としては、 下記請 求の範囲第 9項ないし第 1 1項の発明が好ましい。 即ち、 撮像手段を介 して得た画像情報に基づきォ一トフォーカスを行なう蛍光画像計測装置 において、 標本に対して蛍光画像計測波長帯域の光を照射するォートフ オーカス用光照射手段と、 標本に対する励起光照射手段と、 オートフォ 一カス用および蛍光画像計測用の撮像手段と、 蛍光および励起用のフィ ルタおよびダイクロイツクミラ一を有する蛍光フィルタブロックと、 合 焦度に応じて受光光学系または標本の少なくとも一方を駆動する合焦用 駆動手段と、 演算制御手段とを備え、 前記演算制御手段は、 オートフォ —カス用光を照射して得た画像情報に基づいて合焦度を判定し、 その合 焦度に応じて受光光学系または標本の少なく とも一方を駆動して合焦点 位置をサーチし、 合焦点位置に到達した後オー トフォーカス用光の照射 を止め、 その後に、 前記標本に対して励起光を照射し、 試料が発する蛍 光画像を計測する制御機能を備えることを特徴とする (請求の範囲第 9 項の発明)。  In the invention according to claim 5, the pattern can be provided on a surface of a slide glass holding a specimen (the invention according to claim 6). In the invention according to claim 5, the pattern can be provided on a surface of a filter that filters and supplements the sample (the invention according to claim 7). Further, in the invention of claims 5 to 7, the pattern includes a number or a figure, and by identifying these, it is possible to obtain positional information of the specimen. (Invention of paragraph 8). Further, as an apparatus for performing the fluorescence image measurement method, the inventions of the following claims 9 to 11 are preferable. That is, in a fluorescence image measurement device that performs autofocus based on image information obtained through an imaging unit, an autofocus light irradiation unit that irradiates a sample with light in a fluorescence image measurement wavelength band; Excitation light irradiating means, autofocus and fluorescence image measurement imaging means, fluorescence and excitation filters and a fluorescent filter block having a dichroic mirror, and a light receiving optical system or sample according to the degree of focus Focusing driving means for driving at least one of the following; and arithmetic control means, wherein the arithmetic control means determines the degree of focus based on image information obtained by irradiating the autofocus light, At least one of the receiving optical system or the sample is driven according to the degree of focus to search for the in-focus position. Stopping the irradiation, then, irradiated with excitation light to the specimen, characterized in that it comprises a control function of measuring the fluorescence image emitted by the sample (the invention of Claim C. Section 9).
また、 前記請求の範囲第 9項の発明において、 前記オー トフォーカス 用光照射手段および または励起光照射手段における光源は、 発光ダイ オードもしくは半導体レーザとする (請求の範囲第 1 0項の発明)。 さらに、 前記請求の範囲第 9項の発明において、 複数の蛍光画像計測 波長帯域の光を切り替えてォ トフォーカスを行なうために、 前記ォー トフォーカス用光照射手段は複数のォ一トフォーカス用光源を有し、 か つ前記蛍光フ ィルタブロックを複数個設けてなり、 さらに、 前記演算制 御手段は、 複数種の細胞にそれぞれ対応する予め設定された複数の蛍光 画像計測波長帯域の光源を、 順次切り替えてォートフォーカスを行なう 機能を備えることを特徴とする (請求の範囲第 1 1項の発明)。 図面の簡単な説明 In the ninth aspect of the present invention, the light source in the autofocus light irradiating means and / or the excitation light irradiating means is a light emitting diode or a semiconductor laser. . Further, in the invention according to claim 9, in order to perform autofocus by switching light in a plurality of fluorescence image measurement wavelength bands, the autofocus light irradiation unit includes a plurality of autofocus light irradiation units. A light source, and a plurality of the fluorescent filter blocks are provided; and the arithmetic control means includes a light source of a plurality of predetermined fluorescence image measurement wavelength bands respectively corresponding to a plurality of types of cells. And a function of performing auto focus by sequentially switching (invention of claim 11). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態を示す蛍光画像計測装置の概略構 成図である。  FIG. 1 is a schematic configuration diagram of a fluorescence image measurement device according to a first embodiment of the present invention.
図 2は、 本発明の第 2の実施の形態を示す蛍光画像計測装置の概略構 成図である。  FIG. 2 is a schematic configuration diagram of a fluorescence image measurement device according to a second embodiment of the present invention.
図 3は、 A F用の模様を設けた例を説明する説明図である。  FIG. 3 is an explanatory diagram illustrating an example in which a pattern for AF is provided.
図 4は、 A F用の模様を設けた異なる例を説明する説明図である。 図 5は、 A F用の模様に位置情報を設けたさらに異なる例を説明する 説明図である。 発明を実施するための最良の形態  FIG. 4 is an explanatory diagram illustrating a different example in which an AF pattern is provided. FIG. 5 is an explanatory diagram illustrating still another example in which positional information is provided in an AF pattern. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について、 図面に基づき詳細に説明する。 図 1は本発明 の第 1の実施の形態を示す蛍光画像計測装置の概略構成図である。  Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fluorescence image measurement device according to a first embodiment of the present invention.
図 1において、 1は標本、 2は A F用光源、 3はダイクロイツクミラ ―、 4はフィルタ、 5は対物レンズ、 6は結像レンズ、 7は撮像素子、 8は演算部、 9はステージ移動機構、 1 0は励起用光源、 1 1は集光レ ンズ、 1 3は蛍光フィルタプロックを示す。  In Fig. 1, 1 is a sample, 2 is a light source for AF, 3 is a dichroic mirror, 4 is a filter, 5 is an objective lens, 6 is an imaging lens, 7 is an image sensor, 8 is a calculation unit, and 9 is a stage movement. 10 is a light source for excitation, 11 is a condenser lens, and 13 is a fluorescence filter block.
