WO2003059431A1 - Microneedle devices and methods of manufacture - Google Patents
Microneedle devices and methods of manufacture Download PDFInfo
- Publication number
- WO2003059431A1 WO2003059431A1 PCT/US2002/037920 US0237920W WO03059431A1 WO 2003059431 A1 WO2003059431 A1 WO 2003059431A1 US 0237920 W US0237920 W US 0237920W WO 03059431 A1 WO03059431 A1 WO 03059431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- microneedle
- cover
- major surface
- capillary volume
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14507—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
- A61B5/1451—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
- A61B5/14514—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150274—Manufacture or production processes or steps for blood sampling devices
- A61B5/150282—Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150572—Pierceable protectors, e.g. shields, caps, sleeves or films, e.g. for hygienic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150694—Procedure for removing protection means at the time of piercing
- A61B5/150717—Procedure for removing protection means at the time of piercing manually removed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150969—Low-profile devices which resemble patches or plasters, e.g. also allowing collection of blood samples for testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150977—Arrays of piercing elements for simultaneous piercing
- A61B5/150984—Microneedles or microblades
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/157—Devices characterised by integrated means for measuring characteristics of blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0023—Drug applicators using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0038—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a channel at the side surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0046—Solid microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0053—Methods for producing microneedles
Definitions
- the present invention relates to the field of microneedle devices and methods of manufacturing the same.
- microneedles or micro-pins Arrays of relatively small structures, sometimes referred to as microneedles or micro-pins, have been disclosed for use in connection with the delivery and/or removal of therapeutic agents and other substances through the skin and other surfaces.
- microneedle devices include structures having a capillary or passageway formed through the needle. Because the needles are themselves small, the passageways formed in the needles must be limited in size. As a result, the passageways can be. difficult to manufacture because of their small size and the need for accurate location of the passageways within the needles. Another potential problem of passageways small enough to fit within the microneedles is that the passageways may become easily obstructed or clogged during use.
- microneedle devices that include fluid passageways that are easier to manufacture and that are resistant to obstruction or clogging during use.
- This need was answered in part by copending and commonly assigned U.S. Patent Application Serial Number 09/947,195, filed on September 5, 2001 and entitled MICRONEEDLE ARRAYS AND METHODS OF MANUFACTURING THE SAME (Attorney Docket No. 55836US002).
- the microneedles disclosed in that application include channels formed in their outer surfaces, with the channels extending from the base towards the tip of each microneedle. The channels provide convenient fluid paths in connection with the microneedles.
- the microneedle arrays disclosed in that application may also include conduit structures formed on the substrate surface to enhance fluid flow across the surface of the substrate from which the microneedles project. Once the microneedles have penetrated the skin, a sample of body fluid may flow through the channels to be collected by the conduit structure towards, for example, some type of sensor.
- the conduit structures can facilitate fluid transport in connection with the microneedles, improvements may still be possible with regard to transporting fluid quickly and efficiently across the devices to, e.g., sensors, etc.
- the present invention provides microneedle devices and methods of manufacturing the microneedle devices.
- the microneedle devices include microneedles protruding from a substrate, with the microneedles piercing a cover placed over the substrate surface from which the microneedles protrude.
- the cover and the microneedle substrate together define a capillary volume in fluid communication with the base of each microneedle.
- the capillary volume enhances the movement of fluid towards or away from the microneedles by wicking fluids towards or away from the microneedles.
- the wicking action may be accomplished by selection of suitable spacing between the substrate and the cover and/or by the selection of materials used for the various components in the devices.
- coatings may be provided within the capillary volume, e.g., hydrophilic coatings, that may enhance the capillary wicking action within the capillary volume.
- the capillary volume in the microneedle devices may be provided by simply spacing the cover from the substrate surface, or by including some standoff structure between the cover and the surface of the microneedle substrate that can define a minimum distance between the cover and the substrate.
- the standoff structure may be formed as a part of the substrate surface, a part of the cover, a part of both the substrate surface and the cover, or by a separate article or articles (e.g., loose fillers) interposed between the substrate and the cover.
- the capillary volume may (in some embodiments) be defined, at least in part, by conduit structures formed on the surface of the substrate on which the microneedle array is located.
- the conduit structure may be provided in the form of depressions or grooves in the substrate surface.
- the conduit structures may be formed by barriers, similar to dikes, that protrude above the substrate surface.
- the microneedle devices of the present invention may, in some embodiments include one or more sensor elements in fluid communication with the capillary volume, such that fluids traveling through the capillary volume contact the sensor element.
- the sensor element may be used to sense any of a number of properties and/or compositions in the fluids passing through the capillary volume.
- the sensor element can be a glucose test element. If, for example, the glucose test element includes glucose oxidaze, the fluid sample passing through the capillary volume may be assessed using electrochemical techniques.
- the cover, the substrate, or another element may be provided with an electrically conductive circuit pattern to facilitate electrochemical analysis of the fluid sample.
- the sensor element may undergo an optical change dependent on the properties and/or composition of the fluid passing through the capillary volume. Other alternative sensing techniques will be known to those of skill in the art.
- the present invention provides a microneedle device including a substrate having a first major surface; at least one microneedle projecting from the first major surface of the substrate, the at least one microneedle having a base proximate the first major surface of the substrate and a tip distal from the base; a cover with a first side facing the first major surface of the substrate and a second side facing away from the substrate, wherein the at least one microneedle penetrates through the first side and the second side of the cover; and a capillary volume located between the first major surface of the substrate and the first side of the cover; wherein the capillary volume contacts at least a portion of the base of the at least one microneedle.
- the present invention provides a microneedle device including a substrate with a first major surface and a second major surface; at least one microneedle projecting from the first major surface of the substrate, the at least one microneedle including a base proximate the first major surface of the substrate and a tip distal from the base; a cover with a first side facing the first major surface of the substrate and a second side facing away from the substrate, wherein the at least one microneedle penetrates through the first side and the second side of the cover; a capillary volume located between the first major surface of the substrate and the first side of the cover; wherein the capillary volume contacts at least a portion of the base of the at least one microneedle; a backing proximate the second major surface of the substrate, wherein the backing extends past a periphery of the substrate; and a cap attached to the backing around the periphery of the substrate, wherein the first major surface of the substrate faces the cap, and wherein the substrate and the at least
- the present invention provides a method of manufacturing a microneedle device by providing a substrate having a first major surface and at least one microneedle projecting from the first major surface of the substrate, the at least one microneedle including a base proximate the first major surface of the substrate and a tip distal from the base; providing a cover having a first side facing the first major surface of the substrate; forcing the tip of the at least one microneedle through the cover; and forming a capillary volume located between the first major surface of the substrate and the first side of the cover; wherein the capillary volume contacts at least a portion of the base of the at least one microneedle.
- FIG. 1 is a perspective view of one microneedle device according to the present invention.
- FIG. 2 is a cross-sectional view of the microneedle device of FIG. 1, taken along line 2-2 in FIG. 1.
- FIG. 2A is an enlarged cross-sectional view of a portion of the microneedle device of FIG 2 (indicated by boundary 2A in FIG. 2).
- FIG. 3 is a plan view of a portion of one side of a cover including a standoff structure that may be used in connection with the microneedle devices of the present invention.
- FIG. 4 is a cross-sectional view of the cover of FIG. 3, taken along line 4-4 in FIG.
- FIG. 5 is a plan view of a portion of microneedle substrate surface including standoff structure that may be used in connection with the microneedle devices of the present invention.
- FIG. 6 is a cross-sectional view of the substrate of FIG. 5, taken along line 6-6 in
- FIG. 5 (with a cover added to illustrate the function of the standoff structure).
- FIG. 7 is a cross-sectional view of a portion of another microneedle device according to the present invention.
- FIG. 8 is a plan view of another microneedle device according to the present invention.
- FIG. 9 is an exploded cross-sectional view of the microneedle device of FIG. 8, taken along line 9-9 in FIG. 8.
- FIG. 10 is an enlarged cross-sectional view of a portion of the microneedle device of FIG. 8, taken along line 10-10 in FIG. 8.
- FIG. 11 is a plan view of a microneedle device including a sensor element and electrically conductive circuit pattern.
- FIG. 12 is a cross-sectional view of the microneedle device of FIG. 11, taken along line 12-12 in FIG. 11.
- FIG. 13 is a cross-sectional view of another microneedle device according to the present invention.
- FIG. 14 is a cross-sectional view of another microneedle device according to the present invention.
- FIG. 15 is a plan view of another microneedle device according to the present invention.
- FIG. 16 depicts one portion of one method of manufacturing a microneedle device according to the present invention.
- the present invention provides microneedle devices that may be useful for a variety of purposes.
- the microneedle devices may be used to deliver or remove fluids from the point at which they are inserted.
- the microneedle devices include a capillary volume in contact with the base of each of the microneedles.
- the microneedle devices of the present invention may be used for a variety of purposes.
- the microneedle devices may be used to deliver drugs or other pharmacological agents through the skin in a variation on transdermal delivery.
- the height of the microneedles is preferably sufficient to pass through the stratum corneum and into the epidermis. It is also, however, preferable that the height of the microneedles is not sufficiently large to cause significant pain when inserted at a delivery site.
- the term "microneedle” (and variations thereof) refers to structures having a height above the surface from which they protrude of about 500 micrometers or less. In some instances, microneedles of the present invention may have a height of about 250 micrometers or less.
- microneedle devices of the present invention may include only one microneedle on each substrate. Further, although the microneedle devices are all depicted with only one substrate, each device could include multiple substrates, with each substrate including one or more microneedles protruding therefrom. Referring now to FIGS. 1, 2 and 2 A, a portion of one microneedle device 10 is illustrated with microneedles 30 protruding from a surface 22 of a microneedle substrate 20. The microneedles 30 may be arranged in any desired pattern or distributed over the surface 22 randomly. The microneedles 30 may each include a channel 32 formed in the outer surface of the tapered microneedle.
- the microneedles 30 each include a base 34 proximate the substrate surface 22 and a tip 36 distal from the base 34.
- the general shape of the microneedles 30 is tapered.
- the microneedles 30 have a larger base 34 at the substrate surface 22 and extend away from the substrate surface 22, tapering towards a tip 36. It may be preferred, e.g., that the shape of the microneedles used in connection with the present invention be generally conical.
- Each of the microneedles in the depicted device 10 may also preferably include a channel 32 that extends from the base 34 (or near the base) of the microneedle towards the tip 36 of the microneedle.
- the channels may typically be formed as a void running along the side of the exterior surface of the microneedle 30.
- the channel 32 may extend to the tip 36 of the microneedle 30 and, in other embodiments, the channel 32 may terminate before reaching the tip 36.
- the channels 32 formed in microneedles 30 of the present invention can be distinguished from bores or vias formed in other microneedles because they are open along substantially their entire length, e.g., from the base 34 of the microneedle 30 to the terminus of the channel 32.
- bores or vias formed in other microneedles are typically closed fluid pathways that have an opening at the tip of the microneedle structure.
- the bases of the microneedles may be elongated to improve the rigidity and structural integrity of the microneedles.
