WO2003055125A1 - Dispositif a circuit de detection de signal synchrone pour systeme de communication ofdm et procede de detection pour detecter le signal synchrone de ce dispositif - Google Patents

Dispositif a circuit de detection de signal synchrone pour systeme de communication ofdm et procede de detection pour detecter le signal synchrone de ce dispositif Download PDF

Info

Publication number
WO2003055125A1
WO2003055125A1 PCT/CN2002/000905 CN0200905W WO03055125A1 WO 2003055125 A1 WO2003055125 A1 WO 2003055125A1 CN 0200905 W CN0200905 W CN 0200905W WO 03055125 A1 WO03055125 A1 WO 03055125A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
correlation
cross
input
feature code
Prior art date
Application number
PCT/CN2002/000905
Other languages
English (en)
French (fr)
Inventor
Jie Chen
Chunlei Cai
Guoliang Shou
Nanjian Wu
Jun Yang
Original Assignee
Beijing Lhwt Microelectronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Lhwt Microelectronics Inc. filed Critical Beijing Lhwt Microelectronics Inc.
Priority to AU2002354167A priority Critical patent/AU2002354167A1/en
Publication of WO2003055125A1 publication Critical patent/WO2003055125A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the invention relates to a synchronization signal detection circuit device in an OFDM (Orthogonal Frequency Division Multiplexing) communication system and a detection method for the device to detect a synchronization signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Detection of synchronization signals is an important part of wireless communication systems. Performing autocorrelation on the received signal is a traditional synchronous detection method. The main problem of using auto-correlation to detect synchronization signals is the circuit scale and large power consumption. However, to address this issue,
  • the problem to be solved by the present invention is to provide a device that can use the characteristic of repeated occurrence of characteristic signals in a synchronization signal and use a cross-correlation operator to detect a characteristic signal in a received signal, and use its cross-correlation operator and correlation peak detection.
  • the operation of the output device realizes the detection of the synchronization signal.
  • the main technical solution to the problem to be solved by the present invention is to provide a synchronous signal detection circuit device including at least a cross-correlation operator and a correlation peak detector, wherein the cross-correlation operator is an input signal A cross-correlation operator performing cross-correlation operation with a characteristic code signal, and the correlation peak detector receives a cross-correlation signal output from the cross-correlation operator and compares it with a preset gate valve voltage, and For the determination of the time interval, a correlation peak computing unit of the synchronization head is detected, and the signal output terminal of the cross-correlation computing unit is connected to the signal input terminal of the correlation peak computing unit.
  • the invention also provides A detection method using the device to detect a synchronization signal, in which several formulas in the method can obtain at least accurate quantized values of short and long feature codes, thereby determining a synchronization head signal.
  • the detection of the synchronization signal is achieved by using a device with a simple structure
  • the special definitions and algorithms of the input and output signals through the device are used to obtain precision values of universal significance.
  • FIG. 1 is a schematic structural diagram of a synchronization signal detection circuit device according to the present invention
  • FIG. 2 is an embodiment of a synchronization signal detection circuit device according to the present invention
  • FIG. 3 is a schematic diagram of a correlation peak output of a synchronization signal detector
  • FIG. 4 is a schematic diagram of the structure of a digital-analog hybrid circuit for the cross-correlation operation of the real part of a short feature code
  • FIG. 5 is a schematic diagram of a digital circuit structure for the cross-correlation operation of the real part of the short feature code
  • FIG. 1 is the Short Symbol value before the quantization
  • Figure 2 is the quantized Short Symbol quantized value
  • Figure 3 is the Long Symbol value before quantization
  • Figure 4 is the quantized Long Symbol quantized value.
  • the present invention relates to a synchronization signal detection circuit device.
  • the device includes at least a cross-correlation operator and a correlation peak detector.
  • the cross-correlation operator is input by A cross-correlation operator that performs cross-correlation calculations between a sampling signal and a characteristic code signal.
  • the correlation peak detector is configured to receive a cross-correlation signal output from the cross-correlation operator and compare it with a preset gate valve voltage to detect a synchronization head.