図 1の計測装置においては、 標本 1に対して斜め上の方向から照射さ れる光で A Fを行ない、 落射光学系によって蛍光画像計測を行なう方法 を示すが、 これに限定されるものではなく、 例えば励起光, A F用光と もに斜め方向から照射する変形例、 場合によっては A F用光を透過光と する例も含むものとするが、 構造的には、 図 1に示す形態が最もシンプ ルで、 かつ低コスト化が図れる。 また、 A Fは従来と同様、 画素間のコ ントラス トを利用する一般的な方法を用いることとする。 In the measuring device shown in Fig. 1, the sample 1 is irradiated obliquely from above. In this example, a method of performing AF with incident light and performing fluorescence image measurement using an epi-illumination optical system is not limited to this method.For example, a modification in which excitation light and AF light are irradiated from an oblique direction, Includes an example in which the light for AF is transmitted light, but the structure shown in FIG. 1 is the simplest in structure and can reduce the cost. As in the conventional AF, a general method using contrast between pixels is used.
図 1において、 まず、 標本 1に対して、 A F用光源 2から蛍光画像計 測波長帯域の波長を含む光を照射することで、 標本の退色を抑えるよう にする。 蛍光画像計測波長帯域は、 ダイクロイツクミラー 3の分光透過 特性と蛍光受光側フィルタ 4の分光透過特性とで決まる。  In FIG. 1, first, the specimen 1 is irradiated from the AF light source 2 with light containing a wavelength in the fluorescence image measurement wavelength band, so as to suppress the fading of the specimen. The fluorescence image measurement wavelength band is determined by the spectral transmission characteristics of the dichroic mirror 3 and the spectral transmission characteristics of the fluorescent light receiving filter 4.
A F用光源 2としては、 発光ダイオード (LED) や半導体レーザが好適 である。 その理由は、 素子の選択によって発光スペク トルを様々に選ぶ ことができ、 また、 O NZ O F Fを繰り返しても特性が悪化し難いから である。 さらに、 これらの素子は小形軽量であるため、 A F用光源とし て組み付けることも容易であることにもよる。  As the AF light source 2, a light emitting diode (LED) or a semiconductor laser is suitable. The reason is that the light emission spectrum can be variously selected by selecting the element, and the characteristics are not easily deteriorated even if ONZOFF is repeated. Furthermore, because these elements are small and lightweight, they can be easily assembled as light sources for AF.
蛍光画像計測波長帯域で A F用画像を得られるので、 前記特許文献 1 に開示された装置のように波長分離手段や 2系統の撮像素子が不要とな り、 前記特許文献 1や 2の装置に比べて、 装置構成が簡素化できる。 な お、 A F用光源として白色ランプを用い、 光学フィルタを組み合わせる ことで所望の波長を得、 照射, 非照射をシャ ツタの開閉によって行なう ことも可能である。 また、 A F用光の照射の角度は、 試料面に対する傾 斜角が 5〜4 5 ° 程度が好ましい。  Since an image for AF can be obtained in the fluorescence image measurement wavelength band, a wavelength separating unit and two image pickup devices as in the device disclosed in Patent Document 1 are not required, and the devices described in Patent Documents 1 and 2 are required. In comparison, the device configuration can be simplified. It is also possible to obtain a desired wavelength by using a white lamp as the light source for AF and combining an optical filter, and to perform irradiation and non-irradiation by opening and closing the shutter. Further, the angle of irradiation of the AF light is preferably such that the inclination angle with respect to the sample surface is about 5 to 45 °.
A F用光照射時の標本の画像は、 対物レンズ 5, ダイクロイツクミラ 一 3 , 蛍光受光側フィルタ 4および結像レンズ 6を介して、 撮像素子 7 で捉える。 撮像素子としては、 C C Dカメラ用素子や C M O Sカメラ用 素子が好適である。 撮像素子 7で得た画像は、 前記演算制御手段として の演算部 8に送り、 ここでコン トラス トの評価を行なう。 コン トラス ト の評価は、 例えば隣り合う画素間の輝度差として算出し、 コントラス ト が最大になる位置を合焦点位置とする、一般的な A F手法により行なう。 合焦点位置に至るまでの処理は、 概ね以下のようになる。 The image of the specimen at the time of irradiating the AF light is captured by the image sensor 7 via the objective lens 5, the dichroic mirror 13, the fluorescent light receiving side filter 4, and the imaging lens 6. As the imaging element, a CCD camera element or a CMOS camera element is suitable. The image obtained by the image sensor 7 is used as the arithmetic control means. Is sent to the calculation unit 8, where the contrast is evaluated. The contrast is evaluated by a general AF method, for example, calculating as a luminance difference between adjacent pixels, and setting a position where the contrast becomes maximum as a focal point position. The processing up to the in-focus position is generally as follows.
1 ) ステージ移動機構 9によって標本を移動 1) The specimen is moved by the stage moving mechanism 9
2 ) 画像取込み  2) Image capture
3 ) コン トラス ト評価  3) Contrast evaluation
4 ) 前画面とコン トラス トを比較  4) Compare previous screen with contrast
5 ) コントラストが増大していれば同方向にさらに移動  5) If contrast is increasing, move further in the same direction
6 ) コン トラス トが減少していれば逆方向に移動 6) If contrast is decreasing, move in the opposite direction
実際に A Fを行なう際は、 上記に加えて、 始めに全域を粗くスキャン して概略フォ一カス位置を把握したり、 フォーカス位置に近づくにつれ て移動距離を徐々に小さく したり、 同じ位置を所定回数往復したら合焦 点位置と判断するなどのアルゴリズムが必要である。 なお、 ステージ移 動機構 9は必須要件ではなく、 標本 1 と受光系の少なく とも一方を駆動 して合焦点をサーチできれば良い。  When actually performing AF, in addition to the above, in addition to the above, first scan the entire area roughly to grasp the approximate focus position, gradually reduce the moving distance as it approaches the focus position, or set the same position It is necessary to have an algorithm such as judging the focus position after reciprocating a number of times. It should be noted that the stage moving mechanism 9 is not an essential requirement, as long as it can search the focal point by driving at least one of the sample 1 and the light receiving system.
