WO2003066706A1 - Verfahren zur aktivierung von doppelmetallcyanid-verbindungen - Google Patents

Verfahren zur aktivierung von doppelmetallcyanid-verbindungen Download PDF

Info

Publication number
WO2003066706A1
WO2003066706A1 PCT/EP2003/001174 EP0301174W WO03066706A1 WO 2003066706 A1 WO2003066706 A1 WO 2003066706A1 EP 0301174 W EP0301174 W EP 0301174W WO 03066706 A1 WO03066706 A1 WO 03066706A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
epoxide
metal cyanide
double metal
starter
Prior art date
Application number
PCT/EP2003/001174
Other languages
English (en)
French (fr)
Inventor
Michael Stösser
Edward Bohres
Georg Heinrich Grosch
Wilfried Sager
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27618403&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003066706(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2003566073A priority Critical patent/JP2005517063A/ja
Priority to MXPA04007570A priority patent/MXPA04007570A/es
Priority to AU2003218978A priority patent/AU2003218978A1/en
Priority to EP03714732A priority patent/EP1474464B2/de
Priority to KR1020047012221A priority patent/KR100939297B1/ko
Priority to US10/502,803 priority patent/US7312363B2/en
Priority to DE50303819T priority patent/DE50303819D1/de
Publication of WO2003066706A1 publication Critical patent/WO2003066706A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen

