WO2004063731A1 - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
WO2004063731A1
WO2004063731A1 PCT/JP2004/000318 JP2004000318W WO2004063731A1 WO 2004063731 A1 WO2004063731 A1 WO 2004063731A1 JP 2004000318 W JP2004000318 W JP 2004000318W WO 2004063731 A1 WO2004063731 A1 WO 2004063731A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
sample
led light
light
semiconductor light
Prior art date
Application number
PCT/JP2004/000318
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinobu Niimura
Akihiro Namba
Takami Shibazaki
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2005508020A priority Critical patent/JPWO2004063731A1/en
Publication of WO2004063731A1 publication Critical patent/WO2004063731A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates

Definitions

  • the present invention relates to a photodetection device applied to an inspection device for a biological substance used for analysis of nucleic acids such as DNA and DNA, antigen-antibody reaction, and protein binding reaction. '' Background technology
  • the most commonly used genetic testing methods include extracting nucleic acids from biological samples and using PCR (Polymerase Chain Reaction) or NASBA (Nucleic Acid Sequence-Based Amplification).
  • the target gene is amplified by amplifying the nucleic acid labeled with a radioisotope or a fluorescent dye using the method of amplification (based on J), and the base sequence of the target gene or Methods for measuring the concentration are known.
  • the electrophoresis method is used for analysis of gene expression and mutation analysis.
  • the electrophoresis method has problems such as that it takes time and effort to perform the measurement, and there is a limit to the measurement that can be performed at one time. Therefore, recently, capillary electrophoresis, which allows a fluorescently labeled nucleic acid to react in a plurality of cavities and rapidly process many samples at once, has been widely used. According to the capillary electrophoresis method, the measurement can be performed in a shorter time and more easily than the method using the conventional electrophoresis method.
  • the DNA chip has a large number of DNA probes immobilized on the surface of a glass substrate, and a large number of oligo probes synthesized on a small area on a silicon wafer by applying a semiconductor manufacturing process. There is a DNA chip.
  • the test method using a DNA chip as described above, multiple nucleotide sequences and expression levels of DNA in a sample can be determined simultaneously. Furthermore, many gene expression levels / multiple mutations can be determined by applying a DNA chip. It is possible to carry out various tests, such as analysis of data. Furthermore, from data obtained using a DNA chip, many genes can be classified into multiple loops, and information on gene fluctuations associated with development and differentiation can be obtained.
  • the gene analysis method using a DNA chip has the following problems. It has the advantage of performing many tests at once, but requires long test times. Since there are many inspection steps throughout and a complicated operation is required, it is difficult to obtain a reproducible detection result.
  • a gene inspection device using a DNA microarray has recently been considered.
  • genetic analysis is performed using fluorescence emitted from reaction products generated in the reaction chamber of the DNA microarray.
  • This device is a microscope-based device.
  • a hybridization reaction was caused between the target nucleic acid and the nucleic acid probe, which had been fluorescently labeled in advance, in the reaction tank of the DNA microarray, and the reaction was captured by the DNA microarray.
  • a fluorescence signal from a fluorescent substance is acquired, and a fluorescence image is obtained based on the signal.
  • the DNA microarray has a reaction tank (liquid storage section).
  • a fluorescent substance is efficiently excited to generate stable fluorescence from a reaction product generated in a reaction chamber of the DNA microarray. This is extremely important in performing highly accurate gene analysis.
  • LED Light Emitting Diode
  • Excitation light in this case is used to irradiate the fluorescent substance with the excitation light to excite the fluorescent substance, and to provide a filter means for selectively transmitting the wavelength of the incident light with respect to the fluorescence emitted by the excited fluorescent substance.
  • An apparatus has been proposed in which a fluorescent signal is received by a body imaging device and a fluorescent image is obtained based on the fluorescent signal (for example, see Japanese Patent Application Laid-Open No. 10-132744). .
  • the light from the LED and the like is irradiated to the well as excitation light via a dichroic mirror and an objective lens, and the fluorescent light emitted from the sample is passed through the objective lens and the dichroic mirror.
  • An apparatus has also been proposed in which a photomultiplier tube is used for detection via a pinhole cutout (see Japanese Patent Application Laid-Open No. 200-11616).
  • An apparatus has been proposed (see Japanese Patent Publication No. 7-122628).
  • LED light sources do not have sufficient light intensity to excite the fluorescent material and cannot generate sufficient fluorescence from the fluorescent material. For this reason, when an LED is used as a light source, it is often difficult to receive light with a commonly used photodetector such as a CCD camera. Therefore, when an LED light source is used as a light source for exciting a fluorescent substance, the output intensity should be as low as possible. In addition to selecting a model with a large surface area, bundle two or more LEDs so that they are as close to the sample surface as possible, and make sure that a sufficient amount of excitation light is uniformly applied to the fluorescent material. It is necessary to take measures such as doing so.
  • a photodetector capable of efficiently irradiating sufficient light with high efficiency and performing highly reliable fluorescence detection.
  • a light detection device includes: a semiconductor light source unit that emits light for irradiating a labeled substance of a sample; and a device that collects light emitted by irradiating the labeled substance with the irradiation light.
  • a condenser lens for emitting light, a filter for selectively transmitting light emitted when the labeling substance is irradiated with light by the irradiation light, and a light for transmitting light passing through the condenser lens.
  • a photodetector having a photodetector for detection, wherein the optical path of the excitation light is different from the optical path of the photodetector.
  • a light detection device includes: a semiconductor light source unit that emits light for irradiating a labeled substance of a sample; and the semiconductor light source unit includes a semiconductor light emitting element and an optical element.
  • a condenser lens for condensing light emitted by irradiating the labeling substance with the irradiation light, and selectively condensing light emitted by irradiating the labeling substance with the irradiation light.
  • a photodetector having a photodetector that detects light passing through the light-collecting lens.
  • FIG. 1 is a schematic diagram of an optical inspection apparatus according to the first embodiment of the present invention. The figure which shows schematic structure.
  • FIG. 2 is a diagram showing a schematic configuration of an example of a DNA reaction vessel used in the first embodiment.
  • FIG. 3 is a diagram showing a schematic configuration of another example of the DNA reaction vessel used in the first embodiment.
  • FIGS. 4A and 4B are views for explaining light irradiation on a sample according to the first embodiment.
  • FIG. 5 is a block diagram showing the entire optical inspection apparatus according to the first embodiment.
  • FIG. 6 is a diagram showing a schematic configuration of an LED light source unit according to a first modification of the first embodiment.
  • FIG. 7 is a diagram showing a schematic configuration of an LED light source unit according to a second modification of the first embodiment.
  • FIG. 8 is a diagram showing a schematic configuration of an LED light source unit according to a third modification of the first embodiment.
  • FIG. 9 is a diagram showing a schematic configuration of a main part of an optical inspection device according to a second embodiment of the present invention.
  • FIG. 10 is a view showing a schematic configuration of an optical inspection device according to a modification of the second embodiment.
  • FIGS. 11A and 11B are diagrams showing a schematic configuration of an optical inspection device according to a third embodiment of the present invention.
  • FIG. 12 is a diagram showing a schematic configuration of a measurement optical system used in the third embodiment.
  • FIG. 13 is a block diagram showing an LED light source unit drive circuit used in the third embodiment.
  • FIG. 14 is a diagram illustrating a schematic configuration of an LED light source driving circuit used in the third embodiment.
  • FIG. 15 is a diagram showing a schematic configuration of an optical inspection device according to a fourth embodiment of the present invention.
  • FIG. 16 is a diagram showing a schematic configuration of an optical inspection device according to a first modification of the fourth embodiment.
  • FIG. 17 is a diagram illustrating a schematic configuration of an optical inspection device according to a second modification of the fourth embodiment.
  • FIG. 18 is a diagram showing a schematic configuration of an optical inspection device according to a fifth embodiment of the present invention.
  • FIG. 19 is a diagram illustrating a schematic configuration of an optical inspection device according to a modification of the fifth embodiment.
  • a fluorescence detection apparatus that irradiates a fluorescent substance with excitation light.
  • a fluorescent detector that inspects fluorescence from the fluorescent substance will be described. It is of course applicable to a detection device that detects light or reflected light (hereinafter, these are collectively referred to as a “light detection device”).
  • Various fluorescent dyes and fluorescent glass particles can also be used as the fluorescent substance.
  • metal particles or dielectric particles are used as a labeling substance when detecting with scattered light or reflected light.
  • fine particles such as silver, platinum, and silicon, and latex particles can be used.
  • fine particles of metals such as gold, silver, and platinum have a particle size of 10 to 100 nm.
  • the speed of the particles in motion is optimal.
  • Latex particles having a particle size of 0.1 to 1 m are also particularly preferred because the speed of the particles in motion is also optimal.
  • the appropriate particle size is determined by the specific gravity of the particles and the speed of the browning motion.
  • the motion state of the particles includes, for example, Brownian motion and vibration.
  • telomere binding substance refers to hormones, tumor markers, enzymes, antibodies, antigens, abzymes, other proteins, nucleic acids, cDNA, DNA, RNA, and PNA. And the like, meaning a substance that can specifically bind to a biological substance, and is called a probe.
  • a “biological substance” is a substance that specifically binds to a known specific binding substance placed at a predetermined position on a substrate on which a probe is immobilized, and is extracted and isolated from a living body.
  • the term refers to substances that have been subjected to chemical treatment, chemical treatment, chemical modification, and the like, as well as substances directly extracted from living organisms.
  • substances such as hormones, tumor markers, enzymes, antibodies, antigens, abzymes, other proteins, nucleic acids, cDNA, DNA, RNA, and PNA.
  • Specific binding between a biological substance and a “specific binding substance” means that an unstable double strand is formed between complementary nucleotide sequences found in DNA, RNA, etc. Or highly specific binding, such as in the case of hybridization (hybridization) or selectively reacting only with a specific substance, such as an antigen and an antibody or a biotin and avidin. (First Embodiment)
  • FIG. 1 is a diagram showing a schematic configuration of an optical inspection device according to a first embodiment of the present invention.
  • An optical inspection device according to each embodiment of the present invention includes a light-collecting lens, a sample holding unit, a light source, and a photodetector.
  • the optical inspection apparatus includes a sample stage 1, and a DNA reaction container 2 as a subject is placed on the sample stage 1.
  • FIG. 2 is a diagram showing a DNA slide glass reaction vessel 3 as a specific example of the DNA reaction vessel 2.
  • the DNA slide glass reaction vessel 3 has a sample tank 301 arranged in a slide glass-like reaction vessel. In the sample tank 301, a DNA microarray 302 is laid.
  • a sample solution test sample
  • a hybrid is formed between the nucleic acid probe and the target nucleic acid previously fluorescently labeled in the DNA microarray 302. Redidation reaction occurs.
  • a fluorescent substance for example, a fluorescent dye substance
  • captured by the DNA microarray emits fluorescence.
  • the sample solution that did not contribute to the reaction is washed together with the buffer.
  • FIG. 3 is a diagram showing a specific example of another DNA reaction container 4.
  • the DNA reaction container 4 is formed of a plastic material.
  • a plurality of sample vessels 401 are arranged in the DNA reaction vessel 4, and a DNA microarray 402 is laid in the sample vessel 401.
  • a hybridization reaction occurs between the target nucleic acid and the nucleic acid probe that have been fluorescently labeled in advance.
  • a fluorescent substance for example, a fluorescent dye, captured in the DNA microarray by the hybridization reaction emits fluorescence. In this case, the sample solution that did not contribute to the reaction is washed together with the buffer.
  • an objective lens 5 is arranged as a focusing lens.
  • the objective lens 5 is positioned on a perpendicular line from one surface of the sample stage so that its optical axis 5a coincides with the center of the sample vessel 201.
  • the objective lens 5 is held by an objective lens holding mechanism 6.
  • the objective lens holding mechanism 6 has a cylindrical holding member 600.
  • the base end of the objective lens 5 is fitted inside the holding member 600.
  • a plurality of screw holes 62 are formed on the peripheral surface of the holding member 61 at equal intervals along the circumferential direction.
  • a fixing member 603 is provided so that the peripheral surface of the holding member 601 abuts.
  • the fixing member 603 is fixed to a device main body (not shown), and an elongated hole 604 along the optical axis direction of the objective lens 5 is formed in the fixing member 603.
  • a position adjusting screw 605 is screwed into the screw hole 602 on the peripheral surface of the holding member 601 via the elongated hole 604. By loosening the screws for position adjustment 605, the objective lens 5 moves along with the holding member 601 along the elongated hole 604 in the direction of the optical axis 5a. This allows you to adjust the focus.
  • a filter 7, an imaging lens 8, and a light detection device that together with the objective lens 5 constitute a light detection unit.
  • Container 9 is placed on the optical axis 5 a of the objective lens 5, a filter 7, an imaging lens 8, and a light detection device that together with the objective lens 5 constitute a light detection unit.
  • Container 9 is placed on the optical axis 5 a of the objective lens 5, a filter 7, an imaging lens 8, and a light detection device that together with the objective lens 5 constitute a light detection unit.
  • Container 9 is placed on the optical axis 5 a of the objective lens 5, a filter 7, an imaging lens 8, and a light detection device that together with the objective lens 5 constitute a light detection unit.
  • Container 9 is placed on the optical axis 5 a of the objective lens 5.
  • the filter 7 selectively transmits the fluorescence emitted when the fluorescent substance labeled on the sample 202 is excited.
  • the imaging lens 8 forms the fluorescent light selected by the filter 7 on the detection surface of the photodetector 9.
  • the imaging lens 8 may be a glass lens such as BK7 used for a normal lens as a material, but the imaging lens 8 may be quartz glass, a plastic lens, or Diffractive optical elements, liquid crystal lenses, etc. Elements and materials capable of condensing ordinary visible light can be used.
  • LED light source units 11 for example, four LED light source units 11; in FIG. 1, three LED light source units 11 are provided as semiconductor light source means. (Shown) is arranged.
  • the LED light source unit 11 has a cylindrical LED light source holder 111.
  • the LED light source holder 1101 has an LED light source 1102 disposed therein.
  • a non-pass filter 1103 is disposed on the optical path of the light emitted from the LED light source 1102 disposed inside the LED light source holder 1101.
  • the non-linear filter 1103 mainly passes near the wavelength range of the light emitted from the LED light source 1102.
  • the spectral characteristics of the emission wavelengths of the LED light sources 1102 included in the plural LED light source units 11 are the same.
  • the light from the LED light source unit 11 is supplied to the sample tank on the sample stage 1.
  • the 201 sample 202 is irradiated as excitation light.
  • Each LED light source unit 11 is mounted so that no excitation mura occurs.
  • the central axis of the light of each LED light source unit 11 corresponds to the periphery a, b, c of the sample 202 surface.
  • the mounting position is set. In this case, if it is possible to prevent the occurrence of excitation mura on the sample 202 surface, even if the position is off the center axis of the sample 202 surface, It is also possible to set the mounting position of each LED light unit 11 so that it intersects at one point of the upper or lower spatial position.
  • the LED light source unit 11 moves the sample 20
  • the excitation light applied to the sample 2 is not limited to the sample
  • the main part of the optical inspection device thus configured is installed in the light-shielding box 12 and is shielded from the outside.
  • Figure 5 shows a block diagram of the entire optical inspection system.
  • the computer 10 has a monitor 13 as a display means.
  • the computer 10 includes a fluorescence detection unit 14 including a main part of the apparatus shown in Fig. 1 and an LED light source unit driving circuit as a driving means for driving each LED light unit 11. 1 5 and are connected.
  • the LED light source drive circuit 15 is driven by one of the LED light source units 11 in the fluorescence detection unit 14.
  • the drive current of the LED light source unit 11 is set and the drive current is supplied to the LED light unit 11.
  • the LED light source unit drive circuit 15 responds to the content of the command at this time, and the fluorescence detection unit 1 4 Determine the LED light source unit 11 driven from the power of the LED light source unit 11 in 1 and at the same time determine the magnitude of the drive current of the LED light source unit 11 Supply drive current to unit 11.
  • each LED light source 1 102 As shown in Fig. 4A and Fig. 4B, the central axis of each light passes through the periphery a, b, c, d of the specimen 202 surface so that excitation unevenness does not occur on the surface.
  • the LED light sources 1102 are arranged so as to intersect at one point e (or ⁇ ) of a spatial position vertically above (or below) the substantially central axis of the sample 202 surface.
  • the fluorescent substance in the sample 202 emits fluorescence.
  • the fluorescent light is condensed by the objective lens 5, passes through the filter 7 and the imaging lens 8, and forms an image on the detection surface of the photodetector 9.
  • the photodetector 9 detects the intensity of the fluorescent light, converts it into an electric signal, and outputs the electric signal to the computer 10.
  • the computer 10 performs image processing and signal analysis such as contour enhancement, contrast correction, color correction, etc., and displays it on the monitor 13 as a fluorescent image.
  • a plurality of LED light source units 11 (for example, four LED light source units) having the LED light sources 1102 having the same emission wavelength spectrum are used.
  • the unit 1 1) was arranged side by side around the objective lens 5, and the excitation light was irradiated on the sample 202 simultaneously by the multiple LED light source units 1 1. Excitation light of sufficient intensity to excite the fluorescent substance in 2 can be efficiently obtained.
  • the center axis of each light passes through the periphery of the sample 202 surface and the sample 202 so that the light from the plurality of LED light sources 1102 becomes uniform on the sample 202 surface. Since they are set to intersect at one point vertically above or below the space on the approximate center axis of the two surfaces, The shadow and excitation unevenness on the surface of the sample 202 can be eliminated, and more stable fluorescence can be generated than the fluorescent substance generated in the sample tank 201.
  • the sample 202 Specularly reflected light from the surface does not pass through the light receiving optical path of the objective lens 5 as it is and enters the photodetector 9 as noise light, so that noise light can be reduced.
  • the LED is used as an excitation light source for exciting a fluorescent substance, it is inexpensive, has a long life, generates little heat, and is safe. In addition, power consumption can be reduced. In addition, the device configuration can be made small and highly portable.
  • the LED light source unit 11 has only the band-pass filter 1103 as an optical element other than the LED light source 1102, the configuration is simple. Not only is it easy to assemble and adjust the optical axis, but it is also useful because it leads to cost reduction.
  • the LED light source unit 11 by disposing the LED light source unit 11 around the objective lens 5, the optical path of the excitation light and the optical path having the objective lens 5 for fluorescence detection are separated from each other. There is no need to install extra optical elements such as a Crook Mirror, and a simple device configuration can be achieved in this regard. In addition, since there is no optical element such as a die-cloth mirror, reflected light and scattered light generated on the surface of these optical elements, and light passes through these optical elements As a result, the loss of the light intensity detected by the photodetector 9 can be minimized because the fluorescence intensity does not attenuate.
  • FIG. 6 shows a first embodiment of the first embodiment.
  • FIG. 9 is a diagram showing a schematic configuration of an LED light source unit 16 according to a modification.
  • the LED light source unit 16 has a cylindrical LED light source holder 1601.
  • the LED light source holder 1601 has an LED light source 1602 disposed therein.
  • a non-pass filter 1603, a diffusion plate 1604, A light lens 1605 is arranged on the optical path of the light emitted from the LED light source 1602 disposed inside the LED light source holder 16-011.
  • the Nordpass filter 1603 mainly transmits near the wavelength range of the light emitted from the LED light source 1602.
  • the diffuser plate 164 is used to suppress the non-uniformity (intensity unevenness) of the light intensity from the LED light source 1602 that has passed through the non-pass finoletor 1603.
  • the diffusion plate 1604 for example, "frosted glass” or a translucent plastic plate is used.
  • the condenser lens 1605 is the light diffused by the diffuser 1604. And focuses the diffused light at a position determined by the focal length.
  • the positions of the non-pass filter 1603 and the diffuser 1604 are the same as the diffuser 1604, the nozzle 1601 and the condenser lens.
  • the order may be 1 6 0 5.
  • the LED light source unit 16 has a condensing lens 1605 on the optical path of light emitted from the LED light source 1602. It can irradiate a focused beam.
  • a condensing lens 1605 having a NA of 0.95 or more is used, a very small area on the sample 202 surface, for example, a diameter of 0.5.
  • Light can be collected in the range of about ⁇ m, and a specific extremely narrow range of excitation can be achieved.
  • the excitation light from the LED light source 1602 becomes a condensed beam and the area of the irradiation cross section is small, a portion other than the sample 202 surface, such as the side wall of the sample tank 201, is used.
  • each LED light source 1602 is adjusted so that the excitation light from the LED light source 1602 is focused on one point in the plane of the sample 202, the LED light source 16 It is possible to irradiate the excitation light from O2 only to a desired specific portion in the surface of the sample 202. As a result, it is possible to efficiently irradiate the excitation light from the LED light source 1602 to a desired portion in the plane of the sample 202.
  • FIG. 14 is a diagram showing a schematic configuration of an LED light source unit 17 according to a second modification.
  • the LED light source unit 17 has a cylindrical LED light source holder 1701.
  • the LED light source holder 1701 has an LED light source 1702 disposed therein.
  • a bandpass filter 1701 on the optical path of the light emitted from the LED light source 1702 disposed inside the LED light source holder 1701, a bandpass filter 1701, a diffusion plate 1704, and a There is a lens 1705.
  • Band No. The finoletor 1703 and the diffuser 1704 are the same as those described with reference to FIG.
  • the collimating lens 1705 converts the light diffused by the diffusion plate 1704 into parallel light, and emits collimated light. In this case.
  • the positions of the band-noise filter 1703 and the diffuser 1704 are the same as those of the diffuser 1704, the non-pass filter 170, and the coil.
  • the order of the lenses 1705 can be used.
  • the LED light source unit 17 has a collimated lens 105 disposed on the optical path of light emitted from the LED light source 1702, so that the sample It is possible to irradiate the flat collimated light onto the 202 surface.
  • This makes it easy to identify the irradiation position in the plane of the sample 202, making it easy to program a program for automatically adjusting the irradiation position by computer control.
  • it is easy and useful to predict the irradiation surface position and its illuminance.
  • the excitation light can be accurately operated at a desired irradiation position on the sample 202 surface. .
  • since light is not diffused, it is possible to prevent erroneous irradiation of light in a portion of the sample tank 201 other than the sample 202 surface, for example, including a side wall. it can.
  • FIG. 14 is a diagram illustrating a schematic configuration of an LED light source unit 18 according to a third modification of the first embodiment.
  • the LED light source unit 18 has a cylindrical LED light source holder 1801.
  • the LED light source holder 1801 has an LED light source 1802 disposed therein.
  • a non-pass filter 1803 and a diffusion plate 1804 are disposed on the optical path of the light emitted from the LED light source 1802 disposed inside the LED light source holder 1801.
  • the band pass filter 1803 and the diffusion ⁇ 1804 are the same as those described with reference to FIG. In this case, the position of the non-pass filter 1803 and the diffusion plate 1804 may be in the order of the diffusion plate 1804 and the bandpass filter 1803.
  • the LED light source unit 18 according to the third modification has the diffusion plate 1804 arranged on the optical path of the light emitted from the LED light source 1802. Irradiate diffuse light without unevenness You can do it. As a result, it is possible to irradiate almost uniformly the excitation light over the entire surface of the sample 202 without unevenness, and it is possible to receive stable and excellent fluorescence with excellent reproducibility. .
  • LED light source units 11, 16, 16, 17 can be used properly according to the size and structure of the sample 202 and the sample tank 201. That is, the LED light source unit 1 1
  • Each of the LED light sources unit 16, 17, and 18 is composed of an LED light source and an optical element such as a non- zero filter, a lens, and a diffusion plate.
  • the excitation light can be condensed, collimated, or diffused in units of light. This makes it possible to control the beam pattern of the excitation light to the sample 202 surface in various ways, and the sample tank 201 of various shapes has more unevenness. It can respond to a certain sample.
  • the LED light source unit 16 (17) it can be used according to the application. Either the filter 1603 (1703) or the diffusion plate 1604 (1704) may be used, or neither of them may be used.
  • Scanners 1103, 1603, 1703, and 1803 are different depending on the spectrum of the emission wavelength of the fluorescent dye used as the sample. ° Needless to say, it may be a filter or a low-pass filter.
  • the condenser lens 1705 6 The collimating lens 1705 may be a glass lens such as BK7 used for ordinary lenses as a material, but the focusing lens 16 0 5 ⁇ Collimate lens 1 7 0 5 is quartz glass or plastic lens or diffractive optical element Elements and materials that can condense ordinary visible light, such as liquid crystal lenses, can be used.
  • the first embodiment the case where a plurality of LED light source units 11 are arranged around the objective lens 5 has been described. In 1, only one LED light source unit 11 disposed around the objective lens 5 may be used. Even in this case, the same effect as described above can be expected.
  • the second embodiment is an embodiment in which the angle of light irradiation can be adjusted by changing the inclination angle of the LED light source unit with respect to the sample surface.
  • FIG. 9 is a diagram illustrating a schematic configuration of the second embodiment.
  • the objective lens 21 is held by an objective lens holding mechanism 22.
  • the objective lens holding mechanism 22 has a cylindrical holding member 222.
  • the objective lens 21 is fitted inside the holding member 222.
  • an LED light source unit holder 23 is provided as a semiconductor light source means holding member.
  • the LED light source unit holder 23 is provided with a plurality of (for example, about 8 to 12) LED light source unit storage holes 2301 at even intervals along the circumferential direction. . These LED light source cut-out holes 2301 are arranged to be inclined toward the surface of the sample 202 on the sample stage 1. The tilt angle is about 45 ° to 60 ° with respect to the optical axis 21a of the objective lens 21 with respect to the axis.
  • the LED light source unit holder 23 has an L A screw hole 2302 penetrating the ED light source unit storage hole 2301 is provided. The two screw holes 2302 are formed at predetermined intervals in the direction along each LED light source unit accommodation hole 2301.
  • the LED light source unit 24 is accommodated in the LED light source unit accommodating hole 2301.
  • the LED light source unit 24 has a cylindrical holoreder 2401, and the LED illuminator 2402 is disposed inside the holoreder 2401. Then, such an LED light source unit 24 is housed in the LED light source unit housing hole 2301 via an O-ring 25. In this case, the O-ring 25 is located between the two screw holes 2302.
  • the LED light source unit storage hole 2301 has a bandpass filter 240 on the optical path of the light emitted from the LED light source 2402 of the LED light source unit 24. 3 is located.
  • the non-phosphorescent light source 2403 mainly passes near the wavelength range of light emitted from the LED light source 2402 power.
  • a spacer 26 is disposed between the hologram 2404 of the LED light source unit 24 and the finolators 2403 of the LED light source unit.
  • the spacer 26 is composed of an LED light source 2402 and a band laser. Performs positioning of the fin locator 2403.
  • a metal such as aluminum or brass or a plastic is used.
  • a tilting screw 27 as a position adjusting means is screwed.
  • Fan screw 27 is for LED light source unit 2 Press the two points across the O-ring 25 on the side of the holder 2 4 0 1.
  • the light irradiation angle can be adjusted by changing the tilt angle of the LED light source unit 24 with respect to the sample 202 surface by adjusting the pressing force of the lifting screw 27 according to the screwing amount. .
  • the irradiation angle of the light emitted from the LED light source 2402 adjusted by these two tilting screws 27 is ⁇ 2 to 3. It is on the order.
  • a plurality of screw holes 222 are formed on the peripheral surface of the holding member 222 at even intervals along the circumferential direction. Further, a fixing member 222 is provided so that the peripheral surface of the holding member 222 contacts.
  • the fixing member 2203 is fixed to the apparatus main body 28 side, and has an elongated hole '224' formed along the optical axis direction of the objective lens 21.
  • a positioning screw 222 is screwed into the screw hole 222 on the peripheral surface of the holding member 222 through the elongated hole 222.