合焦点位置に到達した後に A F用光を消灯し、 それに続いて励起用光 源 1 0を点灯する。 励起用光源 1 0からの光は集光レンズ 1 1 , 励起側 フィルタ 1 2 , ダイクロイツクミラー 3および対物レンズ 5を介して標 本 1に照射されるので、 これにより蛍光画像計測が可能となる。  After reaching the focal point, the AF light is turned off, and then the excitation light source 10 is turned on. The light from the excitation light source 10 irradiates the sample 1 via the condenser lens 11, the excitation side filter 12, the dichroic mirror 3, and the objective lens 5, thereby enabling fluorescence image measurement. .
上記励起用光源としては、 従来は高圧水銀ランプを用いることが多か つたが、 高圧水銀ランプは短時間で O NZ O F Fを繰り返すと特性が著 しく悪化するため、照射,非照射の切り替えにはシャッタが必要となる。 従って、 波長特性および光量が満足できれば、 励起用光源としても A F 用光源と同様に、発光ダイォード(LED)や半導体レーザを用いることが望 ましい。 0301224 Conventionally, a high-pressure mercury lamp is often used as the excitation light source. However, the characteristics of the high-pressure mercury lamp deteriorate significantly when ONZNZ OFF is repeated in a short time. A shutter is required. Therefore, if the wavelength characteristics and the amount of light can be satisfied, it is desirable to use a light emitting diode (LED) or a semiconductor laser as the excitation light source, similarly to the AF light source. 0301224
11  11
図 1に示す装置における各種主要部材の、好適な具体的諸元の一例(励 起青色光一蛍光観察緑色光一 AF緑色光の例) について、 以下に示す。 One example of suitable specific data (examples of excited blue light-fluorescent observation green light-AF green light) of various main members in the apparatus shown in Fig. 1 is shown below.
1) 励起用光源: 中心波長 470n mの青色 LED 1) Light source for excitation: Blue LED with center wavelength of 470nm
2) 励起光側光学フィルタの透過波長帯域: 450〜470nm  2) Transmission wavelength band of excitation light side optical filter: 450 ~ 470nm
3) ダイクロイツクミラーの特性:反射率と透過率の分岐点波長が 505 nm (即ち、 505n mで透過率が約 50%であって、 505n mより短波長側 では透過率が低下 (反射率が高上) し、 505nmより長波長側では透過率 が高上 (反射率が低下) するミラー特性を備える) 3) Characteristics of the dichroic mirror: the wavelength of the branch point between the reflectance and the transmittance is 505 nm (that is, the transmittance is about 50% at 505 nm, and the transmittance decreases at wavelengths shorter than 505 nm (reflectance) Has a mirror characteristic of increasing the transmittance (reducing the reflectance) at wavelengths longer than 505 nm)
4) 蛍光観察側光学フィルタの透過波長帯域: 510〜560nm 4) Transmission wavelength band of fluorescence observation side optical filter: 510 ~ 560nm
5) AF用光源: 中心波長 535nmの緑色 LED 5) Light source for AF: Green LED with center wavelength 535nm
次に、 図 2に示す本発明の第 2の実施の形態を示す蛍光画像計測装置 について述べる。 図 2において、 図 1に示す部材と同一機能部材には同 一番号を付して、 その詳細説明を省略する。  Next, a fluorescence image measurement device according to a second embodiment of the present invention shown in FIG. 2 will be described. 2, the same functional members as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 2は、 複数の生細胞、 例えば複数の細菌を同時に計測する場合や同 一の細菌であっても生菌と死菌とを含む場合であって、 前記請求の範囲 第 4項や第 1 1項の発明に関わる装置を示す。 例えば複数の細菌を同時 に計測する場合には、細菌の種類に応じて、複数の染色試薬が使用され、 蛍光色は、 細菌の種類や染色剤によって異なる。  FIG. 2 shows a case where a plurality of living cells, for example, a plurality of bacteria are simultaneously measured, or a case where the same bacterium contains live and dead bacteria. 1 shows an apparatus according to the invention of item 1. For example, when simultaneously measuring a plurality of bacteria, a plurality of staining reagents are used depending on the type of bacteria, and the fluorescent color differs depending on the type of bacteria and the staining agent.
そこで、 上記のような複数の生細胞を計測する蛍光画像計測システム の場合には通常、 前述の励起側フィルタ 1 2, ダイクロイツクミラー 3 および画像計測側フィルタ 4の 3要素を 1つのュニッ トとする蛍光フィ ルタプロック 1 3が、 図 2に示すように、 複数個設けられる。 そして、 これらを切り替えることで、 高圧水銀ランプから発せられる白色光を利 用した複数の励起一蛍光特性で画像計測を可能としている。 このような 画像計測条件切り替え機構を有する蛍光画像計測システムに、 この発明 を適用する例について、 図 2に基づき以下に説明する。 図 2においては、 例えば 5個の蛍光フィルタブ口ック 1 3に対し位置 認識機構 1 4を設け、 ブロックを切り替えたときその出力を取り込むこ とで、 プロックの設定状況を演算部 8により自動認識するようにする。 さらに、 演算部 8は設定された蛍光フィルタブロック 1 3の蛍光画像計 測波長を判断し、 それに適合する A F用光を標本 1に照射する。 A F用 光源 1 5としては、 複数種類の発光ダイォードゃ半導体レーザを切り替 えて使用しても良いし、 白色光源に所定の分光透過性を持った光学フィ ル夕の切り替え機構とシャッタ機構を組み合わせて用いても良い。 Therefore, in the case of the fluorescence image measurement system for measuring a plurality of living cells as described above, the three elements of the excitation side filter 12, the dichroic mirror 3, and the image measurement side filter 4 are usually combined into one unit. As shown in FIG. 2, a plurality of fluorescent filter blocks 13 are provided. By switching these, it is possible to perform image measurement with multiple excitation-fluorescence characteristics using white light emitted from a high-pressure mercury lamp. An example in which the present invention is applied to a fluorescence image measurement system having such an image measurement condition switching mechanism will be described below with reference to FIG. In FIG. 2, for example, a position recognition mechanism 14 is provided for five fluorescent filter blocks 13, and when a block is switched, its output is taken in, so that the calculation unit 8 automatically recognizes the block setting status. To do it. Further, the calculating unit 8 determines the set fluorescence image measurement wavelength of the fluorescence filter block 13 and irradiates the sample 1 with AF light suitable for the wavelength. As the AF light source 15, a plurality of types of light-emitting diode semiconductor lasers may be switched and used, or a switching mechanism of a white light source and an optical filter having a predetermined spectral transmittance and a shutter mechanism may be combined. May be used.