Definitions

  • the present invention relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, the activation of the double metal cyanide compound by adding the epoxide to a mixture of double metal cyanide compound and starter compound an internal reactor pressure of less than 1 bar, and the polyethers themselves obtainable by such a process.
  • DMC compounds double metal cyanide compounds
  • ring-opening polymerizations of alkylene oxides are described, for example, in EP-A 0 892 002, EP-A 0 862 977 and in EP-A 0 755 716.
  • DMC compounds have a high activity as a catalyst in the polymerization of epoxides. Nevertheless, disadvantages of these catalysts are known from the prior art, for example an induction period to be observed at the start of the reaction.
  • An induction period is understood to mean that the catalyst is not immediately active, but only becomes active after a certain time in contact with the starter compound and the epoxy.
  • This induction period is expressed, for example, by the fact that after metering in a small amount of the epoxide, a certain pressure is created in the reactor which remains constant for a certain time and drops rapidly at the end of the induction period. After printing waste, the catalyst is active and further dosing of the epoxide can take place.
  • the induction period for activating a DMC connection lasts, for example, between a few minutes and several hours.
  • This induction period leads to various problems when using DMC compounds as a catalyst.
  • There is free epoxy in the reactor during the induction period which can lead to safety problems. This is particularly the case if the catalytic converter does not start despite very long waiting times.
  • free epoxide that has been in the reactor at high temperatures for a long time can undergo side reactions.
  • Such a side reaction could be, for example, the isomerization of the epoxide to the corresponding aldehyde or a rearrangement to the allyl alcohol.
  • WO 98/52689 describes a method for shortening the induction period, in which, in addition to the conventional vacuum treatment of the starter / DMC mixture, further measures for treating this mixture are carried out.
  • One such measure according to WO 98/52689 is, for example, the introduction of gaseous nitrogen.
  • Such a process requires major technical changes to the apparatus to be used.
  • the time-consuming dewatering also leads to a loss of reactor capacity, which further increases the cost of the product.
  • WO 01/10933 describes a process for shortening the induction period, in which the epoxy pressure in the reactor is kept constant by continuous metering of epoxy. This method also harbors the risk of ald ⁇ xmulation of epoxy, which in turn leads to the above-mentioned problems for the safety and quality of the products.
  • the object of the present invention was therefore to provide a method in which the induction period is shortened without major technical changes in existing plants being necessary for the DMC-catalyzed conversion of epoxides.
  • the internal reactor pressure when the epoxide is added is less than 1 bar.
  • the vacuum is not or only partially broken, for example with nitrogen, and that the epoxy then enters the reactor at the reaction temperature at an internal pressure of less as lbar, preferably less than 500 mbar, in particular less than 200 mbar, particularly preferably less than 100 mbar, for example less than 50 mbar.
  • the present invention therefore relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, the internal reactor pressure being less than 500 mbar when added in step (1).
  • Suitable starter compounds according to the invention are, for example, the following compounds: water, organic dicarboxylic acids, such as succinic acid, adipic acid, phthalic acid and terephthalic acid, aliphatic and aromatic, optionally N-mono-, N, N- and N, N'-dialkyl-substituted diamines with 1 to 4 carbon atoms in the alkyl radical, such as optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, 1,3- or 1,4-butylenediamine, 1,2-, 1,3-, 1, 4-, 1,5- and 1,6-hexamethylene diamine, Phe- nylenediamines, 2,3-, 2,4- and 2,6-toluenediamine and 4,4'-, 2,4'- and 2,2'-diamino-di-phenylmethane.
  • organic dicarboxylic acids
  • alkanolamines such as, for. B. ethanolamine, N-methyl and N-ethylethanolamine, dialkanolamines, such as. As diethanolamine, N-methyl and N-ethyl-diethanolamine, and trialkanolamines, such as. B. triethanolamine, and ammonia and mono- or polyhydric alcohols, such as monoethylene glycol, 1,2-propanediol and 1,3, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerol, trimethylolpropane, pentaerythritol , Sorbitol and sucrose.
  • alkanolamines such as, for. B. ethanolamine, N-methyl and N-ethylethanolamine
  • dialkanolamines such as.
  • As diethanolamine N-methyl and N-ethyl-diethanolamine
  • trialkanolamines such as.
  • Addition products of ethylene oxide and / or propylene oxide with water, monoethylene glycol, diethylene glycol, 1,2-propanediol, dipropylene glycol, glycerol, trimethylolpropane, ethylenediamine, triethanolamine, pentaerythritol, sorbitol and / or sucrose are preferably used individually or in mixtures as polyether-polyalcohols.
  • the starter compounds can also be used in the form of alkoxylates, in particular those having a molecular weight M in the range from 62 to 15000 g / mol.
  • macromolecules with functional groups which have active hydrogen atoms for example hydroxyl groups, in particular those which are mentioned in WO 01/16209, are also suitable.
  • starter compounds are monofunctional or polyfunctional alcohols with 2 to 24 C atoms, starter compounds with 8 to 15 C atoms, in particular 10 to 15 C atoms, such as tridecanol, are particularly preferred according to the invention.
  • Alcohols suitable according to the invention are, in particular, octanol, nonanol,
  • Octanol iso-nonanol, iso-decanol, iso-undekanol, iso-dodekanol, iso-tridekanol, iso-tetradekanol, iso-pentadecanol, preferably iso-decanol, 2- Propylheptanol, tridekanol, iso-tridekanol or mixtures of C 13 to C 15 alcohols.
  • DMC compounds suitable as catalysts are described, for example, in WO 99/16775 and DE-A-10117273. According to the invention, in particular double metal cyanide compounds of the general formula I are used as catalysts for the process according to the invention:
  • M rl at least one metal ion selected from the group consisting of Zn 2+ , Fe 2+ , Fe 3+ , Co 3+ , Ni 2+ , Mn 2+ , Co 2+ , Sn 2+ , Pb 2+ , Mo 4 + , Mo 6+ , Al 3+ , V 4+ , V 5+ , Sr 2+ , W 4+ , W 6+ , Cr 2+ , Cr 3+ , Cd 2+ , Hg 2+ , Pd + , Pt 2+ , V 2+ , Mg 2+ , Ca 2+ , Ba 2+ , Cu 2+ , La 3+ , Ce 3+ , Ce 4+ , Eu 3+ , Ti 3+ , Ti + , Ag + , Rh 2+ , Rh 3+ , Ru 2+ , Ru 3+ is,
  • M 2 at least one metal ion selected from the group consisting of Fe 2+ , Fe 3+ , Co 2+ , Co 3+ , Mn 2+ , Mn 3+ , V 4+ , V 5+ , Cr 2+ , Cr 3 + , Rh 3+ , Ru 2+ , Ir 3+ is,
  • a and X independently of one another are an anion selected from the group consisting of halide, hydroxide, sulfate, carbonate, cyanide, thiocyanate, isocyanate, cyanate, carboxylate, oxalate, nitrate, nitrosyl, hydrogen sulfate, phosphate, dihydrogen phosphate, hydrogen phosphate or are bicarbonate,
  • L is a water-miscible ligand selected from the group consisting of alcohols, aldehydes, ketones, ethers, polyethers, esters, polyesters, polycarbonate, ureas, amides, primary, secondary and tertiary amines, ligands with pyridine nitrogen, Nitriles, sulfides, phosphides, phosphites, phosphines,
  • k is a fractional or whole number greater than or equal to zero
  • f, k, h and m are independently a fractional or whole number greater than 0 or 0.
  • organic additives P are mentioned: polyethers, polyesters, polycarbonates, polyalkylene glycol sorbitan esters, polyakylene glycol glycidyl ethers, polyacrylamide, poly (acrylamide-co-acrylic acid), polyacrylic acid, poly (acrylamide-co-maleic acid), polyacrylonitrile, polyalkylacrylates, polyalkyl methacrylates, Polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl acetate, polyvinyl alcohol, poly-N-vinylpyrrolidone, poly (N-vinylpyrrolidone-co-acrylic acid), polyvinyl methyl ketone, poly (4-vinylphenol), poly (acrylic acid-co-styrene), oxazoline polymers, polyalkylene imines , Maleic acid and maleic anhydride copolymers, hydroxyethyl cellulose, polyacetates, ionic surface and surface-active compounds,
  • a preferred embodiment are catalysts of the formula (I) in which k is greater than zero.
  • the preferred catalyst then contains at least one double metal cyanide compound, at least one organic ligand and at least one organic additive P.
  • k is zero, optionally e is also zero and X is exclusively a carboxylate, preferably formate, acetate and propionate.
  • crystalline double metal cyanide catalysts are preferred.
  • double metal cyanide catalysts as described in WO 00/74845, which are crystalline and platelet-shaped.