- the channels In the microneedles with bases that are elongated along an elongation axis, it may be preferred that the channels extend from one of the opposing ends located along the elongation axis.
- the microneedles 30 include elongated bases as described in the identified application.
- the microneedle device 10 includes substrate 20 with major surface 22 from which the microneedles 30 protrude.
- the substrate 20 may also include a substantially flat opposing major surface 24 on the opposite side of the substrate 20.
- the microneedle device 10 also includes a cover 40 located over the major surface 22 of substrate 20.
- the cover 40 includes two major sides 42 and 44, with major side 42 being oriented to face the major surface 22 of the substrate 20.
- Each of the microneedles 30 preferably pierces through the cover 40, such that the base 34 of each microneedle 30 is located within a volume defined between the major surface 22 of the substrate 20 and the side 42 of the cover 40.
- the cover 40 be provided in the form of a liquid impermeable film, more preferably a polymeric film.
- a suitable polymeric film may be, e.g., a simultaneously biaxially oriented polypropylene film (with a thickness of, e.g., about 10 to about 20 micrometers).
- a cover may be a non-homogeneous structure, e.g., a multilayer construction, a binder containing one or more fillers, or any other suitable design.
- the thickness of the cover may vary based on the height of the microneedles and their intended use, although covers with a thickness less than the height of the microneedles may be preferred.
- Thicker covers may, however, be used if, for example, they are compressible to allow for penetration of the delivery site by the microneedles when the cover is compressed. In such a situation, a compressible cover with an uncompressed thickness equal to or greater than the height of the microneedles may be acceptable.
- the volume thus defined between the substrate surface 22 and the cover 40 is the capillary volume.
- the spacing or distance s (see FIG. 2 A) between the substrate surface 22 and the side 42 of the cover 40 facing the substrate 20 may be controlled by a variety of techniques. In some instances, the distance or spacing that defines the capillary volume will only be loosely controlled, without the assistance of any structures. In other instances, some of which are discussed below, the spacing s may be controlled by standoff structure located within the capillary volume.
- the spacing s is selected to provide the desired capillary or wicking action required to transport fluid through the capillary volume, either towards the microneedles 30 or away from the microneedles 30. It is preferred that the distance s be greater than zero at the lower end, in some instances about 10 micrometers or more. At the upper end, it may be preferred that the capillary volume have a distance s that is about 100 micrometers or less, more preferably about 40 micrometers or less.
- the materials used to form the substrate 20 and/or the cover 40 may also be selected for their hydrophilic properties to facilitate fluid transport through the capillary volume.
- the surfaces within the capillary volume may be structured to enhance fluid transport through the capillary volume.
- one or more surfaces within the capillary volume may be provided with a hydrophilic coating to enhance fluid transport.
- suitable hydrophilic coatings are provided by coating the desired surface or surfaces using a surfactant solution that includes from about 0.05% to about 0.5%, by weight, branched chain sodium dodecylbenzene sulfonate and from about 0.10% to about 0.6%, by weight, ethoxylated acetylenic diol, in a solvent including a 70/30 mix of isopropyl alcohol and water.
- the microneedles 30 include channels 32 formed along their exterior surfaces, it may be preferred that the channels 32 be in fluid communication with the capillary volume formed between the substrate 20 and the cover 40. Putting the channels 32 in fluid communication with the capillary volume will typically enhance the transport of fluids through the microneedle device 10.
- channel 32 Although only one type of channel 32 is depicted in FIGS. 1 and 2, it should be understood that any suitable channel structure may be provided in connection with the microneedles of the present invention.
- the microneedles may be provided without channels if fluid transport along the exterior surface of the microneedles can be provided in the absence of channels.
- the exterior surfaces of the microneedles may be textured or otherwise treated to improve the ability of fluids to move along the surface of the microneedles. Those treatments may, in some instances, include the hydrophilic coatings described above.
- FIGS. 3 and 4 the spacing between the substrate and a cover 140 may be controlled by, e.g., standoff structure 146 provided on the cover 140.
- FIG. 3 depicts one example of a standoff structure that may be useful in connection with the present invention.
- the standoff structure 146 includes pillars formed such that they protrude from the surface 142 of the cover 140.
- the pillars may be of substantially the same height as depicted in FIG. 4, or they may be of different heights if so desired.
- the spacing between the pillars may also vary depending on the specific application of the microneedle device.
- the standoff structure 146 is in the form of circular cylindrical pillars, it should be understood that the standoff structure may be provided in any suitable shape or combination of shapes, e.g., pyramids, hemispherical protrusions, walls, etc. It may be preferred that the standoff structure 146 be formed integrally with the cover, e.g., as a structured surface molded or otherwise formed in the cover material. Alternatively, the standoff structure may be provided in the form of separate articles attached to the cover (e.g., loosely bonded fillers, microbeads, cube corner elements, etc.).
- FIGS. 5 and 6 depict another variation in standoff structures that may be used in connection with the present invention with a cover 240 present in FIG.
- the standoff structure 226 is formed such that it protrudes from the surface 222 of the microneedle substrate 220.
- the depicted standoff structure 226 is in the form of elongated prisms that may preferably define channels or conduits in which the microneedles 230 are located. In some instances, these elongated standoff structures 226 may provide some directionality to fluid flow through the capillary volume formed between the cover 240 and the substrate 220, with fluid flow being generally controlled along the direction of the elongated standoff structures 226.
- the standoff structure 226 be formed integrally with the substrate 220, e.g., as a structured surface molded or otherwise formed in the substrate 220.
- the standoff structure may be provided in the form of separate articles attached to the substrate (e.g., loosely-bonded fillers, prisms, microbeads, cube corner elements, etc.).
- the standoff structure may not be attached to any surface within the capillary volume and may, instead, take the form of particulates dispersed within the capillary volume.
- FIG. 7 depicts yet another variation in a microneedle device 310 according to the present invention.
- the device 310 includes a substrate 320 from which microneedles 330 protrude.
- the microneedles 330 pierce a cover 340 as described above, with a capillary volume being defined between the substrate 320 and the cover 340.
- the capillary volume is largely open and unobstructed (with the exception of the microneedle bases and any standoff structure located within the capillary volume).
- a standoff structure in the form of a porous layer 350 is shown.
- the porous layer 350 may preferably be largely coextensive with the capillary volume, such that the open volume of the capillary volume is provided by the pores or interstices within the porous layer 350.
- the porous layer 350 may be provided in separated, discrete locations across the surface of the substrate 320.
- the porous layer 350 may take a variety of constructions, provided that the movement or passage of fluid therethrough is provided for. Examples of some suitable materials for the porous layer 350 may include papers, treated papers, polymers, woven fibers, such as fabrics, or non-woven materials.
- wet laid products such as paper, spun-laced non-woven, spun-bonded non-woven, polyurethane open and closed-celled foams, carded web non-woven, blown microfiber non-woven, woven fabrics selected from the group consisting of cotton, cellulose, rayon, acetate, polyester, nylon, polypropylene, polyethylene, urethane, glass, metal, and blends thereof may, in some instances be used.
- the porous layer 350 alone may function as the cover, with no cover layer 340 present. In such a construction, the thickness of the porous layer 350 above the substrate 320 will define the boundaries of the capillary volume.
- Such a porous cover may, for example, be compressible to allow for additional penetration of the microneedles 330 at a delivery site if so desired.
- cover layer 340 in which a separate cover layer 340 is present in addition to a porous layer 350, it may be preferred that the cover layer 340 be provided in the form of a liquid impermeable film, more preferably a polymeric film as discussed above.
- FIGS. 8 & 9 another construction for a microneedle device is depicted.
- the microneedle device 410 includes a substrate 420 from which microneedles 430 protrude.
- the device 410 also includes a cover 440 through which the microneedles 430 protrude when the device 410 is manufactured.
- the cover 440 and the substrate 420 define a capillary volume as discussed above.
- the device 410 also includes a backing 460 that may be located proximate the opposing surface of the substrate 420 such that the cover 440 faces one major surface of the substrate 420 and the backing 460 faces the opposing major surface of the substrate 420.
- the backing may preferably include an adhesive 462 such that the backing can be adhered to the substrate 420.
- the adhesive 462 may preferably be a pressure sensitive adhesive.
- a backing in connection with the devices of the present invention, it may be of any suitable construction, including single layer films/foils, multilayer constructions (e.g., poly/foil/poly laminates or multi-layer polymeric film constructions), etc. Examples of some suitable backings may be described in connection with the packaging materials, e.g., U.S. Patent Nos. 5,620,095 (Delmore et al.) and 6,099,682 (Krampe et al.).
- the cover 440 and the backing 460 may both preferably extend beyond the periphery of the substrate 420 to form an area 466 in which the cover 440 and the backing 460 are directly opposing each other without the substrate 420 located therebetween.
- the cover 440 and the backing 460 may preferably be attached to each other about the periphery of the substrate 420 such that the substrate 420 is enclosed within the cover 440 and the backing 460.
- the attachment between the cover 440 and the backing 460 may be accomplished by any suitable technique or techniques.
- the attachment may be accomplished in the depicted embodiment by the adhesive 462 on the backing 460.
- the backing may be attached by, e.g., thermal bonds (e.g., heat seal bonds, welding, etc.), clamps, etc. It may be preferred that the attachment between the cover 440 and the backing 460 be a hermetic seal.
- a sensor element 470 is preferably in fluid communication with the capillary volume defined by the cover 440 and the substrate 420, such that fluids traveling through the capillary volume contact the sensor element 470.
- the sensor element 470 may be used to sense any of a number of properties and/or compositions in the fluids passing through the capillary volume.
- the sensor element 470 can be a glucose test element.
- the fluid sample passing through the capillary volume may be assessed using electrochemical techniques.
- the cover, the substrate, or another element e.g., the backing
- the sensor element 470 may be a colorimetric sensor that undergoes an optical change dependent on the properties and/or composition of the fluid passing through the capillary volume.
- FIG. 10 depicts another feature of the microneedle device 410 in an enlarged cross- sectional view. The additional optional feature is a conduit structure 427 formed into the substrate 420.
- the conduit structure 427 may be formed as a depression or trench into the substrate 420 as depicted.
- the conduit structure may be provided as a barrier or barriers provided on the surface of the substrate 420 as discussed in connection with U.S. Patent Application Serial Number 09/947,195, filed on September 5, 2001 and entitled MICRONEEDLE ARRAYS AND METHODS OF MANUFACTURING THE SAME (Attorney Docket No. 55836US002).
- the microneedle 430 includes a channel formed therein (as discussed above) it may be preferred that any conduit structure 427 be in fluid communication with the channel. At a minimum, however, it may be preferred that the conduit structure 427 extend to a point proximate the base 434 of the microneedle 430.
- the conduit structure 427 may be used to deliver fluids to the channels in the microneedles or they may be used to remove fluids from the channels of the microneedles. In some situations, the conduit structure 427 may both deliver and remove fluids from microneedle insertion sites.
- the conduit structure may define all or a portion of the capillary volume formed by the substrate 420 and the cover 440. It may be preferred that the conduit structures 427 lead to the void 428 in which the sensor element 470 is located.