  • Correlation peak operator, and the signal of said cross-correlation operator is The output terminal is connected to the signal input terminal of the correlation peak calculator.
  • the cross-correlation operator includes at least one set of feature code real parts and feature code imaginary parts that perform cross-correlation operations with the input real part or input imaginary part, respectively, and an output of the cross-correlation operation circuit.
  • the terminals are respectively connected to at least one group of adding circuits, and the input terminals of the adding circuits are connected to a square sum operation circuit, and the square sum operation circuit is connected to an input terminal of a peak detector.
  • the cross-correlation operator may be a digital-analog hybrid cross-correlation operator as shown in FIG. 4, and is composed of at least one set of sampling and maintaining circuits and a set of inverting operational amplifiers.
  • the cross-correlation operator may be a digital cross-correlation operator as shown in FIG. 5, and includes at least one group of sixteen parallel digital switches SWBankl and a group of sixteen parallel digital switches for controlling the sixteen parallel digital switches.
  • Sixteen bit shift register SR a set of complex digital register group RegBank controlled by parallel digital switch SWBankl and connected to the input signal, the group is used to realize the multiplication of the feature code with the value of 0, 1, -1 and the input signal
  • Sixteen-stage shift register pair for operation (Cx0, Cxi, x is an integer value from 0 to 15)
  • the adder ADDB connected to the switch SWBank2 is configured and used to control the initial state of the sixteen bit shift register SR of the sixteen parallel digital switches SWBankl can be set to 1000000000000000; used to realize the characteristics of values 0, 1, -1
  • a detection method for detecting a synchronization signal using the device includes performing a simulation on a cross-correlation operator, a feature code in a correlation peak detector, a feature code and an input sampling signal, an input analog signal, and a sample-and-hold output simulation.
  • Signal, correlation peak, and calculation processing steps of the synchronization head, where the calculation formula of the synchronization head signal is: s (t) (1);
  • S (t) is a synchronization signal and is composed of M characteristic signals,.
  • the characteristic code signal is composed of N symbols and the formula is:
  • CW represents a symbol of length T
  • the feature code signal is divided into a short feature code signal and a long feature code signal, and a quantization processing formula of a real part and an imaginary part of the complex number of the short feature code signal is:
  • the quantization processing formulas of the real part and imaginary part of the complex number of the long feature code signal are:
  • the sync head signal is a sync head signal detected by a correlation peak detector that can continuously detect peaks and the interval between adjacent peaks is consistent with the interval length calculated by the formula.
  • Figure 1 shows the structural relationship between the cross-correlation calculator and the correlation peak detector. Obviously, how to detect the synchronization signal depends on the front-end output signal of the correlation peak detector. Its working principle can also be shown in Figure 4 or Figure 5 Show it. If it is said that the synchronization signal in the received wireless signal is composed of M characteristic signals, then the values of the synchronization signal and the characteristic signal can be calculated by using equations (1) and (2). In addition, the symbol c in Equation 2 may take a real value or a complex value. When non-integer, In order to simplify the complexity of the circuit, quantization can be performed according to actual needs.
  • the cross-correlation operation shown in formula (3) is performed with the symbol of the characteristic signal to obtain an output signal with a correlation peak as shown in FIG. 3.
  • the time interval of the correlation peak is N x r.
  • the correlation peak detector detects a correlation output signal with a higher voltage through a preset gate valve voltage. Since the correlation output of the synchronization signal includes N correlation peaks with an interval time of adjacent peaks of NT, by determining the interval time and the number of peaks of the adjacent peaks in the correlation output signal, it can be determined whether the received signal is Contains sync header signals.
  • the broadband wireless local area network assumes that the synchronization signal consists of 10 short feature signals with a length of 0.8 microseconds (16 samples) and 2 short symbols with a length of 1.6 microseconds (32 samples Value).
  • the formula (4) , (5) to quantify the real and imaginary parts of the fixed-point small digital element in Figure 1. The quantified results are shown in Figure 2.
  • the formulas (6) and (7) are shown in Figure 3, that is, the real and imaginary parts of the fixed-point small digital elements of each long feature signal are quantized.