合焦点位置に到達した後、 A F用光を消灯する。 それに続いて、 励起 光源 1 0を点灯するか、 あらかじめ励起光源は点灯しておき、 励起光を 遮っていたシャツタを開けることで、 励起光を標本 1に照射し、 蛍光画 像計測を行なう。 なお、 励起光源としては、 前記白色光以外に、 測定試 料に応じた励起光を発する複数の L E Dとすることもできる。  After reaching the focal point, turn off the AF light. Subsequently, the excitation light source 10 is turned on, or the excitation light source is turned on in advance, and the specimen 1 is irradiated with the excitation light by opening the shirt that has blocked the excitation light, and fluorescence image measurement is performed. The excitation light source may be, in addition to the white light, a plurality of LEDs that emit excitation light according to the measurement sample.
次に、 図 3ないし図 5に基づき、 A F用の模様を設けた例について説 明する。 前記図 1および図 2に示す蛍光画像計測装置においては、 A F のためにコントラストの評価を行なっている。 このとき、 ^本保持位置 以外にフォーカスしてしまうといった誤動作を防ぎ、 コン トラスト評価 を簡便かつ正確に行なうには、 前述のように、 模様を用いる方法が有効 である。 まず、 標本を保持するスライ ドガラスの表面に模様をつける例 について、 図 3を参照して説明する。  Next, an example in which an AF pattern is provided based on FIGS. 3 to 5 will be described. In the fluorescence image measurement device shown in FIGS. 1 and 2, the contrast is evaluated for A F. At this time, as described above, it is effective to use a pattern to prevent a malfunction such as focusing on a position other than the main holding position and to easily and accurately perform contrast evaluation. First, an example of applying a pattern to the surface of a slide glass holding a specimen will be described with reference to FIG.
図示のように、 スライ ドガラス Gの表面に予め模様を描いておく。 模 様は、 無蛍光性塗料や蛍光を発しない金属の蒸着などにより描く。 模様 の太さおよぴ密度は、 画像を取り込んだとき視野中に少なくとも一部の 境界が映るように設定することとする。  As shown in the figure, a pattern is drawn on the surface of the slide glass G in advance. The pattern is drawn using non-fluorescent paint or non-fluorescent metal deposition. The thickness and density of the pattern shall be set so that at least a part of the boundary appears in the field of view when the image is captured.
蛍光標識した微生物や組織細胞などの標本をスライ ドガラス上に滴下 し、 カバーガラスをかけて計測可能なサンプルとする。 このとき、 標本 1224 Specimens such as fluorescently labeled microorganisms and tissue cells are dropped on slide glass, covered with a cover glass, and used as a measurable sample. At this time, the specimen 1224
13  13
はカバーガラスで押えつけられ、 スライ ドガラス表面の模様と近接ある いは密着した状態になる。サンプルを蛍光画像計測システムにセッ ト し、Is held down by the cover glass, and comes into close or close contact with the pattern on the slide glass surface. Set the sample in the fluorescence image measurement system,
A F用光を照射する。 A F用画像の中には少なくとも模様の一部が映つ ているので、 その部分をターゲッ トとしてオートフォーカスを行なう。 それに続いて、 励起光源を点灯し、 蛍光画像計測を行なうのは、 図 1お よび図 2に示した実施の形態と同様である。 Irradiate light for AF. Since at least a part of the pattern is shown in the AF image, autofocus is performed with that part as the target. Subsequently, the excitation light source is turned on and fluorescence image measurement is performed in the same manner as in the embodiment shown in FIGS.
なお、 以上のような計測を行なうには、 オー トフォーカスの基準であ る模様と標本とが近接あるいは密着していることが前提である。 実際に は、 対物レンズ, 鏡筒, 結像レンズおよび撮像素子で構成される受光系 の焦点深度に比べ、 模様と標本との距離が短ければ良い。  In order to perform the above measurement, it is assumed that the pattern, which is the reference of the autofocus, and the sample are close to or close to each other. In practice, the distance between the pattern and the specimen should be shorter than the depth of focus of the light receiving system composed of the objective lens, lens barrel, imaging lens, and image sensor.
次に、 図 4について説明する。 微生物や組織細胞を計測する際、 メン プレンフィルタのろ過によって標本を補足し、 それを計測する操作は極 めて一般的な操作である。 以下では、 そのメンブレンフィルタ表面に模 様を設ける蛍光画像計測方法について、 図 4を参照して説明する。  Next, FIG. 4 will be described. When measuring microorganisms and tissue cells, the process of capturing a sample by filtration through a membrane filter and measuring it is an extremely common operation. Hereinafter, a fluorescent image measurement method for providing a pattern on the surface of the membrane filter will be described with reference to FIG.