- microneedle may have a different shape. Although many microneedles may have a uniform slope or wall angle (with respect to, e.g., a z axis normal to the substrate surface 12), microneedles of the present invention may have different wall angles.
- FIG. 10 shows microneedle 430 that includes a lower section having steeper wall angles with respect to the substrate 420, and an upper section 438 proximate the tip 436 having shallower wall angles.
- the microneedles used in connection with the present invention may have generally vertical wall angles, i.e., the microneedles may be in the form of pins, with sidewalls that are largely orthogonal to the surface of the substrate from which they protrude.
- FIGS. 11 & 12 depict another embodiment of a microneedle device 510 according to the present invention.
- the device 510 includes a sensor element 570 and a plurality of microneedles 530.
- the device 510 also includes an electrically conductive pattern in the form of an anode and cathode 572 and 574 respectively.
- the conductive pattern may be provided in any suitable form, e.g., printed or patterned metallization, conductive polymers, etc.
- the conductive pattern is provided on the cover 540, although it will be understood that the conductive pattern may be located at any suitable location or combinations of locations within the device 510 (e.g., on the backing or substrate).
- Another microneedle device 610 according to the present invention is depicted in
- the device 610 includes a substrate 620 with microneedles 630 and a cover 640 that form a capillary volume as described above.
- the device 610 includes a reservoir volume 681 located on the opposite side of the substrate 620.
- the reservoir volume 681 may be filled with a fluid including, e.g., a medicament or other pharmacological agent to deliver.
- the volume 681 is defined by a housing 680 that includes an inner surface 682 facing the substrate 620.
- the housing 680 (in the depicted embodiment) is attached to the substrate 620 itself on the side opposite the microneedles 630. Alternatively, the housing 680 may be attached to the cover 640 outside of the periphery of the substrate 620.
- the volume 681 may also include a porous compressible material (e.g., a foam) to assist in holding any fluids or drawing of a vacuum using the device 610 (by compressing the porous material and relying on its tendency to expand, thereby drawing fluids into the volume 681 through void 628).
- a porous compressible material e.g., a foam
- the substrate 620 preferably includes one or more voids 628 formed therethrough, such that any fluids contained within the reservoir volume 681 can be communicated to the capillary volume formed between the substrate 620 and the cover 640.
- the reservoir volume is pressured or compressed (by, e.g., manual pressure)
- the fluids located within the reservoir volume 681 will preferably tend to flow towards the microneedles 630.
- the housing 680 be resilient, such that it can substantially recover its shape after compression.
- Still another optional feature that may be included in the device 610 is an optional membrane 686 covering the void 628 in the substrate 620.
- the membrane 686 may prevent fluid communication between the reservoir volume 681 and the capillary volume formed between the substrate 620 and the cover 640. In the absence of the membrane 686 or after the membrane 686 is ruptured or otherwise opened, the reservoir volume 681 is in fluid communication with the capillary volume.
- the membrane 686 is shown as being of a limited size, it may extend to the periphery of the substrate 620 such that it is attached to the housing 680 proximate the periphery of the substrate 620. In such a configuration, the membrane 686 may itself be attached to the substrate 620 by adhesives, thermal bonding, etc. and the reservoir volume 681 may be defined between the membrane 686 and the housing 680.
- Opening of the membrane 686 may conveniently be attained by compressing the housing 680 such that the pressure within the reservoir volume causes the membrane 686 to rupture. Other techniques of opening the membrane 686 may also be used. Furthermore, other techniques and structures for sealing the void 628 may be used in place of a membrane 686.
- the sealing adhesive 648 may preferably be a pressure sensitive adhesive, that adheres to skin or another delivery site, such that the device 610 is anchored or attached after the microneedles have penetrated at the delivery site.
- the sealing adhesive 648 may preferably form a seal about each of the microneedles 630, as well as retain the device 610 in contact with the delivery site. The seal may resist fluid flow and/or allow a vacuum to be drawn at the delivery site. It may be preferred that the sealing adhesive 648 be a skin-compatible adhesive, examples of which are well known.
- the sealing adhesive 648 may preferably be substantially coextensive with the area occupied by the microneedles 630 such that each of the microneedles 630 is surrounded by the adhesive 648 on the surface of the cover 640.
- microneedle device includes a substrate 720, microneedles 730, cover 740 and backing 760.
- the backing 760 may preferably be attached to the cover 740 about the periphery of the substrate 720 by an adhesive 762. Further, the cover 740 and the substrate 720 form a capillary volume as discussed above.
- the backing 760 extends outside of the substrate 720 and the cover 740 to a peripheral area 792 to which a cap 790 is attached. It may be preferred that the cap 790 and the backing 760 are formed of materials and sealed together by adhesives, thermal bonds, etc. such that the substrate 720 and microneedles 730 are enclosed within a hermetic, moisture-impermeable package used to transport and store the device 710 before use. In such an embodiment, the cap 790 would be removed to expose the microneedles 730 before use. Although the cap 790 is depicted as having a formed shape, it will be understood that it could be formed of flexible, unshaped materials, (e.g., laminates, etc.).
- a ring of sealing adhesive 748 on the outer surface of the cover 740.
- the ring of sealing adhesive 748 preferably extends about the periphery of the area occupied by the microneedles 730 and provides sealing and/or attachment functions when the microneedles 730 are inserted into a delivery site as discussed above in connection with FIG. 13 and sealing adhesive 648 depicted therein.
- FIG. 15 depicts yet another microneedle device 810 according to the present invention.
- the device includes microneedles 830 that are preferably segregated in one area of the device 810.
- a sensor element array 870 is located outside of the area occupied by the microneedles 830 and includes a number of sensor elements 870a, 870b and 870c, all of which may be used to detect the same or different properties or compositions of fluids passing through the capillary volume.
- the capillary volume extends over the device such that fluids transmitted into the capillary volume by the microneedles travels across the device 810 into the area occupied by the sensor elements 870.
- the sensor elements 870 may, for example, be provided in the form of coatings, rather tan separate articles as depicted above.
- a ring of sealing adhesive 848 is also depicted in connection with device 810.
- This ring of sealing adhesive 848 may, for example, be located on a backing that extends beyond the periphery of the substrate on which the microneedles 830 are located (as seen in, e.g., FIG. 14).
- a cap or liner may then be attached to the adhesive 848 (see, e.g., cap 790 in FIG. 14) to protect it during transport of the device. If a cap is used, it may form a portion of a package in which the device 810 is delivered. Upon removal of the cap or liner, the sealing adhesive 848 is exposed and can be used to attach and/or seal the device 810 to the delivery site.
- FIG. 16 depicts one method of providing a cover pierced by microneedles in connection with the manufacturing of microneedle devices according to the present invention.
- the piercing of the cover 940 by the microneedles 930 may be accomplished by any suitable technique or techniques. It may, however, be preferred that piercing of the cover 940 by the microneedles 930 be accomplished by simultaneous delivery of force and ultrasonic energy.
- the substrate 920 with microneedles 930 may be forced against the cover 940 by an ultrasonic horn 990. It may be preferred that the cover and substrate 920 rest on a resilient material 992 (e.g., silicone rubber having a durometer hardness of approximately 18 on the Shore D scale). As the substrate 920 is forced towards the resilient material 992, ultrasonic energy may assist the microneedles in piercing the cover 940 in a manner that results in the formation of the desired capillary volume as described above.
- a resilient material 992 e.g., silicone rubber having a durometer
- piercing of the cover by the microneedles may also be used.
- it may be desirable to provide heat during the piercing process (alone or in connection with ultrasonic energy). In other instances, it may be sufficient to provide force alone, in some instances an impact force of relatively short duration may be preferred.
- ultrasonic energy it may be applied through the cover 940 rather than through the substrate 920 as depicted in FIG. 16.
- microneedles, standoff structure (if any), and conduit structure (if any) may preferably be manufactured integrally with the substrate.
- the various features may preferably formed as a one piece, completely integral unit.
- the microneedles, standoff structures, and/or conduit structures may be provided separately from the substrate.
- the microneedle substrates may be manufactured from a variety of materials. Material selection may be based on a variety of factors including the ability of the material to accurately reproduce the desired pattern; the strength and toughness of the material when formed into the microneedles; the compatibility of the material with, for example, human or animal skin; the compatibility of the materials with any fluids to be delivered or removed by the channels formed in the microneedles, etc. For example, it may be preferred that the microneedle arrays of the present invention be manufactured of one or more metals. Regardless of the materials used for the microneedle arrays of the present invention, it may be preferred that the surfaces of the microneedle array that are likely to come into contact with fluids during use have certain wettability characteristics.
- these surfaces are hydrophilic, e.g., exhibit a static contact angle for water of less than 90 degrees (possibly less than about 40 degrees), so that the fluid can be spontaneously wicked via capillary pressure.
- the hydrophilic nature of the surfaces may be provided by selection of materials used to manufacture the entire microneedle array, surface treatments of the entire array or only those portions likely to come into contact with fluids, coatings on the entire array or only those portions likely to come into contact with fluids, etc.
- Microneedles in the microneedle arrays of the present invention can be solid or porous.
- porous means having that the microneedles include pores or voids through at least a portion of the structure, wherein those pores or voids are sufficiently large and interconnected to permit at least fluid passage.
- microneedle devices of the invention may be used in a variety of different manners.