  • the quantized values are shown in Figure 4.
  • the complex cross-correlation operation shown in formula (3) is composed of four real-number cross-correlation operation circuits with similar structures. Therefore, when explaining the design method of the cross-correlation operation circuit, the cross-correlation operation of the real part of the short characteristic signal and the real part of the input signal can be used as an example to reveal the relationship between them.
  • Equation (8) can be implemented using the circuit shown in FIG. 4 or FIG. 5.
  • Figure 4 shows the cross-correlation operation digital-analog hybrid circuit structure.
  • SH1 to SH14 in the figure represent fourteen sample-and-hold circuits
  • NAMP1 and NAMP2 represent two inverting operational amplifiers
  • the capacity of the capacitor is taken as a proportion in the figure.
  • cross-correlation operator may be a digital cross-correlation operator as shown in FIG.
  • a group of sixteen parallel digital switches SWBankl a group of sixteen bit shift registers SR for controlling sixteen parallel digital switches, a group of complex digital register groups RegBank controlled by the parallel digital switch SWBankl and connected to the input signal, a A set of sixteen-stage shift register pairs (CxO, Cxi, where x is an integer value from 0 to 15) for multiplying the feature code with the value 0, 1, -1 and the input signal, and one set with the adder
  • the connected switches SWBank2, which are controlled by the shift register pair (CxO, Cxi), are a group of adders ADDB connected to the control switch SWBank2, and are used to control the sixteen shift register SR of sixteen parallel digital switches SWBank1.
  • the initial state can be set to 1000000000000000; the initial state of the sixteen-stage 2-bit shift register (CxO, Cxi) for multiplying the feature code with the input signal of 0, 1, -1 can be set to (0 , 0) (1,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (1,0) (0,0) (0 , 1) (0, 1) (0, 1) (0,0) (1,0) (0,0).
  • the shift operation of the shift register SR and the shift register pair is controlled by a clock signal having the same frequency as the input signal.