  • the modified catalysts are produced by combining a metal salt solution with a cyanometalate solution, which can optionally contain both an organic ligand L and an organic additive P.
  • the organic ligand and optionally the organic additive are then added.
  • an inactive double metal cyanide phase is first produced and this is subsequently converted into an active double metal cyanide phase by recrystallization, as described in PCT EP01 / 01893.
  • f, e and k are not equal to zero.
  • double metal cyanide catalysts that contain a water-miscible organic ligand (generally in amounts of 0.5 to 30% by weight) and an organic additive (generally in amounts of 5 to 80% by weight) as described in WO 98/06312.
  • the catalysts can be prepared either with vigorous stirring (24,000 rpm with Turax) or with stirring, as described in US Pat. No. 5,158,922.
  • Double metal cyanide compounds which contain zinc, cobalt or iron or two thereof are particularly suitable as catalysts for the process according to the invention.
  • Berlin blue for example, is particularly suitable.
  • crystalline DMC compounds are preferably used.
  • a crystalline DMC compound of the Zn-Co type is used as the catalyst, the catalyst containing zinc acetate as a further metal salt component.
  • Such compounds crystallize in a monoclinic structure and have a platelet-shaped habit.
  • Such compounds are described for example in WO 00/74845 or PCT / EP01 / 01893.
  • DMC compounds suitable as catalysts for the process according to the invention can in principle be prepared in all ways known to the person skilled in the art.
  • the DMC compounds can be produced by direct precipitation, the “incipient wetness” method, by preparation of a precursor phase and subsequent recrystallization.
  • the DMC compounds can be used for the process according to the invention as a powder, paste or suspension or deformed into a shaped body, introduced into shaped bodies, foams or the like, or applied to shaped bodies, foams or the like.
  • the catalyst concentration used in the process according to the invention, based on the final quantity structure, is, according to the invention, less than 2000 ppm, preferably less than 1000 ppm, in particular less than 500 ppm, particularly preferably less than 100 ppm, for example less than 50 ppm.
  • epoxides can be used for the process according to the invention.
  • C 2 -C o-alkylene oxides such as ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, pentene oxide, hexene oxide, cyclohexene oxide, styrene oxide, dodecene epoxide, ocate decene epoxide and mixtures thereof, are suitable epoxides.
  • Ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide and pentene oxide are particularly suitable, with propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide and isobutylene oxide being particularly preferred.
  • the present invention therefore relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, the epoxide being propylene oxide or butylene oxide or a mixture of one of these epoxides with at least one further epoxide.
  • the internal reactor pressure can be brought to over 1 bar. According to the invention, however, it is also possible that no additional inert gas is added after the activation.
  • inert gas for example nitrogen
  • the present invention therefore relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, the internal pressure of the reactor not being increased by the addition of inert gas after activation of the double metal cyanide compound in step (1) ,
  • the present invention relates to a process for reacting epoxides with a starter compound in the presence a double metal cyanide compound as a catalyst with a shortened induction period, the internal pressure of the reactor being increased by the addition of inert gas after activation of the double metal cyanide compound in step (1).
  • the internal reactor pressure can rise to internal reactor pressures of 1 bar or above towards the end of the reaction. This can be done, for example, by increasing the volume of the product or by traces of inert gas, which can be dissolved in the epoxy.
  • inert gases dissolved in the epoxy are not to be understood as an inert gas additive in the sense of the invention.
  • At least 5% of the total amount of the epoxide used in the process is added at an internal reactor pressure of less than 1 bar. This 5% of the total amount of the epoxide used in the process can be added as a whole in the reaction according to step (1) or distributed over the reactions according to step (1) and according to step (2).
  • the present invention therefore relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, at least 5% of the total amount of the epoxide used in the process being added at an internal reactor pressure of less than 1 bar become.
  • a process according to the invention is preferred in which at least 5% of the total amount of the epoxide used in the process is added, distributed over the reactions in step (1) and in step (2), at an internal reactor pressure of less than 1 bar. If ethylene oxide is used in the process according to the invention, it is preferred that some inert gas is metered into the reactor so that the internal reactor pressure is between 500 and 950 mbar.
  • stage (2) can follow after the activation of the double metal cyanide compound in stage (1).
  • stage (2) involves reacting the starter compound with an epoxide in the presence of the activated DMC compound.
  • the reaction in step (2) can be, for example, the addition of one or more epoxy molecules.
  • the reaction in step (2) is a polymerization of an epoxide in the presence of a DMC compound activated in step (1).
  • the present invention therefore relates to a process for reacting epoxides with a starter compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period, the process comprising a step (2):
  • the epoxide brought to polymerization can be any epoxide. It is possible according to the invention that the second epoxide is different from the epoxide used to activate the DMC compound. However, it is also possible within the scope of the present invention that the epoxide used to activate the DMC compound and the epoxide used for polymerization are identical.
  • the present invention also relates to a polyether, obtainable by a process comprising the reaction of epoxides with a starter. compound in the presence of a double metal cyanide compound as a catalyst with a shortened induction period comprising at least step (1):
  • the present invention relates to polyethers, the epoxide used for the preparation being propylene oxide or butylene oxide or a mixture of one of these epoxides with at least one further epoxide.
  • the present invention likewise relates to polyethers, the starter compound for the preparation being a monofunctional or polyfunctional alcohol having 2 to 24 carbon atoms.
  • polyethers according to the invention or the polyethers produced according to the invention can be used in particular as carrier oils, fuel additives, surfactants or polyethers for polyurethane synthesis.
  • a further 3690 g of aqueous zinc acetate dihydrate solution (zinc content: 2.6% by weight) were then metered in with stirring with a stirring energy of 1 W / 1 within 5 minutes.
  • the suspension was stirred for two hours. During this time the pH dropped from 4.02 to 3.27 and then remained constant. The precipitate suspension thus obtained was then filtered off and washed on the filter with 6 times the cake volume of water.
  • the moist filter cake was dried and dispersed in Tridekanol® N using a gap-rotor mill.
  • the suspension obtained had a multimetal cyanide content of 5% by weight.
  • the amounts of starter and DMC given in Table 1 were placed in a 10 liter autoclave equipped with an inclined blade stirrer, temperature measurement and epoxy metering. The starter / DMC mixture was then dewatered at 100 ° C. in vacuo at 10 mbar. The autoclave was then brought to the reaction temperature shown in Table 1. The amount of epoxide specified in Table 1 was then metered into the evacuated autoclave. No induction period was observed in these experiments. The reaction jumped immediately. The internal reactor pressure reached at the end of the reaction is shown in Table 1.
  • the amounts of starter and DMC given in Table 1 were placed in a 10 liter autoclave equipped with an inclined blade stirrer, temperature measurement and epoxy metering. The starter / DMC mixture was then at 120 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Umsetzung von Epoxiden mit einer Starter-Verbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei die Aktivierung der Doppelmetallcyanid-Verbindung durch Zugabe des Epoxids zu einem Gemisch aus Doppelmetallcyanid-Verbindung und Starterverbindung bei einem Reaktorinnendruck von kleiner als 1 bar erfolgt, sowie die durch ein derartiges Verfahren erhältlichen Polyether selbst.