模様は図 3の場合と同様、 メンブレンフィルタ Fの表面に、 無蛍光性 塗料や蛍光を発しない金属の蒸着などにより描く。 模様の太さおよび密 度は、 画像を取り込んだとき視野中に少なく とも一部の境界が映るよう に設定する。  Similar to the case of Fig. 3, the pattern is drawn on the surface of the membrane filter F by depositing a non-fluorescent paint or a non-fluorescent metal. The thickness and density of the pattern should be set so that at least some of the boundaries are visible in the field of view when the image is captured.
蛍光標識した微生物や組織細胞などのサンプルを、 メンプレンフィル タでろ過する。 このメンブレンフィルタ上に補足された標本を、 計測に 用いるサンプルとする。 このとき、 標本はメンプレンフィルタ表面の模 様と近接した状態になる。  Samples of fluorescently labeled microorganisms and tissue cells are filtered through a membrane filter. The sample captured on the membrane filter is used as a sample for measurement. At this time, the sample is in close proximity to the surface of the membrane filter.
サンプルを蛍光画像計測システムにセッ ト し、 A F用光を照射する。 A F用画像の中には少なく とも模様の一部が映っているので、 その部分 をターゲッ トとしてオー トフォーカスを行なう。 合焦点位置到達後、 A F用光を消灯する。 それに続いて、 励起光源を点灯し蛍光画像計測を行 なう。 Set the sample in the fluorescence image measurement system and irradiate it with AF light. Since at least a part of the pattern is reflected in the AF image, autofocus is performed with that part as the target. After reaching the in-focus position, turn off the AF light. Subsequently, the excitation light source is turned on and fluorescence image measurement is performed. Now.
前記特許文献 1の公報に開示された装置のように、 透過光像に基づい てオー トフォーカスを行なうものでは、 特に、 呈色がなく屈折率が水に 近い標本に対しては、 微分干渉法を用いる画像計測が事実上必須の要件 となっている。 上述したように、 微生物を計測する際フィルタろ過によ つて標本を補足し、 それを計測する操作は極めて良く行なわれる操作で あるが、 この状態では微分干渉像を得るのは困難である。 つまり、 特許 文献 1の公報に開示されたものは、 フィルタ上に補足した標本について は適用できないことになる。  In a device that performs autofocus based on a transmitted light image as in the device disclosed in the above-mentioned Patent Document 1, in particular, for a sample having no coloration and a refractive index close to water, the differential interference method is used. Image measurement using is an essential requirement. As described above, when a microorganism is measured, the operation of supplementing the sample by filter filtration and measuring the sample is an extremely well performed operation, but in this state, it is difficult to obtain a differential interference image. That is, what is disclosed in the gazette of Patent Document 1 cannot be applied to the sample supplemented on the filter.
次に、 図 5について説明する。 微生物や組織細胞といった標本を計測 する場合、 統計的なパラツキを低減するためにサンプルを蛍光画像計測 方向と直交する平面でスキャンし、 複数の画面について画像計測を行な うことは少なくない。 こうした場合、 模様を単純な線などではなく、 位 置情報を得られる形態、 例えば図 5に示すように、 例えばメンブレンフ ィルタ Fの表面に、 区画と通し番号の組み合わせで描いておけば、 微生 物や組織細胞など標本の存在位置を把握することができる。  Next, FIG. 5 will be described. When measuring specimens such as microorganisms and tissue cells, it is not uncommon to scan a sample on a plane perpendicular to the fluorescence image measurement direction and measure the image on multiple screens in order to reduce statistical variations. In such a case, if the pattern is not a simple line, but a form that can obtain positional information, for example, as shown in Fig. 5, for example, by drawing a combination of sections and serial numbers on the surface of the membrane filter F, The location of a specimen such as an object or a tissue cell can be grasped.
微生物や組織細胞が経時的に変化するような場合は、 この方法を用い ることで、 個々の標本を個別に認識しつつ、 その変化を追跡することが でぎる。 その典型例としては、 微生物の増殖を捉える用途や、 組織細胞 に対する薬剤の影響を評価するようなケースが挙げられる。 このような 位置情報は、 スライ ドガラスの表面に形成するようにしても良い。 産業上の利用の可能性  If microorganisms or tissue cells change over time, this method can be used to recognize individual specimens individually and track those changes. Typical examples are applications that capture the growth of microorganisms and cases where the effects of drugs on tissue cells are evaluated. Such positional information may be formed on the surface of the slide glass. Industrial applicability
この発明は、 前述のように、 微生物や組織細胞等の細胞や鉱物粒子な どの微粒子を含む試料を、 染色試薬により標識し、 試料が発する蛍光画 像を計測する計測方法および装置に利用できる。 本計測方法および装置 の利用分野としては、 医療, 食品製造, 上下水道などがある。 As described above, the present invention can be used for a measurement method and an apparatus for labeling a sample containing fine particles such as cells such as microorganisms and tissue cells and mineral particles with a staining reagent and measuring a fluorescent image emitted from the sample. Main measurement method and apparatus The fields of application include medical care, food production, and water and sewage.
この発明によれば、 標本に励起光を照射せずにォートフォーカスが可 能であり、 また、 構成要素の少ないシンプルな機構を実現したことで受 光効率低下が最小限に抑えられることから、 特に、 蛍光強度の低い標本 の計測が可能である。  According to the present invention, autofocus can be performed without irradiating the sample with excitation light, and a reduction in light receiving efficiency can be minimized by realizing a simple mechanism with few components. In particular, it can measure samples with low fluorescence intensity.
また、 励起光照射方向と同じ側であつて励起光照射軸と所定の傾斜角 を有する照射軸方向から A F用光を照射するため、 メンブレンフィルタ 表面に補足した標本についても、 オートフォーカスが可能である。  In addition, since AF light is irradiated from the direction of the excitation light irradiation axis that is on the same side as the excitation light irradiation direction and has a predetermined angle of inclination with respect to the excitation light irradiation axis, auto-focusing is also possible for samples supplemented on the membrane filter surface. is there.