  • the objective lens 21 is moved along with the holding members 222 along the elongated holes 222. Move in the optical axis 21a direction. This allows the focus to be adjusted.
  • the LED light sources 2402 of each LED light source unit 24 are turned on, and the excitation light emitted from these LED light sources 2402 is applied to the sample 202 surface on the sample stage 1.
  • the light emission spectrum of the light emitted from the LED light source 2402 is all the same.
  • Focus adjustment is performed by moving the optical axis in the 2 la direction (the direction of arrow A in the figure).
  • each LED light source unit 24 passes through the periphery of the sample 202 surface and is vertically above or below the substantially central axis of the sample 202 surface. Set to intersect at one point of the position. This makes it possible to illuminate the sample 202 surface uniformly and uniformly.
  • the screwing amount of the tilting screw 27 is manually adjusted.
  • the screwing of the tilting screw 27 is performed.
  • a motor at the position corresponding to the adjustment of the control amount and to operate this motor automatically by linking it with the computer.
  • the LED light source unit 24 may be configured to be capable of adjusting the position in the height direction and adjusting at least one of the inclination angles.
  • FIG. 10 is a diagram showing a schematic configuration of an optical inspection device according to a modification of the second embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In this modification, the block diagram of the optical inspection device described with reference to FIG. 5 is used.
  • a light detector 31 is disposed on the sample table 1 to which light from the plurality of LED light source units 11 is irradiated, instead of the sample tank 201 as light intensity detecting means.
  • a solid-state image sensor CCD camera or CMOS sensor
  • an image pickup tube or the like is used as the light detector 31.
  • the photodetector 31 individually detects the intensity of light from each LED light source unit 11. The detection output of the photodetector 31 is taken into the computer 10 described in FIG.
  • the computer 10 analyzes the variation of the light intensity from the output of the photodetector 31 corresponding to the intensity of the light from each LED light source unit 11 and outputs the LED light source unit drive circuit 15. And individually controls the current supplied to the LED light source 1102 of each LED light unit 11.
  • the magnitude of the current supplied to each LED light source 1102 can be controlled based on the light intensity obtained near the sample surface. This makes it possible to illuminate the specimen surface with uniform brightness. As a result, illumination unevenness on the sample 202 surface can be suppressed, the fluorescent substance in the sample tank 201 can be excited almost uniformly, and highly reliable fluorescence detection can be performed. And can be.
  • each LED light source unit 11 obtained by the photodetector 31 was adjusted.
  • the LED light source unit drive circuit 15 is manually adjusted based on the intensity of light from the LED light source 1102 to adjust the light from the LED light source 1102 to the same brightness.
  • the photodetector 31 may be removed, and the sample tank 201 may be re-installed at this position.
  • an imaging means for example, a CCD camera or a CMOS sensor (both not shown)
  • the sample tank 201 is placed on the sample table 1 as it is, and The light from the LED light source 111 of the LED light source unit 11 is individually radiated to the sample tank 201, and the fluorescent light from the sample tank 201 is objective lens 5, filter 7, imaging lens 8 , Each of which is taken by the image pickup means, guided to the computer 10 and displayed on the monitor 13, and the brightness of each pixel of the fluorescent image on the monitor 13 is set to the computer 10.
  • the LED light source unit drive circuit 15 is adjusted, and each of the LED light source unit drive circuits 15 is adjusted.
  • the current supplied to the LED light sources 11.02 can be individually controlled.
  • the light from each LED light source 1102 can be adjusted to the same brightness, so that uneven illumination on the sample 202 surface can be suppressed, and the sample tank can be controlled.
  • the fluorescent substance in 201 can be excited almost uniformly.
  • the third embodiment is an embodiment in which a plurality of types of fluorescent dyes are excited using two or more LED light sources having different peak emission wavelengths, and a fluorescent signal can be detected.
  • FIGS. 11A and 11B are diagrams showing a schematic configuration of the third embodiment, and the same parts as those in FIG. 9 are denoted by the same reference numerals.
  • the block diagram of the optical inspection apparatus described with reference to FIG. 5 is used.
  • the first to third LED light source units 41, 42, and 43 having three types of LED light sources having different peak emission wavelengths are mounted on the LED light source unit holder 23.
  • the emission spectrum of the LED light source has a mountain-shaped structure, and has one peak wavelength.
  • the first LED light source unit 41 uses an LED light source having a light emission peak wavelength of 490 nm
  • the second LED light source unit 42 uses the light emission peak wavelength.
  • An LED light source having a wavelength of 52 O nm is used, and an LED light source having a peak emission wavelength of 63 O nm is used as the third LED light source unit 43.
  • the first to third LED light source units 41, 42, and 43 are L Four ED light source unit holders 23 are arranged symmetrically around the objective lens 21 along the periphery. In other words, these first to third LED light source units 41, 42, and 43 have LED light sources having different emission wavelength spectral characteristics, respectively, and these different spectra
  • the first to third LED light source units 41, 42, and 43 having the same characteristics are arranged at regular intervals along the periphery of the LED light source unit holder 23.
  • the first LED light source unit 41, the second LED light source unit 41, and the third LED light source unit 43 are repeatedly arranged in this order.
  • the first to third LED light source units 41, 42, and 43 have the same spectral characteristics at positions facing each other across the objective lens 21. It is arranged as follows.
  • the first to third LED light source units 41, 42, and 43 are mounted in front of the respective LED light sources (in the drawing, the first LED light source unit). 4)
  • the LED light source 4101 in front of the LED light source 4101 (only the filter 4102 is shown) transmits the light near the peak wavelength of the emission of each LED light source best. t that is made as having the property of, Roh down de path full I filter 4 1 0 2 of the first LED light source Interview two Tsu DOO 4 1, the wavelength to be the most good rather permeation 4 9 O n ra
  • the second LED light source unit is set to a nearby position.
  • the filter has the best transmission wavelength set around 520 nm
  • the third LED light source unit 43 has a non-pass filter with the best transmission wavelength around 630 nm.
  • Fig. 12 shows the schematic configuration of the photodetection optical system of the device configured as described above.
  • the LED light source unit having the above three different wavelengths at the peak emission wavelength is shown. 4 1, 4 2,
  • Figure 4 shows the case where the sample is irradiated with excitation light.
  • two dichroic mirrors 45 and 46 are arranged on the optical axis above the objective lens 21.
  • the dichroic mirror 45 is set so that the reflected light travels in a direction of approximately 45 ° with respect to the optical axis of the objective lens 21, and the peak emission of the fluorescent dye FITC is performed.
  • a transflective spectral characteristic that reflects light having a wavelength slightly longer than the wavelength of 520 nm, for example, light having a wavelength of 550 nm or less, and transmits light having a wavelength longer than that. have.
  • the dichroic mirror 46 is installed so that the reflected light travels in a direction of approximately 45 ° with respect to the optical axis of the objective lens 21, and the fluorescent dye Cy 3 Peak emission wavelength of 5 6
  • transflective spectral characteristic that reflects light having a wavelength slightly longer than 5 nm, for example, light having a wavelength of 62 nm or less, and transmits light having a wavelength longer than that. I have.
  • a CCD camera 48 is disposed on the reflection optical path of the die mirror 45 through a condenser lens 47.
  • a CCD camera 50 is arranged via a condenser lens 49 in the reflected light path of the die-cloth mirror 46, and a condensing lens 51 is arranged in the transmitted light path.
  • CCD camera 52 is arranged in the transmitted light path.
  • the outputs of the CCD cameras 48, 50, 52 are sent to the computer 10.
  • three types of target DNA are now set for one sample, and different fluorescent dyes, FITC (Forescein-isothiocyanate), Cy3, and Cy5, are used for each of them.
  • Label Next, a sample solution containing DNA labeled with these fluorescent dyes is dropped into the sample tank, DNA hybridization is performed, and the labeling substance that has not contributed to the reaction is removed with a buffer solution (PBS (PBS)). Wash with a mixture of phosphoric acid buffer), EDTA (ethylene sodium acetate sodium nitrate), and NaCl (pH 7.4).
  • PBS buffer solution
  • the sample obtained in this way is set on the sample stage 1 shown in FIGS. 11A and 11B. Then, the sample tank 201 is irradiated with excitation light from each LED light source unit 41, 42, 43. At this time, the light from the LED light source having three different wavelengths as the peak emission wavelengths is simultaneously irradiated onto the sample surface.
  • fluorescence is emitted from the fluorescent dye labeled on the sample that has reacted with the DNA probe by the DNA hybridization, and the light passes through the objective lens 21 shown in Fig. 12 and is diced. Reutz Miller 4 5 is reached.
  • the fluorescence from the fluorescent dye FITC is reflected by the dichroic mirror 45, passes through the lens 47, enters the CCD camera 48, and is guided to the computer 10. It is obtained as a green fluorescent image by FITC.
  • the fluorescence of the fluorescent dye Cy 3 passes through the dichroic mirror 45, is reflected by the dichroic mirror 46, passes through the lens 49, and passes through the lens 49.
  • FIG. 13 shows a block diagram of the drive circuits of the first to third LED light source units 41, 42, and 43.
  • an LED light source unit driving circuit 54 and an LED light source unit driving circuit 55 are respectively provided.
  • An LED light source unit driving circuit 56 is provided.
  • the LED light source unit drive circuit 54 is connected to the first LED light source unit 41 and the LED light source unit drive circuit 55 is connected to the second LED light source unit 42.
  • An LED light source unit drive circuit 56 is connected to the third LED light source unit 43.
  • a common power supply 53 is connected to the LED light source unit driving circuit 54, the LED light source unit driving circuit 55, and the LED light source unit driving circuit 56, and as described in FIG. Combiner 10 is connected.
  • the LED light source unit drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56 receive power from a common power supply device 53. Also, LED light source- The LED drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56 are controlled based on a command from the computer 10, and are controlled by the first LED light source unit. A driving current is supplied to each of the LED light sources of the light source 41, the second LED light source unit 42, and the third LED light source unit 43 to generate excitation light of three kinds of fluorescent dyes.
  • the three types of fluorescence signals obtained by these excitation lights are respectively transmitted by the CCD cameras 48 and 46 by the dichroic mirrors 45 and 46, respectively. , 50 and 52 separately, and the image output signals from these CCD cameras 48, 50 and 52 are guided to the computer 10, where image analysis is performed, and three types of images are obtained. A composite image using the fluorescent dye is generated and output.
  • FIG. 14 shows a specific circuit configuration of the power supply unit 53 and the LED light source unit drive circuits 54, 55, and 56.
  • the power supply device 53 guides the output from the AC power supply 57 of 100 V to the transformer circuit 58 composed of a transformer to adjust the voltage.
  • the output from the transformer circuit 58 is sent to a bridge rectifier circuit 59 composed of four diodes to perform full-wave rectification, and then smoothed by a smoothing capacitor 60.
  • the smoothed output is led to a constant voltage circuit 6 4 composed of two power transistors 6 16 2 connected in Darlington and an OP amplifier 63, and a constant voltage is output. Is output.
  • the terminal voltage of the Zener diode 65 is used as a reference voltage, and a variable reference voltage is generated by a variable reference voltage generation circuit 67 composed of circuit elements such as a P-amplifier 66 and a resistor. are doing.
  • a variable reference voltage generation circuit 67 composed of circuit elements such as a P-amplifier 66 and a resistor. are doing.
  • variable reference resistor 68 By changing the value of the variable reference resistor 68 connected to the amplifier 63, the voltage output of the constant voltage circuit 64 is adjusted in relation to the variable reference voltage of the variable reference voltage generation circuit 67. Then, a drive current is supplied to the LED light source unit drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56. In other words, by changing the value of the variable reference resistor 68, the driving current to the LED light source unit driving circuit 54, the LED light source unit driving circuit 55, and the LED light source unit driving circuit 56 is increased. Can be adjusted at the same time.
  • a FET (field effect transistor) 70 generates an abrupt current in the event of a short-circuit when the current is short-circuited, and flows through the OP amplifier 63. It plays a role in preventing accidental damage.
  • the power can be turned on and off by the power switch 69.
  • the power supply stitch 69 is connected to the computer 10, and the power input is also adjusted by the computer 10.
  • the power supply switch 69 may be manually switched.
  • LED light source unit driving circuits 54, 55, 56 are connected in parallel.
  • the LED light source unit drive circuit 54 serves as a drive circuit for the four first LED light source units 41 described in FIGS. 11A and 11B, and includes a variable resistor 71 and a variable resistor 71. scan I Tutsi 7 2 t Similarly the series circuit are provided separately to each, LED light source unit drive circuit 5 5 also as the second LED light source Interview two Tsu DOO 4 2 of the driving circuit of the four partial
  • a series circuit of a variable resistor 71 and a switch 72 is separately prepared, and the LED light source unit driving circuit 56 is also equipped with a third LED light source unit for four.
  • As a drive circuit for the unit 43 a series circuit of a variable resistor 71 and a switch 72 is separately provided.
  • the first to third LED light source units 4 are controlled by adjusting the resistance values of the respective variable resistors 71, 73, and 75.
  • the drive current supplied to each of the LED light sources 1, 42, and 43 can be adjusted, and the output light intensity can be controlled.
  • the adjustment of the output light intensity may be performed manually, or may be automatically performed automatically by a computer. This makes it possible to individually control the drive current of each of the first to third LED light source units 41, 42, and 43.
  • the LED light source unit driving circuits 54, 55, and 56 control the on / off of the switches 72, 74, and 76 to control the first to third LED light source units 4.
  • the LED light sources 1, 42, and 43 can all be turned on and off independently. These on / off controls may be performed automatically by computer control or manually.
  • the first to third LED light source units 4 As described with reference to FIG.
  • the light intensity from each LED light source of 1, 42, 43 is detected, the detection signal is led to a computer, and the light intensity is analyzed by a computer, and the variable resistors 71, 73, 7 Adjust the resistance of 5.
  • the resistance values of the variable resistors 71, 73, and 75 may be manually adjusted based on the light intensities from the individual LED light sources obtained by this detection. This Thereby, it is possible to adjust so that the light from the LED light source is almost uniformly irradiated to a part of the reaction tank of the DNA microarray.
  • variable resistances 71, 73, and 75 can control the magnitude of the drive current flowing through all LED light sources, so that the intensity of the excitation light can be increased or reduced all at once. You can do it. As a result, it is possible to irradiate each sample with excitation light of an appropriate intensity, and it is possible to efficiently detect fluorescence.
  • three types of fluorescent dyes can be formed by using the first to third LED light source units 41, 42, and 43 having three types of LED light sources having different peak emission wavelengths. Since simultaneous excitation is possible, fluorescence images from these three types of fluorescent dyes can be acquired, and these can be synthesized or displayed individually.
  • the individual LED light sources constituting the first to third LED light source units 41, 42, and 43 can easily be turned on and off according to the fluorescent dye to be excited.
  • the drive current can be individually adjusted by the variable operation of the variable resistance, so that each fluorescent dye can be irradiated with excitation light of the correct intensity, and the efficiency can be improved. Fluorescence can be detected well.
  • the present invention is not limited to this, and two or more types of fluorescent dyes may be obtained in the same manner.
  • the fluorescent dye is not limited to FITC, Cy3, and Cy5 shown in the examples, but may be a load-min green (Rhodamine G), a Texas-red (Texas). Red), RITC (Rhodamine B-isothiocya), etc. may be used.
  • the number of LED light source units is not particularly limited, and a plurality of LED light source units are individually controlled by a plurality of drive circuits.
  • the present invention can be applied even if the output wavelengths of a plurality of LED light source units are the same or different. It is also possible to irradiate the sample with one type of light from LED light sources having different peak emission wavelengths, and to repeat the light several times at different wavelengths. For example, it is possible to use a turret in which filters with different transmission wavelengths are set and automatically switch by computer in conjunction with LED light sources of different wavelengths. . .
  • a reflecting member is arranged on the optical path of light emitted from the LED light source unit, and the light in the optical path is reflected, so that the optical axis angle of the excitation light can be increased and the light of the objective lens can be increased. This is an embodiment that approaches an axis angle.
  • FIG. 15 is a diagram showing a schematic configuration of the fourth embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • LED light source units 81 as semiconductor light source means (four LED light units in the illustrated example) are used.
  • the LED light source unit 81 has a cylindrical LED light source holder 8101.
  • the LED light source holder 8101 has an LED light source 8102 disposed therein.
  • a bandpass filter 8103, a diffusion plate 8104, a condenser lens 8 1 0 5 is arranged on the optical path of light emitted from the LED light source 8102 inside the LED light source holder 8101.
  • the non-noise filter 8103 mainly passes near the wavelength range of light emitted from the LED light source 8102.
  • reflectors 82 are provided as reflecting members.
  • the reflecting plate 82 reflects light from the LED light source unit 81 and irradiates the sample 202 in the sample tank 201 on the sample stage 1 as excitation light.
  • the reflector 82 reduces the angle ⁇ formed by the optical axis of the excitation light with respect to the optical axis of the objective lens 5 so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens. I'm doing it.
  • the respective mounting positions of the reflectors 8 2 reflect the light from the LED light source unit 81 and irradiate the sample 20 ′ 2 surface with uniform brightness and irradiate the light.
  • shadows and excitation unevenness also occur on the sample 202 having a three-dimensional part on part or the entire surface. It is adjusted so that it does not occur.
  • a reflector 82 is arranged on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path, so that the optical axis angle of the excitation light can be adjusted by the objective lens 5. It can approach the optical axis angle. This means that the excitation light can be radiated from a position close to the top of the sample surface 202 (the limit that does not enter the observation field of view of the objective lens 5), so that the LED light source unit The difference between the shortest distance a and the longest distance b of the optical path from 81 to the sample 202 surface through the reflector 82 can be reduced. As a result, since the intensity of the excitation light is inversely proportional to the distance of the optical path, the difference in the intensity of the excitation light on the surface of the sample 202 can be reduced. The two surfaces can be excited efficiently and uniformly.
  • the reflection plate 82 is arranged as a reflection member on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path. If such a method is used, the degree of freedom in arranging the LED light source units 81 increases, so that a large number of LED light source units 81 are arranged around the objective lens 5. It can be.
  • FIG. 16 is a diagram showing a schematic configuration of an optical inspection apparatus according to a first modification of the fourth embodiment. The same parts as those in FIG. The label is attached.
  • a plurality of LED light source units 81 as semiconductor light source means are arranged in multiple layers (two layers in the illustrated example).
  • reflecting plates 82, 82 ' (corresponding to the LED light source units 81 of each layer) as reflecting members. (Corresponding to 2 layers in the example shown).
  • the reflectors 82 and 82 ' reflect light from the LED light source unit 81 of each layer and serve as excitation light for the sample 202 in the sample tank 201 on the sample stage 1. And irradiate.
  • the light from the LED light source unit 81 is reflected to irradiate the sample 202 with uniform brightness even at the respective mounting positions of the reflectors 82 and 82 '.
  • the sample 202 having a three-dimensional portion on part or the entire surface is also shaded.
  • Fig. 15 is the same as Fig. 15 for other adjustments so that no excitation unevenness occurs.
  • the light from the light source unit 81 of each layer is reflected by using the reflectors 82, 82 '.
  • LED light source units 81 since the number of LED light source units 81 can be greatly increased, these LED light source units 81 are divided into a plurality of sets, and the emission wavelength spectrum is increased for each set. By using LED light sources with different torque characteristics, it is possible to excite a plurality of types of fluorescent dyes and detect fluorescent signals in the same manner as described in the third embodiment. And
  • the reflection plate 82 is disposed as a reflection member on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path.
  • a die crack mirror can be used as a member.
  • FIG. 17 is a diagram showing a schematic configuration of the second modification, and the same parts as those in FIG. 15 are denoted by the same reference numerals.
  • the LED light source unit 8 1 has an LED light source 8 1 0 2 disposed inside a cylindrical LED light source holder 8 1 0 1 and an LED light source 8 1 0 inside the LED light source holder 8 1 0 1.
  • a diffusing plate 8104 and a condensing lens 8105 are arranged on the optical path of the light emitted from 2, and the above-described bandpass finoleta 8103 is omitted.
  • a die-cloth mirror 83 is arranged as a reflecting member.
  • the dichroic mirror 8 3 mainly reflects near the wavelength range of the light emitted from the LED light source 8 102 of the LED light source unit 81. It has such characteristics.
  • the die-cloth mirror 83 reflects the light from the LED light source unit 81 and applies excitation light to the sample 202 in the sample tank 201 on the sample stage 1. And irradiate. Also in this case, the angle between the optical axis of the excitation light and the optical axis of the objective lens 5 is reduced so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens.
  • the die-cloth mirror 83 has a characteristic of mainly reflecting near the wavelength range of light emitted from the LED light source 8102 of the LED light source unit 81.
  • the LED it is possible to omit the bandpass finolators built in the LED light source unit 81. As a result, the cost of the LED light source unit 81 can be reduced and the size can be reduced.
  • the light guide member is arranged on the optical path of the light emitted from the LED light source unit, and the optical path is bent, so that the optical axis angle of the excitation light is increased and the optical axis angle of the objective lens is increased. This is an embodiment in which the distance is approached.
  • FIG. 18 shows a schematic configuration of the fifth embodiment, and the same parts as those in FIGS. 1 and 15 are denoted by the same reference numerals.
  • the light source unit 81 is arranged around the objective lens 5.
  • the LED light source unit 81 has a cylindrical LED light source holder 8101.
  • the LED light source holder 8101 has an LED light source 8102 disposed therein.
  • a bandpass filter 8103, a diffusion plate 8104, 810 5 are arranged on the optical path of the light emitted from the LED light source 8102 inside the LED light source HONOLEDA 8101.
  • the non-pass filter 8103 mainly transmits light near the wavelength range of the light emitted from the LED light source 8102.
  • a light incident end 84a of an optical fiber 84 is arranged separately as a light guide member.
  • the optical fiber 84 can bend the optical path of the light from the LED light source unit 81 freely.
  • the light from the light emitting end 84b is irradiated as the excitation light onto the sample 202 in the sample tank 201 on the sample stage 1, and at the same time, the light from the objective lens 5
  • the angle formed by the optical axis of the excitation light with respect to the optical axis can be reduced so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens.
  • the position of the light emitting end 84b of these optical fibers 84 is caused by the fact that the emitted light is applied to the sample 202 surface with uniform brightness and the incident angle of the applied light. Adjustment so that excitation unevenness does not occur on the sample 202 surface, and also so that shadows and excitation unevenness do not occur on the sample 202 having a three-dimensional part on all or part of the surface. Have been.
  • the same effects as in the first embodiment can be expected.
  • the optical path is bent by the optical fiber 84 arranged on the optical path of the light emitted from the LED light source unit 81, the optical axis angle of the excitation light is adjusted by the objective lens. It can approach the optical axis angle.
  • the difference in the intensity of the excitation light on the sample 202 surface can be reduced, and the sample 202 surface can be efficiently used. It can be excited uniformly.
  • the optical guide member 84 is used as the light guide member.
  • a material obtained by molding glass rod-shaped acrylic material is applied. You can also do it.
  • a control method for illuminating a sample uniformly and uniformly with light as described in the modification of the second embodiment and the third embodiment. Can be applied.
  • the optical fiber 84 is arranged as a light guide member on the optical path of the light emitted from the LED light source unit 81, and the optical path is bent. If such a method is used, the degree of freedom in arranging the LED light source units 81 increases, so that it is possible to arrange a large number of LED light source units 81 around the objective lens 5. it can.
  • FIG. 19 is a diagram showing a schematic configuration of an optical inspection device according to a modification of the fifth embodiment, and the same parts as those in FIG. 18 are denoted by the same reference numerals.
  • a plurality two in the illustrated example
  • a plurality of LED light source units 81 as semiconductor light source means are arranged around the objective lens 5.
  • a light incident end 84a of an optical canopy refino 84 as a light guide member is separately arranged.
  • the optical fiber 84 allows the light path of the light from the LED light source unit 81 to be freely bent, and the light from the light emitting end 84b is transferred to the sample on the sample stage 1.
  • the sample 202 in the tank 201 is irradiated as excitation light.
  • the position of the light emitting end 84b of the optical fiber 84 is such that the emitted light is applied to the surface of the sample 202 with uniform brightness, and the light to be applied is In order to prevent excitation unevenness from occurring on the sample 202 surface due to the incident angle, no shadow or excitation unevenness occurs on the sample 202 having a three-dimensional part on all or part of the surface. It has been adjusted accordingly.
  • the optical path of the light from the light source unit 81 is bent by using the optical fin 84, so that the position of each LED light source unit 81 is automatically determined.
  • the degree of freedom can be increased. By increasing the degree of freedom in the location of the LED light source units 81, it is possible to use more LED light source units 81 than in the fifth embodiment. And are possible. This makes it possible to easily obtain the amount of light required to irradiate the sample 202 surface, and to illuminate the sample 202 surface without unevenness in the light amount.
  • the LED light source units 81 are divided into a plurality of sets, and the spectral characteristics of the emission wavelength are set for each set. By using different LED light sources, it is also possible to excite a plurality of types of fluorescent dyes and detect fluorescent signals as in the third embodiment.
  • optical fiber 84 is used as the light guide member.
  • a material obtained by molding a glass rod material may be used. it can.
  • the present invention is not limited to the above-described embodiment, and can be variously modified in the implementation stage without departing from the spirit of the invention.
  • the sample applied in each of the above-described embodiments is not limited to an example of a DNA microarray, but can be applied to all reaction vessels called so-called DNA microarrays.
  • the present invention is widely applicable not only to DNA but also to detection and measurement dealing with various other biological materials.
  • the above-described embodiment includes various stages of the invention, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some components are deleted from all the components shown in the embodiments, the problem described in the section of the problem to be solved by the invention can be solved, and the problem described in the section of the effect of the invention can be solved. If the effect obtained is obtained, a configuration from which this component is deleted can be extracted as an invention.
  • light is applied to the labeled substance of the sample. Since the optical path for irradiation and the optical path of the fluorescence detecting means having the focusing lens are separated, optical elements such as dichroic mirrors that attenuate light can be omitted, and the detected light intensity Loss can be minimized.
  • a plurality of semiconductor light source means are arranged along the periphery of the converging lens and light is irradiated simultaneously from these, so that the labeling substance is irradiated with light. It is possible to efficiently obtain light of sufficient intensity to carry out.
  • the direction of the light emitted from the semiconductor light source means and the direction of inclination of the condenser lens with respect to the optical axis can be adjusted, respectively, so that the desired specific Light can be condensed at the location, and efficient irradiation of the labeling substance with light can be performed.
  • the drive current to the semiconductor light source means can be individually controlled based on the light intensity obtained near the sample, the light from the semiconductor light source means can be controlled by the same light. Brightness can be adjusted, and the sample can be illuminated with uniform brightness.
  • the present invention relates to a photodetection device that can efficiently irradiate sufficient light and can perform highly reliable photodetection.