- One manner of using microneedle devices of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue. As discussed above, it may be desired that the height of the microneedles in the microneedle devices be sufficient to penetrate the stratum corneum.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Anesthesiology (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL16255402A IL162554A0 (en) | 2002-01-15 | 2002-11-26 | Microneedle devices and methods of manufacture |
JP2003559591A JP4382492B2 (en) | 2002-01-15 | 2002-11-26 | Microneedle device and manufacturing method |
DE60224842T DE60224842T2 (en) | 2002-01-15 | 2002-11-26 | MICRONADEL DEVICES AND METHOD OF MANUFACTURE |
EP02794032A EP1465698B1 (en) | 2002-01-15 | 2002-11-26 | Microneedle devices and methods of manufacture |
AU2002359490A AU2002359490A1 (en) | 2002-01-15 | 2002-11-26 | Microneedle devices and methods of manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/051,745 | 2002-01-15 | ||
US10/051,745 US6908453B2 (en) | 2002-01-15 | 2002-01-15 | Microneedle devices and methods of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003059431A1 true WO2003059431A1 (en) | 2003-07-24 |
Family
ID=21973131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/037920 WO2003059431A1 (en) | 2002-01-15 | 2002-11-26 | Microneedle devices and methods of manufacture |
Country Status (8)
Country | Link |
---|---|
US (2) | US6908453B2 (en) |
EP (1) | EP1465698B1 (en) |
JP (1) | JP4382492B2 (en) |
AT (1) | ATE384549T1 (en) |
AU (1) | AU2002359490A1 (en) |
DE (1) | DE60224842T2 (en) |
IL (1) | IL162554A0 (en) |
WO (1) | WO2003059431A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006023684A2 (en) * | 2004-08-19 | 2006-03-02 | Alza Coporation | Microprojection array patch for transdermal delivery of vascular endothelial growth factors |
WO2006060106A1 (en) * | 2004-12-02 | 2006-06-08 | Hewlett-Packard Development Company L.P. | Transdermal drug delivery device |
WO2006062848A1 (en) * | 2004-12-10 | 2006-06-15 | 3M Innovative Properties Company | Medical device |
JPWO2005058162A1 (en) * | 2003-12-19 | 2007-07-12 | 株式会社ライトニックス | Medical needle and medical device |
JP2008534151A (en) * | 2005-03-28 | 2008-08-28 | アルザ コーポレイション | Microprojection and method with capillary action control features |
US8192787B2 (en) | 2004-08-16 | 2012-06-05 | Innoture Limited | Method of producing a microneedle or microimplant |
US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
JP2016508601A (en) * | 2013-01-29 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Apparatus having surface-sensitized spectroscopy elements on the outer surface |
JP2016212117A (en) * | 2016-08-09 | 2016-12-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Apparatus having surface-enhanced spectroscopy element on exterior surface |
US9550053B2 (en) | 2011-10-27 | 2017-01-24 | Kimberly-Clark Worldwide, Inc. | Transdermal delivery of high viscosity bioactive agents |
US9962536B2 (en) | 2014-04-30 | 2018-05-08 | Kimberly-Clark Worldwide, Inc. | Draped microneedle array |
US10245421B2 (en) | 2010-04-28 | 2019-04-02 | Sorrento Therapeutics, Inc. | Nanopatterned medical device with enhanced cellular interaction |
US10307578B2 (en) | 2005-06-27 | 2019-06-04 | 3M Innovative Properties Company | Microneedle cartridge assembly and method of applying |
US10773065B2 (en) | 2011-10-27 | 2020-09-15 | Sorrento Therapeutics, Inc. | Increased bioavailability of transdermally delivered agents |
Families Citing this family (206)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6908453B2 (en) * | 2002-01-15 | 2005-06-21 | 3M Innovative Properties Company | Microneedle devices and methods of manufacture |
CN102872526A (en) | 2002-07-19 | 2013-01-16 | 3M创新有限公司 | Microneedle devices and microneedle delivery apparatus |
US7415299B2 (en) * | 2003-04-18 | 2008-08-19 | The Regents Of The University Of California | Monitoring method and/or apparatus |
JP2007503268A (en) * | 2003-08-25 | 2007-02-22 | スリーエム イノベイティブ プロパティズ カンパニー | Delivery of immune response modifying compounds |
CN1842355A (en) * | 2003-08-26 | 2006-10-04 | 阿尔扎公司 | Device and method for intradermal cell implantation |
US7378451B2 (en) * | 2003-10-17 | 2008-05-27 | 3M Innovative Properties Co | Surfactant composition having stable hydrophilic character |
WO2005044364A1 (en) * | 2003-11-10 | 2005-05-19 | Agency For Science, Technology And Research | Microneedles and microneedle fabrication |
US7753888B2 (en) * | 2003-11-21 | 2010-07-13 | The Regents Of The University Of California | Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles |
WO2005065765A1 (en) * | 2003-12-29 | 2005-07-21 | 3M Innovative Properties Company | Medical devices and kits including same |
US7150726B2 (en) * | 2004-01-23 | 2006-12-19 | Norfolk Medical | Device for subcutaneous infusion of fluids |
GB0402131D0 (en) | 2004-01-30 | 2004-03-03 | Isis Innovation | Delivery method |
US8551391B2 (en) * | 2004-02-17 | 2013-10-08 | Avery Dennison Corporation | Method of making microneedles |
JP2007523771A (en) * | 2004-02-23 | 2007-08-23 | スリーエム イノベイティブ プロパティズ カンパニー | Microneedle array molding method |
CN100540086C (en) * | 2004-03-12 | 2009-09-16 | 新加坡科技研究局 | Be used for making the method and the mould of side-ported microneedles |
ES2574802T3 (en) * | 2004-04-12 | 2016-06-22 | Allergan, Inc. | Multi-site injection system |
EP1773444B1 (en) * | 2004-06-10 | 2017-09-20 | 3M Innovative Properties Company | Patch application device and kit |
US7560036B2 (en) * | 2004-08-05 | 2009-07-14 | Apogee Technology, Inc. | System and method for drug delivery and microfluidic applications using microneedles |
WO2006016364A2 (en) * | 2004-08-10 | 2006-02-16 | Hellman De Picciotto, Tania | Drug delivery devices |
JPWO2006016647A1 (en) * | 2004-08-12 | 2008-05-01 | 久光製薬株式会社 | Transdermal drug administration device with microneedle |
AU2005306429B2 (en) | 2004-11-18 | 2011-04-14 | 3M Innovative Properties Company | Microneedle array applicator and retainer |
CN101060883B (en) | 2004-11-18 | 2010-06-23 | 3M创新有限公司 | Low-profile microneedle array applicator |
WO2006055844A2 (en) | 2004-11-18 | 2006-05-26 | 3M Innovative Properties Company | Method of contact coating a microneedle array |
AU2005306426B2 (en) * | 2004-11-18 | 2011-04-28 | 3M Innovative Properties Company | Masking method for coating a microneedle array |
US8057842B2 (en) | 2004-11-18 | 2011-11-15 | 3M Innovative Properties Company | Method of contact coating a microneedle array |
CA2589733C (en) | 2004-12-07 | 2014-02-11 | 3M Innovative Properties Company | Method of molding a microneedle |
JP4793806B2 (en) * | 2005-03-22 | 2011-10-12 | Tti・エルビュー株式会社 | Iontophoresis device |
EP1869414A4 (en) * | 2005-03-29 | 2010-07-28 | Arkal Medical Inc | Devices, systems, methods and tools for continuous glucose monitoring |
JP5301985B2 (en) | 2005-04-07 | 2013-09-25 | スリーエム イノベイティブ プロパティズ カンパニー | System and method for tool feedback sensing |
US20070270738A1 (en) * | 2005-04-25 | 2007-11-22 | Wu Jeffrey M | Method of treating ACNE with stratum corneum piercing patch |
US7442029B2 (en) | 2005-05-16 | 2008-10-28 | Asml Netherlands B.V. | Imprint lithography |
WO2007002523A2 (en) * | 2005-06-24 | 2007-01-04 | 3M Innovative Properties Company | Collapsible patch with microneedle array |
EP2474338B1 (en) * | 2005-06-27 | 2013-07-24 | 3M Innovative Properties Company | Microneedle array applicator device |
US20070004989A1 (en) * | 2005-06-29 | 2007-01-04 | Parvinder Dhillon | Device for transdermal sampling |
CA2619665A1 (en) | 2005-09-15 | 2007-03-22 | Tti Ellebeau, Inc. | Rod type iontophoresis device |
US20070185432A1 (en) * | 2005-09-19 | 2007-08-09 | Transport Pharmaceuticals, Inc. | Electrokinetic system and method for delivering methotrexate |
US20070066934A1 (en) * | 2005-09-19 | 2007-03-22 | Transport Pharmaceuticals, Inc. | Electrokinetic delivery system and methods therefor |
WO2007038028A1 (en) * | 2005-09-28 | 2007-04-05 | Tti Ellebeau, Inc. | Iontophoresis apparatus and method to deliver active agents to biological interfaces |
US20070093789A1 (en) * | 2005-09-30 | 2007-04-26 | Transcutaneous Technologies Inc. | Iontophoresis apparatus and method for delivery of angiogenic factors to enhance healing of injured tissue |
WO2007041323A1 (en) * | 2005-09-30 | 2007-04-12 | Tti Ellebeau, Inc. | Iontophoretic delivery of vesicle-encapsulated active agents |
JP2009509657A (en) * | 2005-09-30 | 2009-03-12 | Tti・エルビュー株式会社 | Iontophoresis device and method for delivery of active agents to biological interfaces |
EP1948139A4 (en) * | 2005-11-18 | 2012-04-04 | 3M Innovative Properties Co | Coatable compositions, coatings derived therefrom and microarrays having such coatings |
US20080262416A1 (en) * | 2005-11-18 | 2008-10-23 | Duan Daniel C | Microneedle Arrays and Methods of Preparing Same |
EP1962942A1 (en) * | 2005-12-21 | 2008-09-03 | 3M Innovative Properties Company | Microneedle devices |
WO2007079193A2 (en) * | 2005-12-30 | 2007-07-12 | Tti Ellebeau, Inc. | Iontophoretic systems, devices, and methods of delivery of active agents to biological interface |
US9339641B2 (en) | 2006-01-17 | 2016-05-17 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US9610459B2 (en) | 2009-07-24 | 2017-04-04 | Emkinetics, Inc. | Cooling systems and methods for conductive coils |
JPWO2007091608A1 (en) * | 2006-02-10 | 2009-07-02 | 久光製薬株式会社 | Transdermal drug administration device with microneedle |
EP1820441A1 (en) * | 2006-02-16 | 2007-08-22 | Roche Diagnostics GmbH | Microneedle arrays with attenuated total reflection (ATR) sensor |
US7699819B2 (en) | 2006-02-21 | 2010-04-20 | The Hong Kong University Of Science And Technology | Molecular sieve and zeolite microneedles and preparation thereof |
US20080154107A1 (en) * | 2006-12-20 | 2008-06-26 | Jina Arvind N | Device, systems, methods and tools for continuous glucose monitoring |
US20100049021A1 (en) * | 2006-03-28 | 2010-02-25 | Jina Arvind N | Devices, systems, methods and tools for continuous analyte monitoring |