さらに、 複数の A F用光源を備える方法によれば、 蛍光フィルタブ口 ックを切り替えながら複数の励起一蛍光特性で画像計測を行なうシステ ムに対しても、 この発明を適用することができる。 さらにまた、 コント ラス卜が不鮮明な標本についても、 標本に近接して設ける模様を利用し てオートフオーカスを行なうことができる。  Further, according to the method including a plurality of AF light sources, the present invention can be applied to a system that performs image measurement with a plurality of excitation-fluorescence characteristics while switching the fluorescence filter block. Furthermore, even for a sample whose contrast is unclear, autofocus can be performed by using a pattern provided close to the sample.

Claims

請求の範囲 The scope of the claims
1 . 撮像手段を介して得た画像情報に基づきォートフォーカスを行なう 蛍光画像計測方法において、 1. In a fluorescence image measurement method for performing autofocus based on image information obtained through an imaging unit,
計測試料としての標本に対して、 まず蛍光画像計測波長帯域で発光す るォートフォーカス用光を照射し、 その結果得た画像情報に基づいて合 焦度を判定し、 その合焦度に応じて受光光学系または標本の少なく とも 一方を駆動して合焦点位置をサーチし、 合焦点位置に到達した後ォート フォーカス用光の照射を止め、 その後に、 前記標本に対して励起光を照 射し、 試料が発する蛍光画像を計測することを特徴とする蛍光画像計測 方法。  A sample as a measurement sample is first irradiated with autofocus light emitted in a fluorescence image measurement wavelength band, and the degree of focus is determined based on the image information obtained as a result. At least one of the light receiving optical system and the sample is driven to search for the focus position, and after reaching the focus position, irradiation of the autofocus light is stopped.After that, the sample is irradiated with excitation light. A fluorescence image measurement method, comprising: measuring a fluorescence image emitted from a sample.
2 . 前記計測試料は、 微生物や組織細胞等の細胞とすることを特徴とす る請求の範囲第 1項記載の蛍光画像計測方法。  2. The fluorescence image measurement method according to claim 1, wherein the measurement sample is a cell such as a microorganism or a tissue cell.
3 . 前記オー トフォーカス用光は、 前記標本に対して励起光照射側と同 じ側であって、 かつ励起光照射軸と所定の傾斜角を有する照射軸方向か ら照射することを特徴とする請求の範囲第 1項または第 2項記載の蛍光 画像計測方法。  3. The auto-focusing light is irradiated onto the specimen from the same side as the excitation light irradiation side and from an irradiation axis direction having a predetermined inclination angle with respect to the excitation light irradiation axis. 3. The fluorescence image measurement method according to claim 1 or 2, wherein
4 . 前記計測試料は複数種の細胞を含み、 この複数種の細胞を計測する 場合に、 計測する細胞に応じて予め設定された複数の蛍光画像計測波長 帯域のオー トフォーカス用光を、 順次切り替えて照射して前記合焦度を 判定し、 各細胞の蛍光画像を計測することを特徴とする請求の範囲第 2 項記載の蛍光画像計測方法。  4. The measurement sample includes a plurality of types of cells, and when measuring the plurality of types of cells, the auto-focusing light of a plurality of fluorescence image measurement wavelength bands preset in accordance with the cells to be measured is sequentially applied. 3. The fluorescence image measurement method according to claim 2, wherein the degree of focus is determined by switching and irradiating, and a fluorescence image of each cell is measured.
5 . 前記標本に近接する模様を設け、 この模様の画像情報に基づいてォ 一トフォーカスを行なうことを特徴とする請求の範囲第 1項ないし第 4 項のいずれか 1項に記載の蛍光画像計測方法。  5. The fluorescent image according to any one of claims 1 to 4, wherein a pattern close to the specimen is provided, and autofocus is performed based on image information of the pattern. Measurement method.
6 . 前記模様は、 前記標本を保持するスライ ドガラス表面に設けること を特徴とする請求の範囲第 5項に記載の蛍光画像計測方法。 6. The pattern should be provided on the surface of the slide glass holding the specimen 6. The fluorescence image measurement method according to claim 5, wherein:
7 . 前記模様は、 前記標本をろ過, 補足するフィルタの表面に設けるこ とを特徴とする請求の範囲第 5項に記載の蛍光画像計測方法。  7. The fluorescence image measurement method according to claim 5, wherein the pattern is provided on a surface of a filter that filters and captures the sample.
8 . 前記模様は、 数字や図形を含み、 これらを識別することで標本の位 置情報を得ることを可能とすることを特徴とする請求の範囲第 5項ない し第 7項のいずれか 1項に記載の蛍光画像計測方法。  8. The pattern according to any one of claims 5 to 7, wherein the pattern includes a number or a figure, and by identifying the pattern, position information of the sample can be obtained. The fluorescent image measurement method according to the above section.
9 . 撮像手段を介して得た画像情報に基づきォートフォーカスを行なう 蛍光画像計測装置において、  9. In a fluorescence image measurement device that performs autofocus based on image information obtained through an imaging unit,
標本に対して蛍光画像計測波長帯域の光を照射するォ一トフォーカス 用光照射手段と、 標本に対する励起光照射手段と、 オー トフォーカス用 および蛍光画像計測用の撮像手段と、 蛍光および励起用のフィルタおよ ぴダイクロイツクミラーを有する蛍光フィルタブ口ックと、 合焦'度に応 じて受光光学系または標本の少なく とも一方を駆動する合焦用駆動手段 と、 演算制御手段とを備え、  Autofocus light irradiation means for irradiating the sample with light in the fluorescence image measurement wavelength band, excitation light irradiation means for the sample, imaging means for autofocus and fluorescence image measurement, and fluorescence and excitation A fluorescent filter block having a filter and a dichroic mirror, focusing driving means for driving at least one of the light receiving optical system or the sample according to the degree of focusing, and arithmetic control means. ,
前記演算制御手段は、 オー トフォーカス用光を照射して得た画像情報 に基づいて合焦度を判定し、 その合焦度に応じて受光光学系または標本 の少なく とも一方を駆動して合焦点位置をサーチし、 合焦点位置に到達 した後オートフォーカス用光の照射を止め、 その後に、 前記標本に対し て励起光を照射し、 試料が発する蛍光画像を計測する制御機能を備える ことを特徴とする蛍光画像計測装置。  The arithmetic and control means determines the degree of focus based on image information obtained by irradiating the autofocus light, and drives at least one of the light receiving optical system or the sample according to the degree of focus to obtain the focus. A control function for searching for a focus position, stopping irradiation of the autofocus light after reaching the in-focus position, irradiating the sample with excitation light thereafter, and measuring a fluorescence image emitted from the sample. Fluorescent image measurement device.