Abstract

An optical sensor comprises a semiconductor light source unit for emitting a light with which a labeled substrate of a sample is illuminated, a focusing lens for focusing the light generated when the labeled substance is irradiated with the illuminating light, a filter for selectively transmitting the light generated when the labeled substance is excited by the illuminating light, and an optical sensing unit having an optical sensing element for sensing the light having passed through the focusing lens. The optical path of the illuminating light is different from the optical path of the optical sensing unit.

Description

明 細 書  Specification
光検出装置  Photodetector
関連出願 Related application
この出願は、 2 0 0 3年 1 月 1 6 日 に出願された先の 日本 国特許出願 2 0 0 3 — 8 3 7 5 と 2 0 0 3 年 4月 2 3 日 に出 願された先の 日本国特許出願 2 0 0 3 — 1 1 8 3 4 4 と に基 づく 優先権を主張する ものであって、 これらの内容はこの出 願に取り 込まれる'ものであ り ます。  This application was filed on Jan. 16, 2003, filed on January 16, 2003, and was filed on January 23, 2003, and was filed on April 23, 2003. Priority is claimed based on Japanese Patent Application No. 2003-111118344, the contents of which are incorporated into this application.
技術分野 Technical field
本発明は、 D N Aや D N A等の核酸の解析や抗原抗体反応. たんぱく 質の結合反応な どの解析に用い られる生物由来物質 の検査装置に適用 される光検出装置に関する。 ' 背景技術  The present invention relates to a photodetection device applied to an inspection device for a biological substance used for analysis of nucleic acids such as DNA and DNA, antigen-antibody reaction, and protein binding reaction. '' Background technology
実用化されている主な遺伝子検査方法と して、 生体試料か ら核酸を抽出 し、 P C R ( Polymerase Chain Reaction : ポ リ メ ラ ーゼ連鎖反応) 法や N A S B A ( Nucleic Acid Sequence-Based Amplification : 核酸酉己歹 (Jに基礎をおいた 増幅法) 法などを用いて放射性同位元素や、 蛍光色素を標識 された核酸の増幅を行ってターゲッ ト遺伝子を増幅し、 ター ゲッ ト遺伝子の塩基配列またはその濃度を測定する方法など が知 られている。  The most commonly used genetic testing methods include extracting nucleic acids from biological samples and using PCR (Polymerase Chain Reaction) or NASBA (Nucleic Acid Sequence-Based Amplification). The target gene is amplified by amplifying the nucleic acid labeled with a radioisotope or a fluorescent dye using the method of amplification (based on J), and the base sequence of the target gene or Methods for measuring the concentration are known.
遺伝子の発現量の検査や突然変異な どの解析には、 電気泳 動法が用い られている。 しかし、 電気泳動法は、 測定に手間 と時間がかかり 、 また一度に行える測定に制限があるな どの 問題点があった。 そこで、 最近では、 蛍光標識された核酸を複数のキヤ ビラ リ ー内で反応させ、 多く の試料を一度に迅速に処理でき るキ ャ ピラ リ ー電気泳動法が広く 用い られている。 キヤ ビラ リ一 電気泳動法によれば、 従来の電気泳動法を用いた方法に比べ て、 よ り 短時間で簡便に測定ができ る。 The electrophoresis method is used for analysis of gene expression and mutation analysis. However, the electrophoresis method has problems such as that it takes time and effort to perform the measurement, and there is a limit to the measurement that can be performed at one time. Therefore, recently, capillary electrophoresis, which allows a fluorescently labeled nucleic acid to react in a plurality of cavities and rapidly process many samples at once, has been widely used. According to the capillary electrophoresis method, the measurement can be performed in a shorter time and more easily than the method using the conventional electrophoresis method.
さ らに、 最近になって、 同時に複数の遺伝子検査を行 う こ とができ る D N Aチップを用いた検査方法が新しく 開発され ている。 D N Aチップには、 ガラス基板の表面に多数の D N Aプローブを固定化する D N Aチップや半導体製造工程を応 用 してシ リ コ ンウェハ上の微小な領域に合成 した多数のオリ ゴプローブな どを付着させた D N Aチップがある。  In addition, recently, a new testing method using a DNA chip that can perform multiple gene tests simultaneously has been developed. The DNA chip has a large number of DNA probes immobilized on the surface of a glass substrate, and a large number of oligo probes synthesized on a small area on a silicon wafer by applying a semiconductor manufacturing process. There is a DNA chip.
上記のよ う な D N Aチップを用いた検査方法では、 サンプ ル中の D N Aの塩基配列や発現量を複数、 同時に決定でき る また、 D N Aチップの応用によって多く の遺伝子発現量ゃ複 数の突然変異の解析な ど、 多様な検査を行 う こ と が可能と な つている。 さ らには、 D N Aチップを用いて得られたデータ から、 多く の遺伝子を複数の ループに分類して、 発生や分 化に伴う遺伝子の変動に関する情報な ども得る こ とができ る と ころが、 D N Aチップを用いた遺伝子解析法は、 次のよ う な問題を有する。 一度に多数の検査を行える利点がある も のの、 長い検査時間を必要とする。 全体を通 して検査工程が 多く 、 且つ煩雑な操作が必要であるため、 再現性のよい検出 結果が得られに く い。  In the test method using a DNA chip as described above, multiple nucleotide sequences and expression levels of DNA in a sample can be determined simultaneously.Moreover, many gene expression levels / multiple mutations can be determined by applying a DNA chip. It is possible to carry out various tests, such as analysis of data. Furthermore, from data obtained using a DNA chip, many genes can be classified into multiple loops, and information on gene fluctuations associated with development and differentiation can be obtained. However, the gene analysis method using a DNA chip has the following problems. It has the advantage of performing many tests at once, but requires long test times. Since there are many inspection steps throughout and a complicated operation is required, it is difficult to obtain a reproducible detection result.
上記のよ う な問題を克服するために、 D N Aチップの担体 と して、 再現性がよ く 、 且つ短時間で D N Aチップと 同様の 検査を行 う こ と ができ る多孔質のフィルタ を用いる方法や、 ハイ ブリ ダイゼーショ ン反応を電気的な力によって行う 方法 が開発されている (例えば、 特表平 9 - 5 0 4 8 6 4 号公報 特表平 2 0 0 0 - 5 1 5 2 5 1 号公報およぴ特表平 2 0 0 1 - 5 0 1 3 0 1 号公報参照) 。 In order to overcome the above-mentioned problems, as a carrier for a DNA chip, it is similar to a DNA chip in a short time with good reproducibility. A method using a porous filter that can be used for inspection and a method using an electric force to perform the hybridization reaction have been developed (for example, Japanese Patent Application Laid-Open No. 9-50484864). Japanese Patent Publication No. JP-A-2000-501 and Japanese Patent Publication No. JP-A-2001-501.
さ らに、 最近になって、 D N Aマイ ク ロ ア レイ を用いた遺 伝子検査装置が考えられている。 この装置では、 D N Aマイ ク ロア レイ の反応槽内で起こった反応生成物から発せられた 蛍光を用いて遺伝子解析を行う装置である。 この装置は、 顕 微鏡をベース と した装置である。 . D N Aマイ ク ロ ア レイ の反 応槽内で予め蛍光標識された標的核酸と核酸プローブと の間 でハイプリ ダイゼーショ ン反応を起こ させ、 この反応によ り D N Aマイ ク ロ ア レイ に捕捉された蛍光物質からの蛍光信号 を取得し、 これを基に蛍光画像を得る よ う に している。 こ こ で、 D N Aマイ ク ロア レイ は、 反応槽 (液体収容部) を有し ている。  In addition, a gene inspection device using a DNA microarray has recently been considered. In this system, genetic analysis is performed using fluorescence emitted from reaction products generated in the reaction chamber of the DNA microarray. This device is a microscope-based device. A hybridization reaction was caused between the target nucleic acid and the nucleic acid probe, which had been fluorescently labeled in advance, in the reaction tank of the DNA microarray, and the reaction was captured by the DNA microarray. A fluorescence signal from a fluorescent substance is acquired, and a fluorescence image is obtained based on the signal. Here, the DNA microarray has a reaction tank (liquid storage section).
この よ う な D N Aマイ ク ロア レイ を用いた遺伝子検査方法 では、 蛍光物質を効率よ く 励起して、 D N Aマイ ク ロア レイ の反応槽内で起こった反応生成物から安定した蛍光を発生さ せる こ と が、 精度の高い遺伝子解析を行う 上で極めて重要で ある。  In such a genetic testing method using a DNA microarray, a fluorescent substance is efficiently excited to generate stable fluorescence from a reaction product generated in a reaction chamber of the DNA microarray. This is extremely important in performing highly accurate gene analysis.
従来、 光源と して L E D ( Light Emitting Diode) 光源 Conventionally, LED (Light Emitting Diode) light source
(この場合は励起光) を用いて蛍光物質に励起光を照射して 蛍光物質を励起し、 励起された蛍光物質が発する蛍光に対し て入射光の波長を選択的に透過するフ ィルタ手段を通 して固 体撮像素子で蛍光信号を受光し、 こ の蛍光信号に基づいて蛍 光画像を得る よ う に した装置が提案されている (例えば、 特 開平 1 0 - 1 3 2 7 4 4 号公報参照) 。 (Excitation light in this case) is used to irradiate the fluorescent substance with the excitation light to excite the fluorescent substance, and to provide a filter means for selectively transmitting the wavelength of the incident light with respect to the fluorescence emitted by the excited fluorescent substance. Through An apparatus has been proposed in which a fluorescent signal is received by a body imaging device and a fluorescent image is obtained based on the fluorescent signal (for example, see Japanese Patent Application Laid-Open No. 10-132744). .
L E D力、らの光をダイ ク ロイ ツ ク ミ ラー、 対物レ ンズを介 して励起光と してゥエルに照射し、 試料から発光された蛍光 を対物レンズ、 ダイ ク ロイ ック ミ ラーを介 しピンホールュ - ッ ト を介 して光電子増倍管で検出する よ う に した装置も提案 されている (特開 2 0 0 2 - 1 1 6 1 4 8 号公報参照) 。  The light from the LED and the like is irradiated to the well as excitation light via a dichroic mirror and an objective lens, and the fluorescent light emitted from the sample is passed through the objective lens and the dichroic mirror. An apparatus has also been proposed in which a photomultiplier tube is used for detection via a pinhole cutout (see Japanese Patent Application Laid-Open No. 200-11616).
半導体光源を 2次元的に配列して面光源と してコ ンデンサ レ ンズを介して標本を照明 し、 標本を透過 した光を対物レ ン ズに入射する よ う に した装置、 つま り 、 2 次元的に配列 した 半導体光源からの照明光を光軸に沿って送り 、 対物レ ンズの 光軸と一致させた状態で、 対物レ ンズに入射し、 拡大した画 像が得られる よ う に した装置が提案されている (特公平 7 - 1 2 2 6 9 4号公報参照) 。  A device in which semiconductor light sources are two-dimensionally arranged to illuminate a sample as a surface light source through a capacitor lens, and light transmitted through the sample is made incident on an objective lens, that is, 2 Illumination light from a three-dimensionally arranged semiconductor light source is sent along the optical axis, and is incident on the objective lens while being aligned with the optical axis of the objective lens, so that an enlarged image can be obtained. An apparatus has been proposed (see Japanese Patent Publication No. 7-122628).
半導体励起光源を用いて、 対物 レ ンズを介 して試料に光を 当てて試料内部の蛍光色素を励起 し、 試料からの蛍光を入射 光と 同 じ光学系を通 して光検出器で検出する よ う に した装置 も提案されている ( 11 3 ? 6 1 5 4 2 8 2号参照) 。  Using a semiconductor excitation light source, irradiate the sample with light through the objective lens to excite the fluorescent dye inside the sample, and detect the fluorescence from the sample through the same optical system as the incident light with a photodetector. A device that performs this operation has also been proposed (see No. 113-615 15 282).
通常、 L E D光源は蛍光物質を励起するのに十分な量の光 強度を有してお らず、 蛍光物質よ り 十分な蛍光を発生させる こ と ができない。 このため、 L E Dを光源に用いた場合には. C C Dカ メ ラな どの通常用いられる光検出手段で受光する こ とが困難な場合が多い。 従って、 蛍光物質を励起するための 光源と して L E D光源を用いる場合は、 でき る限 り 出力強度 が大きい機種を選択する こ と は勿論のこ と 、 2個以上の L E Dを束に して、 でき るだけ試料面に近づける こ とや、 蛍光物 質に十分な励起光が均一に当たる よ う にする こ と などの工夫 が必要である。 In general, LED light sources do not have sufficient light intensity to excite the fluorescent material and cannot generate sufficient fluorescence from the fluorescent material. For this reason, when an LED is used as a light source, it is often difficult to receive light with a commonly used photodetector such as a CCD camera. Therefore, when an LED light source is used as a light source for exciting a fluorescent substance, the output intensity should be as low as possible. In addition to selecting a model with a large surface area, bundle two or more LEDs so that they are as close to the sample surface as possible, and make sure that a sufficient amount of excitation light is uniformly applied to the fluorescent material. It is necessary to take measures such as doing so.
発明の開示 Disclosure of the invention
本発明の一局面では、 十分な光を効率よ く 照射でき、 信頼 性の高い蛍光検出を行う こ とができ る光検出装置を提供する。  According to one aspect of the present invention, there is provided a photodetector capable of efficiently irradiating sufficient light with high efficiency and performing highly reliable fluorescence detection.
本発明の一局面に係る光検出装置は、 試料の標識した物質 を照射するための光を発する半導体光源手段と、 前記照射光 によ り 標識物質に光が照射されて発せられた光を集光するた めの集光レ ンズ と 、 前記照射光によ り 標識物質に光が照射さ れて発せられた光を選択的に透過する フィ ルタ と 、 前記集光 レ ンズを通過 した光を検出する光検出器と を有する光検出手 段と 、 を具備し、 前記励起光の光路が前記光検出手段の光路 と は異なる光路である こ と を特徴とする。  A light detection device according to one aspect of the present invention includes: a semiconductor light source unit that emits light for irradiating a labeled substance of a sample; and a device that collects light emitted by irradiating the labeled substance with the irradiation light. A condenser lens for emitting light, a filter for selectively transmitting light emitted when the labeling substance is irradiated with light by the irradiation light, and a light for transmitting light passing through the condenser lens. And a photodetector having a photodetector for detection, wherein the optical path of the excitation light is different from the optical path of the photodetector.
本発明の他の局面に係る光検出装置は、- 試料の標識した物 質を照射するための光を発する半導体光源手段と、 前記半導 体光源手段は、 半導体発光素子と、 光学素子と を含み、 前記 照射光によ り標識物質に光が照射されて発せられた光を集光 するための集光レンズ と 、 前記照射光によ り標識物質が照射 されて発せられた光を選択的に透過するフ ィ ルタ と 、 前記集 光レ ンズを通過 した光を検出する光検出器と を有する光検出 手段と、 を具備する こ と を特徴とする。  A light detection device according to another aspect of the present invention includes: a semiconductor light source unit that emits light for irradiating a labeled substance of a sample; and the semiconductor light source unit includes a semiconductor light emitting element and an optical element. A condenser lens for condensing light emitted by irradiating the labeling substance with the irradiation light, and selectively condensing light emitted by irradiating the labeling substance with the irradiation light. And a photodetector having a photodetector that detects light passing through the light-collecting lens.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1 の実施の形態に係る光検査装置の概 略構成を示す図。 FIG. 1 is a schematic diagram of an optical inspection apparatus according to the first embodiment of the present invention. The figure which shows schematic structure.
図 2 は、 第 1 の実施の形態に用いられる D N A反応容器の 一例の概略構成を示す図。  FIG. 2 is a diagram showing a schematic configuration of an example of a DNA reaction vessel used in the first embodiment.
図 3 は、 第 1 の実施の形態に用いられる D N A反応容器の 他の例の概略構成を示す図。  FIG. 3 is a diagram showing a schematic configuration of another example of the DNA reaction vessel used in the first embodiment.
図 4 A及び図 4 B は、 第 1 の実施の形態の試料上への光の 照射を説明するための図。  FIGS. 4A and 4B are views for explaining light irradiation on a sample according to the first embodiment.
図 5 は、 第 1 の実施の形態に係る光検査装置全体を示すブ ロ ック図。  FIG. 5 is a block diagram showing the entire optical inspection apparatus according to the first embodiment.
図 6 は、 第 1 の実施の形態の第 1 の変形例に係る L E D光 源ュニッ トの概略構成を示す図。  FIG. 6 is a diagram showing a schematic configuration of an LED light source unit according to a first modification of the first embodiment.
図 7 は、 第 1 の実施の形態の第 2 の変形例に係る L E D光 源ュニ ッ トの概略構成を示す図。  FIG. 7 is a diagram showing a schematic configuration of an LED light source unit according to a second modification of the first embodiment.
図 8 は、 第 1 の実施の形態の第 3 の変形例に係る L E D光 源ュニ ッ ト の概略構成を示す図。  FIG. 8 is a diagram showing a schematic configuration of an LED light source unit according to a third modification of the first embodiment.
図 9 は、 本発明の第 2 の実施の形態に係る光検査装置の要 部の概略構成を示す図。  FIG. 9 is a diagram showing a schematic configuration of a main part of an optical inspection device according to a second embodiment of the present invention.
図 1 0 は、 第 2の実施の形態の変形例に係る光検査装置の 概略構成を示す図。  FIG. 10 is a view showing a schematic configuration of an optical inspection device according to a modification of the second embodiment.
図 1 1 A及び図 1 1 Bは、 本発明の第 3 の実施の形態に係 る光検査装置の概略構成を示す図。  FIGS. 11A and 11B are diagrams showing a schematic configuration of an optical inspection device according to a third embodiment of the present invention.
図 1 2 は、 第 3の実施の形態に用いられる測定光学系の概 略構成を示す図。  FIG. 12 is a diagram showing a schematic configuration of a measurement optical system used in the third embodiment.
図 1 3 は、 第 3 の実施の形態に用いられる L E D光源ュニ ッ ト駆動回路を示すブロ ッ ク図。 図 1 4 は、 第 3 の実施の形態に用い られる L E D光源駆動 回路の概略構成を示す図。 FIG. 13 is a block diagram showing an LED light source unit drive circuit used in the third embodiment. FIG. 14 is a diagram illustrating a schematic configuration of an LED light source driving circuit used in the third embodiment.
図 1 5 は、 本発明の第 4 の実施の形態に係る光検査装置の 概略構成を示す図。  FIG. 15 is a diagram showing a schematic configuration of an optical inspection device according to a fourth embodiment of the present invention.
図 1 6 は、 第 4 の実施の形態の第 1 の変形例に係る光検査 装置の概略構成を示す図。  FIG. 16 is a diagram showing a schematic configuration of an optical inspection device according to a first modification of the fourth embodiment.
図 1 7 は、 第 4 の実施の形態の第 2 の変形例に係る光検査 装置の概略構成を示す図。  FIG. 17 is a diagram illustrating a schematic configuration of an optical inspection device according to a second modification of the fourth embodiment.
図 1 8 は、 本発明の第 5 の実施の形態に係る光検査装置の 概略構成を示す図。  FIG. 18 is a diagram showing a schematic configuration of an optical inspection device according to a fifth embodiment of the present invention.
図 1 9 は、 第 5 の実施の形態の変形例に係る光検査装置の 概略構成を示す図。  FIG. 19 is a diagram illustrating a schematic configuration of an optical inspection device according to a modification of the fifth embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に従い説明する。 なお、 以下の実施の形態においては、 励起光を蛍光物質に照射して . 蛍光物質からの蛍光を検査する蛍光検出装置について説明す るが、 標識物質に光を照射し、 標識から発せられる散乱光や 反射光を検出する検出装置にも適用可能である こ と はもちろ んである (以下、 これ ら を総称 して 「光検出装置」 と称す る) 。 蛍光物質と しては、 種々 の蛍光色素、 蛍光ガラス粒子 も用いる こ とができ る。 なお、 散乱光や反射光で検出を行う 場合の標識物質と しては、 金属粒子や誘電体粒子を用いる。 例えば、 金属粒子の他には、 銀、 白金、 シ リ コ ンなどの微粒 子やラテ ックス粒子を用いる こ と ができ る。 特に、 金、 銀、 白金などの金属の微粒子は、 粒径が 1 0 ~ 1 0 0 n mの もの が、 運動状態にある粒子の速さが最適と なるため、 特に好ま しい。 また、 ラテ ック ス粒子は、 粒径が 0 . . 1 〜 1 mのも のが、 同様に、 運動状態にある粒子の速さが最適となるため、 特に好ま しい。 適切な粒径は、 粒子の比重と ブラ ウン運動の 速さ によ り 決定される。 こ こで、 粒子の運動状態は、 例えば、 ブラ ゥン運動や振動などがあげられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiment, a description will be given of a fluorescence detection apparatus that irradiates a fluorescent substance with excitation light. A fluorescent detector that inspects fluorescence from the fluorescent substance will be described. It is of course applicable to a detection device that detects light or reflected light (hereinafter, these are collectively referred to as a “light detection device”). Various fluorescent dyes and fluorescent glass particles can also be used as the fluorescent substance. In addition, metal particles or dielectric particles are used as a labeling substance when detecting with scattered light or reflected light. For example, in addition to metal particles, fine particles such as silver, platinum, and silicon, and latex particles can be used. In particular, fine particles of metals such as gold, silver, and platinum have a particle size of 10 to 100 nm. However, it is particularly preferred because the speed of the particles in motion is optimal. Latex particles having a particle size of 0.1 to 1 m are also particularly preferred because the speed of the particles in motion is also optimal. The appropriate particle size is determined by the specific gravity of the particles and the speed of the browning motion. Here, the motion state of the particles includes, for example, Brownian motion and vibration.
なお、 本明細書で使用する 「特異的結合物質」 と は、 ホル モン類、 腫瘍マーカー、 酵素、 抗体、 抗原、 アブザィ ム、 そ の他のタ ンパク 、 核酸、 c D N A、 D N A、 R N A、 P N A などであって、 生体由来物質と特異的に結合可能な物質を意 味し、 プローブと呼ばれる。  As used herein, the term “specific binding substance” refers to hormones, tumor markers, enzymes, antibodies, antigens, abzymes, other proteins, nucleic acids, cDNA, DNA, RNA, and PNA. And the like, meaning a substance that can specifically bind to a biological substance, and is called a probe.
また、 「生体由来物質」 と は、 プローブを固相化する基材 上の所定の位置に配置された既知の特異的結合物質と特異的 に結合する物質であって、 生体から抽出、 単離等された物質 を意味するが、 生体から直接抽出 されたものだけでなく 、 こ れら を化学処理、 化学修飾等 したものも含まれる。 例えば、 ホルモン類、 腫瘍マーカー、 酵素、 抗体、 抗原、 アブザィ ム、 その他のタ ンパク 、 核酸、 c D N A、 D N A、 R N A、 P N Aな どの物質である。  A “biological substance” is a substance that specifically binds to a known specific binding substance placed at a predetermined position on a substrate on which a probe is immobilized, and is extracted and isolated from a living body. The term refers to substances that have been subjected to chemical treatment, chemical treatment, chemical modification, and the like, as well as substances directly extracted from living organisms. For example, substances such as hormones, tumor markers, enzymes, antibodies, antigens, abzymes, other proteins, nucleic acids, cDNA, DNA, RNA, and PNA.
「生体由来物質」 と 「特定結合物質」 が特異的に結合する とは、 例えば、 D N Aや R N A等で見られる相補的なヌ ク レ ォチ ド配列の間に不安定な二重鎖が形成 される よ う な場合 (ハイブリ ダィゼーシヨ ン) や、 抗原と抗体、 ピオチンと ァ ビジン等のよ う に、 特定の物質と のみ選択的に反応する きわ めて特異性の高い結合を意味する。 (第 1 の実施の形態) "Specific binding between a biological substance" and a "specific binding substance" means that an unstable double strand is formed between complementary nucleotide sequences found in DNA, RNA, etc. Or highly specific binding, such as in the case of hybridization (hybridization) or selectively reacting only with a specific substance, such as an antigen and an antibody or a biotin and avidin. (First Embodiment)
図 1 は、 本発明の第 1 の実施の形態に係る光検査装置の概 略構成を示す図である。 本発明の各実施の形態に係る光検査 装置は、 集光レ ンズ と 、 試料の保持手段と 、 光源と、 光検出 器を有する。  FIG. 1 is a diagram showing a schematic configuration of an optical inspection device according to a first embodiment of the present invention. An optical inspection device according to each embodiment of the present invention includes a light-collecting lens, a sample holding unit, a light source, and a photodetector.
図 1 において、 光検査装置は試料台 1 を備え、 試料台 1 上 には、 被検体と しての D N A反応容器 2が載置されている。  In FIG. 1, the optical inspection apparatus includes a sample stage 1, and a DNA reaction container 2 as a subject is placed on the sample stage 1.
図 2 は、 D N A反応容器 2 の具体例と しての D N Aス ライ ドガラ ス反応容器 3 を示す図である。 D N Aス ライ ドガラ ス 反応容器 3 は、 スライ ドガラ ス状の反応容器中に配列された 試料槽 3 0 1 を有する。 試料槽 3 0 1 の中には、 D N Aマイ ク ロア レイ 3 0 2 が敷設されている。  FIG. 2 is a diagram showing a DNA slide glass reaction vessel 3 as a specific example of the DNA reaction vessel 2. The DNA slide glass reaction vessel 3 has a sample tank 301 arranged in a slide glass-like reaction vessel. In the sample tank 301, a DNA microarray 302 is laid.
上記の構成において、 試料槽 3 0 1 内に試料溶液 (試験サ ンプル) が注入される と、 D N Aマイ ク ロア レイ 3 0 2 内で 予め蛍光標識された標的核酸と核酸プローブと の間でハイブ リ ダイゼーシ ョ ン反応が生じる。 こ のハイ ブリ ダイゼーシ ョ ン反応によ り D N Aマイ ク ロア レイ に捕捉された蛍光物質、 例えば蛍光色素物質が蛍光を発する。 この場合、 反応に寄与 しなかった試料溶液は緩衝液と共に洗浄される。  In the above configuration, when a sample solution (test sample) is injected into the sample tank 301, a hybrid is formed between the nucleic acid probe and the target nucleic acid previously fluorescently labeled in the DNA microarray 302. Redidation reaction occurs. By this hybridization reaction, a fluorescent substance, for example, a fluorescent dye substance, captured by the DNA microarray emits fluorescence. In this case, the sample solution that did not contribute to the reaction is washed together with the buffer.
図 3 は、 他の D N A反応容器 4 の具体例を示す図である。 D N A反応容器 4 は、 プラスチッ ク材で形成されている。 D N A反応容器 4 には、 複数の試料槽 4 0 1 が配列されてお り 試料槽 4 0 1 の中に D N Aマイ ク ロア レイ 4 0 2 が敷設され ている。 上記の構成において、 試料槽 4 0 1 内に試料溶液 (試験サ ンプル) が注入される と 、 D N Aマイ ク ロア レイ 4 0 2 内で予め蛍光標識された標的核酸と核酸プローブと の間 でハイプ リ ダイゼーショ ン反応が生じる。 ハイプ リ ダイ ゼー ショ ン反応によ り D N Aマイ ク ロ ア レイ に捕捉された蛍光物 質、 例えば蛍光色素が蛍光を発する。 この場合、 反応に寄与 しなかった試料溶液は緩衝液と共に洗浄される。 FIG. 3 is a diagram showing a specific example of another DNA reaction container 4. The DNA reaction container 4 is formed of a plastic material. A plurality of sample vessels 401 are arranged in the DNA reaction vessel 4, and a DNA microarray 402 is laid in the sample vessel 401. In the above configuration, when the sample solution (test sample) is injected into the sample tank 401, the DNA microarray 4 In step 02, a hybridization reaction occurs between the target nucleic acid and the nucleic acid probe that have been fluorescently labeled in advance. A fluorescent substance, for example, a fluorescent dye, captured in the DNA microarray by the hybridization reaction emits fluorescence. In this case, the sample solution that did not contribute to the reaction is washed together with the buffer.
試料台 1 の上方には、 集光レ ンズ と して対物レ ンズ 5 が配 置されている。 対物レ ンズ 5 は、 その光軸 5 a が試料槽 2 0 1 の中心と一致する よ う に、 試料台 1 面からの垂線上に位置 されている。  Above the sample stage 1, an objective lens 5 is arranged as a focusing lens. The objective lens 5 is positioned on a perpendicular line from one surface of the sample stage so that its optical axis 5a coincides with the center of the sample vessel 201.
対物レ ンズ 5 は、 対物レ ンズ保持機構 6 に保持されている , 対物レ ンズ保持機構 6 は、 筒状の保持部材 6 0 1 を有してい る。 保持部材 6 0 1 の内部には、 対物レ ンズ 5 の基端部が嵌 め込まれている。 保持部材 6 0 1 の周面には、 円周方向に沿 つて等間隔に複数のネジ穴 6 0 2 が形成されている。 保持部 材 6 0 1 の周面が当接する よ う に固定部材 6 0 3 が設け られ ている。 固定部材 6 0 3 は、 図示 しない装置本体に固定され 対物 レンズ 5 の光軸方向に沿った長穴 6 0 4 が固定部材 6 0 3 に形成されている。 長穴 6 0 4 を介 して保持部材 6 0 1 周 面のネジ穴 6 0 2 に位置調整用ネジ 6 0 5 がねじ込まれてい る。 位置調整用ネジ 6 0 5 のねじ込みを緩める こ と で、 対物 レンズ 5 が保持部材 6 0 1 と と もに、 長穴 6 0 4 に沿って光 軸 5 a方向に移動する。 これによ り 、 フ ォ ーカ ス を調整でき る。  The objective lens 5 is held by an objective lens holding mechanism 6. The objective lens holding mechanism 6 has a cylindrical holding member 600. The base end of the objective lens 5 is fitted inside the holding member 600. A plurality of screw holes 62 are formed on the peripheral surface of the holding member 61 at equal intervals along the circumferential direction. A fixing member 603 is provided so that the peripheral surface of the holding member 601 abuts. The fixing member 603 is fixed to a device main body (not shown), and an elongated hole 604 along the optical axis direction of the objective lens 5 is formed in the fixing member 603. A position adjusting screw 605 is screwed into the screw hole 602 on the peripheral surface of the holding member 601 via the elongated hole 604. By loosening the screws for position adjustment 605, the objective lens 5 moves along with the holding member 601 along the elongated hole 604 in the direction of the optical axis 5a. This allows you to adjust the focus.