  • the above process only introduces the circuit implementation method of the cross-correlation operation between the short signature and the input signal.
  • the cross-correlation operation between the long signature and the input signal only the above-mentioned integer can be used to implement the similar circuit structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

同步信号检测电路装置
及其该装置检测同步信号的检测方法 技术领域
本发明 涉及一种 OFDM(Orthogonal Frequency Division Multiplexing)通信系统中的同步信号检测电路装置及该装置检测同 步信号的检测方法。 背景技术
同步信号的检测是无线通信系统的一个重要组成部分。 对接 收信号进行自相关运算是一种传统的同步检测方法。 利用自相关 运算检测同步信号的主要问题是电路规模及功耗大。 然而, 针对 这一问题目前尚
路。 发明内容
本发明所要解决的问题是提供一种装置, 该装置可以利用同 步信号中的特征信号重复出现的特点并利用互相关运算器检测接 收信号中的特征信号, 以其互相关运算器和相关峰值检出器的运 作实现同步信号的检测。 籍此, 本发明所要解决问题的主要技术 方案是: 提供一种同步信号检测电路装置, 至少包括一互相关运 算器、 一相关峰值检出器, 其中, 所述互相关运算器是由输入信 号与特征码信号作互相关运算的互相关运算器、 所述相关峰值检 出器是接收所述互相关运算器输出的互相关信号与预先设定的门 阀电压进行比较后通过对相邻峰值的时间间隔的判定,检测出同步 头的相关峰值运算器, 且所述的互相关运算器其信号输出端与所 述的相关峰值运算器的信号输入端相连接。 并且本发明还提供了 一种利用该装置检测同步信号的检测方法, 以此方法中的若干个 算式至少可以获得短、 长特征码的精确量化值, 从而确定同步头 信号。 值此, 较之自相关运算检测同步信号的装置和这样的装置 检测同步信号的方法, 本发明所具有的实质性特点和显著的特点 是显而易见的: 利用结构简单的装置实现同步信号的检测, 利用 对经该装置输入、 输出信号的特殊定义和算法得出具有普遍意义 的精确化量值。 附图说明
图 1是本发明涉及的同步信号检测电路装置的结构示意图; 图 2是本发明涉及的同步信号检测电路装置一个实施例; 图 3是同步信号检测器相关峰值输出示意图;
图 4是短特征码实部互相关运算的数模混合电路结构示意 图;
图 5是短特征码实部互相关运算的数字电路结构示意图图; 图表 1是量化前的短特征码 Short Symbol值;
图表 2是量化后的短特征码 Short Symbol量化值;
图表 3是量化前的长特征码 Long Symbol值;
图表 4是量化后的长特征码 Long Symbol量化值。 具体实施方式
由图 1 及其它附图、 诸图表, 本发明涉及一种同步信号检测 电路装置, 该装置至少包括一互相关运算器、 一相关峰值检出 器, 其中, 所述互相关运算器是由输入采样信号与特征码信号作 互相关运算的互相关运算器, 所述相关峰值检出器是接收所述互 相关运算器输出的互相关信号与预先设定的门阀电压进行比较后 检测出同步头的相关峰值运算器, 且所述的互相关运算器其信号 输出端与所述的相关峰值运算器的信号输入端相连接。 并且, 所 述的互相关运算器包括至少一组特征码实部和特征码虛部各自分 别与输入实部或输入虚部做互相关运算的互相关运算电路, 所述 互相关运算电路的输出端分别与至少一组加法电路相连, 所述加 法电路其输入端与平方和运算电路相连, 所述平方和运算电路与 峰值检出器的输入端相连。 并且, 所述的互相关运算器可以是一 种如图 4所示的数模混合互相关运算器, 且由至少一组取样保值 电路、 一组反向运算放大器构成。 并且, 所述的互相关运算器可 以是一种如图 5所示的数字互相关运算器,且由至少一组十六个并 行数字开关 SWBankl、 一组用于控制十六个并行数字开关的十六 位移位寄存器 SR,一组由并行数字开关 SWBankl控制并且与输入 信号连接的复数位寄存器组 RegBank,—组用于实现取值为 0, 1, -1 的特征码与输入信号相乘运算的十六级移位寄存器对 (Cx0, Cxi, x 为 0至 15 的整数值),一组与加法器连接的由移位寄存器对 (CxO, Cxi)控制的开关 SWBank2,—组与控制开关 SWBank2连接的加法 器 ADDB构成,并且用于控制十六个并行数字开关 SWBankl的十 六位移位寄存器 SR的初始状态可设为 1000000000000000; 用于 实现取值为 0, 1, -1的特征码与输入信号相乘运算的十六级 2比特 移位寄存器对 (CxO, Cxi)的初始状态可设为 ( 0, 0 ) ( 1, 0) ( 0, 0) (0, 0) (0, 0) ( 1, 0) (0, 0) (0, 0) ( 1, 0) (0, 0) (0, 1 ) (0, 1) (0, 1) (0, 0) (1, 0) (0, 0) ,并且移位寄存器 SR 及移位寄存器对的移位动作由与输入信号具有相同频率的时钟信 号进行控制。 同时, 利用所述的装置其检测同步信号的检测方 法, 该方法包括对互相关运算器、 相关峰值检出器中的特征码、 特征码与输入采样信号、 输入模拟信号与采样保持器输出模拟信 号及相关峰值、 同步头的算式处理步骤, 其中, 同步头信号的算 式是: s(t) = (1) ;