1 0 . 前記ォートフォーカス用光照射手段および zまたは励起光照射手 段における光源は、 発光ダイォードもしくは半導体レーザとすることを 特徴とする請求の範囲第 9項記載の蛍光画像計測装置。  10. The fluorescence image measurement device according to claim 9, wherein the light source for the autofocus light irradiation means and z or the excitation light irradiation means is a light emitting diode or a semiconductor laser.
1 1 . 複数の蛍光画像計測波長帯域の光を切り替えてオートフォーカス を行なうために、 前記オートフォーカス用光照射手段は複数のオートフ ォ一カス用光源を有し、 かつ前記蛍光フィルタブロックを複数個設けて なり、 さらに、 前記演算制御手段は、 複数種の細胞にそれぞれ対応する 予め設定された複数の蛍光画像計測波長帯域の光源を、 順次切り替えて オートフォーカスを行なう機能を備えることを特徴とする請求の範囲第 9項記載の蛍光画像計測装置。 1 1. In order to perform autofocus by switching light in a plurality of fluorescence image measurement wavelength bands, the autofocus light irradiation means has a plurality of autofocus light sources, and a plurality of the fluorescent filter blocks. Provided Further, the arithmetic and control unit has a function of sequentially switching light sources of a plurality of predetermined fluorescence image measurement wavelength bands respectively corresponding to a plurality of types of cells to perform autofocus. 10. The fluorescence image measurement device according to claim 9, wherein
PCT/JP2003/001224 2002-02-07 2003-02-06 Fluorescent image measuring method and device WO2003067230A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003207248A AU2003207248A1 (en) 2002-02-07 2003-02-06 Fluorescent image measuring method and device
JP2003566530A JP4106626B2 (en) 2002-02-07 2003-02-06 Fluorescence image measuring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-30648 2002-02-07
JP2002030648 2002-02-07

Publications (1)

Publication Number Publication Date
WO2003067230A1 true WO2003067230A1 (en) 2003-08-14

Family

ID=27677908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001224 WO2003067230A1 (en) 2002-02-07 2003-02-06 Fluorescent image measuring method and device

Country Status (3)

Country Link
JP (1) JP4106626B2 (en)
AU (1) AU2003207248A1 (en)
WO (1) WO2003067230A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005284136A (en) * 2004-03-30 2005-10-13 Olympus Corp Observation device and focusing method for observation device
JP2006011149A (en) * 2004-06-28 2006-01-12 Nikon Corp Fluorescent microscope
JP2007093250A (en) * 2005-09-27 2007-04-12 Yokogawa Electric Corp Biochip reading device and method
JP2007108223A (en) * 2005-10-11 2007-04-26 Olympus Corp Microscopic system
WO2007139201A1 (en) * 2006-05-31 2007-12-06 Olympus Corporation Organism specimen imaging method and organism specimen imaging device
WO2008022139A2 (en) 2006-08-14 2008-02-21 Westover Scientific, Inc. Solid state fluorescence light assembly and microscope
CN101930116A (en) * 2009-06-23 2010-12-29 索尼公司 Biological specimen image acquiring device, acquisition methods and obtain program
JP2011133366A (en) * 2009-12-24 2011-07-07 Ihi Corp Microorganism detection method, filter, and fluorescent mark arrangement board
CN102834759A (en) * 2010-09-14 2012-12-19 欧姆龙株式会社 Observation optical system and laser processing device
US9000399B2 (en) 2011-05-03 2015-04-07 Samsung Electronics Co., Ltd. Fluorescence detecting optical system and multi-channel fluorescence detection apparatus including the same
EP2315005B1 (en) * 2004-01-14 2016-01-13 Life Technologies Corporation Fluorometry device and method for detection in biological samples
WO2016157458A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Measurement apparatus, measurement system, signal string processing method, and program
EP3466335A1 (en) * 2011-12-21 2019-04-10 Catherine M. Shachaf Fluorescence imaging autofocus method
WO2022264495A1 (en) * 2021-06-18 2022-12-22 浜松ホトニクス株式会社 Measurement device
US11815458B2 (en) * 2019-12-31 2023-11-14 Illumina, Inc. Autofocus functionality in optical sample analysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344608A (en) * 1989-07-12 1991-02-26 Brother Ind Ltd Automatic focusing method
WO1993011469A1 (en) * 1991-12-02 1993-06-10 Gec-Marconi Limited Optical analysis system and positioning apparatus therefor
JPH09243921A (en) * 1996-03-12 1997-09-19 Nikon Corp Laser scanning type fluorescent microscope
JPH10311942A (en) * 1997-05-14 1998-11-24 Olympus Optical Co Ltd Automatic focus detector for microscope
JP2001091822A (en) * 1999-09-24 2001-04-06 Olympus Optical Co Ltd Focus detector for microscope
JP2001154104A (en) * 1999-11-25 2001-06-08 Olympus Optical Co Ltd Microscope device
US20010033414A1 (en) * 2000-04-12 2001-10-25 Kanji Yahiro Apparatus and method for observing biochemical substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344608A (en) * 1989-07-12 1991-02-26 Brother Ind Ltd Automatic focusing method
WO1993011469A1 (en) * 1991-12-02 1993-06-10 Gec-Marconi Limited Optical analysis system and positioning apparatus therefor
JPH09243921A (en) * 1996-03-12 1997-09-19 Nikon Corp Laser scanning type fluorescent microscope
JPH10311942A (en) * 1997-05-14 1998-11-24 Olympus Optical Co Ltd Automatic focus detector for microscope
JP2001091822A (en) * 1999-09-24 2001-04-06 Olympus Optical Co Ltd Focus detector for microscope
JP2001154104A (en) * 1999-11-25 2001-06-08 Olympus Optical Co Ltd Microscope device