Description

Verfahren zur Aktivierung von Doppelmetallcyanid- Verbindungen
Die vorliegende Erfindung betrifft ein Verfahren zur Umsetzung von Epoxiden mit einer Starter- Verbindung in Gegenwart einer Doppelmetallcyanid- Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei die Aktivierung der Dop- pelmetallcyanid- Verbindung durch Zugabe des Epoxids zu einem Gemisch aus Doppelmetallcyanid-Verbindung und Starterverbindung bei einem Reaktorinnendruck von kleiner als 1 bar erfolgt, sowie die durch ein derartiges Verfahren erhältlichen Polyether selbst.
Aus der Literatur ist bekannt, dass Doppelmetallcyanid-Verbindungen (DMC- Verbindungen) als Katalysatoren zur Umsetzung von Startermolekülen mit aktivem Wasserstoff und Epoxiden, beispielsweise in einer Polymerisationsreaktion eingesetzt werden können. Die Ring-öffnende Polymerisationen von Alkylenoxi- den wird beispielsweise in der EP-A 0 892 002, EP-A 0 862 977 und in der EP-A 0 755 716 beschrieben. DMC-Verbindungen weisen bei der Polymerisation von Epoxiden eine hohe Aktivität als Katalysator auf. Dennoch sind aus dem Stand der Technik Nachteile dieser Katalysatoren, wie beispielsweise eine zu Beginn der Reaktion zu beobachtende Induktionsperiode, bekannt.
Unter einer Induktionsperiode wird verstanden, dass der Katalysator nicht sofort aktiv ist, sondern erst im Kontakt mit der Starterverbindung und dem Epoxid nach einer gewissen Zeit seine Aktivität erlangt. Diese Induktionsperiode äußerst sich beispielsweise dadurch, dass nach der Dosierung einer kleinen Menge des Epoxids ein gewisser Druck im Reaktor entsteht, der für eine gewisse Zeit kon- stant bleibt und am Ende der Induktionsperiode schnell abfällt. Nach dem Druck- abfall ist der Katalysator aktiv, und die weitere Dosierung des Epoxids kann erfolgen.
Bisher ist keine Erklärung für die Reaktion während dieser Induktionsperiode bekannt. Die Induktionsperiode zur Aktivierung einer DMC- Verbindung dauert beispielsweise zwischen wenigen Minuten und mehreren Stunden. Diese Induktionsperiode führt zu verschiedenen Problemen bei der Verwendung von DMC- Verbindungen als Katalysator. So befindet sich während der Induktionsperiode freies Epoxid im Reaktor, das zu sicherheitstechnischen Problemen führen kann. Dies ist insbesondere dann der Fall, wenn der Katalysator trotz sehr langer Wartezeiten nicht anspringt. Darüber hinaus kann freies Epoxid, das sich lange bei hohen Temperaturen im Reaktor befindet, Nebenreaktionen eingehen. Eine derartige Nebenreaktion könnte beispielsweise die Isomerierung des Epoxids zu den entsprechenden Aldehyd sein oder eine Umlagerung zum Allylalkohol. Diese Neben- reaktionen führen zu unerwünschten Nebenprodukten, die eine aufwendige Reinigung der Produkte erforderlich machen.
Darüber hinaus führt eine lange Induktionsperiode zu einem Ausfall an Reaktorkapazität, was zu einer Verteuerung des Verfahrens führt.
Um diese Nachteile zu beseitigen, wurden im Stand der Technik bereits verschiedene Verfahren beschrieben, die die Induktionsperiode bei der Aktivierung von DMC-Verbindungen verkürzen.
So wird in der WO 98/52689 ein Verfahren zur Verkürzung der Induktionsperiode beschrieben, bei dem zusätzlich zur konventionellen Vakuumbehandlung des Starter-/DMC-Gemisches weitere Maßnahmen zur Behandlung dieses Gemisches durchgeführt werden. Eine derartige Maßnahme gemäß der WO 98/52689 ist beispielsweise das Einleiten von gasförmigem Stickstoff. Ein derartiges Verfahren erfordert große technische Veränderungen an den zu verwendenden Apparaten. Die zeitaufwändige Entwässerung führt darüber hinaus zu Verlust an Reaktorkapazität, was das Produkt weiter verteuert.
In der WO 01/10933 wird ein Verfahren zur Verkürzung der Induktionsperiode beschrieben, bei dem der Epoxiddruck im Reaktor durch kontinuierliche Dosierung von Epoxid konstant gehalten wird. Auch dieses Verfahren birgt die Gefahr einer Aldαxmulation von Epoxid, die wiederum zu den oben genannten Problemen für die Sicherheit und Qualität der Produkte führt.
Ausgehend vom Stand der Teclinik lag der vorliegenden Erfindung daher die Aufgabe zugrunde, ein Verfahren bereit zu stellen, bei dem eine Verkürzung der Induktionsperiode erreicht wird, ohne dass größere technische Änderungen in vorhandenen Anlagen für die DMC-katalysierte Umsetzung von Epoxiden erforderlich sind.
Diese Aufgabe wird gelöst durch ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid- Verbindung als Katalysator mit verkürzter Induktionsperiode, umfassend mindestens die Stufe (1):
(1) Aktivierung der Doppelmetallcyanid- Verbindung durch Zugabe des Epoxids zu einem Gemisch aus Doppelmetallcyanid-Verbindung und Starterverbindung, wobei der Reaktorinnendruck kleiner als 1 bar ist.
Durch die Dosierung des Epoxids in den evakuierten Reaktor bei einem Reaktorinnendruck von kleiner als 1 bar wird überraschenderweise ein sofortiges Anspringen der Reaktion erreicht. Dies ist um so erstaunlicher, als in der Regel davon ausgegangen wird, dass zu Beginn der Induktionsperiode ein gewisser Epoxidüberdruck für die Aktivierung der DMC- Verbindung notwendig ist. Der Epoxidüberdruck sollte zu einer Erhöhung der Löslichkeit des Epoxids in dem Gemisch aus DMC-Verbindung und Starter- Verbindung führen. Der Reaktorinnendruck ist bei der Zugabe des Epoxids erfindungsgemäß kleiner als 1 bar. Das heißt, dass nach der konventionellen Vakuumbehandlung des Gemisches aus Doppelmetallcyanid- Verbindung und Starter- Verbindung bei erhöhten Temperaturen das Vakuum nicht oder nur partiell gebrochen wird, beispielsweise mit Stickstoff, und dass anschließend bei der Reaktionstemperatur das Epoxid in den Reaktor bei einem Innendruck von kleiner als lbar, bevorzugt kleiner als 500 mbar, insbesondere kleiner als 200 mbar, besonders bevorzugt kleiner als 100 mbar, beispielsweise kleiner als 50 mbar zugegeben wird.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei der Reaktorinnendruck bei der Zugabe gemäß Stufe (1) kleiner als 500 mbar ist.
Erfindungsgemäß ist es auch möglich, dass neben der Vakuumbehandlung des Gemisches aus DMC- Verbindung und Starter- Verbindung weitere Behandlungsschritte erfolgen, wie beispielsweise in der WO 98/52689 offenbart.
Als Starter-Verbindung eignen sich alle Verbindungen, die einen aktiven Wasserstoff aufweisen. Erfindungsgemäß bevorzugt sind als Starter- Verbindungen OH- funktionelle Verbindungen.
Als Starter-Verbindung geeignet sind erfindungsgemäß beispielsweise die folgenden Verbindungen: Wasser, organische Dicarbonsäuren, wie Bernsteinsäure, Adi- pinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N,N- und N,N'-dialkylsubstituierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1,3-Propylendiamin, 1,3- bzw. 1,4-Butylendiamin, 1,2-, 1,3-, 1,4-, 1,5- und 1,6-Hexamethylendiamin, Phe- nylendiamine, 2,3-, 2,4- und 2,6-Toluylendiamin und 4,4'-, 2,4'- und 2,2'- Diamino-di-phenylmethan. Als Startermoleküle kommen ferner in Betracht: Al- kanolamine, wie z. B. Ethanolamin, N-Methyl- und N-Ethyl-ethanolamin, Dial- kanolamine, wie z. B. Diethanolamin, N-Methyl- und N-Ethyl-diethanolamin, und Trialkanolamine, wie z. B. Triethanolamin, und Ammoniak sowie ein- oder mehrwertige Alkohole, wie Monoethylenglykol, Propandiol-1,2 und- 1,3, Diethylenglykol, Dipropylenglykol, Butandiol-1,4, Hexandiol-1,6, Glycerin, Trimethy- lolpropan, Pentaerythrit, Sorbit und Saccharose. Bevorzugt werden als Polyether- polyalkohole Anlagerungsprodukte von Ethylenoxid und/oder Propylenoxid an Wasser, Monoethylenglykol, Diethylenglykol, Propandiol-1,2, Diproplyenglykol Glycerin, Trimethylolpropan, Ethylendiamin, Triethanolamin, Pentaerythrit, Sorbit und/oder Saccharose einzeln oder in Mischungen eingesetzt.
Die Starter-Verbindungen können erfindungsgemäß auch in Form von Alkoxyla- ten, insbesondere solche mit einem Molekulargewicht M in Bereich von 62 bis 15000 g /Mol zum Einsatz kommen.