対物レ ンズ 5 の光軸 5 a 上には、 対物レ ンズ 5 と と もに光 検出手段を構成する フ ィ ルタ 7 、 結像レ ンズ 8 および光検出 器 9 が配置されてレ、る。 フ ィ ルタ 7 は、 試料 2 0 2 に標識さ れた蛍光物質が励起されて発せられた蛍光を選択的に透過す る。 結像レ ンズ 8 は、 フ ィ ルタ 7 で選択された蛍光を光検出 器 9 の検出面に結像する。 光検出器 9 は、 検出面に集光され た蛍光の強度を検出 して、 電気信号に変換し、 後述する コ ン ピュ ータ 1 0 に出力する。 こ こ で、 結像レ ンズ 8 は、 素材と して通常の レンズに用いられている B K 7 な どのガラス レン ズでも良いが、 結像レンズ 8 と して、 石英ガラス、 あるいは プラスチック レンズ、 または回折光学素子、 液晶レンズな ど . 通常の可視光に対して集光作用を施すこ と ができ る素子や素 材を用レヽる こ と ができ る。 On the optical axis 5 a of the objective lens 5, a filter 7, an imaging lens 8, and a light detection device that together with the objective lens 5 constitute a light detection unit. Container 9 is placed. The filter 7 selectively transmits the fluorescence emitted when the fluorescent substance labeled on the sample 202 is excited. The imaging lens 8 forms the fluorescent light selected by the filter 7 on the detection surface of the photodetector 9. The photodetector 9 detects the intensity of the fluorescence collected on the detection surface, converts the detected intensity into an electric signal, and outputs the electric signal to a computer 10 described later. Here, the imaging lens 8 may be a glass lens such as BK7 used for a normal lens as a material, but the imaging lens 8 may be quartz glass, a plastic lens, or Diffractive optical elements, liquid crystal lenses, etc. Elements and materials capable of condensing ordinary visible light can be used.
対物レンズ 5 の周囲には、 半導体光源手段と して複数の L E D光源ユニッ ト 1 1 (例えば、 4個の L E D光源ユニ ッ ト 1 1 、 図 1 では 3個の L E D光源ユニ ッ ト 1 1 を図示) が配 置されている。  Around the objective lens 5, a plurality of LED light source units 11 (for example, four LED light source units 11; in FIG. 1, three LED light source units 11) are provided as semiconductor light source means. (Shown) is arranged.
L E D光源ユニッ ト 1 1 は、 筒状の L E D光源ホルダー 1 1 0 1 を有している。 L E D光源ホルダー 1 1 0 1 は、 その 内部に配置された L E D光源 1 1 0 2 を有している。 L E D 光源ホルダー 1 1 0 1 の内部に配置された L E D光源 1 1 0 2 から発する光の光路上には、 ノ ン ドパスフィルタ 1 1 0 3 が配置されている。 ノ ン ドノヽ° ス フ ィ ルタ 1 1 0 3 は、 L E D 光源 1 1 0 2 から発する光の波長域近傍を主に通過させる。  The LED light source unit 11 has a cylindrical LED light source holder 111. The LED light source holder 1101 has an LED light source 1102 disposed therein. On the optical path of the light emitted from the LED light source 1102 disposed inside the LED light source holder 1101, a non-pass filter 1103 is disposed. The non-linear filter 1103 mainly passes near the wavelength range of the light emitted from the LED light source 1102.
複数の L E D光源ュニッ ト 1 1 がそれぞれ有する L E D光 源 1 1 0 2 の発光波長のスぺク トル特性は同一である。  The spectral characteristics of the emission wavelengths of the LED light sources 1102 included in the plural LED light source units 11 are the same.
L E D光源ュニッ ト 1 1 からの光は、 試料台 1 上の試料槽 2 0 1 の試料 2 0 2 に対して励起光と して照射される。 この 場合、 試料 2 0 2 に対する各 L E D光源ュニッ ト 1 1 は、 試 料 2 0 2 面を均一の明る さで照明する位置に取 り 付ける こ と が必要である。 すなわち、 試料 2 0 2 に照射される光の入射 角度に起因 して試料 2 0 2 面で励起ムラが生じず、 一部また は全面に立体部分を有する試料 2 0 2 に対 しても影や励起ム ラが生じないよ う に、 各 L E D光源ユニッ ト 1 1 が取り 付け られる。 The light from the LED light source unit 11 is supplied to the sample tank on the sample stage 1. The 201 sample 202 is irradiated as excitation light. In this case, it is necessary to mount each LED light source unit 11 for the sample 202 at a position that illuminates the sample 202 surface with uniform brightness. That is, excitation unevenness does not occur on the sample 202 surface due to the incident angle of the light irradiated on the sample 202, and the sample 202 having a three-dimensional portion on part or the entire surface is also shadowed. Each LED light source unit 11 is mounted so that no excitation mura occurs.
具体的には、 図 4 A及び図 4 B に示すよ う に、 各 L E D光 源ュニッ ト 1 1 (合計 4個) の光の中心軸が、 試料 2 0 2面 の周縁 a 、 b 、 c 、 d を通 り 、 且つ.試料 2 0 2面の略中心軸 上の垂直上方または下方の空間位置の 1 点 e (又は f ) で交 差する よ う に、 各 L E D光源ユニッ ト 1 1 の取り 付け位置が 設定されている。 この場合において、 試料 2 0 2 面で励起ム ラが生じないよ う にでき るな らば、 試料 2 0 2面の中心軸上 からずれた位置であっても、 試料 2 0 2面の垂直上方または 下方の空間位置の 1 点で交差する よ う に各 L E D光源ュニッ ト 1 1 の取り 付け位置を設定する こ と も可能である。  Specifically, as shown in FIGS. 4A and 4B, the central axis of the light of each LED light source unit 11 (total of four light sources) corresponds to the periphery a, b, c of the sample 202 surface. Through each of the LED light source units 11 so that they intersect at a point e (or f) at a spatial position vertically above or below the approximate center axis of the sample 202 surface. The mounting position is set. In this case, if it is possible to prevent the occurrence of excitation mura on the sample 202 surface, even if the position is off the center axis of the sample 202 surface, It is also possible to set the mounting position of each LED light unit 11 so that it intersects at one point of the upper or lower spatial position.
なお、 L E D光源ュニッ ト 1 1 から試料台 1 上の試料 2 0 The LED light source unit 11 moves the sample 20
2 に照射される励起光は、 試料 2 0 2上面に限らず、 試料 2The excitation light applied to the sample 2 is not limited to the sample
0 2 内部の対物レンズ 5 の光軸と直交する面に照射する場合 も考えられる。 0 2 It is also conceivable to irradiate the surface perpendicular to the optical axis of the objective lens 5 inside.
このよ う に構成された光検査装置の主要部は、 遮光ボック ス 1 2 内に設置され、 外部から遮光されている。  The main part of the optical inspection device thus configured is installed in the light-shielding box 12 and is shielded from the outside.
図 5 は、 光検査装置全体のブロ ック図を示している。 図 5 において、 コ ンピュータ 1 0 は、 表示手段と してのモ ニタ 1 3 を備えている。 コ ンピュータ 1 0 には、 図 1.に記載 の装置の主要部を含む蛍光検出ュニッ ト 1 4 と各 L E D光源 ュニ ッ ト 1 1 を駆動する駆動手段と しての L E D光源ュニッ ト駆動回路 1 5 と が接続されている。 L E D光源ュニ ッ ト駆 動回路 1 5 は、 コ ンピュータ 1 0 からの制御指令を受ける と 蛍光検出ュ -ッ ト 1 4 内の L E D光源ュニ ッ ト 1 1 の う ちか ら駆動する L E D光源ュニ ッ ト 1 1 を決定する と 同時に、 L E D光源ュニッ ト 1 1 の駆動電流の大き さ を設定して L E D 光源ュニ ッ ト 1 1 に駆動電流を供給する。 Figure 5 shows a block diagram of the entire optical inspection system. In FIG. 5, the computer 10 has a monitor 13 as a display means. The computer 10 includes a fluorescence detection unit 14 including a main part of the apparatus shown in Fig. 1 and an LED light source unit driving circuit as a driving means for driving each LED light unit 11. 1 5 and are connected. When receiving a control command from the computer 10, the LED light source drive circuit 15 is driven by one of the LED light source units 11 in the fluorescence detection unit 14. At the same time as the unit 11 is determined, the drive current of the LED light source unit 11 is set and the drive current is supplied to the LED light unit 11.
上記のよ う に構成した実施の形態の動作を説明する。  The operation of the embodiment configured as described above will be described.
いま、 コ ンピュータ 1 0 が L E D光源ュニ ッ ト駆動回路 1 5 に制御指令を送る と、 L E D光源ユニッ ト駆動回路 1 5 は この時の指令内容に応 じて、 蛍光検出ュニ ッ ト 1 4 内の L E D光源ュニ ッ ト 1 1 の う ち力 ら駆動する L E D光源ュニ ッ ト 1 1 を決定し、 同時に、 L E D光源ユニッ ト 1 1 の駆動電流 の大き さ を決定して L E D光源ュニッ ト 1 1 に駆動電流を供 給する。  Now, when the computer 10 sends a control command to the LED light source unit drive circuit 15, the LED light source unit drive circuit 15 responds to the content of the command at this time, and the fluorescence detection unit 1 4 Determine the LED light source unit 11 driven from the power of the LED light source unit 11 in 1 and at the same time determine the magnitude of the drive current of the LED light source unit 11 Supply drive current to unit 11.
こ こで、 以下の説明においては、 蛍光検出ユニ ッ ト 1 4 内 の全て ( 4個) の L E D光源ユニッ ト 1 1 が同時に駆動され たもの と して説明する。  Here, in the following description, it is assumed that all (four) LED light source units 11 in the fluorescence detection unit 14 are simultaneously driven.
L E D光源 1 1 0 2 よ り 光が発せられる と、 ノくン ドパス フ ィルタ 1 1 0 3 を通過 した所定波長域の光が試料台 1 上の試 料槽 2 0 1 の試料 2 0 2 に向けて励起光と して照射される。  When light is emitted from the LED light source 1102, light of a predetermined wavelength range that has passed through the node pass filter 1103 is sent to the sample 202 in the sample tank 201 on the sample stage 1. The light is emitted as excitation light.
この場合、 各 L E D光源 1 1 0 2力ゝらの光は、 試料 2 0 2 面で励起ムラが生じないよ う に、 図 4 A及ぴ図 4 B に示すよ う に、 それぞれの光の中心軸が、 試料 2 0 2 面の周縁 a 、 b 、 c 、 d を通 り 、 且つ試料 2 0 2 面の略中心軸上の垂直上方 (または下方) の空間位置の 1 点 e (又は ί ) で交差する よ う に、 各 L E D光源 1 1 0 2 が配置されている。 In this case, the light of each LED light source 1 102 As shown in Fig. 4A and Fig. 4B, the central axis of each light passes through the periphery a, b, c, d of the specimen 202 surface so that excitation unevenness does not occur on the surface. The LED light sources 1102 are arranged so as to intersect at one point e (or ί) of a spatial position vertically above (or below) the substantially central axis of the sample 202 surface.
L E D光源 1 1 0 2 が励起光を試料 2 0 2 に照射する こ と によって、 試料 2 0 2 内の蛍光物質が蛍光を発する。 こ の蛍 光は、 対物レ ンズ 5 によ り 集光され、 フ ィ ルタ 7 、 結像レ ン ズ 8 を透過 して光検出器 9 の検出面に結像される。 光検出器 9 は、 蛍光の強度を検出 して、 電気信号に変換した後に、 当 該電気信号をコ ン ピュータ 1 0 に出力する。  When the LED light source 1102 irradiates the sample 202 with excitation light, the fluorescent substance in the sample 202 emits fluorescence. The fluorescent light is condensed by the objective lens 5, passes through the filter 7 and the imaging lens 8, and forms an image on the detection surface of the photodetector 9. The photodetector 9 detects the intensity of the fluorescent light, converts it into an electric signal, and outputs the electric signal to the computer 10.
コ ン ピュータ 1 0 は、 輪郭強調、 コ ン ト ラ ス ト補正、 色補 正な どの画像処理や信号解析な どを行い、 蛍光画像と してモ ユタ 1 3 上に表示する。  The computer 10 performs image processing and signal analysis such as contour enhancement, contrast correction, color correction, etc., and displays it on the monitor 13 as a fluorescent image.
上記のよ う に、 第 1 の実施の形態では、 同一発光波長のス ぺク ト ルを有する L E D光源 1 1 0 2 を有する複数の L E D 光源ュニ ッ ト 1 1 (例えば 4個の L E D光源ュニ ッ ト 1 1 ) を対物レンズ 5 の周囲に並べて配置し、 複数の L E D光源ュ ニ ッ ト 1 1 で同時に励起光を試料 2 0 2 に照射するよ う に し たので、 試料 2 0 2 内の蛍光物質を励起する の に十分な強度 の励起光を効率よ く 得る こ とができる。  As described above, in the first embodiment, a plurality of LED light source units 11 (for example, four LED light source units) having the LED light sources 1102 having the same emission wavelength spectrum are used. The unit 1 1) was arranged side by side around the objective lens 5, and the excitation light was irradiated on the sample 202 simultaneously by the multiple LED light source units 1 1. Excitation light of sufficient intensity to excite the fluorescent substance in 2 can be efficiently obtained.
また、 複数の L E D光源 1 1 0 2 からの光が試料 2 0 2 面 で均一になる よ う に、 それぞれの光の中心軸が、 試料 2 0 2 面の周縁を通 り 、 且つ試料 2 0 2面の略中心軸上の垂直上方 または下方の空間位置の 1 点で交差する よ う に設定したので、 試料 2 0 2 面での影や励起ムラ を無く すこ と ができ、 試料槽 2 0 1 内で生成される蛍光物質よ り 安定した蛍光を発生させ る こ とができ る。 Also, the center axis of each light passes through the periphery of the sample 202 surface and the sample 202 so that the light from the plurality of LED light sources 1102 becomes uniform on the sample 202 surface. Since they are set to intersect at one point vertically above or below the space on the approximate center axis of the two surfaces, The shadow and excitation unevenness on the surface of the sample 202 can be eliminated, and more stable fluorescence can be generated than the fluorescent substance generated in the sample tank 201.
さ らに、 L E D光源 1 1 0 2 力 らの光は、 対物レンズ 5 の 光軸から所定の角度を持った斜め上方から試料 2 0 2面に向 けて照射される ので、 試料 2 0 2表面からの鏡面反射光が、 そのまま対物レンズ 5 側の受光用光路を通過 して光検出器 9 にノ イズ光と して入る こ と がな く 、 ノ イ ズ光を低減する こ と ができ る。  In addition, since the light from the LED light source 1102 is radiated toward the surface of the sample 202 obliquely from the optical axis of the objective lens 5 at a predetermined angle, the sample 202 Specularly reflected light from the surface does not pass through the light receiving optical path of the objective lens 5 as it is and enters the photodetector 9 as noise light, so that noise light can be reduced. You.
さ らに、 蛍光物質を励起するための励起光源と して L E D を用いているので、 安価で、 長寿命で、 発熱が少なく 、 しか も安全である。 さ らに消費電力も少な く でき る。 また装置構 成を小型で携帯性に富むも のにでき る。  Furthermore, since the LED is used as an excitation light source for exciting a fluorescent substance, it is inexpensive, has a long life, generates little heat, and is safe. In addition, power consumption can be reduced. In addition, the device configuration can be made small and highly portable.
さ らに、 L E D光源ユニ ッ ト 1 1 は、 L E D光源 1 1 0 2 以外の光学素子と して、 バン ドパスフィルタ 1 1 0 3 のみを 有しているので、 構成が簡素であ り 、 組立てや光軸の調整が 容易である ばかり でな く 、 コス ト の低減にもつなが り 、 有用 である。  Furthermore, since the LED light source unit 11 has only the band-pass filter 1103 as an optical element other than the LED light source 1102, the configuration is simple. Not only is it easy to assemble and adjust the optical axis, but it is also useful because it leads to cost reduction.
さ らに、 L E D光源ユニ ッ ト 1 1 を対物レンズ 5 の周囲に 配置する こ と によって、 励起光の光路と蛍光検出のための対 物レンズ 5 を有する光路と を分離している ので、 ダイ ク ロイ ック ミ ラーのよ う な余分な光学素子を設置する必要もな く 、 この点でも簡単な装置構成にでき る。 またダイ ク ロイ ツ ク ミ ラーなどの光学素子がないために、 これらの光学素子表面で 発生する反射光や散乱光、 またこれらの光学素子を光が通過 する こ と によって生 じる蛍光強度の減衰な どが生じないので 光検出器 9 で検出される光強度の損失を最小限に抑える こ と ができ る。 しかも、 励起光が通る励起用光路と蛍光検出手段 の光路が完全に分離されているので、 双方の光軸を合わせる ための調整が不要であ り 、 装置全体の光軸調整が簡素化でき る。 従って、 これらのこ と から、 常に信頼性の高い蛍光検出 を行 う こ と ができ る。 In addition, by disposing the LED light source unit 11 around the objective lens 5, the optical path of the excitation light and the optical path having the objective lens 5 for fluorescence detection are separated from each other. There is no need to install extra optical elements such as a Crook Mirror, and a simple device configuration can be achieved in this regard. In addition, since there is no optical element such as a die-cloth mirror, reflected light and scattered light generated on the surface of these optical elements, and light passes through these optical elements As a result, the loss of the light intensity detected by the photodetector 9 can be minimized because the fluorescence intensity does not attenuate. Furthermore, since the excitation light path through which the excitation light passes and the light path of the fluorescence detection means are completely separated, adjustment for aligning both optical axes is unnecessary, and the adjustment of the optical axis of the entire apparatus can be simplified. . Therefore, from these facts, highly reliable fluorescence detection can always be performed.
(第 1 の変形例)  (First modification)
上述した L E D光源ユニ ッ ト 1 1 と して、 例えば、 図 6 に 示すよ う な L E D光源ュニッ ト 1 6 を使用する こ とができ る 図 6 は、 第 1 の実施の形態の第 1 の変形例に係る L E D光 源ユニッ ト 1 6 の概略構成を示す図である。  As the above-described LED light source unit 11, for example, an LED light source unit 16 as shown in FIG. 6 can be used. FIG. 6 shows a first embodiment of the first embodiment. FIG. 9 is a diagram showing a schematic configuration of an LED light source unit 16 according to a modification.
L E D光源ュニ ッ ト 1 6 は、 筒状の L E D光源ホルダー 1 6 0 1 を有している。 L E D光源ホルダー 1 6 0 1 は、 その 内部に配置された L E D光源 1 6 0 2 を有している。 また、 L E D光源ホルダー 1 6 -0 1 の内部に配置された L E D光源 1 6 0 2 力 ら発する光の光路上には、 ノ ン ドパス フィ ルタ 1 6 0 3 、 拡散板 1 6 0 4、 集光レ ンズ 1 6 0 5 が配置されて い る 。 こ こ で、 ノく ン ドパス フ ィ ルタ 1 6 0 3 は、 L E D光源 1 6 0 2 から発する光の う ち波長域近傍を主に透過させる。 拡散板 1 6 0 4 は、 ノ ン ドパス フ ィ ノレタ 1 6 0 3 を透過 した L E D光源 1 6 0 2 からの光の強度の不均一性 (強度ムラ) を抑えるために使用 される。 拡散板 1 6 0 4 と して、 例えば "す り ガラス "や半透明のプラスチ ッ ク板などが用いられてい る。 集光レ ンズ 1 6 0 5 は、 拡散板 1 6 0 4 で拡散された光 を集光 し、 焦点距離で決ま る位置に当該拡散光をフ ォ ーカ ス する。 この場合、 ノ ン ドパス フ イ ノレタ 1 6 0 3 と拡散板 1 6 0 4 の位置は、 拡散板 1 6 0 4 、 ノく ン ド ノヽ°ス フ イ ノレタ 1 6 0 3 および集光レ ンズ 1 6 0 5 の順でも よい。 The LED light source unit 16 has a cylindrical LED light source holder 1601. The LED light source holder 1601 has an LED light source 1602 disposed therein. In addition, on the optical path of the light emitted from the LED light source 1602 disposed inside the LED light source holder 16-011, a non-pass filter 1603, a diffusion plate 1604, A light lens 1605 is arranged. Here, the Nordpass filter 1603 mainly transmits near the wavelength range of the light emitted from the LED light source 1602. The diffuser plate 164 is used to suppress the non-uniformity (intensity unevenness) of the light intensity from the LED light source 1602 that has passed through the non-pass finoletor 1603. As the diffusion plate 1604, for example, "frosted glass" or a translucent plastic plate is used. The condenser lens 1605 is the light diffused by the diffuser 1604. And focuses the diffused light at a position determined by the focal length. In this case, the positions of the non-pass filter 1603 and the diffuser 1604 are the same as the diffuser 1604, the nozzle 1601 and the condenser lens. The order may be 1 6 0 5.
第 1 の変形例に係る L E D光源ュニ ッ ト 1 6 は、 L E D光 源 1 6 0 2 から発する光の光路上に集光レ ンズ 1 6 0 5 を有 するので、 試料 2 0 2 面に集光ビームを照射する こ と ができ る。 これによ り 、 例えば集光レ ンズ 1 6 0 5 の N Aが 0 . 9 以上の大きい集光レ ンズ 1 6 0 5 を用いれば、 試料 2 0 2面 の極めて小さい領域、 例えば直径 0 . 5 μ m程度の範囲に、 集 光させる こ と ができ、 特定の極めて狭い範囲の励起を行 う こ と ができ る。 また、 L E D光源 1 6 0 2 からの励起光が集光 ビーム と なって、 照射断面の面積が小さ く なっているので、 試料槽 2 0 1 の側壁な ど、 試料 2 0 2 面以外の部位に励起光 が照射され、 ノ イ ズ光となって、 試料 2 0 2 からの蛍光に混 入する要因 と なる こ と を防ぐこ と ができ る。 さ らに L E D光 源 1 6 0 2 からの励起光を試料 2 0 2 面内の 1 点に集光させ る よ う に各 L E D光源 1 6 0 2 の方向を調整してやれば、 L E D光源 1 6 0 2 からの励起光を試料 2 0 2面の中の所望の 特定部分に限定して照射する こ と ができ る。 これによ り 、 効 率的に L E D光源 1 6 0 2 からの励起光を試料 2 0 2面内の 所望の部位に照射する こ とができ る。 しかも、 L E D光源 1 6 0 2 からの励起光が集光されているので、 効率良く 蛍光物 質を励起する こ とができる。 また光が拡散していないので、 試料 2 0 2 面以外の試料槽 2 0 1 内の部分、 例えば側壁など を含めて光を誤照射する こ と な どを防止する こ と ができ る。 (第 2 の変形例) The LED light source unit 16 according to the first modified example has a condensing lens 1605 on the optical path of light emitted from the LED light source 1602. It can irradiate a focused beam. Thus, for example, if a large condensing lens 1605 having a NA of 0.95 or more is used, a very small area on the sample 202 surface, for example, a diameter of 0.5. Light can be collected in the range of about μm, and a specific extremely narrow range of excitation can be achieved. In addition, since the excitation light from the LED light source 1602 becomes a condensed beam and the area of the irradiation cross section is small, a portion other than the sample 202 surface, such as the side wall of the sample tank 201, is used. Thus, it is possible to prevent the excitation light from irradiating the sample with the excitation light and generating the noise light, which may be a factor of mixing with the fluorescence from the sample 202. Further, if the direction of each LED light source 1602 is adjusted so that the excitation light from the LED light source 1602 is focused on one point in the plane of the sample 202, the LED light source 16 It is possible to irradiate the excitation light from O2 only to a desired specific portion in the surface of the sample 202. As a result, it is possible to efficiently irradiate the excitation light from the LED light source 1602 to a desired portion in the plane of the sample 202. In addition, since the excitation light from the LED light source 1602 is collected, it is possible to efficiently excite the fluorescent substance. In addition, since light is not diffused, a portion in the sample tank 201 other than the sample 202 surface, for example, a side wall Erroneous irradiation of light can be prevented. (Second modification)
上述 した L E D光源ユニ ッ ト 1 1 と して、 例えば、 図 7 に 示すよ う な L E D光源ュニ ッ ト 1 7 を使用する こ とができ る c 図 7 は、 第 1 の実施の形態の第 2 の変形例に係る L E D光 源ュニ ッ ト 1 7 の概略構成を示す図である。 And an LED light source uni Tsu sheet 1 1 described above, for example, c 7 that can have that you use an LED light source Interview two Tsu sheet 1 7 Do you by 7 is a first embodiment FIG. 14 is a diagram showing a schematic configuration of an LED light source unit 17 according to a second modification.
L E D光源ュ -ッ ト 1 7 は、 筒状の L E D光源ホルダー 1 7 0 1 を有している。 L E D光源ホルダー 1 7 0 1 は、 その 内部に配置された L E D光源 1 7 0 2 を有 している。 また、 L E D光源ホルダー 1 7 0 1 の内部に配置された L E D光源 1 7 0 2 から発する光の光路上には、 バ ン ドパス フ イ ノレタ 1 7 0 3 、 拡散板 1 7 0 4、 コ リ メ ー ト レ ンズ 1 7 0 5 が配置 されている。 こ こで、 バン ドノヽ。ス フ イ ノレタ 1 7 0 3 および拡 散板 1 7 0 4 は、 図 6 で説明 したもの と 同様である。 また、 コ リ メ ー ト レンズ 1 7 0 5 は、 拡散板 1 7 0 4 で拡散された 光を平行な光に変換し、 コ リ メ ー ト光を出射する。 この場合. バ ン ド ノヽ°ス フ ィ ルタ 1 7 0 3 と拡散板 1 7 0 4 の位置は、 拡 散板 1 7 0 4 、 ノ ン ドパス フ イ ノレタ 1 7 0 3 お よ びコ リ メ 一 ト レ ンズ 1 7 0 5 の順で も よ い。  The LED light source unit 17 has a cylindrical LED light source holder 1701. The LED light source holder 1701 has an LED light source 1702 disposed therein. In addition, on the optical path of the light emitted from the LED light source 1702 disposed inside the LED light source holder 1701, a bandpass filter 1701, a diffusion plate 1704, and a There is a lens 1705. Here, Band No. The finoletor 1703 and the diffuser 1704 are the same as those described with reference to FIG. The collimating lens 1705 converts the light diffused by the diffusion plate 1704 into parallel light, and emits collimated light. In this case. The positions of the band-noise filter 1703 and the diffuser 1704 are the same as those of the diffuser 1704, the non-pass filter 170, and the coil. The order of the lenses 1705 can be used.
第 2 の変形例に係る L E D光源ュニ ッ ト 1 7 は、 L E D光 源 1 7 0 2 から発する光の光路上に配置されたコ リ メ 一 ト レ ンズ 1 Ί 0 5 を有するので、 試料 2 0 2 面に ム ラ のなレヽ コ リ メー ト光を照射する こ とができ る。 これによ り 、 試料 2 0 2 面内の照射位置の特定が行いやすく な り 、 照射位置をコ ン ビ ユ ータ制御によ り 自動調整する上で容易にプロ グラムを組む こ と ができ る と と もに、 照射面位置とその照度な どの予測も 立てやすく 、 有益である。 さ らに手動によ り 、 励起光を照射 する位置を設定する よ う な場合においても、 試料 2 0 2面內 での所望の照射位置に的確に励起光の操作を行う こ と ができ る。 また、 光が拡散していないので、 試料 2 0 2 面以外の試 料槽 2 0 1 内の部分、 例えば側壁な どを含めて光を誤照射す る こ とな どを防止する こ と ができ る。 The LED light source unit 17 according to the second modified example has a collimated lens 105 disposed on the optical path of light emitted from the LED light source 1702, so that the sample It is possible to irradiate the flat collimated light onto the 202 surface. This makes it easy to identify the irradiation position in the plane of the sample 202, making it easy to program a program for automatically adjusting the irradiation position by computer control. In addition to this, it is easy and useful to predict the irradiation surface position and its illuminance. Furthermore, even when the position for irradiating the excitation light is manually set, the excitation light can be accurately operated at a desired irradiation position on the sample 202 surface. . In addition, since light is not diffused, it is possible to prevent erroneous irradiation of light in a portion of the sample tank 201 other than the sample 202 surface, for example, including a side wall. it can.
(第 3 の変形例) . 上述した L E D光源ユニッ ト 1 1 と して、 例えば、 図 8 に 示すよ う な L E D光源ュニ ッ ト 1 8 を使用する こ とができ る c 図 8 は、 第 1 の実施の形態の第 3 の変形例に係る L E D光 源ュニッ ト 1 8 の概略構成を示す図である。 (Third Modification). As a LED light source unit 1 1 described above, for example, c 8 that can have that you use an LED light source Interview two Tsu sheet 1 8 Do you by shown in FIG. 8, FIG. 14 is a diagram illustrating a schematic configuration of an LED light source unit 18 according to a third modification of the first embodiment.
L E D光源ュニッ ト 1 8 は、 筒状の L E D光源ホルダー 1 8 0 1 を有 している。 L E D光源ホルダー 1 8 0 1 は、 その 内部に配置された L E D光源 1 8 0 2 を有している。 また、 L E D光源ホルダー 1 8 0 1 の内部に配置された L E D光源 1 8 0 2 から発する光の光路上には、 ノ ン ドパス フ ィ ルタ 1 8 0 3 、 拡散板 1 8 0 4 が配置されている。 こ こで、 バン ド パス フ ィ ルタ 1 8 0 3 および拡散扳 1 8 0 4 は、 図 6 で説明 したもの と 同様である。 この場合、 ノ ン ドパス フ ィルタ 1 8 0 3 と拡散板 1 8 0 4 の位置は、 拡散板 1 8 0 4 、 バン ドパ ス フ イ ノレタ 1 8 0 3 の順でも よい。  The LED light source unit 18 has a cylindrical LED light source holder 1801. The LED light source holder 1801 has an LED light source 1802 disposed therein. In addition, on the optical path of the light emitted from the LED light source 1802 disposed inside the LED light source holder 1801, a non-pass filter 1803 and a diffusion plate 1804 are disposed. ing. Here, the band pass filter 1803 and the diffusion 扳 1804 are the same as those described with reference to FIG. In this case, the position of the non-pass filter 1803 and the diffusion plate 1804 may be in the order of the diffusion plate 1804 and the bandpass filter 1803.
第 3 の変形例に係る L E D光源ュニ ッ ト 1 8 は、 L E D光 源 1 8 0 2 から発する光の光路上に配置された拡散板 1 8 0 4 を有するので、 試料 2 0 2 面にムラ のない拡散光を照射す る こ と ができ る。 これによ り 、 試料 2 0 2 面全体に渡ってほ ぼ一様な励起光をム ラ な く 照射する こ と ができ 、 安定した、 再現性の優れた蛍光を受光する こ と ができ る。 The LED light source unit 18 according to the third modification has the diffusion plate 1804 arranged on the optical path of the light emitted from the LED light source 1802. Irradiate diffuse light without unevenness You can do it. As a result, it is possible to irradiate almost uniformly the excitation light over the entire surface of the sample 202 without unevenness, and it is possible to receive stable and excellent fluorescence with excellent reproducibility. .
なお、 これら L E D光源ユニ ッ ト 1 1 、 1 6 、 1 7 、 1 8 は、 試料 2 0 2 や試料槽 2 0 1 の大き さや構造な どに応 じて 使い分ける こ と ができ る。 つま り 、 L E D光源ユニ ッ ト 1 1 Note that these LED light source units 11, 16, 16, 17 can be used properly according to the size and structure of the sample 202 and the sample tank 201. That is, the LED light source unit 1 1
1 6 、 1 7 、 1 8 は、 L E D光源にノ ン ド ノヽ0 ス フ ィ ルタ 、 レ ンズ、 拡散板な どの光学素子を組み合わせて一体化に構成 し てい る ので、 各 L E D光源ュニ ッ ト 単位で、 励起光を集光 し た り 、 コ リ メ ー ト光 と した り 、 拡散光 とする こ と ができ る。 これによ り 、 試料 2 0 2 面への励起光の ビームパター ンを さ ま ざま に制御する こ と が可能であ り 、 多彩な形状の試料槽 2 0 1 はも と よ り 、 凹凸のある試料にも対応する こ と ができ る また、 L E D光源ユニ ッ ト 1 6 ( 1 7 ) と して、 用途に応 じ てノ ン ド ノ、。ス フ ィ ルタ 1 6 0 3 ( 1 7 0 3 ) 、 拡散板 1 6 0 4 ( 1 7 0 4 ) のいずれか一方を用いても よい し、 両方と も 使わな く と も よい。 さ ら に L E D光源ユニ ッ ト 1 1 、 1 6 、Each of the LED light sources unit 16, 17, and 18 is composed of an LED light source and an optical element such as a non- zero filter, a lens, and a diffusion plate. The excitation light can be condensed, collimated, or diffused in units of light. This makes it possible to control the beam pattern of the excitation light to the sample 202 surface in various ways, and the sample tank 201 of various shapes has more unevenness. It can respond to a certain sample. Also, as the LED light source unit 16 (17), it can be used according to the application. Either the filter 1603 (1703) or the diffusion plate 1604 (1704) may be used, or neither of them may be used. In addition, LED light source units 11, 16,