US20010033414A1 (en) * 2000-04-12 2001-10-25 Kanji Yahiro Apparatus and method for observing biochemical substance

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2315005B1 (en) * 2004-01-14 2016-01-13 Life Technologies Corporation Fluorometry device and method for detection in biological samples
JP2005284136A (en) * 2004-03-30 2005-10-13 Olympus Corp Observation device and focusing method for observation device
JP4631324B2 (en) * 2004-06-28 2011-02-16 株式会社ニコン Fluorescence microscope
JP2006011149A (en) * 2004-06-28 2006-01-12 Nikon Corp Fluorescent microscope
JP2007093250A (en) * 2005-09-27 2007-04-12 Yokogawa Electric Corp Biochip reading device and method
JP2007108223A (en) * 2005-10-11 2007-04-26 Olympus Corp Microscopic system
WO2007139201A1 (en) * 2006-05-31 2007-12-06 Olympus Corporation Organism specimen imaging method and organism specimen imaging device
JP5307539B2 (en) * 2006-05-31 2013-10-02 オリンパス株式会社 Biological sample imaging method and biological sample imaging apparatus
US8179597B2 (en) 2006-05-31 2012-05-15 Olympus Corporation Biological specimen imaging method and biological specimen imaging apparatus
WO2008022139A2 (en) 2006-08-14 2008-02-21 Westover Scientific, Inc. Solid state fluorescence light assembly and microscope
EP2057496A2 (en) * 2006-08-14 2009-05-13 Westover Scientific, Inc. Solid state fluorescence light assembly and microscope
EP2057496A4 (en) * 2006-08-14 2010-07-07 Westover Scient Inc Solid state fluorescence light assembly and microscope
JP2010501086A (en) * 2006-08-14 2010-01-14 ウエストオーバー サイエンティフィック,インコーポレイテッド Semiconductor fluorescent assembly and microscope
JP2013210673A (en) * 2006-08-14 2013-10-10 Westover Scientific Inc Semiconductor fluorescent light assembly and microscope
CN101930116A (en) * 2009-06-23 2010-12-29 索尼公司 Biological specimen image acquiring device, acquisition methods and obtain program
JP2011133366A (en) * 2009-12-24 2011-07-07 Ihi Corp Microorganism detection method, filter, and fluorescent mark arrangement board
CN102834759A (en) * 2010-09-14 2012-12-19 欧姆龙株式会社 Observation optical system and laser processing device
US9000399B2 (en) 2011-05-03 2015-04-07 Samsung Electronics Co., Ltd. Fluorescence detecting optical system and multi-channel fluorescence detection apparatus including the same
EP3466335A1 (en) * 2011-12-21 2019-04-10 Catherine M. Shachaf Fluorescence imaging autofocus method
US11185278B2 (en) 2011-12-21 2021-11-30 Orlucent, Inc. System for imaging lesions aligning tissue surfaces
WO2016157458A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Measurement apparatus, measurement system, signal string processing method, and program
US11815458B2 (en) * 2019-12-31 2023-11-14 Illumina, Inc. Autofocus functionality in optical sample analysis
WO2022264495A1 (en) * 2021-06-18 2022-12-22 浜松ホトニクス株式会社 Measurement device

Also Published As

Publication number Publication date
JP4106626B2 (en) 2008-06-25
JPWO2003067230A1 (en) 2005-06-02
AU2003207248A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4288323B1 (en) Microscope device and fluorescence observation method using the same
JP4106626B2 (en) Fluorescence image measuring method and apparatus
EP1582860A1 (en) Method and apparatus for detecting and imaging the presence of biological materials
EP3167330B1 (en) Laser optical coupling for nanoparticles detection
WO2005113832A2 (en) Wide field imager for quantitative analysis of microarrays
CN108780216B (en) Imaging system and method using scattering to reduce autofluorescence and improve uniformity
CN101821608A (en) Method and system for imaging samples
EP3851834B1 (en) Device for thermocycling biological samples, monitoring instrument comprising the same, and method for thermocycling biological samples using such device
JP4779518B2 (en) Fluorescence reader and microorganism counting device
CN111220590A (en) Rapid detection instrument and detection method for pathogenic microorganism drug sensitivity
CN116802463A (en) Universal multi-functional detection system for microwell plates with confocal imaging
WO2004063731A1 (en) Optical sensor
JP2002330799A (en) Method for measuring specific microorganism and apparatus for measuring specific microorganism
US20080253409A1 (en) Multi-Channel Bio-Chip Scanner
JP7260127B2 (en) Bacteria detection method and bacteria detection device
JP4792880B2 (en) Microorganism counting method and microorganism counting apparatus
WO2021070259A1 (en) Analysis device and analysis method
JP2004184379A (en) Method of reading microarray
KR101188233B1 (en) A diagnosis apparatus for biochip
WO2024190281A1 (en) Analysis system and analysis method
KR102441156B1 (en) multiplexing analyzing apparatus using muiti-wavelength light
WO2024176626A1 (en) Image acquisition device and image acquisition method
CN102782477A (en) Optical examinations with controlled input light
JP3102954U (en) Fluorescence observation system with fiber pipette as excitation light source and built-in light intensity detector
WO2019155651A1 (en) Bacterium detection device and bacterium detection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003566530

Country of ref document: JP

122 Ep: pct application non-entry in european phase