Ebenso geeignet sind jedoch auch Makromoleküle mit funktionellen Gruppen, die aktive Wasserstoff-Atome aufweisen, beispielsweise Hydroxylgruppen, insbeson- dere solche, die in der WO 01/16209 genannt sind.
Insbesondere bevorzugt sind als Starter- Verbindungen monofunktionelle oder polyfunktionelle Alkohole mit 2 bis 24 C-Atomen, besonders bevorzugt sind erfindungsgemäß Starter- Verbindungen mit 8 bis 15 C-Atomen, insbesondere 10 bis 15 C-Atomen wie beispielsweise Tridekanol.
Erfindungsgemäß geeignete Alkohole sind also insbesondere Octanol, Nonanol,
Dekanol, Undekanol, Dodekanol, Tridekanol, Tetradekanol, Pentadekanol, iso-
Octanol, iso-Nonanol, iso-Dekanol, iso-Undekanol, iso-Dodekanol, iso- Tridekanol, iso-Tetradekanol, iso-Pentadekanol, bevorzugt iso-Dekanol, 2- Propylheptanol, Tridekanol, iso-Tridekanol oder Gemische aus C13- bis C15- Alkoholen.
Als DMC-Verbindung können prinzipiell alle dem Fachmann bekannten geeig- neten Verbindungen verwendet werden.
Als Katalysator geeignete DMC-Verbindungen sind beispielsweise in der WO 99/16775 und der DE-A- 10117273 beschrieben. Erfindungsgemäß werden insbesondere Doppelmetallcyanid- Verbindung der allgemeinen Formel I als Katalysa- tor für das erfindungsgemäße Verfahren eingesetzt:
M1 a[M2(CN)b(A)c]d fM'gXn" h(H2O) eLkP (I),
in der
M rl mindestens ein Metallion, ausgewählt aus der Gruppe bestehend aus Zn2+, Fe2+, Fe3+, Co3+, Ni2+, Mn2+, Co2+, Sn2+, Pb2+, Mo4+, Mo6+, Al3+, V4+, V5+, Sr2+, W4+, W6+, Cr2+, Cr3+, Cd2+, Hg2+, Pd +, Pt2+, V2+, Mg2+, Ca2+, Ba2+, Cu2+, La3+, Ce3+, Ce4+, Eu3+, Ti3+, Ti +, Ag+, Rh2+, Rh3+, Ru2+, Ru3+ ist,
M2 mindestens ein Metallion, ausgewählt aus der Gruppe bestehend aus Fe2+, Fe3+, Co2+, Co3+, Mn2+, Mn3+, V4+, V5+, Cr2+, Cr3+, Rh3+, Ru2+, Ir3+ist,
A und X unabhängig voneinander ein Anion, ausgewählt aus der Gruppe, bestehend aus Halogenid, Hydroxid, Sulfat, Carbonat, Cy- anid, Thiocyanat, Isocyanat, Cyanat, Carboxylat, Oxalat, Nitrat, Nitrosyl, Hydrogensulfat, Phosphat, Dihydrogenphosphat, Hydro- genphosphat oder Hydrogencarbonat sind, L ein mit Wasser mischbarer Ligand ist, ausgewählt aus der Gruppe, bestehend aus Alkoholen, Aldehyden, Ketonen, Ethern, Polye- thern, Estern, Polyestern, Polycarbonat, Harnstoffen, Amiden, primären, sekundären und tertiären Aminen, Liganden mit Pyridin- Stickstoff, Nitrilen, Sulfiden, Phosphiden, Phosphiten, Phosphanen,
Phosphonaten und Phosphaten,
k eine gebrochene oder ganze Zahl größer oder gleich Null ist, und
- P ein organischer Zusatzstoff ist,
a, b, c, d, g und n so ausgewählt sind, dass die Elektroneutralität der Verbindung (I) gewährleistet ist, wobei c = 0 sein kann,
- e die Anzahl der Ligandenmoleküle eine gebrochenen oder ganze
Zahl größer 0 oder 0 ist,
f, k, h und m unabhängig voneinander eine gebrochene oder ganze Zahl größer 0 oder 0 sind.
Als organische Zusatzstoffe P sind zu nennen: Polyether, Polyester, Polycarbona- te, Polyalkylenglykolsorbitanester, Polyakylenglykolglycidylether, Polyacryla- mid, Poly(acrylamid-co-acrylsäure), Polyacrylsäure, Poly(acrylamid-co- maleinsäure), Polyacrylnitril, Polyalkylacrylate, Polyalkylmethacrylate, Po- lyvinylmethylether, Polyvinylethylether, Polyvinylacetat, Polyvinylalkohol, Poly- N-vinylpyrrolidon, Poly(N-vinylpyrrolidon-co-acrylsäure), Polyvinylmethylketon, Poly(4-vinylphenol), Poly(acrylsäure-co-styrol), Oxazolinpolymere, Polyalky- lenimine, Maleinsäure- und Maleinsäureanhydridcopolymere, Hydroxyethylcel- lulose, Polyacetate, ionische Oberflächen- und grenzflächenaktive Verbindungen, Gallensäure oder deren Salze, Ester oder Amide, Carbonsäureester mehrwertiger Alkohole und Glycoside. Diese Katalysatoren können kristallin oder amorph sein. Für den Fall, dass k gleich null ist, sind kristalline Doppelmetallcyanid- Verbindungen bevorzugt. Im Fall, dass k größer null ist, sind sowohl kristalline, teilkristalline, als auch sub- stantiell amorphe Katalysatoren bevorzugt.
Von den modifizierten Katalysatoren gibt es verschiedene bevorzugte Ausführungsformen. Eine bevorzugte Ausführungsform sind Katalysatoren der Formel (I), bei denen k größer null ist. Der bevorzugte Katalysator enthält dann minde- stens eine Doppelmetallcyanid-Verbindung, mindestens einen organischen Liganden und mindestens einen organischen Zusatzstoff P.
Bei einer anderen bevorzugten Ausführungsform ist k gleich null, optional ist e auch gleich null und X ist ausschließlich ein Carboxylat, bevorzugt Formiat, Acetat und Propionat. Derartige Katalysatoren sind in der WO 99/16775 beschrieben. Bei dieser Ausführungsform sind kristalline Doppelmetallcyanid- Katalysatoren bevorzugt. Ferner bevorzugt sind Doppelmetallcyanid- Katalysatoren, wie in der WO 00/74845 beschrieben, die kristallin und plättchen- förmig sind.
Die Herstellung der modifizierten Katalysatoren erfolgt durch Vereinigung einer Metallsalz-Lösung mit einer Cyanometallat-Lösung, die optional sowohl einen organischen Liganden L als auch einen organischen Zusatzstoff P enthalten können. Anschließend werden der organische Ligand und optional der organische Zusatzstoff zugegeben. Bei einer bevorzugten Ausführungsform der Katalysatorherstellung wird zunächst eine inaktive Doppelmetallcyanid-Phase hergestellt und diese anschließend durch Umkristallisation in eine aktive Doppelmetallcya- nidphase überfuhrt, wie in der PCT EP01/01893 beschrieben.
Bei einer anderen bevorzugten Ausf hrungsform der Katalysatoren sind f, e und k ungleich Null. Dabei handelt es sich um Doppelmetallcyanid-Katalysatoren, die einen mit Wasser mischbaren organischen Ligand (im allgemeinen in Mengen von 0,5 bis 30 Gew.%) und einen organischen Zusatzstoff (im allgemeinen in Mengen von 5 bis 80 Gew.%) enthalten wie in der WO 98/06312 beschrieben. Die Katalysatoren können entweder unter starkem Rühren (24000U/Min mit Tur- rax) oder unter Rühren hergestellt werden wie in der US 5,158,922 beschrieben.
Insbesondere als Katalysator geeignet sind für das erfindungsgemäße Verfahren Doppelmetallcyanid- Verbindungen, die Zink, Kobalt oder Eisen oder zwei davon enthalten. Besonders geeignet ist beispielsweise Berliner Blau.
Erfindungsgemäß bevorzugt werden kristalline DMC-Verbindungen eingesetzt. In einer bevorzugten Ausführungsform wird eine kristalline DMC-Verbindung vom Zn-Co-Typ als Katalysator verwendet, wobei der Katalysator als weitere Metallsalzkomponente Zinkacetat enthält. Derartige Verbindungen kristallisieren in monokliner Struktur und weisen einen plättchenförmigen Habitus auf. Derartige Verbindungen sind beispielsweise in der WO 00/74845 oder der PCT/EP01/01893 beschrieben.
Für das erfindungsgemäße Verfahren als Katalysator geeignete DMC- Verbindungen können prinzipiell auf alle dem Fachmann bekannten Arten hergestellt werden. Beispielsweise können die DMC-Verbindungen durch direkte Fällung, „incipient wetness"-Methode, durch Herstellung einer Precursor-Phase und anschließende Umkristallisation hergestellt werden.
Die DMC-Verbindungen können für das erfindungsgemäße Verfahren als Pulver, Paste oder Suspension eingesetzt werden oder zu einem Formkörper verformt werden, in Formkörpern, Schäume oder ähnliches eingebracht werden, oder auf Formkörper, Schäume oder ähnliches aufgebracht werden.
Die im erfindungsgemäßen Verfahren eingesetzte Katalysator-Konzentration, bezogen auf das Endmengengerüst, ist erfindungsgemäß kleiner als 2000 ppm, be- vorzugt kleiner als 1000 ppm, insbesondere kleiner als 500 ppm, besonders bevorzugt kleiner als 100 ppm, beispielsweise kleiner als 50 ppm.
Für das erfindungsgemäße Verfahren können prinzipiell alle geeigneten Epoxide eingesetzt werden. Geeignet sind beispielsweise C2-C o-Alkylenoxide, wie Ethy- lenoxid, Propylenoxid, 1,2-Butylenoxid, 2,3-Butylenoxid, Isobutylenoxid, Pen- tenoxid, Hexenoxid, Cyclohexenoxid, Styroloxid, Dodecenepoxid, Ocatdecene- poxid und Mischungen dieser Epoxide. Insbesondere geeignet sind Ethylenoxid, Propylenoxid, 1,2-Butylenoxid, 2,3-Butylenoxid und Pentenoxid, wobei Propy- lenoxid, 1,2-Butylenoxid, 2,3-Butylenoxid und Isobutylenoxid besonders bevorzugt sind.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei das Epoxid Propylenoxid oder Butylenoxid oder ein Gemisch eines dieser Epoxide mit mindestens einem weiteren Epoxid ist.