1 7、 1 8 のノ ン ド ノヽ。ス フ イ ノレタ 1 1 0 3 、 1 6 0 3 、 1 7 0 3 、 1 8 0 3 は、 試料と して用いる蛍光色素の発光波長の スぺク ト ノレ領域に応 じて、 ノヽ イ ノヽ°ス フ ィ ルタ あるいはロ ー パ ス フ ィ ルタ と して も 良いこ と は勿論である。 集光 レンズ 1 6 0 5 ゃコ リ メ ー ト レンズ 1 7 0 5 は素材と して通常の レンズ に用い られてレヽる B K 7 な どのガラ ス レ ンズでも 良いが、 集 光 レ ンズ 1 6 0 5 ゃコ リ メ ー ト レ ンズ 1 7 0 5 と して、 石英 ガラ ス、 あるいはプラ スチ ッ ク レ ンズ、 または回折光学素子 液晶 レンズなど、 通常の可視光に対して集光作用を施すこ と ができ る素子や素材を用いる こ と ができ る。 また、 第 1 の実 施の形態では、 対物レ ンズ 5周囲に、 複数の L E D光源ュニ ッ ト 1 1 が配置される場合を述べたが、 試料 2 0 2 が極めて 小さい場合には、 図 1 において対物レ ンズ 5 周囲に配置され る L E D光源ュニッ ト 1 1 を 1 個のみとする こ と もでき る。 こ の よ う に しても、 上述した と 同様な効果を期待でき る。 17 and 18 nodes. Scanners 1103, 1603, 1703, and 1803 are different depending on the spectrum of the emission wavelength of the fluorescent dye used as the sample. ° Needless to say, it may be a filter or a low-pass filter. The condenser lens 1705 6 The collimating lens 1705 may be a glass lens such as BK7 used for ordinary lenses as a material, but the focusing lens 16 0 5 ゃ Collimate lens 1 7 0 5 is quartz glass or plastic lens or diffractive optical element Elements and materials that can condense ordinary visible light, such as liquid crystal lenses, can be used. In the first embodiment, the case where a plurality of LED light source units 11 are arranged around the objective lens 5 has been described. In 1, only one LED light source unit 11 disposed around the objective lens 5 may be used. Even in this case, the same effect as described above can be expected.
(第 2 の実施の形態)  (Second embodiment)
第 2 の実施の形態は、 L E D光源ュニッ トの試料面に対す る傾き角 を変化させて、 光の照射角度を調整でき る よ う に し た実施の形態である。  The second embodiment is an embodiment in which the angle of light irradiation can be adjusted by changing the inclination angle of the LED light source unit with respect to the sample surface.
図 9 は、 第 2 の実施の形態の概略構成を示す図である。 図 9 において、 対物レ ンズ 2 1 は、 対物 レンズ保持機構 2 2 に 保持されている。 対物レ ンズ保持機構 2 2 は、 筒状の保持部 材 2 2 0 1 を有している。 保持部材 2 2 0 1 の内部に対物レ ンズ 2 1 が嵌め込まれている。 保持部材 2 2 0 1 の周囲には、 半導体光源手段保持部材と して L E D光源ュニッ トホルダー 2 3 が設け られている。  FIG. 9 is a diagram illustrating a schematic configuration of the second embodiment. In FIG. 9, the objective lens 21 is held by an objective lens holding mechanism 22. The objective lens holding mechanism 22 has a cylindrical holding member 222. The objective lens 21 is fitted inside the holding member 222. Around the holding member 222, an LED light source unit holder 23 is provided as a semiconductor light source means holding member.
L E D光源ュニッ トホルダー 2 3 には、 周面方向に沿って 均等な間隔で複数 (例えば、 8 〜 1 2個程度) の L E D光源 ュニ ッ ト収納孔 2 3 0 1 が設け られてレヽる。 これら L E D光 源ュ - ッ ト収納孔 2 3 0 1 は、 試料台 1 上の試料 2 0 2 面に 向かって傾斜して配置されている。 傾斜角度は、 対物レ ンズ 2 1 の光軸 2 1 a に軸に対して 4 5 °〜 6 0 °程度と なってい る。 また、 L E D光源ユニ ッ ト ホルダー 2 3 の周面には、 L E D光源ュニッ ト収納孔 2 3 0 1 に貫通するネジ穴 2 3 0 2 が設け られている。 ネジ穴 2 3 0 2 は、 各 L E D光源ュニッ ト収納孔 2 3 0 1 に沿つた方向に所定間隔をおいて 2個所づ つ形成されてい る 。 The LED light source unit holder 23 is provided with a plurality of (for example, about 8 to 12) LED light source unit storage holes 2301 at even intervals along the circumferential direction. . These LED light source cut-out holes 2301 are arranged to be inclined toward the surface of the sample 202 on the sample stage 1. The tilt angle is about 45 ° to 60 ° with respect to the optical axis 21a of the objective lens 21 with respect to the axis. In addition, the LED light source unit holder 23 has an L A screw hole 2302 penetrating the ED light source unit storage hole 2301 is provided. The two screw holes 2302 are formed at predetermined intervals in the direction along each LED light source unit accommodation hole 2301.
L E D光源ュニッ ト収納孔 2 3 0 1 には、 L E D光源ュニ ッ ト 2 4 が収容されて レ、る。 L E D光源ユニ ッ ト 2 4 は、 筒 状のホノレダー 2 4 0 1 を有し、 ホノレダー 2 4 0 1 の内部に L E D光源 2 4 0 2 が配置されている。 そ して、 このよ う な L E D光源ユニッ ト 2 4 は、 O リ ング 2 5 を介在させて L E D 光源ュニ ッ ト収納孔 2 3 0 1 に収容されている。 この場合、 O リ ング 2 5 は、 2個所のネジ穴 2 3 0 2 の間に位置する 。  The LED light source unit 24 is accommodated in the LED light source unit accommodating hole 2301. The LED light source unit 24 has a cylindrical holoreder 2401, and the LED illuminator 2402 is disposed inside the holoreder 2401. Then, such an LED light source unit 24 is housed in the LED light source unit housing hole 2301 via an O-ring 25. In this case, the O-ring 25 is located between the two screw holes 2302.
L E D光源ュニ ッ ト収納孔 2 3 0 1 には、 L E D光源ュニ ッ ト 2 4 の L E D光源 2 4 0 2 から発する光の光路上に、 バ ン ド ノヽ°ス フ ィ ルタ 2 4 0 3 が配置されてい る 。 こ こ で、 ノ ン ド ノ ス フ イ ノレタ 2 4 0 3 は、 L E D光源 2 4 0 2 力 ら発する 光の波長域近傍を主に通過させる。  The LED light source unit storage hole 2301 has a bandpass filter 240 on the optical path of the light emitted from the LED light source 2402 of the LED light source unit 24. 3 is located. Here, the non-phosphorescent light source 2403 mainly passes near the wavelength range of light emitted from the LED light source 2402 power.
また、 L E D光源ュ ニ ッ ト 2 4 のホノレダー 2 4 0 1 とノ ン ド ノくス フ イ ノレタ 2 4 0 3 の間には、 ス ぺーサ 2 6 が配置され てい る。 スぺーサ 2 6 は、 L E D光源 2 4 0 2 とバ ン ドノヽ。ス フ イ ノレタ 2 4 0 3 の位置決めを行 う。 スぺーサ 2 6 の素材と してはアルミ ニ ュ ーム、 真鍮などの金属あるいはプラスチッ ク が用い られる。  In addition, a spacer 26 is disposed between the hologram 2404 of the LED light source unit 24 and the finolators 2403 of the LED light source unit. The spacer 26 is composed of an LED light source 2402 and a band laser. Performs positioning of the fin locator 2403. As a material of the spacer 26, a metal such as aluminum or brass or a plastic is used.
各 L E D光源ュ- ッ ト収納孔 2 3 0 1 に貫通する 2個所の ネジ穴 2 3 0 2 には、 位置調整手段と しての煽り ネジ 2 7が ねじ込まれている。 煽 り ネジ 2 7 は、 L E D光源ユニ ッ ト 2 4 のホルダー 2 4 0 1 側面の O リ ング 2 5 を挟んだ 2 点を押 圧する。 煽 り ネジ 2 7 の押圧力をねじ込み量によ り加減して 試料 2 0 2 面に対する L E D光源ュニッ ト 2 4 の傾き角を変 化させる こ と によ り 、 光の照射角度を調整でき る。 この場合 これら 2個の煽り ネジ 2 7 によ り 調整される L E D光源 2 4 0 2 から発せられる光の照射角度は、 ± 2 〜 3。程度と なって いる。 In two screw holes 2302 passing through each LED light source cutout accommodation hole 2301, a tilting screw 27 as a position adjusting means is screwed. Fan screw 27 is for LED light source unit 2 Press the two points across the O-ring 25 on the side of the holder 2 4 0 1. The light irradiation angle can be adjusted by changing the tilt angle of the LED light source unit 24 with respect to the sample 202 surface by adjusting the pressing force of the lifting screw 27 according to the screwing amount. . In this case, the irradiation angle of the light emitted from the LED light source 2402 adjusted by these two tilting screws 27 is ± 2 to 3. It is on the order.
一方、 保持部材 2 2 0 1 の周面には、 円周方向に沿って等 間隔に複数のネジ穴 2 2 0 2が形成されている。 また、 保持 部材 2 2 0 1 の周面が当接する よ う に固定部材 2 2 0 3 が設 け られている。 固定部材 2 2 0 3 は、 装置本体 2 8側に固定 されてお り 、 対物レ ンズ 2 1 の光軸方向に沿った長穴 ' 2 2 0 4 が形成されている。 そ して、 長穴 2 2 0 4 を介 して保持部 材 2 2 0 1 周面のネジ穴 2 2 0 2 に位置調整用ネジ 2 2 0 5 がねじ込まれている。 これによ り 、 位置調整用ネジ 2 2 0 5 のね じ込みを緩める こ と で、 対物レ ンズ 2 1 は、 保持部材 2 2 0 1 と と もに、 長穴 2 2 0 4 に沿って光軸 2 1 a方向に移 動する。 これによ り 、 フ ォーカ スを調整でき る。  On the other hand, a plurality of screw holes 222 are formed on the peripheral surface of the holding member 222 at even intervals along the circumferential direction. Further, a fixing member 222 is provided so that the peripheral surface of the holding member 222 contacts. The fixing member 2203 is fixed to the apparatus main body 28 side, and has an elongated hole '224' formed along the optical axis direction of the objective lens 21. Then, a positioning screw 222 is screwed into the screw hole 222 on the peripheral surface of the holding member 222 through the elongated hole 222. As a result, by loosening the screws of the position adjustment screws 222, the objective lens 21 is moved along with the holding members 222 along the elongated holes 222. Move in the optical axis 21a direction. This allows the focus to be adjusted.
上記の構成において、 まず、 各 L E D光源ユニ ッ ト 2 4 の L E D光源 2 4 0 2 を点灯し、 これら L E D光源 2 4 0 2 か ら発せられる励起光を試料台 1 上の試料 2 0 2面に照射する この場合、 L E D光源 2 4 0 2 から発せられる光の発光スぺ ク トルは、 全て同一である。  In the above configuration, first, the LED light sources 2402 of each LED light source unit 24 are turned on, and the excitation light emitted from these LED light sources 2402 is applied to the sample 202 surface on the sample stage 1. In this case, the light emission spectrum of the light emitted from the LED light source 2402 is all the same.
こ の状態で、 対物レ ンズ保持機構 2 2 の位置調整用ネジ 2 2 0 5 を緩め、 対物レ ンズ 2 1 を保持部材 2 2 0 1 と と もに 光軸 2 l a 方向 (図示矢印 A方向) に移動させる こ と でフォ 一カス調整を行 う。 In this state, loosen the position adjusting screw 2205 of the objective lens holding mechanism 22 and set the objective lens 21 together with the holding member 222. Focus adjustment is performed by moving the optical axis in the 2 la direction (the direction of arrow A in the figure).
次に、 L E D光源ュニッ トホルダー 2 3 の煽り ネジ 2 7 を 緩めて、 L E D光源ュニッ ト 2 4 を L E D光源 2 4 0 2 の光 軸方向 (図示矢印 B方向) に移動させる。 これに よ り 、 L E D光源ュニ ッ ト ホルダー 2 3 の高さ方向の位置調整を行い、 試料 2 0 2 面上での明る さ を調整する。 続けて、 煽り ネジ 2 7 によるねじ込み量を加減して、 試料 2 0 2 面に対する L E D光源ユニ ッ ト 2 4 の傾き角 (図示矢印 C方向) を調整する こ と によ り 、 試料 2 0 2 に対する光の照射位置の微調整を行 ラ  Next, loosen the screw 27 of the LED light source unit holder 23, and move the LED light source unit 24 in the optical axis direction of the LED light source 2402 (the direction of arrow B in the drawing). Thus, the position of the LED light source unit holder 23 in the height direction is adjusted, and the brightness on the sample 202 surface is adjusted. Subsequently, by adjusting the amount of screwing in by the tilting screw 27 to adjust the inclination angle (in the direction of arrow C in the figure) of the LED light source unit 24 with respect to the surface of the sample 202, the sample 202 was obtained. Fine adjustment of the light irradiation position
このよ う に して、 試料 2 0 2 面上での光の明る さ を調整す る と と もに、 光の照射角度の微調整を行い、 図 4 A及び図 4 Bで述べたよ う に、 それぞれの L E D光源ュニ ッ ト 2 4 力 ら 発せられる光の中心軸が、 試料 2 0 2面の周縁を通 り 、 且つ 試料 2 0 2 面の略中心軸上の垂直上方または下方の空間位置 の 1 点で交差する よ う に設定する。 これによ り 、 試料 2 0 2 面をムラな く 均一の明る さで照明する こ と ができ る。  In this way, the brightness of the light on the sample 202 surface is adjusted and the light irradiation angle is finely adjusted, as described in FIGS. 4A and 4B. The central axis of the light emitted from each LED light source unit 24 passes through the periphery of the sample 202 surface and is vertically above or below the substantially central axis of the sample 202 surface. Set to intersect at one point of the position. This makes it possible to illuminate the sample 202 surface uniformly and uniformly.
また、 こ うする こ とで、 試料 2 0 2 面の所望する特定の箇 所に光を集光させる こ と もでき るので、 蛍光物質の効率的な 励起を行 う こ とができ る と共に、 試料槽 2 0 1 の側壁な どに 励起光が当た り 、 ノ イズ光と なる こ と なども極力抑える こ と ができ る。  In addition, by doing so, it is possible to condense light to a desired specific portion of the sample 202 surface, so that efficient excitation of the fluorescent substance can be performed, and In addition, the excitation light hits the side wall of the sample tank 201 and the like, and it can be suppressed as much as possible the noise light.
なお、 第 2 の実施の形態では、 煽り ネジ 2 7 のねじ込み量 の調整を手動で行っているが、 例えば煽り ネジ 2 7 のね じ込 み量の調整に相当する箇所にモータを使用 し、 こ のモータを コ ンピュータ に連動させて、 自動的に操作でき る よ う に して も よい。 また、 L E D光源ユニ ッ ト 2 4 は、 高さ方向の位置 調整および傾き角を少なく と も一方の調整のみでき る よ う に したものであっても よい。 In the second embodiment, the screwing amount of the tilting screw 27 is manually adjusted. For example, the screwing of the tilting screw 27 is performed. It is also possible to use a motor at the position corresponding to the adjustment of the control amount, and to operate this motor automatically by linking it with the computer. In addition, the LED light source unit 24 may be configured to be capable of adjusting the position in the height direction and adjusting at least one of the inclination angles.
(変形例)  (Modification)
と ころで、 試料面をムラな く 均一の明る さの光で照明する には、 事前にこの状態を確認する必要がある。  However, in order to illuminate the sample surface uniformly and uniformly with light, it is necessary to check this condition in advance.
図 1 0 は、 第 2 の実施の形態の変形例に係る光検査装置の 概略構成を示す図であ り 、 図 1 と 同一部分には、 同符号を付 している。 また、 本変形例では、 図 5 で述べた光検査装置の ブロ ック 図を援用する もの とする。  FIG. 10 is a diagram showing a schematic configuration of an optical inspection device according to a modification of the second embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In this modification, the block diagram of the optical inspection device described with reference to FIG. 5 is used.
本変形例では、 複数の L E D光源ユニッ ト 1 1 からの光が 照射される試料台 1 上には、 試料槽 2 0 1 に代えて光強度検 出手段と して光検出器 3 1 が配置されている。 こ こで、 光検 出器 3 1 と しては、 固体撮像素子 ( C C Dカ メ ラや C M O S セ ンサー) や撮像管な どが用い られる。  In this modification, a light detector 31 is disposed on the sample table 1 to which light from the plurality of LED light source units 11 is irradiated, instead of the sample tank 201 as light intensity detecting means. Have been. Here, a solid-state image sensor (CCD camera or CMOS sensor), an image pickup tube, or the like is used as the light detector 31.
光検出器 3 1 は、 各 L E D光源ュニ ッ ト 1 1 からの光の強 度を個別に検出する。 光検出器 3 1 の検出出力は、 図 5 で述 ベたコ ンピュータ 1 0 に取り 込まれる。  The photodetector 31 individually detects the intensity of light from each LED light source unit 11. The detection output of the photodetector 31 is taken into the computer 10 described in FIG.
コ ンピュータ 1 0 は、 各 L E D光源ュニッ ト 1 1 力 らの光 の強度に応じた光検出器 3 1 の出力から光強度のバラ ツキを 解析して、 L E D光源ュニ ッ ト駆動回路 1 5 に信号を送 り 、 各 L E D光源ュニ ッ ト 1 1 の L E D光源 1 1 0 2 に供給する 電流を個別に制御する。 本変更例では、 各 L E D光源 1 1 0 2 に供給する電流の大 き さ を試料面近傍で得られる光強度に基づいて制御でき るの で、 各 L E D光源 1 1 0 2 からの光を同一の明る さに揃える こ と ができ、 試料 2 0 2面を均一の明る さ で照明する こ とが でき る。 このため、 試料 2 0 2 面での照明ムラを抑える こ と ができ、 試料槽 2 0 1 内の蛍光物質をほぼ一様に励起する こ とができ、 信頼性の高い蛍光検出を行 う こ と ができる。 The computer 10 analyzes the variation of the light intensity from the output of the photodetector 31 corresponding to the intensity of the light from each LED light source unit 11 and outputs the LED light source unit drive circuit 15. And individually controls the current supplied to the LED light source 1102 of each LED light unit 11. In this modification, the magnitude of the current supplied to each LED light source 1102 can be controlled based on the light intensity obtained near the sample surface. This makes it possible to illuminate the specimen surface with uniform brightness. As a result, illumination unevenness on the sample 202 surface can be suppressed, the fluorescent substance in the sample tank 201 can be excited almost uniformly, and highly reliable fluorescence detection can be performed. And can be.
本変形例では、 コ ンピュータ 1 0 を用いたて各 L E D光源 1 1 0 2 に供給する電流の大き さ を調整したが、 光検出器 3 1 で得られた各 L E D光源ュニ ッ ト 1 1 の L E D光源 1 1 0 2 からの光の強度に基づいて手動で L E D光源ュニッ ト駆動 回路 1 5 を調整して、 L E D光源 1 1 0 2 力 らの光を同一の 明る さ に揃え、 その後、 光検出器 3 1 を取 り 外し、 こ の位置 に試料槽 2 0 1 を設置 し直すよ う に しても よい。  In this modified example, the magnitude of the current supplied to each LED light source 1102 was adjusted using the computer 10, but each LED light source unit 11 obtained by the photodetector 31 was adjusted. The LED light source unit drive circuit 15 is manually adjusted based on the intensity of light from the LED light source 1102 to adjust the light from the LED light source 1102 to the same brightness. The photodetector 31 may be removed, and the sample tank 201 may be re-installed at this position.
一方、 光検出器 9 に代えて撮像手段 (例えば C C Dカ メ ラ や C M O Sセンサー (共に図示せず) を使用 し、 試料台 1 上 に試料槽 2 0 1 をそのまま載置 しておいて、 各 L E D光源ュ ニッ ト 1 1 の L E D光源 1 1 0 2 からの光を試料槽 2 0 1 に 個別に照射 し、 試料槽 2 0 1 からの蛍光を対物レンズ 5 、 フ ィルタ 7 、 結像レンズ 8 をそれぞれ通過させ、 撮像手段で撮 像し、 撮像画像をコ ン ピュータ 1 0 に導きモニタ 1 3 に表示 させる。 そ して、 モニタ 1 3 の蛍光画像の各画素の明る さ を コ ンピュータ 1 0 で解析する こ と によ り 、 各 L E D光源 1 1 0 2 からの光の強度のバラツキを判断し、 この結果に基づい て L E D光源ュニッ ト駆動回路 1 5 を調整して、 それぞれの L E D光源 1 1. 0 2 に供給する電流を個別に制御する よ う に もでき る。 On the other hand, an imaging means (for example, a CCD camera or a CMOS sensor (both not shown)) is used in place of the photodetector 9, and the sample tank 201 is placed on the sample table 1 as it is, and The light from the LED light source 111 of the LED light source unit 11 is individually radiated to the sample tank 201, and the fluorescent light from the sample tank 201 is objective lens 5, filter 7, imaging lens 8 , Each of which is taken by the image pickup means, guided to the computer 10 and displayed on the monitor 13, and the brightness of each pixel of the fluorescent image on the monitor 13 is set to the computer 10. By analyzing the light intensity from each LED light source 1102, the variation in the light intensity is determined, and based on the result, the LED light source unit drive circuit 15 is adjusted, and each of the LED light source unit drive circuits 15 is adjusted. The current supplied to the LED light sources 11.02 can be individually controlled.
このよ う に しても、 各 L E D光源 1 1 0 2 からの光を同一 の明る さ に揃える こ と ができ るので、 試料 2 0 2 面での照明 ムラ を抑える こ とができ、 試料槽 2 0 1 内の蛍光物質をほぼ 一様に励起する こ と ができ る。  Even in this case, the light from each LED light source 1102 can be adjusted to the same brightness, so that uneven illumination on the sample 202 surface can be suppressed, and the sample tank can be controlled. The fluorescent substance in 201 can be excited almost uniformly.
(第 3 の実施の形態)  (Third embodiment)
第 3 の実施の形態は、 ピーク発光波長の異なる 2個以上の L E D光源を用いて複数種類の蛍光色素を励起し、 蛍光信号 を検出でき る よ う に した実施の形態である。  The third embodiment is an embodiment in which a plurality of types of fluorescent dyes are excited using two or more LED light sources having different peak emission wavelengths, and a fluorescent signal can be detected.
図 1 1 A及び図 1 1 Bは、 第 3 の実施の形態の概略構成を 示す図で、 図 9 と同一部分には、 同符号を付している。 また 第 3 の実施の.形態では、 図 5 で述べた光検査装置のプロ ック 図を援用する もの とする。  FIGS. 11A and 11B are diagrams showing a schematic configuration of the third embodiment, and the same parts as those in FIG. 9 are denoted by the same reference numerals. In the third embodiment, the block diagram of the optical inspection apparatus described with reference to FIG. 5 is used.
L E D光源ュニッ トホルダー 2 3 には、 ピーク発光波長の 異なる 3 種類の L E D光源を有する第 1 乃至 3 の L E D光源 ユニ ッ ト 4 1 、 4 2 、 4 3 が装着されている。 一般に L E D 光源の発光スぺク トルは山型構造と なってお り 、 1 つの ピー ク波長を有する。 こ こでは、 例えば、 第 1 の L E D光源ュニ ッ ト 4 1 は、 発光の ピーク波長が 4 9 0 n mの L E D光源が 用い られ、 第 2 の L E D光源ユニ ッ ト 4 2 は、 発光の ピーク 波長が 5 2 O n mの L E D光源が用レヽ られ、 第 3 の L E D光 源ュニッ ト 4 3 は、 発光のピーク波長が 6 3 O n mの L E D 光源が用い られている。  The first to third LED light source units 41, 42, and 43 having three types of LED light sources having different peak emission wavelengths are mounted on the LED light source unit holder 23. In general, the emission spectrum of the LED light source has a mountain-shaped structure, and has one peak wavelength. In this case, for example, the first LED light source unit 41 uses an LED light source having a light emission peak wavelength of 490 nm, and the second LED light source unit 42 uses the light emission peak wavelength. An LED light source having a wavelength of 52 O nm is used, and an LED light source having a peak emission wavelength of 63 O nm is used as the third LED light source unit 43.
第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2、 4 3 は、 L E D光源ュニ ッ トホルダー 2 3 周囲に沿って、 それぞれ 4個 ずつ対物レ ンズ 2 1 を挟んで対称な位置に配置されている。 つま り 、 これらの第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2、 4 3 は、 それぞれ発光波長のスペク ト ル特性の異なる L E D光源を有してお り 、 これら異なるスぺク ト ル特性を有す る第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 を順番 に L E D光源ュニッ ト ホルダー 2 3 の周囲に沿って等間隔で 配置 している。 ここでは、 第 1 の L E D光源ユニ ッ ト 4 1 、 第 2 の L E D光源ユニ ッ ト 4 1 、 第 3 の L E D光源ユニ ッ ト 4 3 の順に繰り 返し配置されている。 'また、 これら第 1 乃至 3 の L E D光源ユニッ ト 4 1 、 4 2、 4 3 は、 対物レ ンズ 2 1 を挟んで対向する位置に、 同一スぺク ト ル特性のも のが来 る よ う に配置されている。 The first to third LED light source units 41, 42, and 43 are L Four ED light source unit holders 23 are arranged symmetrically around the objective lens 21 along the periphery. In other words, these first to third LED light source units 41, 42, and 43 have LED light sources having different emission wavelength spectral characteristics, respectively, and these different spectra The first to third LED light source units 41, 42, and 43 having the same characteristics are arranged at regular intervals along the periphery of the LED light source unit holder 23. Here, the first LED light source unit 41, the second LED light source unit 41, and the third LED light source unit 43 are repeatedly arranged in this order. 'The first to third LED light source units 41, 42, and 43 have the same spectral characteristics at positions facing each other across the objective lens 21. It is arranged as follows.
第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 のそれ ぞれの L E D光源の前方に設置されているノ ン ドパス フ ィ ル タ (図面では、 第 1 の L E D光源ユニ ッ ト 4 1 の L E D光源 4 1 0 1 前方に設置されているノ ン ドノヽ。ス フ ィ ルタ 4 1 0 2 のみ示している) は、 それぞれの L E D光源の発光のピーク 波長近傍を最も良く 透過させる特性を持つものと なっている t すなわち、 第 1 の L E D光源ュ ニ ッ ト 4 1 のノ ン ドパ ス フ ィ ルタ 4 1 0 2 は、 最も良 く 透過させる波長が 4 9 O n ra付近 に設定され、 第 2 の L E D光源ュニッ ト 4 2 のノ ン ドノヽ。ス フ ィルタは、 最も良く 透過させる波長が 5 2 0 n m付近に設定 され、 第 3 の L E D光源ュニッ ト 4 3 のノ ン ドパス フ イ ノレタ は、 最も良く 透過させる波長が 6 3 0 n m付近に設定されて レヽる。 The first to third LED light source units 41, 42, and 43 are mounted in front of the respective LED light sources (in the drawing, the first LED light source unit). 4) The LED light source 4101 in front of the LED light source 4101 (only the filter 4102 is shown) transmits the light near the peak wavelength of the emission of each LED light source best. t that is made as having the property of, Roh down de path full I filter 4 1 0 2 of the first LED light source Interview two Tsu DOO 4 1, the wavelength to be the most good rather permeation 4 9 O n ra The second LED light source unit is set to a nearby position. The filter has the best transmission wavelength set around 520 nm, and the third LED light source unit 43 has a non-pass filter with the best transmission wavelength around 630 nm. Set Reply
図 1 2 は、 この よ う に構成された装置の光検出光学系の概 略構成を示すもので、 こ こでは、 上述 した 3種類の異な る波 長を ピーク発光波長に持つ L E D光源ュニ ッ ト 4 1 , 4 2 , Fig. 12 shows the schematic configuration of the photodetection optical system of the device configured as described above. Here, the LED light source unit having the above three different wavelengths at the peak emission wavelength is shown. 4 1, 4 2,
4 3 によ り 試料への励起光を照射する場合を示 している。 図 1 2 において、 対物 レンズ 2 1 上方の光軸上に 2 個のダ ィ ク ロイ ツ ク ミ ラー 4 5 , 4 6 が配置 されている。 Figure 4 shows the case where the sample is irradiated with excitation light. In FIG. 12, two dichroic mirrors 45 and 46 are arranged on the optical axis above the objective lens 21.
ダイ ク ロ イ ツ ク ミ ラー 4 5 は、 対物 レンズ 2 1 の光軸に対 して略 4 5 °の方向に反射光が進むよ う に設置 さ れてお り 、 蛍光色素 F I T Cの ピーク発光波長 5 2 0 n mよ り も少 し長 い波長、 例えば 5 5 0 nm 以下の波長の光を反射 し、 それよ り も長い波長の光を透過 させる よ う な透過反射スぺク トル特 性を有している。 また、 ダイ ク ロ イ ツ ク ミ ラー 4 6 は、 対物 レンズ 2 1 の光軸に対 して略 4 5 °の方向 に反射光が進む よ う に設置 されてお り 、 蛍光色素 C y 3 の ピーク発光波長 5 6 The dichroic mirror 45 is set so that the reflected light travels in a direction of approximately 45 ° with respect to the optical axis of the objective lens 21, and the peak emission of the fluorescent dye FITC is performed. A transflective spectral characteristic that reflects light having a wavelength slightly longer than the wavelength of 520 nm, for example, light having a wavelength of 550 nm or less, and transmits light having a wavelength longer than that. have. The dichroic mirror 46 is installed so that the reflected light travels in a direction of approximately 45 ° with respect to the optical axis of the objective lens 21, and the fluorescent dye Cy 3 Peak emission wavelength of 5 6
5 n mよ り も少 し長い波長、 例えば 6 2 0 n m以下の波長の 光を反射 し、 それよ り も長い波長の光を透過 させる よ う な透 過反射スぺク トル特性を有 している。 It has a transflective spectral characteristic that reflects light having a wavelength slightly longer than 5 nm, for example, light having a wavelength of 62 nm or less, and transmits light having a wavelength longer than that. I have.
そ して、 ダイ ク ロ イ ツ ク ミ ラー 4 5 の反射光路には、 集光 レンズ 4 7 を介 して C C Dカ メ ラ 4 8 が配置されている。 ま た、 ダイ ク ロイ ツ ク ミ ラー 4 6 の反射光路には、 集光レンズ 4 9 を介 して C C Dカ メ ラ 5 0 が配置され、 透過光路には、 集光 レンズ 5 1 を介 して C C Dカ メ ラ 5 2 が配置されている Further, a CCD camera 48 is disposed on the reflection optical path of the die mirror 45 through a condenser lens 47. In addition, a CCD camera 50 is arranged via a condenser lens 49 in the reflected light path of the die-cloth mirror 46, and a condensing lens 51 is arranged in the transmitted light path. CCD camera 52
C C D カ メ ラ 4 8 、 5 0 、 5 2 の出力は、 コ ン ピュータ 1 0 に送られる。 上記のよ う な構成において、 いま、 1 つのサンプルに対し て、 ターゲッ ト D N Aを 3 種類設定し、 これらにそれぞれ異 な る蛍光色素 F I T C ( F orescein-isothiocyanate ) 、 C y 3 、 C y 5 を標識する。 次に、 これらの蛍光色素で標識さ れた D N Aを含んだサ ンプル溶液を試料槽に滴下 し、 D N A ハイ プリ ダイゼーショ ンを行わせ、 反応に寄与しなかった標 識物質を緩衝液 ( P B S ( リ ン酸緩衝液) 、 E D T A (ェチ レ ンジア ミ ンテ ト ラ酢酸ニナ ト リ ウ ム ) 、 N a C l の混合 液 : P H 7 .4 ) 等で洗浄する。 The outputs of the CCD cameras 48, 50, 52 are sent to the computer 10. In the above configuration, three types of target DNA are now set for one sample, and different fluorescent dyes, FITC (Forescein-isothiocyanate), Cy3, and Cy5, are used for each of them. Label. Next, a sample solution containing DNA labeled with these fluorescent dyes is dropped into the sample tank, DNA hybridization is performed, and the labeling substance that has not contributed to the reaction is removed with a buffer solution (PBS (PBS)). Wash with a mixture of phosphoric acid buffer), EDTA (ethylene sodium acetate sodium nitrate), and NaCl (pH 7.4).
こ の よ う に して取得された試料を図 1 1 A及び図 1 1 B に 示す試料台 1 上にセ ッ トする。 そ して、 各 L E D光源ュニッ ト 4 1 、 4 2 , 4 3 からの励起光を試料槽 2 0 1 に照射する。 この と き、 3種類の異なる波長をピーク発光波長に持つ L E D光源からの光を全て同時に試料 2 0 2面に照射する。  The sample obtained in this way is set on the sample stage 1 shown in FIGS. 11A and 11B. Then, the sample tank 201 is irradiated with excitation light from each LED light source unit 41, 42, 43. At this time, the light from the LED light source having three different wavelengths as the peak emission wavelengths is simultaneously irradiated onto the sample surface.