US20090131778A1 (en) * | 2006-03-28 | 2009-05-21 | Jina Arvind N | Devices, systems, methods and tools for continuous glucose monitoring |
US20080004564A1 (en) * | 2006-03-30 | 2008-01-03 | Transcutaneous Technologies Inc. | Controlled release membrane and methods of use |
WO2007124411A1 (en) * | 2006-04-20 | 2007-11-01 | 3M Innovative Properties Company | Device for applying a microneedle array |
DE102006028782A1 (en) * | 2006-06-23 | 2007-12-27 | Robert Bosch Gmbh | Micro needles storing and transporting device for use in e.g. biochemical area, has active substance-permeable carrier running through reservoir and sub-dividing it into reservoir area with micro needles and another area without needles |
US8250729B2 (en) * | 2006-07-12 | 2012-08-28 | University Of Utah Research Foundation | 3D fabrication of needle tip geometry and knife blade |
JP2009545368A (en) * | 2006-08-01 | 2009-12-24 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Ultrasonic enhanced micro needle |
US20080058726A1 (en) * | 2006-08-30 | 2008-03-06 | Arvind Jina | Methods and Apparatus Incorporating a Surface Penetration Device |
ES2380226T3 (en) * | 2006-09-04 | 2012-05-09 | F. Hoffmann-La Roche Ag | Packaging for hydrophilic medical instruments |
US20080097352A1 (en) * | 2006-09-12 | 2008-04-24 | Beck Patricia A | Methods of fabricating microneedles with bio-sensory functionality |
US20090181078A1 (en) | 2006-09-26 | 2009-07-16 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
TR201807756T4 (en) | 2006-09-26 | 2018-06-21 | Infectious Disease Res Inst | Vaccine composition containing synthetic adjuvant. |
JP4954656B2 (en) * | 2006-09-28 | 2012-06-20 | 凸版印刷株式会社 | Acicular body and method for producing acicular body |
US11224742B2 (en) | 2006-10-02 | 2022-01-18 | Emkinetics, Inc. | Methods and devices for performing electrical stimulation to treat various conditions |
US10786669B2 (en) | 2006-10-02 | 2020-09-29 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US9005102B2 (en) | 2006-10-02 | 2015-04-14 | Emkinetics, Inc. | Method and apparatus for electrical stimulation therapy |
AU2007303223C1 (en) | 2006-10-02 | 2013-01-10 | Emkinetics, Inc. | Method and apparatus for magnetic induction therapy |
WO2008062832A1 (en) * | 2006-11-22 | 2008-05-29 | Toppan Printing Co., Ltd. | Microneedle array and process for production thereof |
JP5383497B2 (en) | 2006-12-01 | 2014-01-08 | Tti・エルビュー株式会社 | System and device for powering and / or controlling a device, for example a transdermal delivery device |
US20080234562A1 (en) * | 2007-03-19 | 2008-09-25 | Jina Arvind N | Continuous analyte monitor with multi-point self-calibration |
JP5297595B2 (en) * | 2007-03-20 | 2013-09-25 | 凸版印刷株式会社 | Needle-like body and method for producing needle-like body |
US8439861B2 (en) * | 2007-04-24 | 2013-05-14 | Velcro Industries B.V. | Skin penetrating touch fasteners |
TW200841866A (en) * | 2007-04-25 | 2008-11-01 | Micro Base Technology Corp | Cosmetic or medical patch structure |
US20080312518A1 (en) * | 2007-06-14 | 2008-12-18 | Arkal Medical, Inc | On-demand analyte monitor and method of use |
US20090053673A1 (en) * | 2007-08-23 | 2009-02-26 | Zimmer, Inc. | Method for localized treatment of periodontal tissue |
EP2205169B1 (en) * | 2007-09-28 | 2016-11-16 | The Queen's University of Belfast | Delivery device and method |
US20090099427A1 (en) * | 2007-10-12 | 2009-04-16 | Arkal Medical, Inc. | Microneedle array with diverse needle configurations |
EP2231257A4 (en) | 2007-12-24 | 2013-11-06 | Univ Queensland | Coating method |
EP2247527A4 (en) * | 2008-02-07 | 2014-10-29 | Univ Queensland | Patch production |
US8398397B2 (en) * | 2008-03-12 | 2013-03-19 | Ultradent Products, Inc. | Dental intraligamentary injection needles and related methods of manufacture |
US20090259176A1 (en) * | 2008-04-09 | 2009-10-15 | Los Gatos Research, Inc. | Transdermal patch system |
US8012329B2 (en) | 2008-05-09 | 2011-09-06 | 3M Innovative Properties Company | Dimensional control in electroforms |
WO2009140735A1 (en) | 2008-05-23 | 2009-11-26 | The University Of Queensland | Analyte detection by microneedle patch with analyte selective reagents. |
US20110150946A1 (en) * | 2008-08-22 | 2011-06-23 | Al-Ghananeem Abeer M | Transdermal Delivery of Apomorphine Using Microneedles |
EP2355887B1 (en) | 2008-11-18 | 2017-08-02 | 3M Innovative Properties Company | Hollow microneedle array |
BRPI0922629A2 (en) | 2008-12-02 | 2016-01-05 | Allergan Inc | injection device |
JP5563652B2 (en) | 2009-03-17 | 2014-07-30 | カーディオスライヴ インコーポレイテッド | External defibrillator |
US8781576B2 (en) | 2009-03-17 | 2014-07-15 | Cardiothrive, Inc. | Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current |
KR101033514B1 (en) * | 2009-06-02 | 2011-05-09 | (주)마이티시스템 | Flexible Patch System with Micro-needle, and Manufacturing Method of the Same |
EP2437753B1 (en) | 2009-06-05 | 2016-08-31 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants and vaccine compositions containing them |
US8062568B2 (en) * | 2009-08-27 | 2011-11-22 | Korea University Research And Business Foundation | Nano pattern writer |
US20110319742A1 (en) * | 2009-09-08 | 2011-12-29 | SensiVida Medical Technologies, Inc. | Spatial imaging methods for biomedical monitoring and systems thereof |
US8834423B2 (en) * | 2009-10-23 | 2014-09-16 | University of Pittsburgh—of the Commonwealth System of Higher Education | Dissolvable microneedle arrays for transdermal delivery to human skin |
JP2013508119A (en) | 2009-10-26 | 2013-03-07 | エムキネティクス, インコーポレイテッド | Method and apparatus for electromagnetic stimulation of nerves, muscles and body tissues |
DE102009046581A1 (en) | 2009-11-10 | 2011-05-12 | Robert Bosch Gmbh | Manufacturing method for a porous microneedle array and corresponding porous microneedle array and corresponding substrate composite |
US20110144591A1 (en) * | 2009-12-11 | 2011-06-16 | Ross Russell F | Transdermal Delivery Device |
US20110172638A1 (en) * | 2010-01-08 | 2011-07-14 | Ratio, Inc. | Drug delivery device including multi-functional cover |
GB2478363A (en) * | 2010-03-05 | 2011-09-07 | Ndm Technologies Ltd | Microneedle patch and method of manufacture |
JP5423522B2 (en) * | 2010-03-25 | 2014-02-19 | 日本電気株式会社 | Module and module manufacturing method |
AU2011311255B2 (en) | 2010-04-28 | 2015-10-08 | Sorrento Therapeutics, Inc. | Method for increasing permeability of an epithelial barrier |
FR2959599B1 (en) * | 2010-04-28 | 2013-12-20 | Commissariat Energie Atomique | DEVICE AND METHOD FOR MECHANICAL TEXTURATION OF A SILICON PLATELET FOR CONSTITUTING A PHOTOVOLTAIC CELL, SILICON PLATE OBTAINED |
CN102985131B (en) | 2010-04-28 | 2016-06-29 | 金伯利-克拉克环球有限公司 | For delivering the medical treatment device of siRNA |
PT2563450T (en) | 2010-04-28 | 2017-08-28 | Kimberly Clark Co | Device for delivery of rheumatoid arthritis medication |
US8588884B2 (en) | 2010-05-28 | 2013-11-19 | Emkinetics, Inc. | Microneedle electrode |
WO2012006677A1 (en) | 2010-07-14 | 2012-01-19 | The University Of Queensland | Patch applying apparatus |
WO2012048285A1 (en) * | 2010-10-08 | 2012-04-12 | Lanco Biosciences, Inc. | Delivery of bisphosphonates by microinjection systems |
WO2012061556A1 (en) | 2010-11-03 | 2012-05-10 | Flugen, Inc. | Wearable drug delivery device having spring drive and sliding actuation mechanism |
US8696637B2 (en) | 2011-02-28 | 2014-04-15 | Kimberly-Clark Worldwide | Transdermal patch containing microneedles |
AU2012243039B2 (en) | 2011-04-08 | 2017-07-13 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
JP2014236758A (en) * | 2011-09-30 | 2014-12-18 | テルモ株式会社 | Sensor |
US11179553B2 (en) | 2011-10-12 | 2021-11-23 | Vaxxas Pty Limited | Delivery device |
CN104363892A (en) | 2012-02-07 | 2015-02-18 | 传染性疾病研究院 | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
US9944019B2 (en) | 2012-05-01 | 2018-04-17 | University of Pittsburgh—of the Commonwealth System of Higher Education | Tip-loaded microneedle arrays for transdermal insertion |
RS57420B1 (en) | 2012-05-16 | 2018-09-28 | Immune Design Corp | Vaccines for hsv-2 |
JP5903016B2 (en) * | 2012-06-27 | 2016-04-13 | コスメディ製薬株式会社 | Protective release sheet for microneedle patch |
US20150173991A1 (en) * | 2012-07-06 | 2015-06-25 | The General Hospital Corporation | Method and apparatus for dermatological treatment |
CN103157178B (en) * | 2013-02-05 | 2014-12-31 | 北京化工大学 | Seal type tool capable of accurately controlling microneedle insertion length |
US10543127B2 (en) | 2013-02-20 | 2020-01-28 | Cytrellis Biosystems, Inc. | Methods and devices for skin tightening |
ITMI20130586A1 (en) * | 2013-04-11 | 2014-10-12 | Azienda Ospedaliero Universitaria P Isana | MICROAGUS AND MICROAGHI MATRIX FOR MEDICAL USE, AND PROCESS OF PRODUCTION OF THAT MATRIX |
CA2909221A1 (en) | 2013-04-18 | 2014-10-23 | Immune Design Corp. | Gla monotherapy for use in cancer treatment |
US20140350516A1 (en) | 2013-05-23 | 2014-11-27 | Allergan, Inc. | Mechanical syringe accessory |
US20140350518A1 (en) | 2013-05-23 | 2014-11-27 | Allergan, Inc. | Syringe extrusion accessory |
US9463198B2 (en) | 2013-06-04 | 2016-10-11 | Infectious Disease Research Institute | Compositions and methods for reducing or preventing metastasis |
JP6533520B2 (en) * | 2013-06-13 | 2019-06-19 | マイクロダーミクス インコーポレイテッドMicrodermics Inc. | Method of making metal microneedle |
US9656094B2 (en) | 2013-06-14 | 2017-05-23 | Cardiothrive, Inc. | Biphasic or multiphasic pulse generator and method |
US10149973B2 (en) | 2013-06-14 | 2018-12-11 | Cardiothrive, Inc. | Multipart non-uniform patient contact interface and method of use |
US9907970B2 (en) | 2013-06-14 | 2018-03-06 | Cardiothrive, Inc. | Therapeutic system and method using biphasic or multiphasic pulse waveform |
US10279189B2 (en) | 2013-06-14 | 2019-05-07 | Cardiothrive, Inc. | Wearable multiphasic cardioverter defibrillator system and method |