Erfindungsgemäß kann nach erfolgter Aktivierung der DMC-Verbindung durch Zusatz von Inertgas, beispielsweise Stickstoff, der Reaktorinnendruck auf über 1 bar gebracht werden. Erfindungsgemäß ist es jedoch ebenso möglich, dass nach der Aktivierung kein zusätzliches Inertgas zugegeben wird.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung daher ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei nach der Aktivierung der Doppelmetallcyanid-Verbindung gemäß Stufe (1) der Reaktorinnendruck nicht durch Inertgaszusatz erhöht wird.
In einer alternativen Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei nach der Aktivierung der Doppelmetallcyanid-Verbindung gemäß Stufe (1) der Reaktorinnendruck durch Inertgaszusatz erhöht wird.
Auch im Fall, dass kein zusätzliches Inertgas zugegeben wird, kann der Reaktor- innendruck gegen Ende der Umsetzung auf Reaktorinnendrücke von 1 bar oder darüber ansteigen. Dies kann beispielsweise durch Volumenzunahme des Produkts oder durch Inertgasspuren, die im Epoxid gelöst sein können, erfolgen. Die im Epoxid gelösten Inertgase werden nicht als Inertgaszusatz im Sinne der Erfin- düng verstanden.
Dabei ist es im Rahmen der vorliegenden Erfindung bevorzugt, dass mindestens 5 % der Gesamtmenge des im Verfahren eingesetzten Epoxids bei einem Reaktorinnendruck von kleiner als 1 bar zugegeben wird. Dabei kann die Zugabe dieser 5% der Gesamtmenge des im Verfahren eingesetzten Epoxids als ganzes in der Reaktion gemäß Stufe (1) erfolgen oder verteilt über die Reaktionen gemäß Stufe (1) und gemäß Stufe (2).
Daher betrifft die vorliegende Erfindung in einer weiteren Ausführungsform ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei mindestens 5% der Gesamtmenge des im Verfahren eingesetzten Epoxids bei einem Reaktorinnendruck von kleiner als 1 bar zugegeben werden.
Bevorzugt ist erfindungsgemäß ein Verfahren, bei dem mindestens 5% der Gesamtmenge des im Verfahren eingesetzten Epoxids verteilt über die Reaktionen gemäß Stufe (1) und gemäß Stufe (2) bei einem Reaktorinnendruck von kleiner als 1 bar zugegeben werden. Sofern im erfindungsgemäßen Verfahren Ethylenoxid eingesetzt wird, ist es bevorzugt, dass etwas Inertgas in den Reaktor dosiert wird, so dass der Reaktorinnendruck zwischen 500 und 950 mbar liegt.
Erfindungsgemäß kann sich nach der Aktivierung der Doppelmetallcyanid- Verbindung gemäß Stufe (1) eine Stufe (2) anschließen. Erfindungsgemäß beinhaltet Stufe (2) eine Umsetzung der Starter- Verbindung mit einem Epoxid in Gegenwart der aktivierten DMC-Verbindung. Bei der Umsetzung gemäß Stufe (2) kann es sich beispielsweise um die Anlagerung von einem oder mehreren Epoxidmolekülen handeln. Insbesondere ist es im Rahmen der vorliegenden Erfindung bevorzugt, dass die Umsetzung gemäß Stufe (2) eine Polymerisation eines Epoxids in Gegenwart einer gemäß Stufe (1) aktivierten DMC-Verbindung ist.
Daher betrifft die vorliegende Erfindung in einer bevorzugten Ausführungsform ein Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode, wobei das Verfahren eine Stufe (2) umfasst:
(2) Polymerisation eines Epoxids in Gegenwart einer gemäß Stufe (1) aktivierten Doppelmetallcyanid-Verbindung.
Bei dem zur Polymerisation gebrachten Epoxid kann es sich im Rahmen der vorliegenden Erfindung um ein beliebiges Epoxid handeln. Es ist erfindungsgemäß möglich, dass das zweite Epoxid von dem zur Aktivierung der DMC-Verbindung eingesetzten Epoxid verschieden ist. Ebenso ist es jedoch im Rahmen der vorliegenden Erfindung möglich, dass das zur Aktivierung der DMC-Verbindung eingesetzte Epoxid und das zur Polymerisation eingesetzte Epoxid identisch sind.
Darüber hinaus betrifft die vorliegende Erfindung auch einen Polyether, erhältlich nach einem Verfahren umfassend die Umsetzung von Epoxiden mit einer Starter- verbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit verkürzter Induktionsperiode umfassend mindestens die Stufe (1):
(1) Aktivierung der Doppelmetallcyanid- Verbindungen durch Zugabe des Epoxids zu einem Gemisch aus Doppelmetallcyanid-Verbindung und
Starterverbindung, wobei der Reaktorinnendruck kleiner als 1 bar ist.
In weiteren bevorzugten Ausfuhrungsformen betrifft die vorliegende Erfindung Polyether, wobei das zur Herstellung eingesetzte Epoxid Propylenoxid oder Bu- tylenoxid oder eine Gemisch eines dieser Epoxide mit mindestens einem weiteren Epoxid ist.
Ebenso betrifft die vorliegende Erfindung in einer weiteren Ausführungsform Polyether, wobei zur Herstellung die Starterverbindung ein monofunktioneller oder polyfunktioneller Alkohol mit 2 bis 24 C-Atomen ist.
Die erfindungsgemäßen Polyether oder die erfindungsgemäß hergestellten Polyether können insbesondere als Trägeröle, Treibstoffadditive, Tenside oder Polyether für die Polyurethan-Synthese eingesetzt werden.
Im folgenden wird die vorliegende Erfindung anhand von Beispielen näher erläutert.
BEISPIELE
Katalysatorsynthese :
In einem Rührkessel mit einem Volumen von 30 1, ausgestattet mit einem Propel- lerrührer, Tauchrohr für die Dosierung, pH-Sonde und Streulicht-Sonde, wurden
16000 g wässrige Hexacyanocobaltsäure (Cobalt-Gehalt: 9 g/1) vorgelegt und un- ter Rühren auf 50°C erwärmt. Anschließend wurden unter Rühren mit einer Rührleistung von 0,4 W/1 9224 g wässrige Zinkacetat-Dihydrat-Lösung (Zink- Gehalt: 2,6 Gew.-%), welche auf ebenfalls 50°C temperiert war, innerhalb von 15 Minuten zugefahren.
Zu dieser Fällsuspension wurden 351 g Pluronic® PE 6200 (BASF AG) zugesetzt und die Mischung weitere 10 Minuten gerührt.
Anschließend wurden weitere 3690 g wässrige Zinkacetat-Dihydrat-Lösung (Zink-Gehalt: 2,6 Gew.-%) unter Rühren mit einer Rührenergie von 1 W/1 innerhalb 5 Minuten zudosiert.
Die Suspension wurde zwei Stunden nachgerührt. Der pH- Wert fiel in dieser Zeit von 4,02 auf 3,27 und blieb dann konstant. Die so erhaltene Fällsuspension wurde anschließend abfiltriert und auf dem Filter mit dem 6-fachen Kuchenvolumen an Wasser gewaschen.
Der feuchte Filterkuchen wurde getrocknet und mittels Spalt-Rotor-Mühle in Tridekanol® N dispergiert. Die dabei erhaltene Suspension hatte einen Multime- tallcyanidgehalt von 5 Gew.-%.
Beispiel:
In einem 10 1 Autoklaven, ausgerüstet mit Schrägblattrührer, Temperaturmessung und Epoxiddosierung, wurden die in Tabelle 1 angegebenen Mengen an Starter und DMC vorgelegt. Anschließend wurde die Starter/DMC-Mischung bei 100 °C im Vakuum bei 10 mbar entwässert. Der Autoklav wurde dann auf die in Tabelle 1 angegebene Reaktionstemperatur gebracht. In den evakuierten Autoklaven wurde anschließend in Tabelle 1 angegebene Menge an Epoxid zudosiert. Es wurden bei diesen Versuchen keine Induktionsperiode beobachtet. Die Reaktion sprang sofort an. Der am Ende der Reaktion erreichte Reaktorinnendruck ist in der Tabelle 1 angegeben.
5 Vergleichsbeispiel :
In einem 10 1 Autoklaven, ausgerüstet mit Schrägblattrührer, Temperaturmessung und Epoxiddosierung, wurden die in Tabelle 1 angegebenen Mengen an Starter und DMC vorgelegt. Anschließend wurde die Starter/DMC-Mischung bei 120 °C
10 im Vakuum (10 mbar) entwässert. Das Vakuum wurde anschließend mit Stickstoff gebrochen und der Reaktorinnendruck auf einen Wert von größer 1 bar eingestellt. Der Autoklav wurde dann auf die in Tabelle 1 angegebene Reaktionstemperatur gebracht. In den Autoklaven wurde anschließend die in Tabelle 1 angegebene Menge an Epoxid zudosiert. Die beobachteten Induktionsperioden finden
15 sich in Tabelle 1. Der am Ende der Reaktion erreichte Reaktorinnendruck ist in Tabelle 1 angegeben.
Figure imgf000016_0001
20