する と 、 D N Aハイブリ ダィゼーシヨ ンによって D N Aプ ロープと反応 したサンプルに標識されている蛍光色素から蛍 光が発せられ、 これらの光は、 図 1 2 に示す対物レンズ 2 1 を通過 して、 ダイ ク ロイ ツ ク ミ ラー 4 5 に到達する。 こ の場 合、 蛍光色素 F I T Cによ る蛍光はダイ ク ロイ ツ ク ミ ラー 4 5 で反射され、 レ ンズ 4 7 を通過 して C C Dカメ ラ 4 8 に入 り 、 コ ン ピュータ 1 0 に導かれ、 F I T C による緑色の蛍光 画像と して得られる。 また、 蛍光色素 C y 3 によ る蛍光は、 ダイ ク ロイ ツク ミ ラー 4 5 を透過 し、 ダイ ク ロイ ツク ミ ラー 4 6 で反射され、 レ ンズ 4 9 を通過 して C C Dカ メ ラ 5 0 に 入り 、 コ ン ピュータ 1 0 に導かれ、. C y 3 による橙色の蛍光 画像と して得られる。 さ らに蛍光色素 C y 5 によ る蛍光は、 ダイ ク ロ イ ツ ク ミ ラー 4 5 、 ダイ ク ロイ ツ ク ミ ラー 4 6 をそ れぞれ透過 し、 レンズ 5 1 を通過 して C C Dカメ ラ 5 2 に入 り 、 コ ンピュータ 1 0 に導かれて、 C y 5 による赤色の蛍光 画像が得られる。 コ ンピュータ 1 0 では、 これら C C Dカメ ラ 4 8 、 5 0 、 5 2 による 3種類の蛍光色素からの蛍光画像 を合成してモニタ 1 3上に出力するか、 あるいは、 3種類の 蛍光色素からの蛍光画像を別々 にモニタ 1 3 上に表示する。 Then, fluorescence is emitted from the fluorescent dye labeled on the sample that has reacted with the DNA probe by the DNA hybridization, and the light passes through the objective lens 21 shown in Fig. 12 and is diced. Reutz Miller 4 5 is reached. In this case, the fluorescence from the fluorescent dye FITC is reflected by the dichroic mirror 45, passes through the lens 47, enters the CCD camera 48, and is guided to the computer 10. It is obtained as a green fluorescent image by FITC. The fluorescence of the fluorescent dye Cy 3 passes through the dichroic mirror 45, is reflected by the dichroic mirror 46, passes through the lens 49, and passes through the lens 49. Enters 0, is led to computer 10 and emits orange fluorescence due to .Cy3 Obtained as an image. Further, the fluorescence of the fluorescent dye Cy 5 passes through the dichroic mirror 45 and the dichroic mirror 46, respectively, passes through the lens 51, and passes through the CCD 51. After entering the camera 52, it is guided to the computer 10 and a red fluorescent image by Cy5 is obtained. The computer 10 synthesizes the fluorescent images from the three types of fluorescent dyes by the CCD cameras 48, 50, and 52 and outputs them to the monitor 13 or outputs them from the three types of fluorescent dyes. Display the fluorescent images separately on monitor 13.
図 1 3 は、 第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 の駆動回路のプロ ック 図を示す。  FIG. 13 shows a block diagram of the drive circuits of the first to third LED light source units 41, 42, and 43.
この場合、 第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 の駆動回路と して、 それぞれ L E D光源ュニ ッ ト駆動回 路 5 4 、 L E D光源ユニ ッ ト駆動回路 5 5 、 L E D光源ュニ ッ ト駆動回路 5 6 が設け られている。 第 1 の L E D光源ュニ ッ ト 4 1 には、 L E D光源ュニ ッ ト駆動回路 5 4 が接続され 第 2 の L E D光源ュニッ ト 4 2 には、 L E D光源ュニッ ト駆 動回路 5 5 が接続され、 第 3 の L E D光源ユニッ ト 4 3 には L E D光源ュニッ ト駆動回路 5 6 が接続されている。 また、 これら L E D光源ュニッ ト駆動回路 5 4 、 L E D光源ュニッ ト駆動回路 5 5 および L E D光源ュニ ッ ト駆動回路 5 6 には 共通の電源装置 5 3 が接続され、 また、 図 5 で述べたコ ンビ ユ ータ 1 0 が接続されている。  In this case, as the driving circuits of the first to third LED light source units 41, 42, and 43, an LED light source unit driving circuit 54 and an LED light source unit driving circuit 55 are respectively provided. An LED light source unit driving circuit 56 is provided. The LED light source unit drive circuit 54 is connected to the first LED light source unit 41 and the LED light source unit drive circuit 55 is connected to the second LED light source unit 42. An LED light source unit drive circuit 56 is connected to the third LED light source unit 43. A common power supply 53 is connected to the LED light source unit driving circuit 54, the LED light source unit driving circuit 55, and the LED light source unit driving circuit 56, and as described in FIG. Combiner 10 is connected.
L E D光源ュニッ ト駆動回路 5 4 、 L E D光源ュニ ッ ト駆 動回路 5 5 、 L E D光源ュニッ ト駆動回路 5 6 は、 共通の電 源装置 5 3 よ り 電源の供給を受ける。 また、 L E D光源ュ - ッ ト駆動回路 5 4、 L E D光源ユニ ッ ト駆動回路 5 5 、 L E D光源ュニ ッ ト駆動回路 5 6 は、 コ ン ピュータ 1 0 からの指 令に基づいて制御され、 第 1 の L E D光源ユニ ッ ト 4 1 、 第 2 の L E D光源ユニ ッ ト 4 2、 第 3 の L E D光源ユニ ッ ト 4 3 の各 L E D光源に駆動電流を供給し、 3 種類の蛍光色素の 励起光を発生させる。 The LED light source unit drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56 receive power from a common power supply device 53. Also, LED light source- The LED drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56 are controlled based on a command from the computer 10, and are controlled by the first LED light source unit. A driving current is supplied to each of the LED light sources of the light source 41, the second LED light source unit 42, and the third LED light source unit 43 to generate excitation light of three kinds of fluorescent dyes.
この場合、 これらの励起光によ り 得られた 3種類の蛍光信 号は、 図 1 2 に示すよ う に、 それぞれダイ ク ロイ ツク ミ ラー 4 5 , 4 6 によ り C C Dカメ ラ 4 8 、 5 0 、 5 2 に別々 に到 達し、 これら C C Dカ メ ラ 4 8 、 5 0 、 5 2 力 らの画像出力 信号がコ ン ピュータ 1 0 に導かれ、 画像解析が行われ、 3種 類の蛍光色素によ る合成画像が生成され出力される。  In this case, as shown in FIG. 12, the three types of fluorescence signals obtained by these excitation lights are respectively transmitted by the CCD cameras 48 and 46 by the dichroic mirrors 45 and 46, respectively. , 50 and 52 separately, and the image output signals from these CCD cameras 48, 50 and 52 are guided to the computer 10, where image analysis is performed, and three types of images are obtained. A composite image using the fluorescent dye is generated and output.
図 1 4 は、 電源装置 5 3 と L E D光源ュニ ッ ト駆動回路 5 4、 5 5 、 5 6 の具体的な回路構成を示している。  FIG. 14 shows a specific circuit configuration of the power supply unit 53 and the LED light source unit drive circuits 54, 55, and 56.
この場合、 電源装置 5 3 は、 1 0 0 Vの交流電源 5 7 から の出力を、 ト ランスから構成される変圧回路 5 8 に導びき電 圧調整を行 う。 変圧回路 5 8 からの出力は、 ダイオー ド 4個 から成るブリ ッジ整流回路 5 9 に送って全波整流 した後、 平 滑用コンデンサー 6 0 によって平滑化する。 平滑化された出 力は、 ダー リ ン ト ン接続した 2個のパワー ト ラ ンジス タ 6 1 6 2 および O Pアンプ 6 3 よ り 構成される定電圧回路 6 4 に 導びかれ、 一定電圧と して出力される。 この場合、 ツエナー ダイオー ド 6 5 の端子電圧を基準電圧にと り 、 〇 Pアンプ 6 6や抵抗な どの回路素子よ り構成される可変基準電圧生成回 路 6 7 によ り 可変基準電圧を生成 している。 そ して、 O Pァ W In this case, the power supply device 53 guides the output from the AC power supply 57 of 100 V to the transformer circuit 58 composed of a transformer to adjust the voltage. The output from the transformer circuit 58 is sent to a bridge rectifier circuit 59 composed of four diodes to perform full-wave rectification, and then smoothed by a smoothing capacitor 60. The smoothed output is led to a constant voltage circuit 6 4 composed of two power transistors 6 16 2 connected in Darlington and an OP amplifier 63, and a constant voltage is output. Is output. In this case, the terminal voltage of the Zener diode 65 is used as a reference voltage, and a variable reference voltage is generated by a variable reference voltage generation circuit 67 composed of circuit elements such as a P-amplifier 66 and a resistor. are doing. And the OP W
33 ンプ 6 3 に接続された可変基準抵抗 6 8 の値を変化させる こ と によ り 、 可変基準電圧生成回路 6 7 の可変基準電圧と の関 係から定電圧回路 6 4 の電圧出力を調整し、 L E D光源ュニ ッ ト駆動回路 5 4、 L E D光源ユニ ッ ト駆動回路 5 5 、 L E D光源ュニ ッ ト駆動回路 5 6 に対して駆動電流を供給する。 つま り 、 可変基準抵抗 6 8 の値を変化させる こ と によ り L E D光源ュニッ ト駆動回路 5 4、 L E D光源ュニッ ト駆動回路 5 5 、 L E D光源ュニ ッ ト駆動回路 5 6への駆動電流を同時 に調整す る こ と 力 Sで き る 。 こ こ で 、 F E T (field effect transistor : 電界効果 ト ラ ンジス タ ) 7 0 は、 万一、 電流がシ ョ ー ト した場合に急激な電流が〇 P アンプ 6 3 に流れ、 O P アンプ 6 3 を損傷する不測の事態を防ぐ働き を担 う。 また、 電源スィ ッチ 6 9 によ り 電源オンオフする こ と ができ る。 電 源ステッチ 6 9 は、 コ ンピュータ 1 0 と接続されてお り 、 コ ンピュータ 1 0 によっても、 電源入力を調節する。 なお、 電 源スィ ッチ 6 9 は、 手動によ り 切 り 替えても良い。 By changing the value of the variable reference resistor 68 connected to the amplifier 63, the voltage output of the constant voltage circuit 64 is adjusted in relation to the variable reference voltage of the variable reference voltage generation circuit 67. Then, a drive current is supplied to the LED light source unit drive circuit 54, the LED light source unit drive circuit 55, and the LED light source unit drive circuit 56. In other words, by changing the value of the variable reference resistor 68, the driving current to the LED light source unit driving circuit 54, the LED light source unit driving circuit 55, and the LED light source unit driving circuit 56 is increased. Can be adjusted at the same time. In this case, a FET (field effect transistor) 70 generates an abrupt current in the event of a short-circuit when the current is short-circuited, and flows through the OP amplifier 63. It plays a role in preventing accidental damage. The power can be turned on and off by the power switch 69. The power supply stitch 69 is connected to the computer 10, and the power input is also adjusted by the computer 10. The power supply switch 69 may be manually switched.
このよ う な電源装置 5 3 には、 L E D光源ユニ ッ ト駆動回 路 5 4、 5 5 、 5 6 が並列に接続されている。 L E D光源ュ ニッ ト駆動回路 5 4 は、 図 1 1 A及び図 1 1 Bで述べた 4個 分の第 1 の L E D光源ュニ ッ ト 4 1 の駆動回路と して、 可変 抵抗 7 1 と ス ィ ツチ 7 2の直列回路が各別に用意されている t 同様に、 L E D光源ユニッ ト駆動回路 5 5 も、 4個分の第 2 の L E D光源ュニ ッ ト 4 2 の駆動回路と して、 可変抵抗 7 1 とス ィ ッチ 7 2 の直列回路が各別に用意され、 さ らに L E D 光源ュニッ ト駆動回路 5 6 も、 4個分の第 3 の L E D光源ュ ニ ッ ト 4 3 の駆動回路と して、 可変抵抗 7 1 とス ィ ッチ 7 2 の直列回路が各別に用意されている。 To such a power supply 53, LED light source unit driving circuits 54, 55, 56 are connected in parallel. The LED light source unit drive circuit 54 serves as a drive circuit for the four first LED light source units 41 described in FIGS. 11A and 11B, and includes a variable resistor 71 and a variable resistor 71. scan I Tutsi 7 2 t Similarly the series circuit are provided separately to each, LED light source unit drive circuit 5 5 also as the second LED light source Interview two Tsu DOO 4 2 of the driving circuit of the four partial A series circuit of a variable resistor 71 and a switch 72 is separately prepared, and the LED light source unit driving circuit 56 is also equipped with a third LED light source unit for four. As a drive circuit for the unit 43, a series circuit of a variable resistor 71 and a switch 72 is separately provided.
これら L E D光源ユニッ ト駆動回路 5 4 、 5 5 、 5 6 では それぞれの可変抵抗 7 1 、 7 3 、 7 5 の抵抗値を調整する こ と によ り 、 第 1 乃至 3 の L E D光源ユニッ ト 4 1 、 4 2 、 4 3 のそれぞれの L E D光源に供給する駆動電流を調節 し、 そ の出力光強度を制御する こ とができ る。 この出力光強度の調 節は、 手動で行っても よいし、 あるいは電気的にコ ンビユー タで自動調整を行っても良い。 これによ り 、 第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 の各 L E D光源の駆動電 流を個別に制御する こ とができ る。  In these LED light source unit driving circuits 54, 55, and 56, the first to third LED light source units 4 are controlled by adjusting the resistance values of the respective variable resistors 71, 73, and 75. The drive current supplied to each of the LED light sources 1, 42, and 43 can be adjusted, and the output light intensity can be controlled. The adjustment of the output light intensity may be performed manually, or may be automatically performed automatically by a computer. This makes it possible to individually control the drive current of each of the first to third LED light source units 41, 42, and 43.
また、 L E D光源ユニッ ト駆動回路 5 4 、 5 5 、 5 6 では それぞれのスィ ッチ 7 2 、 7 4 、 7 6 のオンオフを制御する こ と で、 第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 のそれぞれの L E D光源を全て独立に点灯、 消灯する こ とが でき る。 これらのオンオフ制御は、 コ ンピュータ制御によ り 自動的に行っても良い し、 手動で操作しても良い。  The LED light source unit driving circuits 54, 55, and 56 control the on / off of the switches 72, 74, and 76 to control the first to third LED light source units 4. The LED light sources 1, 42, and 43 can all be turned on and off independently. These on / off controls may be performed automatically by computer control or manually.
なお、 コ ンピュータ制御によ り 、 可変抵抗 7 1 、 7 3 、 7 5 の抵抗値を調整する場合は、 上述の図 1 0 で説明 したよ う に第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 の個々 の L E D光源からの光強度を検出 し、 この検出信号をコ ンビ ユ ータに導き、 コ ンピュータで光強度を解析して、 可変抵抗 7 1 、 7 3 、 7 5 の抵抗値を調整する。 または、 この検出で 得られた個々の L E D光源からの光の強度を基に、 手動で可 変抵抗 7 1 、 7 3 、 7 5 の抵抗値の調整を行っても良い。 こ れによ り 、 D N Aマイ ク ロアレイ の反応槽の內部にほぼ均一 に L E D光源からの光を照射する よ う に調整でき る。 また試 料槽 2 0 1 内の所望の箇所へ励起光を集中 させる こ と な ど、 光強度の部分的な加減を行う こ と ができ る。 さ ら に、 可変抵 抗 7 1 、 7 3 、 7 5 は、 全ての L E D光源に流れる駆動電流 の大き さ を制御する こ とができ るので、 励起光の強度を一斉 に強く した り 、 弱く した り する こ とができ る。 これによ り 、 個々 の試料に対 して、 的確な強さ の励起光を照射する こ とが でき、 効率良く 蛍光を検出する こ と ができ る。 When adjusting the resistance values of the variable resistors 71, 73, and 75 by computer control, the first to third LED light source units 4 as described with reference to FIG. The light intensity from each LED light source of 1, 42, 43 is detected, the detection signal is led to a computer, and the light intensity is analyzed by a computer, and the variable resistors 71, 73, 7 Adjust the resistance of 5. Alternatively, the resistance values of the variable resistors 71, 73, and 75 may be manually adjusted based on the light intensities from the individual LED light sources obtained by this detection. This Thereby, it is possible to adjust so that the light from the LED light source is almost uniformly irradiated to a part of the reaction tank of the DNA microarray. Further, it is possible to partially adjust the light intensity, for example, by concentrating the excitation light at a desired position in the sample tank 201. Further, the variable resistances 71, 73, and 75 can control the magnitude of the drive current flowing through all LED light sources, so that the intensity of the excitation light can be increased or reduced all at once. You can do it. As a result, it is possible to irradiate each sample with excitation light of an appropriate intensity, and it is possible to efficiently detect fluorescence.
従って、 このよ う にすれば、 ピーク発光波長の異なる 3種 類の L E D光源を有する第 1 乃至 3 の L E D光源ュニ ッ ト 4 1 、 4 2 、 4 3 を用いて 3種類の蛍光色素を同時に励起でき る よ う に したので、 これら 3種類の蛍光色素からの蛍光画像 を取得し、 これらを合成した り 、 個別に表示する こ と ができ る。  Therefore, according to this method, three types of fluorescent dyes can be formed by using the first to third LED light source units 41, 42, and 43 having three types of LED light sources having different peak emission wavelengths. Since simultaneous excitation is possible, fluorescence images from these three types of fluorescent dyes can be acquired, and these can be synthesized or displayed individually.
また、 第 1 乃至 3 の L E D光源ユニ ッ ト 4 1 、 4 2 、 4 3 を構成する個々 の L E D光源は、 励起する蛍光色素に応じた ものの点灯、 消灯を簡単に行う こ とができ、 しかも、 可変抵 抗の可変操作によ り 駆動電流の大き さ を個別に調整する こ と もでき るので、 個々 の蛍光色素に対して的確な強さの励起光 を照射する こ と ができ、 効率良 く 蛍光を検出する こ と ができ る。  In addition, the individual LED light sources constituting the first to third LED light source units 41, 42, and 43 can easily be turned on and off according to the fluorescent dye to be excited. In addition, the drive current can be individually adjusted by the variable operation of the variable resistance, so that each fluorescent dye can be irradiated with excitation light of the correct intensity, and the efficiency can be improved. Fluorescence can be detected well.
なお、 上述の第 3 の実施の形態では、 蛍光色素については 3種類と したが、 これに限る こ と なく 、 2種類でも良い し、 4種類以上についても同様な方法で蛍光画像を得る こ と がで き る。 すなわち、 ダイ ク ロイ ツ ク ミ ラー、 レ ンズ、 C C D力 メ ラ を蛍光色素 1 種類ずつについて、 それぞれ対応して追加 すれば良い。 また、 蛍光色素についても実施例で示した F I T C 、 C y 3 、 C y 5 に限 ら ず、 ロ ーダ ミ ン ' グ リ ー ン ( Rhodamine G) 、 テ キ サ ス ' レ ッ ド (Texas Red) 、 R I T C ( Rhodamine B-isothiocya) な どを用いても 良い また、 L E D光源ユニッ トの数には特に制限はなく 、 複数 の L E D光源ュニッ ト を複数の駆動回路によ り 個別に制御す る こ とができ る。 また、 複数の L E D光源ュニ ッ トの出力波 長は、 同 じでも よ く 、 異なっていても本発明を適用する こ と ができる。 また、 異なる ピーク発光波長を持つ L E D光源の 光を 1種類ずつ試料に照射し、 それを異なる波長の数繰り 返 す構成とする こ と も可能である。 例えば、 透過波長の異なる フ ィ ルタ をセ ッ ト したターレ ツ ト等を用いて、 異なる波長の L E D光源と連動させた切 り 換えをコ ン ピュータで自動的に 行 う こ と も可能である。 . In the above-described third embodiment, three types of fluorescent dyes are used. However, the present invention is not limited to this, and two or more types of fluorescent dyes may be obtained in the same manner. In Wear. That is, it is only necessary to add dichroic mirrors, lenses, and CCD force lenses for each type of fluorescent dye. Also, the fluorescent dye is not limited to FITC, Cy3, and Cy5 shown in the examples, but may be a load-min green (Rhodamine G), a Texas-red (Texas). Red), RITC (Rhodamine B-isothiocya), etc. may be used.The number of LED light source units is not particularly limited, and a plurality of LED light source units are individually controlled by a plurality of drive circuits. I can do it. Further, the present invention can be applied even if the output wavelengths of a plurality of LED light source units are the same or different. It is also possible to irradiate the sample with one type of light from LED light sources having different peak emission wavelengths, and to repeat the light several times at different wavelengths. For example, it is possible to use a turret in which filters with different transmission wavelengths are set and automatically switch by computer in conjunction with LED light sources of different wavelengths. . .
(第 4の実施の形態)  (Fourth embodiment)
第 4の実施の形態は、 L E D光源ュニッ トから発する光の 光路上に反射部材を配置し、 光路の光を反射させる こ と で、 励起光の光軸角度を、 よ り 対物レ ンズの光軸角度に近付ける よ う に した実施の形態である。  In the fourth embodiment, a reflecting member is arranged on the optical path of light emitted from the LED light source unit, and the light in the optical path is reflected, so that the optical axis angle of the excitation light can be increased and the light of the objective lens can be increased. This is an embodiment that approaches an axis angle.
図 1 5 は、 第 4 の実施の形態の概略構成を示す図で、 図 1 と 同一部分には、 同符号を付している。  FIG. 15 is a diagram showing a schematic configuration of the fourth embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
この場合、 対物レ ンズ 5 の周囲には、 半導体光源手段と し ての複数の L E D光源ュニ ッ ト 8 1 (図示例では 4個の L E D光源ユニ ッ ト 8 1 、 う ち 1 個は図示せず) が、 対物 レンズ 5 の光軸を中心に放射状に配置されている。 In this case, around the objective lens 5, a plurality of LED light source units 81 as semiconductor light source means (four LED light units in the illustrated example) are used. D light source units 81, one of which is not shown), are arranged radially around the optical axis of the objective lens 5.
L E D光源ュニ ッ ト 8 1 は、 筒状の L E D光源ホルダー 8 1 0 1 を有している。 L E D光源ホルダー 8 1 0 1 は、 その 内部に配置された L E D光源 8 1 0 2 を有している。 また、 L E D光源ホルダー 8 1 0 1 の内部の L E D光源 8 1 0 2 か ら発する光の光路上には、 バン ドパス フ ィ ルタ 8 1 0 3 、 拡 散板 8 1 0 4、 集光レンズ 8 1 0 5 が配置されている。 こ こ で、 ノ ン ド ノ ス フ ィ ルタ 8 1 0 3 は、 L E D光源 8 1 0 2 力、 ら発する光の波長域近傍を主に通過させる。  The LED light source unit 81 has a cylindrical LED light source holder 8101. The LED light source holder 8101 has an LED light source 8102 disposed therein. In addition, on the optical path of light emitted from the LED light source 8102 inside the LED light source holder 8101, a bandpass filter 8103, a diffusion plate 8104, a condenser lens 8 1 0 5 is arranged. Here, the non-noise filter 8103 mainly passes near the wavelength range of light emitted from the LED light source 8102.
L E D光源ュニ ッ ト 8 1 から発する光の光路上には、 反射 部材と して反射板 .8 2 がそれぞれ配置されている。 反射板 8 2 は、 L E D光源ユニ ッ ト 8 1 からの光を反射させ、 試料台 1 上の試料槽 2 0 1 の試料 2 0 2 に対 して励起光と して照射 する。 反射板 8 2 は、 同時に、 対物レンズ 5 の光軸に対 して 励起光の光軸がなす角度 Θ を小さ く して、 励起光の光軸角 度を対物レンズの光軸角度に近付ける よ う にも している。  On the optical path of the light emitted from the LED light source unit 81, reflectors 82 are provided as reflecting members. The reflecting plate 82 reflects light from the LED light source unit 81 and irradiates the sample 202 in the sample tank 201 on the sample stage 1 as excitation light. At the same time, the reflector 82 reduces the angle す formed by the optical axis of the excitation light with respect to the optical axis of the objective lens 5 so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens. I'm doing it.
こ こで、 反射板 8 2 のそれぞれの取付位置は、 L E D光源 ュニッ ト 8 1 からの光を反射して試料 2 0' 2面に均一の明る さで照射させる と と もに、 照射される光の入射角度に起因 し て試料 2 0 2面で励起ムラが生じないよ う に、 さ らに、 一部 または全面に立体部分を有する試料 2 0 2 に対しても影や励 起ムラが生じないよ う に調整されている。  Here, the respective mounting positions of the reflectors 8 2 reflect the light from the LED light source unit 81 and irradiate the sample 20 ′ 2 surface with uniform brightness and irradiate the light. In order to prevent excitation unevenness from occurring on the sample 202 surface due to the incident angle of light, shadows and excitation unevenness also occur on the sample 202 having a three-dimensional part on part or the entire surface. It is adjusted so that it does not occur.
その他については、 図 1 と 同様である。  Others are the same as in Fig. 1.
従って.、 このよ う に しても、 第 1 の実施の形態と 同様な効 果を期待する こ とができ る。 さ ら に、 L E D光源ユニ ッ ト 8 1 から発する光の光路上に反射板 8 2 が配置され、 光路の光 を反射させる よ う に したので、 励起光の光軸角度を対物レン ズ 5 の光軸角度に近付ける こ と ができ る。 このこ と は、 試料 2 0 2 面の真上に近いと こ ろ (対物レンズ 5 の観察視野に入 らない限界) から励起光を照射でき る よ う になるので、 L E D光源ュニ ッ ト 8 1 から反射板 8 2 を介して試料 2 0 2 面ま での光路の最も短い距離 a と最も長い距離 b の差を小さ なも のにでき る。 これによ り 、 励起光の強度は、 光路の距離に反 比例する こ とから、 試料 2 0 2 面上での励起光の強度差を小 さ く でき る こ と にな り 、 試料 2 0 2面を効率的に、 均一に励 起する こ と ができ る。 Therefore, even in this case, the same effect as in the first embodiment is obtained. You can expect results. In addition, a reflector 82 is arranged on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path, so that the optical axis angle of the excitation light can be adjusted by the objective lens 5. It can approach the optical axis angle. This means that the excitation light can be radiated from a position close to the top of the sample surface 202 (the limit that does not enter the observation field of view of the objective lens 5), so that the LED light source unit The difference between the shortest distance a and the longest distance b of the optical path from 81 to the sample 202 surface through the reflector 82 can be reduced. As a result, since the intensity of the excitation light is inversely proportional to the distance of the optical path, the difference in the intensity of the excitation light on the surface of the sample 202 can be reduced. The two surfaces can be excited efficiently and uniformly.
なお、 第 4の実施の形態についても、 第 2 の実施の形態の 変形例および第 3 の実施の形態で述べる よ う な試料をムラな く 均一の明る さの光で照明するための制御方法を採用する こ とができ る。  It should be noted that also in the fourth embodiment, a control method for illuminating a sample uniformly and uniformly with light as described in the modification of the second embodiment and the third embodiment. Can be adopted.
(第 1 の変形例)  (First modification)
第 4 の実施の形態では、 L E D光源ュニ ッ ト 8 1 から発す る光の光路上に反射部材と して反射板 8 2 を配置し、 光路の 光を反射させる よ う に したが、 こ のよ う な方法を用いれば、 L E D光源ユニ ッ ト 8 1 の配置の 自 由度が増すこ とから、 対 物レンズ 5 の周囲に多数の L E D光源ュニ ッ ト 8 1 を配置す る こ とができ る。  In the fourth embodiment, the reflection plate 82 is arranged as a reflection member on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path. If such a method is used, the degree of freedom in arranging the LED light source units 81 increases, so that a large number of LED light source units 81 are arranged around the objective lens 5. It can be.
図 1 6 は、 第 4 の実施の形態の第 1 の変形例に係る光検査 装置の概略構成を示す図で、 図 1 5 と 同一部分には、 同符号 を付してレヽる。 FIG. 16 is a diagram showing a schematic configuration of an optical inspection apparatus according to a first modification of the fourth embodiment. The same parts as those in FIG. The label is attached.
対物レンズ 5 の周囲には、 半導体光源手段と しての複数個 の L E D光源ユニ ッ ト 8 1 が多層 (図示例では 2 層) に配置 されている。 また、 これら L E D光源ユニ ッ ト 8 1 力 ら発す る光の光路上には、 各層の L E D光源ュニ ッ ト 8 1 に対応さ せて反射部材と して反射板 8 2 、 8 2 ' (図示例では 2層に 対応) が各別に配置されてレ、る。 反射板 8 2 、 8 2 'は、 各 層の L E D光源ユニ ッ ト 8 1 か らの光を反射させ、 試料台 1 上の試料槽 2 0 1 の試料 2 0 2 に対して励起光と して照射す る。  Around the objective lens 5, a plurality of LED light source units 81 as semiconductor light source means are arranged in multiple layers (two layers in the illustrated example). In addition, on the optical path of the light emitted from these LED light source units 81, reflecting plates 82, 82 '(corresponding to the LED light source units 81 of each layer) as reflecting members. (Corresponding to 2 layers in the example shown). The reflectors 82 and 82 'reflect light from the LED light source unit 81 of each layer and serve as excitation light for the sample 202 in the sample tank 201 on the sample stage 1. And irradiate.
この場合、 反射板 8 2 、 8 2 'のそれぞれの取付位置につ いても、 L E D光源ュニッ ト 8 1 からの光を反射して試料 2 0 2面に均一の明る さで照射させる と と もに、 照射される光 の入射角度に起因 して試料 2 0 2面で励起ムラが生じないよ う に、 さ らに、 一部または全面に立体部分を有する試料 2 0 2 に対しても影や励起ムラが生じないよ う に調整されている その他については、 図 1 5 と 同様である。  In this case, the light from the LED light source unit 81 is reflected to irradiate the sample 202 with uniform brightness even at the respective mounting positions of the reflectors 82 and 82 '. In addition, in order to prevent excitation unevenness from occurring on the sample 202 surface due to the incident angle of the irradiated light, the sample 202 having a three-dimensional portion on part or the entire surface is also shaded. Fig. 15 is the same as Fig. 15 for other adjustments so that no excitation unevenness occurs.
第 4 の実施の形態の第 1 の変形例によれば、 反射板 8 2、 8 2 'を用いて、 各層の光源ュニ ッ ト 8 1 か らの光を反射さ せる よ う に したので、 各層の L E D光源ュニ ッ ト 8 1 の配置 する位置の自 由度を增すこ とができ る。 そ して、 これら L E D光源ュ - ッ ト 8 1 の配置する位置の 自 由度が増すこ と によ り 、 第 4 の実施の形態の場合よ り さ らに多く の L E D光源ュ ニッ ト 8 1 を使用する こ と が可能と なる。 これによ り 、 試料 2 0 2 面を照射するのに必要な光量をよ り 簡単に得る こ とが でき る と と もに、 試料 2 0 2面を光量ムラ な く 照明する こ と ができ る。 According to the first modified example of the fourth embodiment, the light from the light source unit 81 of each layer is reflected by using the reflectors 82, 82 '. In addition, it is possible to determine the degree of freedom of the position where the LED light source unit 81 of each layer is arranged. Since the degree of freedom of the position where these LED light source units 81 are arranged is increased, more LED light source units 8 than in the fourth embodiment are provided. It becomes possible to use 1. This makes it easier to obtain the amount of light required to irradiate the sample 202 surface. In addition, it is possible to illuminate the sample 202 surface without unevenness in light quantity.
また、 L E D光源ュニッ ト 8 1 の数を大幅に増やすこ とが でき るので、 これら L E D光源ュニ ッ ト 8 1 を複数の組に分 けて、 それぞれの組ごと に発光波長のスぺク トル特性の異な る L E D光源を用いる こ と によ り 、 第 3 の実施の形態で述べ たと 同様に複数種類の蛍光色素を励起し、 蛍光信号を検出で き る よ う にする こ と も可能と なる。  In addition, since the number of LED light source units 81 can be greatly increased, these LED light source units 81 are divided into a plurality of sets, and the emission wavelength spectrum is increased for each set. By using LED light sources with different torque characteristics, it is possible to excite a plurality of types of fluorescent dyes and detect fluorescent signals in the same manner as described in the third embodiment. And
(第 2 の変形例)  (Second modification)
第 4 の実施の形態では、 L E D光源ュニ ッ ト 8 1 から発す る光の光路上に反射部材と して反射板 8 2 を配置 し、 光路の 光を反射させる よ う に したが、 反射部材と してダイ ク ロ イ ツ ク ミ ラーを用いる こ とができ る。  In the fourth embodiment, the reflection plate 82 is disposed as a reflection member on the optical path of the light emitted from the LED light source unit 81 to reflect the light in the optical path. A die crack mirror can be used as a member.
図 1 7 は、 第 2 の変形例の概略構成を示す図で、 図 1 5 と 同一部分には、 同符号を付している。  FIG. 17 is a diagram showing a schematic configuration of the second modification, and the same parts as those in FIG. 15 are denoted by the same reference numerals.
L E D光源ュニッ ト 8 1 は、 筒状の L E D光源ホルダー 8 1 0 1 の内部に配置された L E D光源 8 1 0 2 を有している L E D光源ホルダー 8 1 0 1 の内部の L E D光源 8 1 0 2 か ら発する光の光路上には、 拡散板 8 1 0 4 、 集光レンズ 8 1 0 5 が配置され、 上述 したバ ン ドパス フ ィ ノレタ 8 1 0 3 が省 略されている。  The LED light source unit 8 1 has an LED light source 8 1 0 2 disposed inside a cylindrical LED light source holder 8 1 0 1 and an LED light source 8 1 0 inside the LED light source holder 8 1 0 1. A diffusing plate 8104 and a condensing lens 8105 are arranged on the optical path of the light emitted from 2, and the above-described bandpass finoleta 8103 is omitted.