US9616243B2 (en) | 2013-06-14 | 2017-04-11 | Cardiothrive, Inc. | Dynamically adjustable multiphasic defibrillator pulse system and method |
US9833630B2 (en) | 2013-06-14 | 2017-12-05 | Cardiothrive, Inc. | Biphasic or multiphasic pulse waveform and method |
KR102349218B1 (en) | 2013-08-09 | 2022-01-10 | 사이트렐리스 바이오시스템즈, 인크. | Methods and apparatuses for skin treatment using non-thermal tissue ablation |
KR101511850B1 (en) * | 2013-10-10 | 2015-04-16 | (주)엠큐어 | Apparatus for skin treatment having Multi-Needle Hub |
WO2015095675A1 (en) | 2013-12-19 | 2015-06-25 | Cytrellis Biosystems, Inc. | Methods and devices for manipulating subdermal fat |
US20160030459A1 (en) | 2014-01-21 | 2016-02-04 | Immune Design Corp. | Compositions and methods for treating allergic conditions |
EP3111986B1 (en) * | 2014-02-27 | 2024-03-27 | Toppan Printing Co., Ltd. | Microneedle unit and microneedle receptacle |
WO2015147030A1 (en) * | 2014-03-26 | 2015-10-01 | 日本写真印刷株式会社 | Packaging body for sheet with conical projections and method for manufacturing same |
US10029048B2 (en) | 2014-05-13 | 2018-07-24 | Allergan, Inc. | High force injection devices |
US9987427B1 (en) | 2014-06-24 | 2018-06-05 | National Technology & Engineering Solutions Of Sandia, Llc | Diagnostic/drug delivery “sense-respond” devices, systems, and uses thereof |
US10321858B2 (en) | 2014-08-18 | 2019-06-18 | Proteadx, Inc. | Apparatus and methods for transdermal sensing of analytes in interstitial fluid and associated data transmission systems |
US9933387B1 (en) | 2014-09-07 | 2018-04-03 | Biolinq, Inc. | Miniaturized sub-nanoampere sensitivity low-noise potentiostat system |
US10226585B2 (en) | 2014-10-01 | 2019-03-12 | Allergan, Inc. | Devices for injection and dosing |
JP6906885B2 (en) | 2014-11-14 | 2021-07-21 | ロレアル | Microneedle sheet to reduce wrinkles |
KR102670286B1 (en) | 2014-11-14 | 2024-05-30 | 사이트렐리스 바이오시스템즈, 인크. | Devices and methods for ablation of the skin |
JP6717207B2 (en) * | 2015-01-27 | 2020-07-01 | 凸版印刷株式会社 | Transdermal administration device |
CA2975275C (en) | 2015-02-02 | 2023-08-29 | Vaxxas Pty Limited | Microprojection array applicator and method |
CA2976544A1 (en) | 2015-03-10 | 2016-09-15 | Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company | Multiple needle injector |
US10441768B2 (en) | 2015-03-18 | 2019-10-15 | University of Pittsburgh—of the Commonwealth System of Higher Education | Bioactive components conjugated to substrates of microneedle arrays |
KR102546426B1 (en) * | 2015-04-27 | 2023-06-22 | 가부시키가이샤 사이세이 | Sheet-like small pieces, a sheet for promoting hair growth containing the small pieces, and a whitening and anti-wrinkle agent containing the small pieces |
JP6646985B2 (en) * | 2015-09-08 | 2020-02-14 | 花王株式会社 | Manufacturing method of fine projection tool |
US11103259B2 (en) | 2015-09-18 | 2021-08-31 | Vaxxas Pty Limited | Microprojection arrays with microprojections having large surface area profiles |
EP3355981A4 (en) | 2015-09-28 | 2019-05-22 | Vaxxas Pty Limited | Microprojection arrays with enhanced skin penetrating properties and methods thereof |
JP6461761B2 (en) * | 2015-10-06 | 2019-01-30 | 富士フイルム株式会社 | Method for producing transdermal absorption sheet |
US11684763B2 (en) | 2015-10-16 | 2023-06-27 | University of Pittsburgh—of the Commonwealth System of Higher Education | Multi-component bio-active drug delivery and controlled release to the skin by microneedle array devices |
MY197273A (en) * | 2015-12-04 | 2023-06-08 | Ascilion Ab | A microneedle and a chip |
WO2017120322A1 (en) | 2016-01-05 | 2017-07-13 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Skin microenvironment targeted delivery for promoting immune and other responses |
KR20230117470A (en) | 2016-03-29 | 2023-08-08 | 사이트렐리스 바이오시스템즈, 인크. | Devices and methods for cosmetic skin resurfacing |
KR102232054B1 (en) | 2016-04-08 | 2021-03-26 | 알레간 인코포레이티드 | Suction and injection device |
WO2017191221A1 (en) * | 2016-05-04 | 2017-11-09 | Midge Medical Gmbh | Body fluid extraction device |
US10092207B1 (en) | 2016-05-15 | 2018-10-09 | Biolinq, Inc. | Tissue-penetrating electrochemical sensor featuring a co-electrodeposited thin film comprised of polymer and bio-recognition element |
CN109562057A (en) | 2016-05-16 | 2019-04-02 | 传染病研究所 | Pegylated liposomal and application method |
IL314130A (en) | 2016-05-16 | 2024-09-01 | Access To Advanced Health Inst | Formulation containing tlr agonist and methods of use |
BR112018074352B1 (en) | 2016-06-01 | 2021-11-30 | Infectious Disease Research Institute | NANOALUME PARTICLES CONTAINING A SIZING AGENT |
KR102515836B1 (en) | 2016-09-21 | 2023-03-31 | 사이트렐리스 바이오시스템즈, 인크. | Device and method for cosmetic skin resurfacing |
WO2018093465A1 (en) | 2016-11-21 | 2018-05-24 | Eirion Therapeutics, Inc. | Transdermal delivery of large agents |
KR20190070335A (en) * | 2016-11-23 | 2019-06-20 | 유니버시티 메디컬 파마슈티컬스 코퍼레이션 | Micro needle delivery system and method |
JP6977258B2 (en) * | 2016-12-20 | 2021-12-08 | 株式会社リコー | Hollow structure |
EP3338832A1 (en) * | 2016-12-23 | 2018-06-27 | Sanofi-Aventis Deutschland GmbH | Medicament delivery device |
US12109032B1 (en) | 2017-03-11 | 2024-10-08 | Biolinq Incorporated | Methods for achieving an isolated electrical interface between an anterior surface of a microneedle structure and a posterior surface of a support structure |
USD867582S1 (en) | 2017-03-24 | 2019-11-19 | Allergan, Inc. | Syringe device |
EP4306803A3 (en) | 2017-03-31 | 2024-04-10 | Vaxxas Pty Limited | Device and method for coating surfaces |
US11045142B1 (en) | 2017-04-29 | 2021-06-29 | Biolinq, Inc. | Heterogeneous integration of silicon-fabricated solid microneedle sensors and CMOS circuitry |
CA3066915A1 (en) | 2017-06-11 | 2018-12-20 | Molecular Express, Inc. | Methods and compositions for substance use disorder vaccine formulations and uses thereof |
US11175128B2 (en) | 2017-06-13 | 2021-11-16 | Vaxxas Pty Limited | Quality control of substrate coatings |
JP6931222B2 (en) * | 2017-07-18 | 2021-09-01 | コスメディ製薬株式会社 | Foam support sheet for microneedle array |
EP4218893A1 (en) | 2017-08-04 | 2023-08-02 | Vaxxas Pty Limited | Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (map) |
US11766203B2 (en) | 2017-09-13 | 2023-09-26 | National Technology & Engineering Solutions Of Sandia, Llc | Coaxial microneedle assemblies and methods thereof |
TWI667016B (en) * | 2017-11-20 | 2019-08-01 | 研能科技股份有限公司 | Blood sugar detecting and controlling system |
US20200315502A1 (en) * | 2017-12-21 | 2020-10-08 | Georgia Tech Research Corporation | Methods and Systems for Improved Collection of Interstitial Fluid |
US10828500B2 (en) | 2017-12-22 | 2020-11-10 | Cardiothrive, Inc. | External defibrillator |
SG10201800072YA (en) * | 2018-01-03 | 2019-08-27 | Micropoint Tech Pte Ltd | Microneedle Patches Comprising Corticosteroid |
US10918839B2 (en) * | 2018-03-13 | 2021-02-16 | II Jaro Mayda | Balloon catheter |
CN111801135B (en) * | 2018-03-30 | 2023-06-27 | 富士胶片株式会社 | Method for manufacturing microneedle array |
USD875254S1 (en) | 2018-06-08 | 2020-02-11 | Biolinq, Inc. | Intradermal biosensor |
JP2022500452A (en) | 2018-09-13 | 2022-01-04 | エイリオン セラピューティクス, インコーポレイテッド | Use of plasminogen activator inhibitor 1 (PAI-1) inhibitor (inhibitor) |
EP3849539A1 (en) | 2018-09-13 | 2021-07-21 | Eirion Therapeutics, Inc. | Plasminogen activator inhibitor 1 (pai-1) inhibitors and uses therefor |
US20210338158A1 (en) | 2018-10-02 | 2021-11-04 | WearOptimo Pty Ltd | Measurement system |
WO2020069567A1 (en) | 2018-10-02 | 2020-04-09 | WearOptimo Pty Ltd | Electrode arrangement |
CN113423381A (en) | 2018-12-03 | 2021-09-21 | 艾里奥治疗公司 | Improved delivery of large agents |
CA3139983A1 (en) | 2019-05-14 | 2020-11-19 | Eirion Therapeutics, Inc. | Delaying peak effect and/or extending duration of response |
CN111939452A (en) * | 2019-05-15 | 2020-11-17 | 微邦科技股份有限公司 | Microneedle structure and biodegradable microneedle thereof |
TWI687247B (en) * | 2019-05-15 | 2020-03-11 | 微邦科技股份有限公司 | Microneedle structure and biodegradable microneedle thereof |
EP3772331A1 (en) * | 2019-08-08 | 2021-02-10 | PKvitality | Body monitoring system comprising a microneedle |
CN110711312B (en) * | 2019-11-07 | 2021-07-30 | 河南大学 | Micro-electromechanical system based strong permeation-promoting transdermal drug release micro-system and manufacturing method thereof |
CN115379797A (en) | 2020-07-29 | 2022-11-22 | 比奥林公司 | Continuous analyte monitoring system with microneedle array |
WO2022118859A1 (en) * | 2020-12-01 | 2022-06-09 | 三井化学株式会社 | Microneedle array, microneedle array assembly, and test chip |
US20240050561A1 (en) | 2020-12-23 | 2024-02-15 | Access To Advanced Health Institute | Solanesol vaccine adjuvants and methods of preparing same |
CN112858430B (en) * | 2021-01-08 | 2021-11-26 | 中山大学 | Sensor for detecting plant active small molecules and preparation method |
USD988160S1 (en) * | 2021-03-16 | 2023-06-06 | Biolinq Incorporated | Wearable dermal sensor |
EP4153276A4 (en) | 2021-05-08 | 2023-11-08 | Biolinq, Inc. | Fault detection for microneedle array based continuous analyte monitoring device |
CN113499537A (en) * | 2021-09-03 | 2021-10-15 | 河南佳普医药科技有限公司 | Microneedle transdermal delivery device |
JP7141625B1 (en) | 2021-09-17 | 2022-09-26 | リンテック株式会社 | Microneedle patch and microneedle structure |
USD996999S1 (en) * | 2021-11-16 | 2023-08-29 | Biolinq Incorporated | Wearable sensor |
USD1013544S1 (en) * | 2022-04-29 | 2024-02-06 | Biolinq Incorporated | Wearable sensor |
USD1012744S1 (en) * | 2022-05-16 | 2024-01-30 | Biolinq Incorporated | Wearable sensor with illuminated display |
WO2024129424A1 (en) * | 2022-12-16 | 2024-06-20 | Kindeva Drug Delivery L.P. | Drug delivery device |
USD1035004S1 (en) | 2023-02-28 | 2024-07-09 | Biolinq Incorporated | Wearable sensor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620095A (en) | 1993-06-11 | 1997-04-15 | Minnesota Mining And Manufacturing Company | Orthopedic casting material and hermetic package |