Claims

Patentansprüche
1. Verfahren zur Umsetzung von Epoxiden mit einer Starterverbindung in Gegenwart einer Doppelmetallcyanid-Verbindung als Katalysator mit ver- l ürzter Induktionsperiode, umfassend mindestens die Stufe (1):
(1) Aktivierung der Doppelmetallcyanid-Verbindung durch Zugabe des Epoxids zu einem Gemisch aus Doppelmetallcyanid-Verbindung und Starterverbindung, wobei der Reaktorinnendruck kleiner als 1 bar ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Reaktorin- nendruck bei der Zugabe gemäß Stufe (1) kleiner als 500 mbar ist.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Verfahren zusätzlich eine Stufe (2) umfasst:
(2) Polymerisation eines Epoxids in Gegenwart einer gemäß Stufe (1) aktivierten Doppelmetallcyanid-Verbindung.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass nach der Aktivierung der Doppelmetallcyanid-Verbindung gemäß Stufe (1) der Reaktorinnendruck nicht durch Inertgaszusatz erhöht wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass nach der Aktivierung der Doppelmetallcyanid-Verbindung gemäß Stufe (1) der Reaktorinnendruck durch Inertgaszusatz erhöht wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 5% der Gesamtmenge des im Verfahren eingesetzten Epoxids bei einem Reaktorinnendruck von kleiner als 1 bar zugegeben werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Epoxid Propylenoxid oder Butylenoxid oder eine Gemisch eines dieser Epoxide mit mindestens einem weiteren Epoxid ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Starterverbindung ein monofunktioneller oder polyfunktioneller Alkohol mit 2 bis 24 C-Atomen ist.
9. Polyether, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 8.
PCT/EP2003/001174 2002-02-07 2003-02-06 Verfahren zur aktivierung von doppelmetallcyanid-verbindungen WO2003066706A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003566073A JP2005517063A (ja) 2002-02-07 2003-02-06 ダブル金属シアニド化合物の活性化方法
MXPA04007570A MXPA04007570A (es) 2002-02-07 2003-02-06 Activacion de compuestos de cianuro de metal doble.
AU2003218978A AU2003218978A1 (en) 2002-02-07 2003-02-06 Method for activating double metallocyanide-compounds
EP03714732A EP1474464B2 (de) 2002-02-07 2003-02-06 Verfahren zur aktivierung von doppelmetallcyanid-verbindungen
KR1020047012221A KR100939297B1 (ko) 2002-02-07 2003-02-06 이중 금속 시아나이드 화합물의 활성화 방법
US10/502,803 US7312363B2 (en) 2002-02-07 2003-02-06 Method for activating double metallocyanide-compounds
DE50303819T DE50303819D1 (de) 2002-02-07 2003-02-06 Verfahren zur aktivierung von doppelmetallcyanid-verbindungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10205086.4 2002-02-07
DE10205086A DE10205086A1 (de) 2002-02-07 2002-02-07 Verfahren zur Aktivierung von Doppelmetallcyanid-Verbindungen

Publications (1)

Publication Number Publication Date
WO2003066706A1 true WO2003066706A1 (de) 2003-08-14

Family

ID=27618403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/001174 WO2003066706A1 (de) 2002-02-07 2003-02-06 Verfahren zur aktivierung von doppelmetallcyanid-verbindungen

Country Status (14)

Country Link
US (1) US7312363B2 (de)
EP (1) EP1474464B2 (de)
JP (1) JP2005517063A (de)
KR (1) KR100939297B1 (de)
CN (1) CN100379791C (de)
AT (1) ATE329954T1 (de)
AU (1) AU2003218978A1 (de)
DE (2) DE10205086A1 (de)
ES (1) ES2266799T5 (de)
MX (1) MXPA04007570A (de)
MY (1) MY131259A (de)
PL (1) PL212490B1 (de)
TW (1) TW200303328A (de)
WO (1) WO2003066706A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087789A2 (de) * 2003-03-31 2004-10-14 Basf Aktiengesellschaft Verfahren zur herstellung einer polyetherzusammensetzung
EP1859863A3 (de) * 2006-05-23 2008-07-23 Bayer MaterialScience AG Verfahren zur konditionierung von Doppelmetallcyanid-Katalysatoren und Herstellung von Polyetherpolyolen
WO2011047780A1 (en) * 2009-10-19 2011-04-28 Basf Se Conditioning of double metal cyanide catalysts
EP2548905A1 (de) * 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
US9035011B2 (en) 2012-03-09 2015-05-19 Evonik Goldschmidt Gmbh Modified alkoxylation products having at least one non-terminal alkoxysilyl group and a plurality of urethane groups, and their use
US9334354B2 (en) 2013-08-23 2016-05-10 Evonik Degussa Gmbh Modified alkoxylation products which have alkoxysilyl groups and contain urethane groups, and their use
EP3106221A1 (de) 2015-06-15 2016-12-21 Universität Hamburg Verfahren zur herstellung von doppelmetallcyanidkatalysatoren und deren verwendung in polymerisierungsreaktionen
EP2456845B1 (de) 2009-07-23 2017-03-29 Dow Global Technologies LLC Polyalkylenglykole als schmiermittelzusätze für gruppe i-iv-kohlenwasserstofföle
WO2020207881A1 (en) 2019-04-12 2020-10-15 Basf Se Metalworking fluid containing a branched alcohol propoxylate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007057145A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von SiH-Gruppen tragenden Verbindungen als Additive
DE102007057146A1 (de) 2007-11-28 2009-06-04 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von Polyetheralkoholen mit DMC-Katalysatoren unter Verwendung von speziellen Additiven mit aromatischer Hydroxy-Funktionalisierung
DE102008000360A1 (de) 2008-02-21 2009-08-27 Evonik Goldschmidt Gmbh Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008000903A1 (de) 2008-04-01 2009-10-08 Evonik Goldschmidt Gmbh Neue Organosiloxangruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller (Poly)Organosiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102008002713A1 (de) 2008-06-27 2009-12-31 Evonik Goldschmidt Gmbh Neue Polyethersiloxane enthaltende Alkoxylierungsprodukte durch direkte Alkoxylierung organomodifizierter alpha, omega-Dihydroxysiloxane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
DE102009002371A1 (de) * 2009-04-15 2010-10-21 Evonik Goldschmidt Gmbh Verfahren zur Herstellung von geruchlosen Polyetheralkoholen mittels DMC-Katalysatoren und deren Verwendung in kosmetischen und/oder dermatologischen Zubereitungen
CN102933637B (zh) 2010-01-20 2015-07-01 拜耳知识产权有限责任公司 活化用于制备聚醚碳酸酯多元醇的双金属氰化物催化剂的方法
DE102010038774A1 (de) 2010-08-02 2012-02-02 Evonik Goldschmidt Gmbh Modifizierte Alkoxylierungsprodukte, die zumindest eine nicht-terminale Alkoxysilylgruppe aufweisen, mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere
DE102010038768A1 (de) 2010-08-02 2012-02-02 Evonik Goldschmidt Gmbh Modifizierte Alkoxylierungsprodukte mit mindestens einer nicht-terminalen Alkoxysilylgruppe mit erhöhter Lagerstabilität und erhöhter Dehnbarkeit der unter deren Verwendung hergestellten Polymere
US9443938B2 (en) * 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
CN115785435B (zh) * 2022-12-29 2023-08-11 杭州普力材料科技有限公司 一种一步法制备聚醚多元醇的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052689A1 (en) * 1997-05-16 1998-11-26 Arco Chemical Technology, L.P. Process for rapid activation of double metal cyanide catalysts
WO2001010933A1 (de) * 1999-08-06 2001-02-15 Bayer Aktiengesellschaft Verfahren zur herstellung von polyetherpolyolen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) * 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
EP0026546B1 (de) * 1979-09-27 1985-09-04 Union Carbide Corporation Reaktionsverfahren von Epoxyden mit organischen aktiven Wasserstoff enthaltenden Verbindungen
EP0862977A3 (de) 1993-07-08 1998-11-18 Kampffmeyer, Gerhard Formstück und Verfahren zur Herstellung des Formstücks
US5627122A (en) 1995-07-24 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide complex catalysts
US5639705A (en) 1996-01-19 1997-06-17 Arco Chemical Technology, L.P. Double metal cyanide catalysts and methods for making them
DE19730467A1 (de) 1997-07-16 1999-01-21 Bayer Ag Neue Zink/Metall-Hexacyanocobaltat-Katalysatoren für die Herstellung von Polyetherpolyolen
BR9813009A (pt) 1997-08-25 2000-08-15 Arco Chem Tech Preparação de poliéteres funcionalizados
US6077978A (en) 1997-09-17 2000-06-20 Arco Chemical Technology L.P. Direct polyoxyalkylation of glycerine with double metal cyanide catalysis
US6410676B1 (en) * 1998-10-20 2002-06-25 Mitsui Chemicals, Inc. Method for producing polyoxyalkylene polyol and derivatives thereof
US10173789B2 (en) * 2012-04-02 2019-01-08 Aerosud Technology Solutions (Pty) Ltd. Cellular core composite leading and trailing edges