L E D光源ュニッ ト 8 1 から発する光の光路上には、 反射 部材と してダイ ク ロイ ツク ミ ラー 8 3 が配置されている。 ダ イ ク 口イ ツ ク ミ ラー 8 3 は、 L E D光源ュニ ッ ト 8 1 の L E D光源 8 1 0 2 から発する光の波長域近傍を主に反射させる よ う な特性を有する。 また、 ダイ ク ロイ ツ ク ミ ラ 8 3 は、 L E D光源ユニ ッ ト 8 1 からの光を反射し、 試料台 1 上の試 料槽 2 0 1 の試料 2 0 2 に対 して励起光と して照射する。 こ の場合も、 対物レ ンズ 5 の光軸に対して励起光の光軸がなす 角度を小さ く して、 励起光の光軸角度を対物レ ンズの光軸角 度に近付ける。 On the optical path of the light emitted from the LED light source unit 81, a die-cloth mirror 83 is arranged as a reflecting member. The dichroic mirror 8 3 mainly reflects near the wavelength range of the light emitted from the LED light source 8 102 of the LED light source unit 81. It has such characteristics. The die-cloth mirror 83 reflects the light from the LED light source unit 81 and applies excitation light to the sample 202 in the sample tank 201 on the sample stage 1. And irradiate. Also in this case, the angle between the optical axis of the excitation light and the optical axis of the objective lens 5 is reduced so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens.
その他については、 図 1 5 と 同様である。  Others are the same as in Fig. 15.
こ の よ う に反射部材と して反射板に代えてダイ ク ロイ ック ミ ラー 8 3 を用いる よ う に しても、 第 4の実施の形態と 同様 な効果を期待する こ とができ る。 さ らに、 ダイ ク ロイ ツク ミ ラー 8 3 と して、 L E D光源ユニ ッ ト 8 1 の L E D光源 8 1 0 2 から発する光の波長域近傍を主に反射させる よ う な特性 を有する も のを用いる こ と によ り 、 L E D光源ュニ ッ ト 8 1 に内蔵されていたバ ン ドパス フ イ ノレタ を省略する こ と ができ る。 これによ り L E D光源ュニ ッ ト 8 1 の コ ス ト を引き下げ る こ とができ、 且つ小型化も実現でき る と い う効果がある。 (第 5 の実施の形態)  In this way, the same effect as that of the fourth embodiment can be expected even if the die mirror mirror 83 is used instead of the reflection plate as the reflection member. You. Furthermore, the die-cloth mirror 83 has a characteristic of mainly reflecting near the wavelength range of light emitted from the LED light source 8102 of the LED light source unit 81. By using the LED, it is possible to omit the bandpass finolators built in the LED light source unit 81. As a result, the cost of the LED light source unit 81 can be reduced and the size can be reduced. (Fifth embodiment)
第 5 の実施の形態は、 L E D光源ユニッ トから発する光の 光路上に導光部材を配置し、 光路を曲げる こ とで、 励起光の 光軸角度を、 よ り 対物レ ンズの光軸角度に近付ける よ う に し た実施の形態である。  In the fifth embodiment, the light guide member is arranged on the optical path of the light emitted from the LED light source unit, and the optical path is bent, so that the optical axis angle of the excitation light is increased and the optical axis angle of the objective lens is increased. This is an embodiment in which the distance is approached.
図 1 8 は、 第 5 の実施の形態の概略構成を示すもので、 図 1 および図 1 5 と同一部分には、 同符号を付している。  FIG. 18 shows a schematic configuration of the fifth embodiment, and the same parts as those in FIGS. 1 and 15 are denoted by the same reference numerals.
この場合、 対物レ ンズ 5 の周囲には、 半導体光源手段と し ての複数 (図示例では 4個、 う ち 1 個は図示せず) の L E D 光源ュニ ッ ト 8 1 が配置されている。 In this case, around the objective lens 5, a plurality of LEDs (four in the illustrated example, one of which is not shown) as semiconductor light source means are provided. The light source unit 81 is arranged.
L E D光源ュニッ ト 8 1 は、 筒状の L E D光源ホルダー 8 1 0 1 を有 している。 L E D光源ホルダー 8 1 0 1 は、 その 内部に配置された L E D光源 8 1 0 2 を有している。 また、 L E D光源ホノレダー 8 1 0 1 の内部の L E D光源 8 1 0 2 か ら発する光の光路上には、 バ ン ドパス フ ィ ルタ 8 1 0 3 、 拡 散板 8 1 0 4、 集光レ ンズ 8 1 0 5 が配置されてい る 。 こ こ で、 ノ ン ドパス フ ィ ルタ 8 1 0 3 は、 L E D光源 8 1 0 2 か ら発する光の波長域近傍を主に通過させる。  The LED light source unit 81 has a cylindrical LED light source holder 8101. The LED light source holder 8101 has an LED light source 8102 disposed therein. In addition, on the optical path of the light emitted from the LED light source 8102 inside the LED light source HONOLEDA 8101, a bandpass filter 8103, a diffusion plate 8104, 810 5 are arranged. Here, the non-pass filter 8103 mainly transmits light near the wavelength range of the light emitted from the LED light source 8102.
これら L E D光源ュニッ ト 8 1 から発する光の光路上には 導光部材と して、 ォプチカ ルフ ァイバ 8 4 の光入射端 8 4 a が各別に配置されている。 ォプチカルフ ァ イ バ 8 4 は、 L E D光源ュニ ッ ト 8 1 からの光の光路を 自在に曲げる こ と がで き る。 これによ り 、 光出射端 8 4 b からの光を試料台 1 上の 試料槽 2 0 1 の試料 2 0 2 に対 して励起光と して照射し、 同 時に、 対物 レ ンズ 5 の光軸に対 して励起光の光軸がなす角度 を小さ く して、 励起光の光軸角度を対物レ ンズの光軸角度に 近付ける こ と ができ る。  On the optical path of the light emitted from the LED light source unit 81, a light incident end 84a of an optical fiber 84 is arranged separately as a light guide member. The optical fiber 84 can bend the optical path of the light from the LED light source unit 81 freely. As a result, the light from the light emitting end 84b is irradiated as the excitation light onto the sample 202 in the sample tank 201 on the sample stage 1, and at the same time, the light from the objective lens 5 The angle formed by the optical axis of the excitation light with respect to the optical axis can be reduced so that the optical axis angle of the excitation light approaches the optical axis angle of the objective lens.
この場合、 これらォプチカルフ ァイバ 8 4 の光出射端 8 4 b の位置は、 出射光を試料 2 0 2 面に均一の明る さで照射さ せる と と もに、 照射される光の入射角度に起因 して試料 2 0 2面で励起ムラが生じないよ う に、 さ らに、 一部または全面 に立体部分を有する試料 2 0 2 に対しても影や励起ムラが生 じないよ う に調整されている。  In this case, the position of the light emitting end 84b of these optical fibers 84 is caused by the fact that the emitted light is applied to the sample 202 surface with uniform brightness and the incident angle of the applied light. Adjustment so that excitation unevenness does not occur on the sample 202 surface, and also so that shadows and excitation unevenness do not occur on the sample 202 having a three-dimensional part on all or part of the surface. Have been.
その他については、 図 1 およぴ図 1 5 と 同様である。 従って、 第 5 の実施の形態においても、 第 1 の実施の形態 と 同様な効果を期待する こ とができ る。 さ らに、 L E D光源 ュニ ッ ト 8 1 から発する光の光路上に配置されたォプチカル フ ァ イ バ 8 4で光路を曲げる よ う に したので、 励起光の光軸 角度を対物レ ンズの光軸角度に近付ける こ と ができ る。 これ によ り 、 第 4 の実施の形態と 同様に、 試料 2 0 2 面上での励 起光の強度差を小さ く でき る こ と にな り 、 試料 2 0 2 面を効 率的に、 均一に励起する こ とができ る。 Others are the same as in FIGS. 1 and 15. Therefore, in the fifth embodiment, the same effects as in the first embodiment can be expected. Further, since the optical path is bent by the optical fiber 84 arranged on the optical path of the light emitted from the LED light source unit 81, the optical axis angle of the excitation light is adjusted by the objective lens. It can approach the optical axis angle. As a result, similarly to the fourth embodiment, the difference in the intensity of the excitation light on the sample 202 surface can be reduced, and the sample 202 surface can be efficiently used. It can be excited uniformly.
なお、 本実施の形態では、 導光部材と して、 ォプチカ ルフ アイバ 8 4 を適用 した例を述べたが、 例えばガラ ス棒ゃァク リ ル材を成形加工したよ う なも のを適用する こ と も でき る。 なお、 第 5 の実施の形態についても、 第 2 の実施の形態の 変形例および第 3 の実施の形態で述べる よ う な試料をムラな く 均一の明る さ の光で照明するための制御方法を適用する こ とができる。  In the present embodiment, an example in which the optical guide member 84 is used as the light guide member has been described. However, for example, a material obtained by molding glass rod-shaped acrylic material is applied. You can also do it. It should be noted that also in the fifth embodiment, a control method for illuminating a sample uniformly and uniformly with light as described in the modification of the second embodiment and the third embodiment. Can be applied.
(変形例)  (Modification)
第 5 の実施の形態では、 L E D光源ユニ ッ ト 8 1 から発す る光の光路上に導光部材と して、 ォプチカルフ ァ イバ 8 4 を 配置 し、 光路を曲げる よ う に したが、 このよ う な方法を用い れば、 L E D光源ュニ ッ ト 8 1 の配置の 自 由度が増すこ とか ら、 対物レ ンズ 5 の周囲に多数の L E D光源ユニ ッ ト 8 1 を 配置する こ と ができ る。  In the fifth embodiment, the optical fiber 84 is arranged as a light guide member on the optical path of the light emitted from the LED light source unit 81, and the optical path is bent. If such a method is used, the degree of freedom in arranging the LED light source units 81 increases, so that it is possible to arrange a large number of LED light source units 81 around the objective lens 5. it can.
図 1 9 は、 第 5 の実施の形態の変形例に係る光検査装置の 概略構成を示す図で、 図 1 8 と 同一部分には、 同符号を付し ている。 図 1 9 において、 対物レンズ 5 の周囲には、 半導体光源手 段と しての複数個の L E D光源ュニ ッ ト 8 1 が多重 (図示例 では 2重) に配置されている。 また、 これら L E D光源ュニ ッ ト 8 1 から発する光の光路上には、 導光部材と して、 ォプ チカノレフ ァ イ ノ 8 4 の光入射端 8 4 a が各別に配置されてい る。 ォプチカルフ ァイ ノ 8 4 は、 L E D光源ユニッ ト 8 1 か らの光の光路を自在に曲げる こ と を可能に したもので、 光出 射端 8 4 b からの光を試料台 1 上の試料槽 2 0 1 の試料 2 0 2 に対して励起光と して照射する。 FIG. 19 is a diagram showing a schematic configuration of an optical inspection device according to a modification of the fifth embodiment, and the same parts as those in FIG. 18 are denoted by the same reference numerals. In FIG. 19, around the objective lens 5, a plurality (two in the illustrated example) of a plurality of LED light source units 81 as semiconductor light source means are arranged. In addition, on the optical path of the light emitted from the LED light source unit 81, a light incident end 84a of an optical canopy refino 84 as a light guide member is separately arranged. The optical fiber 84 allows the light path of the light from the LED light source unit 81 to be freely bent, and the light from the light emitting end 84b is transferred to the sample on the sample stage 1. The sample 202 in the tank 201 is irradiated as excitation light.
本変形例の場合も、 ォプチカルファイバ 8 4 の光出射端 8 4 b の位置は、 出射光を試料 2 0 2 面に均一の明る さで照射 させる と と もに、 照射される光の入射角度に起因 して試料 2 0 2 面で励起ムラが生じないよ う に、 さ らに、 一部または全 面に立体部分を有する試料 2 0 2 に対しても影や励起ムラが 生じないよ う に調整されている。  Also in the case of this modified example, the position of the light emitting end 84b of the optical fiber 84 is such that the emitted light is applied to the surface of the sample 202 with uniform brightness, and the light to be applied is In order to prevent excitation unevenness from occurring on the sample 202 surface due to the incident angle, no shadow or excitation unevenness occurs on the sample 202 having a three-dimensional part on all or part of the surface. It has been adjusted accordingly.
その他については、 図 1 8 と 同様である。  Others are the same as in Fig. 18.
本変形例では、 ォプチカルフ ァイ ノ 8 4 を用いる こ と で、 光源ュニ ッ ト 8 1 からの光の光路を曲げる よ う に したので、 各 L E D光源ュニッ ト 8 1 の配置する位置の自 由度.を増すこ とができ る。 L E D光源ュニッ ト 8 1 の配置する位置の 自 由 度が増すこ と によ り 、 第 5 の実施の形態の場合よ り さ ら に多 く の L E D光源ュニ ッ ト 8 1 を使用する こ と が可能と なる。 これによ り 、 試料 2 0 2面を照射するのに必要な光量を簡単 に得る こ と ができ る と と もに、 試料 2 0 2 面を光量ムラ なく 照明する こ とができ る。 また、 L E D光源ュニ ッ ト 8 1 の数を大幅に増やすこ と が でき るので、 L E D光源ユニッ ト 8 1 を複数の組に分けて、 それぞれの組ごと に発光波長のスぺク トル特性の異なる L E D光源を用いる こ と によ り 、 第 3 の実施の形態と 同様に複数 種類の蛍光色素を励起し、 蛍光信号を検出でき る よ う にする こ と も可能と なる。 In this modification, the optical path of the light from the light source unit 81 is bent by using the optical fin 84, so that the position of each LED light source unit 81 is automatically determined. The degree of freedom can be increased. By increasing the degree of freedom in the location of the LED light source units 81, it is possible to use more LED light source units 81 than in the fifth embodiment. And are possible. This makes it possible to easily obtain the amount of light required to irradiate the sample 202 surface, and to illuminate the sample 202 surface without unevenness in the light amount. In addition, since the number of LED light source units 81 can be greatly increased, the LED light source units 81 are divided into a plurality of sets, and the spectral characteristics of the emission wavelength are set for each set. By using different LED light sources, it is also possible to excite a plurality of types of fluorescent dyes and detect fluorescent signals as in the third embodiment.
なお、 本変形例でも、 導光部材と して、 ォプチカルフアイ バ 8 4 を適用 した例を述べたが、 例えばガラス棒ゃァク リ ノレ 材を成形加工したよ う なものを適用する こ とができ る。  In this modification, an example in which the optical fiber 84 is used as the light guide member has been described. However, for example, a material obtained by molding a glass rod material may be used. it can.
本発明は、 上記実施の形態に限定される も のでなく 、 実施 段階では、 その要旨を変更 しない範囲で種々変形する こ と が 可能である。 例えば、 上述 した各実施の形態において適用す る試料には、 D N Aマイ ク ロア レイ の一例に限定されず、 い わゆる D N Aマイ ク ロ ア レイ と呼ばれる反応容器の全てに適 用可能である。 また、 D N Aに限らず、 それ以外の種々 の生 物学的材料を扱 う検查ゃ測定に広く 適用可能である。  The present invention is not limited to the above-described embodiment, and can be variously modified in the implementation stage without departing from the spirit of the invention. For example, the sample applied in each of the above-described embodiments is not limited to an example of a DNA microarray, but can be applied to all reaction vessels called so-called DNA microarrays. Further, the present invention is widely applicable not only to DNA but also to detection and measurement dealing with various other biological materials.
さ らに、 上記実施の形態には、 種々 の段階の発明が含まれ てお り 、 開示されている複数の構成要件における適宜な組み 合わせによ り種々 の発明が抽出でき る。 例えば、 実施の形態 に示されている全構成要件から幾つかの構成要件が削除され ても、 発明が解決しょ う とする課題の欄で述べた課題を解決 でき、 発明の効果の欄で述べられている効果が得られる場合 には、 こ の構成要件が削除された構成が発明 と して抽出でき る。  Furthermore, the above-described embodiment includes various stages of the invention, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some components are deleted from all the components shown in the embodiments, the problem described in the section of the problem to be solved by the invention can be solved, and the problem described in the section of the effect of the invention can be solved. If the effect obtained is obtained, a configuration from which this component is deleted can be extracted as an invention.
本発明の実施の形態によれば、 試料の標識した物質に光を 照射するための光路と集光レ ンズを有する蛍光検出手段の光 路が分離されているの で、 ダイ ク ロイ ック ミ ラーなどの光を 減衰させる光学素子を省略でき、 検出 される光強度の損失を 最小限に抑える こ と ができ る。 According to the embodiment of the present invention, light is applied to the labeled substance of the sample. Since the optical path for irradiation and the optical path of the fluorescence detecting means having the focusing lens are separated, optical elements such as dichroic mirrors that attenuate light can be omitted, and the detected light intensity Loss can be minimized.
また、 本発明の実施の形態によれば、 半導体光源手段を集 光レ ンズの周囲に沿って複数個配置し、 これら よ り 同時に光 を照射する よ う に したので、 標識物質に光を照射するのに十 分な強度の光を効率よ く 得る こ と ができ る。  Further, according to the embodiment of the present invention, a plurality of semiconductor light source means are arranged along the periphery of the converging lens and light is irradiated simultaneously from these, so that the labeling substance is irradiated with light. It is possible to efficiently obtain light of sufficient intensity to carry out.
さちに、 本発明の実施の形態によれば、 半導体光源手段か ら発せられる光の方向および集光レ ンズの光軸に対する傾き 方向をそれぞれ調整可能と しているので、 試料の所望する特 定箇所に光を集光させる こ と ができ、 標識物質への効率的な 光の照射を行う こ と ができる。  According to the embodiment of the present invention, the direction of the light emitted from the semiconductor light source means and the direction of inclination of the condenser lens with respect to the optical axis can be adjusted, respectively, so that the desired specific Light can be condensed at the location, and efficient irradiation of the labeling substance with light can be performed.
さ らにまた、 本発明の実施の形態によれば、 試料近傍で得 られる光強度に基づいて半導体光源手段への駆動電流を各別 に制御でき るので、 半導体光源手段からの光を同一の明る さ に揃える こ と ができ、 試料を均一の明る さで照明する こ とが でき る。 '  Furthermore, according to the embodiment of the present invention, since the drive current to the semiconductor light source means can be individually controlled based on the light intensity obtained near the sample, the light from the semiconductor light source means can be controlled by the same light. Brightness can be adjusted, and the sample can be illuminated with uniform brightness. '
以上述べたよ う に本発明の実施の形態によれば、 十分な光 を効率よ く 照射でき、 信頼性の高い光検出を行 う こ と ができ る光検出装置を提供する こ とができ る。  As described above, according to the embodiment of the present invention, it is possible to provide a photodetector capable of efficiently irradiating sufficient light and performing highly reliable photodetection. .
産業上の利用可能性 Industrial applicability
本発明は、 十分な光を効率よ く 照射でき、 信頼性の高い光 検出を行 う こ と ができ る光検出装置に関する。  The present invention relates to a photodetection device that can efficiently irradiate sufficient light and can perform highly reliable photodetection.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光検出装置は、  1. The photodetector is
試料の標識した物質に光を照射するため の光を発する半導 体光源手段と、  A semiconductor light source means for emitting light for irradiating the sample with a labeled substance with light,
前記照射光によ り 標識物質に光が照射されて発せられた光 を集光するため の集光レ ンズ と 、 前記照射光によ り標識物質 に光が照射されて発せられた光を選択的に透過するフ ィ ルタ と、 前記集光レ ンズを通過 した光を検出する光検出器と を有 する光検出手段 と、 を具備 し、  A condensing lens for condensing the light emitted by irradiating the labeling substance with light by the irradiation light, and a light emitted by irradiating the labeling substance with light by the irradiation light; And a photodetector having a filter that transmits the light, and a photodetector that detects light that has passed through the focusing lens.
前記照射光の光路が前記光検出手段の光路と は異なる光路 である。  The optical path of the irradiation light is an optical path different from the optical path of the light detecting means.
2 . 請求項 1 記載の光検出装置において、 前記半導体光 源手段は、 照射光を発する L E D光源と と もに、 L E D光源 から発せられる光の光路上に配置される前記 L E D光源から の光の波長を選択的に透過させる フ ィ ルタ と拡散板と レ ンズ と の少な く と も 1 つを有する。  2. The photodetector according to claim 1, wherein the semiconductor light source means includes an LED light source that emits irradiation light and a light source from the LED light source that is arranged on an optical path of light emitted from the LED light source. It has at least one of a filter that selectively transmits wavelengths, a diffuser, and a lens.
3 . 請求項 1 又は請求項 2 に記載の光検出装置において 前記集光レ ンズの周囲に配置され、 前記半導体光源手段を 前記集光レ ンズの周囲に保持する と と も に、 前記半導体光源 手段から発せられる光が前記試料に照射される よ う に前記集 光レ ンズの光軸に対 して前記半導体光源手段を所定の角度傾 けて保持する半導体光源手段保持手段と、  3. The photodetector according to claim 1 or 2, wherein the semiconductor light source is disposed around the focusing lens, and the semiconductor light source is held around the focusing lens. Semiconductor light source means holding means for holding the semiconductor light source means at a predetermined angle with respect to the optical axis of the focusing lens so that light emitted from the means is irradiated on the sample;
前記半導体光源保持手段の前記半導体光源手段の保持部位 に設けられ、 前記半導体光源手段から発せられる光の方向お よび前記集光レ ンズの光軸に対する傾き方向の少なく と も一' 方を調整にする位置調整手段と 、 をさ らに有する。 The semiconductor light source holding means is provided at a holding portion of the semiconductor light source means, and at least one of a direction of light emitted from the semiconductor light source means and an inclination direction of the condenser lens with respect to an optical axis is provided. And a position adjusting means for adjusting the direction.
4 . 請求項 1 または請求項 2 に記載の光検出装置におい て、 前記半導体光源手段は、 前記集光レンズの周囲に沿って 配置された複数の半導体光源ュニ ッ ト を有する。  4. In the photodetector according to claim 1 or 2, the semiconductor light source means has a plurality of semiconductor light source units arranged along the periphery of the condenser lens.
5 . 請求項 4記載の光検出装置において、 前記複数の半 導体光源ュニ ッ ト は、 略同一の発光波長のスぺク トル特性を 有する。  5. The photodetector according to claim 4, wherein the plurality of semiconductor light source units have spectral characteristics of substantially the same emission wavelength.
6 . 請求項 4記載の光検出装置において、 前記複数の半 導体光源ュニ ッ ト は、 異なる発光波長のスぺク トル特性を有 する。  6. The photodetector according to claim 4, wherein the plurality of semiconductor light source units have spectral characteristics of different emission wavelengths.
7 . 請求項 4乃至請求項 6 のいずれか 1 項に記載の光検 出装置において、  7. The light detection device according to any one of claims 4 to 6, wherein
前記集光レ ンズの周囲に配置され、 前記複数の半導体光源 ュニ ッ ト を前記集光 レ ンズの周囲に保持する と と もに、 前記 複数の半導体光源ュニ ッ トから発せられる光が前記試料に照 射される よ う に前記集光レ ンズの光軸に対して前記複数の半 導体光源ュニ ッ ト を所定の角度傾けて保持する半導体光源手 段保持手段と 、  The plurality of semiconductor light source units are arranged around the condenser lens, and the plurality of semiconductor light source units are held around the condenser lens, and light emitted from the plurality of semiconductor light source units is emitted from the plurality of semiconductor light source units. Semiconductor light source means holding means for holding the plurality of semiconductor light source units at a predetermined angle with respect to the optical axis of the focusing lens so as to irradiate the sample;
前記半導体光源保持手段の前記複数の半導体光源ュニ ッ ト の保持部位に設け られ、 前記複数の半導体光源ュニッ トから 発せられる光の方向および前記集光レ ンズの光軸に対する傾 き方向の少な く と も一方を調整にする位置調整手段と、 をさ らに有する。  The semiconductor light source holding means is provided at a holding portion of the plurality of semiconductor light source units, and has a small direction of light emitted from the plurality of semiconductor light source units and a small inclination direction with respect to an optical axis of the focusing lens. In addition, it further has a position adjusting means for adjusting one of them.
8 . 請求項 4乃至請求項 7 のいずれか 1 項に記載の光検 出装置において、 前記半導体光源手段は、 前記半導体光源手 段から発せられる光の中心軸が前記試料の周縁を通 り 、 且つ 前記試料の略中心軸上の垂直上方または下方の空間位置の 1 点で交差する よ う に配置される。 8. The photodetector according to any one of claims 4 to 7, wherein the semiconductor light source means comprises: The central axis of the light emitted from the step is arranged so as to pass through the periphery of the sample and intersect at one point of a vertical position above or below the substantially central axis of the sample.
9 . 請求項 4 乃至請求項 7 のいずれか 1 項に記載の光検 出装置において、 前記半導体光源手段は、 前記半導体光源手 段から発せられる光の中心軸が前記試料の中心軸上からずれ た位置で、 前記試料の垂直上方または下方の空間位置の 1 点 で交差する よ う に配置される。  9. The photodetector according to any one of claims 4 to 7, wherein the semiconductor light source means is configured such that a center axis of light emitted from the semiconductor light source means is shifted from a center axis of the sample. At a point above the space position vertically above or below the sample.
1 0 . 請求項 1 または請求項 2 に記載の光検出装置におい て、 前記複数の半導体光源ュニ ッ トから発せられる光の光路 上に配置され、 前記光路の光を反射させ前記試料に光を照射 するための反射部材を更に具備する。  10. The photodetector according to claim 1, wherein the photodetector is disposed on an optical path of light emitted from the plurality of semiconductor light source units, reflects light in the optical path, and emits light to the sample. And a reflecting member for irradiating light.
1 1 . 請求項 1 または請求項 2 に記載の光検出装置におい て、 前記半導体光源手段よ り発する光の波長域近傍を反射さ せる特性を有し、 且つ前記半導体光源手段から発せられる光 の光路上に配置され、 該光路の光を反射させ前記試料に光を 照射するためのダイ ク ロイ ック ミ ラーを更に具備する。  11. The photodetector according to claim 1 or 2, wherein the photodetector has a characteristic of reflecting near a wavelength range of light emitted from the semiconductor light source means, and detects light emitted from the semiconductor light source means. The apparatus further includes a dichroic mirror disposed on the optical path for reflecting light in the optical path and irradiating the sample with light.
1 2 . 請求項 1 または請求項 2 に記載の光検出装置におい て、 前記半導体光源手段から発せられる光の光路に配置され 該光路を曲げて該光路の光を前記試料に光を照射するための 導光部材を更に具備する。  12. The photodetector according to claim 1 or 2, wherein the light source is arranged in an optical path of light emitted from the semiconductor light source means, and the optical path is bent to irradiate the sample with light in the optical path. The light guide member is further provided.
1 3 . 請求項 1 0 乃至請求項 1 2 のいずれか 1 項に記載の 光検出装置において、 前記半導体光源手段は、 発光波長のス ぺク トル特性が異なる ものからなる。  13. The photodetector according to any one of claims 10 to 12, wherein the semiconductor light source means has a different spectral characteristic of an emission wavelength.
1 4 . 請求項 1 乃至請求項 1 3 のいずれか 1 項に記載の光 検出装置において、 14. The light according to any one of claims 1 to 13. In the detection device,
前記試料への照射する光の強度を前記試料近傍で検出する 光強度検出手段と 、  Light intensity detection means for detecting the intensity of light applied to the sample in the vicinity of the sample;
前記半導体光源手段を駆動する駆動電流を供給する駆動手 段と を更に具備し、  A driving means for supplying a driving current for driving the semiconductor light source means,
前記駆動手段は、 光強度検出手段で検出された光の強度に 基づいて前記半導体光源手段への駆動電流を可変制御する。  The driving unit variably controls a driving current to the semiconductor light source unit based on the intensity of light detected by the light intensity detecting unit.
1 5 . 請求項 4 乃至請求項 9 のいずれか 1 項に記載の光検 出装置において、 15. The photodetector according to any one of claims 4 to 9, wherein:
前記試料への照射する光の強度を前記試料近傍で検出する 光強度検出手段と、  Light intensity detecting means for detecting the intensity of light applied to the sample in the vicinity of the sample;
前記半導体光源手段を駆動する駆動電流を供給する駆動手 段を更に具備 し、  A driving means for supplying a driving current for driving the semiconductor light source means,
前記駆動手段は、 光強度検出手段で検出された光の強度に 基づいて前記半導体光源手段への駆動電流を個々 に制御可能 に した。  The driving means is capable of individually controlling a driving current to the semiconductor light source means based on the intensity of light detected by the light intensity detecting means.
1 6 . 光検出装置は、  1 6. The photodetector is
試料の標識した物質に光を照射するための半導体光源手段 と、 前記半導体光源手段は、 半導体発光素子と、 光学素子と を含み、  A semiconductor light source means for irradiating light to the labeled substance of the sample, the semiconductor light source means includes: a semiconductor light emitting element; and an optical element,
前記照射光によ り 標識物質に光が照射されて発せられた光 を集光するための集光レ ンズ と 、 前記照射光によ り標識物質 に光が照射されて発せられた光を選択的に透過するフ ィ ルタ と 、 前記集光 レ ンズを通過 した光を検出する光検出器と を有 する光検出手段と、 を具備する。 A condenser lens for condensing light emitted by irradiating the labeling substance with the light by the irradiation light; and light emitted by irradiating the labeling substance with light by the irradiation light. And a photodetector having a photodetector that detects light that has passed through the condenser lens.
1 7 . 請求項 1 6 に記載の光検出装置において、 前記光学 素子は、 帯域フ ィ ルタ 、 拡散板、 集光レ ンズの少な く と も 1 つを含む。 17. The photodetector according to claim 16, wherein the optical element includes at least one of a band filter, a diffuser, and a condenser lens.
PCT/JP2004/000318 2003-01-16 2004-01-16 Optical sensor WO2004063731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005508020A JPWO2004063731A1 (en) 2003-01-16 2004-01-16 Photodetector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003008375 2003-01-16
JP2003-008375 2003-01-16
JP2003118344 2003-04-23
JP2003-118344 2003-04-23