WO1998000193A1 (en) * | 1996-07-03 | 1998-01-08 | Altea Technologies, Inc. | Multiple mechanical microporation of skin or mucosa |
WO1998028037A1 (en) * | 1996-12-20 | 1998-07-02 | Alza Corporation | Device and method for enhancing transdermal agent flux |
US6099682A (en) | 1998-02-09 | 2000-08-08 | 3M Innovative Properties Company Corporation Of Delaware | Cold seal package and method for making the same |
WO2001036037A2 (en) * | 1999-11-15 | 2001-05-25 | Velcro Industries B.V. | Skin attachment member |
WO2001066065A2 (en) * | 2000-03-09 | 2001-09-13 | Nanopass Ltd. | Systems and methods for fluid transport through dermal barriers |
WO2001093930A1 (en) * | 2000-06-02 | 2001-12-13 | The University Of Utah Research Foundation | Active needle devices with integrated functionality |
Family Cites Families (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123212A (en) * | 1964-03-03 | Multiple disposable intracutaneous injector package | ||
NL113697C (en) * | 1954-04-27 | |||
US3034507A (en) * | 1960-05-10 | 1962-05-15 | American Cyanamid Co | Intracutaneous injection device |
US3074403A (en) * | 1960-05-17 | 1963-01-22 | American Cyanamid Co | Intracutaneous injector with capillary gap |
US3136314A (en) * | 1960-08-01 | 1964-06-09 | Kravitz Harvey | Vaccinating devices |
US3246647A (en) * | 1962-07-23 | 1966-04-19 | American Cyanamid Co | Disposable intracutaneous injector |
US3466131A (en) * | 1967-09-07 | 1969-09-09 | Becton Dickinson Co | Dispensing applicator package |
US3675766A (en) * | 1970-02-04 | 1972-07-11 | Sol Roy Rosenthal | Multiple puncture injector device |
US3688764A (en) * | 1970-08-20 | 1972-09-05 | Bard Hamilton Co Inc | Intracutaneous injection system |
US3964482A (en) | 1971-05-17 | 1976-06-22 | Alza Corporation | Drug delivery device |
US3678150A (en) * | 1971-07-27 | 1972-07-18 | American Cyanamid Co | Process for improving the stability of ppd, qt and histoplasmin on tine applicators |
DE2250293A1 (en) * | 1972-10-13 | 1974-04-25 | Bayern Freistaat | Inoculation stamps for cutaneous smallpox inoculation using dry vaccine |
OA05448A (en) * | 1975-10-16 | 1981-03-31 | Manufrance Manufacture Francai | Multi-penetrating vaccine device. |
US4473083A (en) * | 1981-12-14 | 1984-09-25 | Maganias Nicholas H | Device and method for allergy testing |
US4921475A (en) * | 1983-08-18 | 1990-05-01 | Drug Delivery Systems Inc. | Transdermal drug patch with microtubes |
GB2221394B (en) | 1988-08-05 | 1992-03-04 | Eilert Eilertsen | An injection device |
US6090790A (en) * | 1989-12-14 | 2000-07-18 | Eriksson; Elof | Gene delivery by microneedle injection |
US5402798A (en) * | 1991-07-18 | 1995-04-04 | Swierczek; Remi | Disposable skin perforator and blood testing device |
US5342737A (en) * | 1992-04-27 | 1994-08-30 | The United States Of America As Represented By The Secretary Of The Navy | High aspect ratio metal microstructures and method for preparing the same |
AU675440B2 (en) * | 1992-06-18 | 1997-02-06 | United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Recombinant (pseudomonas) exotoxin with increased activity |
JP3211525B2 (en) | 1993-04-22 | 2001-09-25 | オムロン株式会社 | Thin material mesh, its manufacturing method and its manufacturing apparatus |
US5611806A (en) * | 1994-05-23 | 1997-03-18 | Samsung Electro-Mechanics Co., Ltd. | Skin perforating device for transdermal medication |
JP4180654B2 (en) | 1995-04-26 | 2008-11-12 | スリーエム カンパニー | Method and apparatus for step-and-repeat exposure |
AU5740496A (en) * | 1995-05-22 | 1996-12-11 | General Hospital Corporation, The | Micromechanical device and method for enhancing delivery of compounds through the skin |
WO1996037256A1 (en) * | 1995-05-22 | 1996-11-28 | Silicon Microdevices, Inc. | Micromechanical patch for enhancing the delivery of compounds through the skin |
JP2725637B2 (en) * | 1995-05-31 | 1998-03-11 | 日本電気株式会社 | Electronic circuit device and method of manufacturing the same |
DE19525607A1 (en) | 1995-07-14 | 1997-01-16 | Boehringer Ingelheim Kg | Transcorneal drug delivery system |
US5658515A (en) * | 1995-09-25 | 1997-08-19 | Lee; Abraham P. | Polymer micromold and fabrication process |
US5657516A (en) * | 1995-10-12 | 1997-08-19 | Minnesota Mining And Manufacturing Company | Dual structured fastener elements |
ZA975326B (en) * | 1996-06-18 | 1998-01-14 | Alza Corp | Device and method for enhancing transdermal flux of agents being delivered or sampled. |
US6797276B1 (en) * | 1996-11-14 | 2004-09-28 | The United States Of America As Represented By The Secretary Of The Army | Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response |
US6605332B2 (en) * | 1997-07-29 | 2003-08-12 | 3M Innovative Properties Company | Unitary polymer substrate having napped surface of frayed end microfibers |
US6918901B1 (en) * | 1997-12-10 | 2005-07-19 | Felix Theeuwes | Device and method for enhancing transdermal agent flux |
CA2313698C (en) * | 1997-12-11 | 2008-04-15 | Alza Corporation | Device for enhancing transdermal agent flux |
KR100572539B1 (en) * | 1997-12-11 | 2006-04-24 | 알자 코포레이션 | Device for enhancing transdermal agent flux |
EP1086214B1 (en) * | 1998-06-10 | 2009-11-25 | Georgia Tech Research Corporation | Microneedle devices and methods of their manufacture |
US6503231B1 (en) * | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
GB9815819D0 (en) * | 1998-07-22 | 1998-09-16 | Secr Defence | Transferring materials into cells and a microneedle array |
GB9815820D0 (en) | 1998-07-22 | 1998-09-16 | Secr Defence | Improvements relating to micro-machining |
WO2000012173A1 (en) * | 1998-08-31 | 2000-03-09 | Johnson & Johnson Consumer Companies, Inc. | Electrotransport device comprising blades |
AU2189400A (en) * | 1998-12-18 | 2000-07-03 | Minimed, Inc. | Insertion sets with micro-piercing members for use with medical devices and methods of using the same |
DE60007290T2 (en) * | 1999-01-28 | 2004-09-23 | Cyto Pulse Sciences, Inc. | INTRODUCTION OF MACROMOLECULES IN CELLS |
US6713291B2 (en) * | 1999-01-28 | 2004-03-30 | Alan D. King | Electrodes coated with treating agent and uses thereof |
US6611707B1 (en) * | 1999-06-04 | 2003-08-26 | Georgia Tech Research Corporation | Microneedle drug delivery device |
EP1187653B1 (en) | 1999-06-04 | 2010-03-31 | Georgia Tech Research Corporation | Devices for enhanced microneedle penetration of biological barriers |
US6743211B1 (en) * | 1999-11-23 | 2004-06-01 | Georgia Tech Research Corporation | Devices and methods for enhanced microneedle penetration of biological barriers |
US6256533B1 (en) * | 1999-06-09 | 2001-07-03 | The Procter & Gamble Company | Apparatus and method for using an intracutaneous microneedle array |
US6312612B1 (en) | 1999-06-09 | 2001-11-06 | The Procter & Gamble Company | Apparatus and method for manufacturing an intracutaneous microneedle array |
US6379324B1 (en) * | 1999-06-09 | 2002-04-30 | The Procter & Gamble Company | Intracutaneous microneedle array apparatus |
US6623457B1 (en) | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
US6835184B1 (en) | 1999-09-24 | 2004-12-28 | Becton, Dickinson And Company | Method and device for abrading skin |
US6331266B1 (en) * | 1999-09-29 | 2001-12-18 | Becton Dickinson And Company | Process of making a molded device |
US20020095134A1 (en) * | 1999-10-14 | 2002-07-18 | Pettis Ronald J. | Method for altering drug pharmacokinetics based on medical delivery platform |
US6551849B1 (en) * | 1999-11-02 | 2003-04-22 | Christopher J. Kenney | Method for fabricating arrays of micro-needles |
US6558361B1 (en) * | 2000-03-09 | 2003-05-06 | Nanopass Ltd. | Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems |
US6595947B1 (en) * | 2000-05-22 | 2003-07-22 | Becton, Dickinson And Company | Topical delivery of vaccines |
US6565532B1 (en) * | 2000-07-12 | 2003-05-20 | The Procter & Gamble Company | Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup |
US6537242B1 (en) * | 2000-06-06 | 2003-03-25 | Becton, Dickinson And Company | Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance |
US7141034B2 (en) * | 2000-06-08 | 2006-11-28 | Altea Therapeutics Corporation | Transdermal drug delivery device, method of making same and method of using same |
US6589202B1 (en) * | 2000-06-29 | 2003-07-08 | Becton Dickinson And Company | Method and apparatus for transdermally sampling or administering a substance to a patient |
US6440096B1 (en) * | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
GB0017999D0 (en) * | 2000-07-21 | 2000-09-13 | Smithkline Beecham Biolog | Novel device |
US6749575B2 (en) * | 2001-08-20 | 2004-06-15 | Alza Corporation | Method for transdermal nucleic acid sampling |
US6533949B1 (en) * | 2000-08-28 | 2003-03-18 | Nanopass Ltd. | Microneedle structure and production method therefor |
AU8877401A (en) * | 2000-09-08 | 2002-03-22 | Alza Corp | Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure |
HUP0303576A2 (en) * | 2000-10-13 | 2004-01-28 | Alza Corp | Microprotrusion member retainer for impact applicator |
US6821281B2 (en) * | 2000-10-16 | 2004-11-23 | The Procter & Gamble Company | Microstructures for treating and conditioning skin |
HUP0302924A2 (en) * | 2000-10-26 | 2003-12-29 | Alza Corp | Transdermal drug delivery devices having coated microprotrusions |
EP1345646A2 (en) * | 2000-12-14 | 2003-09-24 | Georgia Tech Research Corporation | Microneedle devices and production thereof |
AU2002231207A1 (en) * | 2000-12-21 | 2002-07-01 | Biovalve Technologies, Inc. | Microneedle array systems |
US20020099356A1 (en) * | 2001-01-19 | 2002-07-25 | Unger Evan C. | Transmembrane transport apparatus and method |
US6663820B2 (en) * | 2001-03-14 | 2003-12-16 | The Procter & Gamble Company | Method of manufacturing microneedle structures using soft lithography and photolithography |
US6591124B2 (en) * | 2001-05-11 | 2003-07-08 | The Procter & Gamble Company | Portable interstitial fluid monitoring system |