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052689A1 (en) * 1997-05-16 1998-11-26 Arco Chemical Technology, L.P. Process for rapid activation of double metal cyanide catalysts
WO2001010933A1 (de) * 1999-08-06 2001-02-15 Bayer Aktiengesellschaft Verfahren zur herstellung von polyetherpolyolen

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087789A3 (de) * 2003-03-31 2005-03-03 Basf Ag Verfahren zur herstellung einer polyetherzusammensetzung
WO2004087789A2 (de) * 2003-03-31 2004-10-14 Basf Aktiengesellschaft Verfahren zur herstellung einer polyetherzusammensetzung
EP1859863A3 (de) * 2006-05-23 2008-07-23 Bayer MaterialScience AG Verfahren zur konditionierung von Doppelmetallcyanid-Katalysatoren und Herstellung von Polyetherpolyolen
EP2456845B2 (de) 2009-07-23 2020-03-25 Dow Global Technologies LLC Polyalkylenglykole als schmiermittelzusätze für gruppe i-iv-kohlenwasserstofföle
EP2456845B1 (de) 2009-07-23 2017-03-29 Dow Global Technologies LLC Polyalkylenglykole als schmiermittelzusätze für gruppe i-iv-kohlenwasserstofföle
US9114380B2 (en) 2009-10-19 2015-08-25 Basf Se Conditioning of double metal cyanide catalysts
WO2011047780A1 (en) * 2009-10-19 2011-04-28 Basf Se Conditioning of double metal cyanide catalysts
EP2548905A1 (de) * 2011-07-18 2013-01-23 Bayer MaterialScience AG Verfahren zur Aktivierung von Doppelmetallcyanidkatalysatoren zur Herstellung von Polyetherpolyolen
US9309356B2 (en) 2011-07-18 2016-04-12 Bayer Intellectual Property Gmbh Method for activating double metal cyanide catalysts for the production of polyether carbonate polyols
CN103797045A (zh) * 2011-07-18 2014-05-14 拜耳知识产权有限责任公司 用于制备聚醚碳酸酯多元醇的双金属氰化物催化剂的活化方法
WO2013010987A1 (de) * 2011-07-18 2013-01-24 Bayer Intellectual Property Gmbh Verfahren zur aktivierung von doppelmetallcyanidkatalysatoren zur herstellung von polyethercarbonatpolyolen
US9035011B2 (en) 2012-03-09 2015-05-19 Evonik Goldschmidt Gmbh Modified alkoxylation products having at least one non-terminal alkoxysilyl group and a plurality of urethane groups, and their use
US9334354B2 (en) 2013-08-23 2016-05-10 Evonik Degussa Gmbh Modified alkoxylation products which have alkoxysilyl groups and contain urethane groups, and their use
EP3106221A1 (de) 2015-06-15 2016-12-21 Universität Hamburg Verfahren zur herstellung von doppelmetallcyanidkatalysatoren und deren verwendung in polymerisierungsreaktionen
WO2016202838A1 (en) 2015-06-15 2016-12-22 Universität Hamburg Process for preparing double metal cyanide catalysts and their use in polymerization reactions
WO2020207881A1 (en) 2019-04-12 2020-10-15 Basf Se Metalworking fluid containing a branched alcohol propoxylate
US11795414B2 (en) 2019-04-12 2023-10-24 Basf Se Metalworking fluid containing a branched alcohol propoxylate

Also Published As

Publication number Publication date
CN100379791C (zh) 2008-04-09
ES2266799T3 (es) 2007-03-01
DE50303819D1 (de) 2006-07-27
TW200303328A (en) 2003-09-01
MXPA04007570A (es) 2004-12-07
ATE329954T1 (de) 2006-07-15
CN1628139A (zh) 2005-06-15
EP1474464B1 (de) 2006-06-14
EP1474464A1 (de) 2004-11-10
AU2003218978A1 (en) 2003-09-02
MY131259A (en) 2007-07-31
PL372218A1 (en) 2005-07-11
US7312363B2 (en) 2007-12-25
US20050159627A1 (en) 2005-07-21
KR100939297B1 (ko) 2010-01-28
KR20040088064A (ko) 2004-10-15
PL212490B1 (pl) 2012-10-31
DE10205086A1 (de) 2003-08-21
ES2266799T5 (es) 2011-03-22
JP2005517063A (ja) 2005-06-09
EP1474464B2 (de) 2010-11-03

Similar Documents

Publication Publication Date Title
EP1474464B1 (de) Verfahren zur aktivierung von doppelmetallcyanid-verbindungen
DE602005004539T2 (de) Verfahren zur herstellung von reaktiven polyetherpolyolen mit ethylenoxid-endblock
EP1685179B1 (de) Verfahren zur herstellung von polyetheralkoholen
EP1257591B1 (de) Verfahren zur herstellung von polyetherpolyolen in gegenwart eines multimetallcyanidkomplex-katalysators
EP1542954B2 (de) Herstellung von alkoxylaten auf der basis von ethylenoxid und 2-propylheptanol in gegenwart eines inertgases
EP1866084A2 (de) Verfahren zur herstellung von dmc-katalysatoren
WO2003029240A1 (de) Verfahren zur herstellung von alkylencarbonaten
EP1963012A1 (de) Verfahren zur herstellung von multimetallcyanidverbindungen
DE60217871T2 (de) Doppelmetallcyanidkomplexkatalysatoren
US6764978B2 (en) Multimetal cyanide compounds
EP1448664B1 (de) Verfahren zur herstellung von polyetheralkoholen
EP1370600B1 (de) Verfahren zur aufarbeitung von polyetheralkoholen
EP1517940B1 (de) verfahren zu herstellung von dmc-katalysatoren
EP1542953B1 (de) Herstellung von alkoxylaten bei optimierten reaktionsdrücken
EP2490805B1 (de) Aufbereitung von doppelmetallcyanid-katalysatoren
DE10117273A1 (de) Verfahren zur Herstellung von Hydroxyalkylcarbonsäureestern
WO2004106408A1 (de) Herstellung von polyetheralkoholen unter verwendung der dmc-katalyse
EP1485424B2 (de) Polyether und deren verwendung als trägeröle
WO2002081423A1 (de) Verfahren zur herstellung von hydroxyalkylcarbonsäureestern
DE10129287A1 (de) Verfahren zur Herstellung von Alkylpolyakylenglykolcarbonsäureestern
DE10057891A1 (de) Verfahren zur Aufarbeitung von Polyetherpolyolen
DE10315212A1 (de) Wässriges Gemisch aus Alkoxylaten und wasserlöslichen Polymeren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/007570

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 372218

Country of ref document: PL

Ref document number: 20038033682

Country of ref document: CN

Ref document number: 2003566073

Country of ref document: JP

Ref document number: 10502803

Country of ref document: US

Ref document number: 1020047012221

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003714732

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003714732

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2003714732

Country of ref document: EP