Publications (1)

Publication Number Publication Date
WO2004063731A1 true WO2004063731A1 (en) 2004-07-29

Family

ID=32716411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000318 WO2004063731A1 (en) 2003-01-16 2004-01-16 Optical sensor

Country Status (2)

Country Link
JP (1) JPWO2004063731A1 (en)
WO (1) WO2004063731A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1774295A1 (en) * 2004-08-02 2007-04-18 Inodiag Device for reading plates bearing biological reaction support microdepositions
JP2013089167A (en) * 2011-10-21 2013-05-13 Toppan Printing Co Ltd Identification device
WO2013137247A1 (en) * 2012-03-12 2013-09-19 三菱レイヨン株式会社 Fluorescence detection device and fluorescence detection method
JP2013544490A (en) * 2010-08-31 2013-12-19 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド Optical system for detection of high resolution thermal melting.
JP2017173820A (en) * 2016-03-21 2017-09-28 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Light sheet microscope and method for operating same
WO2018069358A1 (en) * 2016-10-11 2018-04-19 Cork Institute Of Technology A fluorescence sensing system
EP3330697A1 (en) * 2016-11-30 2018-06-06 Bayer Aktiengesellschaft Device for determining the effect of active agents on nematodes and other organisms in aqueous assays
JP2019002933A (en) * 2009-09-21 2019-01-10 アコーニ バイオシステムズ インコーポレイテッド Optical system
JP2019505794A (en) * 2016-01-13 2019-02-28 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Portable device for detecting explosives, including a device for generating and measuring light emission of an indicator
US10363558B2 (en) 2010-08-31 2019-07-30 Canon U.S. Life Sciences, Inc. System and method for serial processing of multiple nucleic acid assays
CN113167462A (en) * 2019-07-19 2021-07-23 高科技器械私人有限公司 Optical system and method for irradiating a sample plane
KR20220005179A (en) * 2020-07-06 2022-01-13 한림대학교 산학협력단 Multi-channel fluorescence detection device using stained glass
JP2022088444A (en) * 2017-03-07 2022-06-14 イルミナ インコーポレイテッド Single light source, and two-optical channel sequence determination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580784A (en) * 1993-09-29 1996-12-03 Becton Dickinson And Company Data collection apparatus for use with chemical sensors
JPH1172435A (en) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd Apparatus for reading fluorescent image
JPH11326210A (en) * 1998-05-14 1999-11-26 Nec Corp Chlorophyll fluorescence measuring instrument
WO2001077648A1 (en) * 2000-04-11 2001-10-18 Chemometec A/S Method and apparatus for detecting fluorescence of a sample
JP2002350732A (en) * 2001-05-25 2002-12-04 Nikon Corp Fluorescent observation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580784A (en) * 1993-09-29 1996-12-03 Becton Dickinson And Company Data collection apparatus for use with chemical sensors
JPH1172435A (en) * 1997-08-29 1999-03-16 Fuji Photo Film Co Ltd Apparatus for reading fluorescent image
JPH11326210A (en) * 1998-05-14 1999-11-26 Nec Corp Chlorophyll fluorescence measuring instrument
WO2001077648A1 (en) * 2000-04-11 2001-10-18 Chemometec A/S Method and apparatus for detecting fluorescence of a sample
JP2002350732A (en) * 2001-05-25 2002-12-04 Nikon Corp Fluorescent observation apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508537A (en) * 2004-08-02 2008-03-21 イノディアグ Biological reaction support device for reading plates supporting micro-adhesives
EP1774295A1 (en) * 2004-08-02 2007-04-18 Inodiag Device for reading plates bearing biological reaction support microdepositions
JP2019002933A (en) * 2009-09-21 2019-01-10 アコーニ バイオシステムズ インコーポレイテッド Optical system
US10363558B2 (en) 2010-08-31 2019-07-30 Canon U.S. Life Sciences, Inc. System and method for serial processing of multiple nucleic acid assays
JP2013544490A (en) * 2010-08-31 2013-12-19 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッド Optical system for detection of high resolution thermal melting.
US10266873B2 (en) 2010-08-31 2019-04-23 Canon U.S. Life Sciences, Inc. Optical system for high resolution thermal melt detection
JP2013089167A (en) * 2011-10-21 2013-05-13 Toppan Printing Co Ltd Identification device
JPWO2013137247A1 (en) * 2012-03-12 2015-08-03 三菱レイヨン株式会社 Fluorescence detection apparatus and fluorescence detection method
WO2013137247A1 (en) * 2012-03-12 2013-09-19 三菱レイヨン株式会社 Fluorescence detection device and fluorescence detection method
CN104204778A (en) * 2012-03-12 2014-12-10 三菱丽阳株式会社 Fluorescence detection device and fluorescence detection method
US9395303B2 (en) 2012-03-12 2016-07-19 Mitsubishi Rayon Co., Ltd. Fluorescence detection device and fluorescence detection method
JP2019505794A (en) * 2016-01-13 2019-02-28 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Portable device for detecting explosives, including a device for generating and measuring light emission of an indicator
JP2017173820A (en) * 2016-03-21 2017-09-28 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Light sheet microscope and method for operating same
CN107526156A (en) * 2016-03-21 2017-12-29 卡尔蔡司显微镜有限责任公司 Mating plate microscope and for running the microscopical method of mating plate
WO2018069358A1 (en) * 2016-10-11 2018-04-19 Cork Institute Of Technology A fluorescence sensing system
US10859495B2 (en) 2016-10-11 2020-12-08 Cork Institute Of Technology Fluorescence sensing system
JP2020501138A (en) * 2016-11-30 2020-01-16 バイエル、アクチエンゲゼルシャフトBayer Aktiengesellschaft Apparatus for demonstrating the effect of active ingredients on nematodes and other organisms in aqueous tests
EP3330697A1 (en) * 2016-11-30 2018-06-06 Bayer Aktiengesellschaft Device for determining the effect of active agents on nematodes and other organisms in aqueous assays
CN109997027A (en) * 2016-11-30 2019-07-09 拜耳股份公司 Record the device with whole district's area image of tissue culture plate of one or more cavitys
JP2022088444A (en) * 2017-03-07 2022-06-14 イルミナ インコーポレイテッド Single light source, and two-optical channel sequence determination
CN113167462A (en) * 2019-07-19 2021-07-23 高科技器械私人有限公司 Optical system and method for irradiating a sample plane
JP2022543930A (en) * 2019-07-19 2022-10-17 アドバンスド インストゥルメント プライベート リミテッド Optical system and method of illuminating the sample plane
JP7357618B2 (en) 2019-07-19 2023-10-06 アドバンスド インストゥルメント プライベート リミテッド Optical system and method of illuminating the sample surface
KR20220005179A (en) * 2020-07-06 2022-01-13 한림대학교 산학협력단 Multi-channel fluorescence detection device using stained glass
KR102376680B1 (en) * 2020-07-06 2022-03-18 한림대학교 산학협력단 Multi-channel fluorescence detection device using stained glass

Also Published As

Publication number Publication date
JPWO2004063731A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP2008281571A (en) Apparatus for reading signals generated from resonance lightscattered particle labels
JP5093522B2 (en) Fluorescence reader and fluorescence reading method
JP7343551B2 (en) Device for reading IVD assays
JP2006208294A (en) Device and method for concurrently imaging plasmon resonance and fluorescence
US9523640B2 (en) Method of fluorescent measurement of samples, and devices therefrom
JP2003514223A (en) Fluorometer with low heat generation light source
WO2004063731A1 (en) Optical sensor
US20170205612A1 (en) Laser optical coupling for nanoparticles detection
AU2002336771C1 (en) Imaging of microarrays using fiber optic exciter
AU2002336771A1 (en) Imaging of microarrays using fiber optic exciter
EP3321688B1 (en) Detection device and detection method
WO2004046691A2 (en) Uncaging devices
KR20030037314A (en) Apparatus for analyzing fluorescence image of biochip
KR100818351B1 (en) Multiple channel bio chip scanner
JP2004325174A (en) Fluorescence detector
JP2005030919A (en) Light detector
US20100270478A1 (en) Detection system and method
JP6658752B2 (en) Detection chip, detection method, detection device and detection system
RU188251U1 (en) BIOCHIP SCAN DEVICE
KR101188233B1 (en) A diagnosis apparatus for biochip
JP2023525904A (en) Random Access Quantitative Polymerase Chain Reaction (qPCR) Reactor System
CN117070336A (en) Fluorescence detection system for digital polymerase chain reaction

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508020

Country of ref document: JP

122 Ep: pct application non-entry in european phase