AU2002312315A1 (en) * | 2001-06-08 | 2002-12-23 | The Regents Of The University Of California | Microfabricated surgical devices and methods of making the same |
US6686299B2 (en) * | 2001-06-21 | 2004-02-03 | Carlo D. Montemagno | Nanosyringe array and method |
US6746590B2 (en) * | 2001-09-05 | 2004-06-08 | 3M Innovative Properties Company | Ultrasonically-enhanced electroplating apparatus and methods |
US6881203B2 (en) * | 2001-09-05 | 2005-04-19 | 3M Innovative Properties Company | Microneedle arrays and methods of manufacturing the same |
AU2002327675A1 (en) * | 2001-09-19 | 2003-04-01 | Biovalve Technologies, Inc. | Microneedles, microneedle arrays, and systems and methods relating to same |
AU2002337788A1 (en) * | 2001-09-28 | 2003-04-07 | Biovalve Technologies, Inc. | Microneedle with membrane |
US6689100B2 (en) * | 2001-10-05 | 2004-02-10 | Becton, Dickinson And Company | Microdevice and method of delivering or withdrawing a substance through the skin of an animal |
US7429258B2 (en) * | 2001-10-26 | 2008-09-30 | Massachusetts Institute Of Technology | Microneedle transport device |
EP1439870B1 (en) * | 2001-10-29 | 2009-01-14 | Becton, Dickinson and Company | Device for the delivery of a substance |
AU2002360361A1 (en) * | 2001-11-09 | 2003-06-10 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
HUP0402605A2 (en) * | 2001-12-20 | 2005-06-28 | Alza Corporation | Skin-piercing microprojections having piercing depth control |
US6908453B2 (en) * | 2002-01-15 | 2005-06-21 | 3M Innovative Properties Company | Microneedle devices and methods of manufacture |
US20040060902A1 (en) * | 2002-02-05 | 2004-04-01 | Evans John D. | Microprotrusion array and methods of making a microprotrusion |
US6780171B2 (en) * | 2002-04-02 | 2004-08-24 | Becton, Dickinson And Company | Intradermal delivery device |
US6899838B2 (en) * | 2002-07-12 | 2005-05-31 | Becton, Dickinson And Company | Method of forming a mold and molding a micro-device |
DK1523355T3 (en) * | 2002-07-22 | 2019-04-23 | Becton Dickinson Co | PLASTER-LIKE INFUSION DEVICE |
ES2617576T3 (en) * | 2002-08-29 | 2017-06-19 | Becton, Dickinson And Company | Substance administration through a rotating microabrasive system |
WO2004033021A1 (en) * | 2002-10-07 | 2004-04-22 | Biovalve Technologies, Inc. | Microneedle array patch |
WO2005000382A2 (en) * | 2003-06-04 | 2005-01-06 | Georgia Tech Research Corporation | Drilling microneedle device |
UY28398A1 (en) * | 2003-07-02 | 2004-11-08 | Alza Corp | IMMUNIZATION METHOD AND PATCH BY MICROPROJECTION PROVISION |
TW200514596A (en) * | 2003-08-04 | 2005-05-01 | Alza Corp | Method and device for enhancing transdermal agent flux |
CA2535138C (en) * | 2003-08-12 | 2013-01-08 | Becton, Dickinson And Company | Patch-like infusion device |
CN1842355A (en) * | 2003-08-26 | 2006-10-04 | 阿尔扎公司 | Device and method for intradermal cell implantation |
US8353861B2 (en) * | 2003-09-18 | 2013-01-15 | Texmac, Inc. | Applicator for applying functional substances into human skin |
AU2004285481A1 (en) * | 2003-10-24 | 2005-05-12 | Alza Corporation | Apparatus and method for enhancing transdermal drug delivery |
BRPI0415466A (en) * | 2003-10-24 | 2006-12-19 | Alza Corp | pretreatment method and system for enhancing transdermal drug delivery |
CN1897883A (en) * | 2003-10-28 | 2007-01-17 | 阿尔扎公司 | Delivery of polymer conjugates of therapeutic peptides and proteins via coated microprojections |
-
2002
- 2002-01-15 US US10/051,745 patent/US6908453B2/en not_active Expired - Fee Related
- 2002-11-26 AU AU2002359490A patent/AU2002359490A1/en not_active Abandoned
- 2002-11-26 EP EP02794032A patent/EP1465698B1/en not_active Expired - Lifetime
- 2002-11-26 AT AT02794032T patent/ATE384549T1/en not_active IP Right Cessation
- 2002-11-26 DE DE60224842T patent/DE60224842T2/en not_active Expired - Lifetime
- 2002-11-26 JP JP2003559591A patent/JP4382492B2/en not_active Expired - Fee Related
- 2002-11-26 WO PCT/US2002/037920 patent/WO2003059431A1/en active IP Right Grant
- 2002-11-26 IL IL16255402A patent/IL162554A0/en unknown
-
2005
- 2005-04-21 US US11/111,428 patent/US20050187521A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620095A (en) | 1993-06-11 | 1997-04-15 | Minnesota Mining And Manufacturing Company | Orthopedic casting material and hermetic package |
WO1998000193A1 (en) * | 1996-07-03 | 1998-01-08 | Altea Technologies, Inc. | Multiple mechanical microporation of skin or mucosa |
WO1998028037A1 (en) * | 1996-12-20 | 1998-07-02 | Alza Corporation | Device and method for enhancing transdermal agent flux |
US6099682A (en) | 1998-02-09 | 2000-08-08 | 3M Innovative Properties Company Corporation Of Delaware | Cold seal package and method for making the same |
WO2001036037A2 (en) * | 1999-11-15 | 2001-05-25 | Velcro Industries B.V. | Skin attachment member |
WO2001066065A2 (en) * | 2000-03-09 | 2001-09-13 | Nanopass Ltd. | Systems and methods for fluid transport through dermal barriers |
WO2001093930A1 (en) * | 2000-06-02 | 2001-12-13 | The University Of Utah Research Foundation | Active needle devices with integrated functionality |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005058162A1 (en) * | 2003-12-19 | 2007-07-12 | 株式会社ライトニックス | Medical needle and medical device |
US7361182B2 (en) | 2003-12-19 | 2008-04-22 | Lightnix, Inc. | Medical lancet |
US7740621B2 (en) | 2003-12-19 | 2010-06-22 | Lightnix, Inc. | Medical needle and medical device |
US8192787B2 (en) | 2004-08-16 | 2012-06-05 | Innoture Limited | Method of producing a microneedle or microimplant |
WO2006023684A3 (en) * | 2004-08-19 | 2006-04-13 | Alza Coporation | Microprojection array patch for transdermal delivery of vascular endothelial growth factors |
WO2006023684A2 (en) * | 2004-08-19 | 2006-03-02 | Alza Coporation | Microprojection array patch for transdermal delivery of vascular endothelial growth factors |
WO2006060106A1 (en) * | 2004-12-02 | 2006-06-08 | Hewlett-Packard Development Company L.P. | Transdermal drug delivery device |
WO2006062848A1 (en) * | 2004-12-10 | 2006-06-15 | 3M Innovative Properties Company | Medical device |
JP2008534151A (en) * | 2005-03-28 | 2008-08-28 | アルザ コーポレイション | Microprojection and method with capillary action control features |
US10307578B2 (en) | 2005-06-27 | 2019-06-04 | 3M Innovative Properties Company | Microneedle cartridge assembly and method of applying |
US12017031B2 (en) | 2010-04-28 | 2024-06-25 | Sorrento Therapeutics, Inc. | Nanopatterned medical device with enhanced cellular interaction |
US11179555B2 (en) | 2010-04-28 | 2021-11-23 | Sorrento Therapeutics, Inc. | Nanopatterned medical device with enhanced cellular interaction |
US10245421B2 (en) | 2010-04-28 | 2019-04-02 | Sorrento Therapeutics, Inc. | Nanopatterned medical device with enhanced cellular interaction |
US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
US10213588B2 (en) | 2011-10-27 | 2019-02-26 | Sorrento Therapeutics, Inc. | Transdermal delivery of high viscosity bioactive agents |
US9550053B2 (en) | 2011-10-27 | 2017-01-24 | Kimberly-Clark Worldwide, Inc. | Transdermal delivery of high viscosity bioactive agents |
US10773065B2 (en) | 2011-10-27 | 2020-09-15 | Sorrento Therapeutics, Inc. | Increased bioavailability of transdermally delivered agents |
US11129975B2 (en) | 2011-10-27 | 2021-09-28 | Sorrento Therapeutics, Inc. | Transdermal delivery of high viscosity bioactive agents |
US9675288B2 (en) | 2013-01-29 | 2017-06-13 | Hewlett-Packard Development Company, L.P. | Apparatus having surface-enhanced spectroscopy elements on an exterior surface |
JP2016508601A (en) * | 2013-01-29 | 2016-03-22 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Apparatus having surface-sensitized spectroscopy elements on the outer surface |
US9962536B2 (en) | 2014-04-30 | 2018-05-08 | Kimberly-Clark Worldwide, Inc. | Draped microneedle array |
JP2016212117A (en) * | 2016-08-09 | 2016-12-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Apparatus having surface-enhanced spectroscopy element on exterior surface |
Also Published As
Publication number | Publication date |
---|---|
JP2005514179A (en) | 2005-05-19 |
EP1465698B1 (en) | 2008-01-23 |
EP1465698A1 (en) | 2004-10-13 |
IL162554A0 (en) | 2005-11-20 |
AU2002359490A1 (en) | 2003-07-30 |
ATE384549T1 (en) | 2008-02-15 |
DE60224842T2 (en) | 2009-01-22 |
JP4382492B2 (en) | 2009-12-16 |
DE60224842D1 (en) | 2008-03-13 |
US6908453B2 (en) | 2005-06-21 |
US20030135161A1 (en) | 2003-07-17 |
US20050187521A1 (en) | 2005-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1465698B1 (en) | Microneedle devices and methods of manufacture | |
JP4836392B2 (en) | Skin permeation enhancing device for extracting or administering a substance and method for manufacturing the device | |
EP1819393B1 (en) | Medical device | |
JP4668535B2 (en) | A device that supplies or withdraws substances through the skin of animals | |
CN100553710C (en) | The apparatus and method of percutaneous transmission or extraction of substance | |
US7914480B2 (en) | Transdermal delivery device | |
EP1896115B2 (en) | Microneedle cartridge assembly | |
EP1490145A1 (en) | Method and device for intradermally delivering a substance | |
JP2014511243A (en) | Transdermal patch with microneedle | |
AU2002330234A1 (en) | Microdevice and method of delivering or withdrawing a substance through the skin of an animal | |
US9717451B2 (en) | Device for withdrawing or administering a substance and method of manufacturing a device | |
JP7141625B1 (en) | Microneedle patch and microneedle structure | |
JP2008188273A (en) | Medicine delivery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 162554 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002794032 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003559591 Country of ref document: JP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002794032 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002794032 Country of ref document: EP |