Figure imgf000006_0001
式中, S(t)为同步信号且由 Μ个特征信号组成, 。为表示信道衰减 系数的一个常数, 为特征码信号, 可以是实数或复数信号, Ν 为特征码信号码元的个数; 特征码信号由 Ν个码元组成且算式 是:
C( =∑c,.(^- r) (2)
式中, C W代表长度为 T的一个码元;
特征信号的码元与采样信号的算式是:
CO?( ) = (/")C(/«-it)
Figure imgf000006_0002
式中, 为接受到的信号的复数采样值, w)为码元的共轭值, Re{ },Im{ }表示复数的实部和虛部;
并且, 所述特征码信号分为短特征码信号和长特征码信号, 所述 短特征码信号的复数的实部和虛部其量化处理式分别是:
1 Re(C,.}> 0.075
e{C,.} = 0 -0.075 <Rel{C;} < 0.075 , i = 0, 1, 2 15 (4)
-1 Re{C,.} < -0.075 Im{C,. } = 0, 1, 2' 15 (5)
Figure imgf000007_0001
所述长特征码信号的复数的实部和虛部其量化处理式分别是:
1 Re{C,.}> 0.080
Re{C,} = <! 0 - 0.080 < Re{C, } < 0.080: i = 0, 1, 2· ■32 (6)
一 1 Re{C, }< -0.080
Im{C, } 0, 1, 2· ■32 (7)
Figure imgf000007_0002
并且, 所述短特征码信号的实部与输入采样信号的互相关运算式 疋:
^Re {s(m)} Re {C(m - k)} = a{SH\ 0 + SHU + SH12- SHI - SH5 - SH8 - .SH14} (8) °
另外, 所述的同步头信号是一种能够被连续检测到峰值的且 相邻峰值之间的间隔与算式算出的间隔长度相一致的由相关峰值 检出器检测出的同步头信号。
图 1 所表示的是互相关运算器与相关峰值检出器之间的结构 关系, 显然, 如何检测到同步信号取决于相关峰值检出器的前端 输出信号, 其工作原理亦可由图 4或图 5 示之。 如果说接收到的 无线信号中的同步信号 是由 M个特征信号组成的话, 那么通 过算式 ( 1 ) 、 算式 (2) 即可算出同步信号及特征信号的值。 并 且, 在算式 2中码元 c,可以取实数值或复数值。 当 为非整数时, 为了简化电路的复杂性, 可以根据实际需要进行量化处理。 当 然, 对接收信号采样后, 与特征信号的码元进行如算式 (3 ) 所示 的互相关运算, 即可得到如图 3 所示的具有相关峰值的输出信号, 其相关峰值的时间间隔为 Nx r。 对于互相关运算器输出的互相关 信号,相关峰值检出器通过预先设置的门阀电压检出具有较高电压 的相关输出信号。 由于同步信号的相关输出中包含有相邻峰值间 隔时间为 NT的 N个相关峰值, 因此通过判断相关输出信号中的 相邻峰值的间隔时间及峰值的个数, 就可以判定接收到的信号是 否含有同步头信号。
基于 IEEE802.11a或 HiperLAN2标准的宽带无线局域网假定 的同步信号由 10 个长度为 0.8微秒 (16个釆样值)的短特征信号 (Short Symbol)和 2个长度为 1.6微秒 (32个采样值)的长特征信号 (Long Symbol)组成。 参照图表 1 , 现将本发明应用于基于 IEEE802.1 1a或 HiperLAN2 标准的宽带无线局域网 (Broadband Wireless LAN ) 通信系统时,为了简化电路的实现复杂性同时保持 必要的运算精度, 由算式 (4 ) 、 ( 5 ) 即可对图表 1 中的定点小 数码元的实部和虛部进行量化处理。 量化后的结果如图表 2 所 示。 同理, 算式 (6 ) ( 7 ) 是针对图表 3 , 即对每个长特征信号 的定点小数码元的实部和虛部进行量化处理算式, 其量化值如图 表 4所示。 另外, 在算式 (3 ) 中所示的复数互相关运算, 由四项 具有相似结构的实数互相关运算电路组成。 因此, 在说明其互相 关运算电路的设计方法时可以短特征信号的实部与输入信号的实 部的互相关运算为例揭示彼此之间的关系。 算式 (8 ) 可以用图 4 或图 5所示电路加以实现。 图 4所示的是互相关运算数模混合电 路结构, 图中的 SH1至 SH14代表十四个采样保持电路, NAMP1 和 NAMP2代表两个反向运算放大器, 电容器的容量按图中的比 例取值。 当输入模拟信号在动作时钟信号的控制下, 经采样保持电 路后,逐级移位, 采样保持电路的输出模拟信号直接加到多输入加 减运算电路中去, 得到的输出模拟信号由算式 (9)表示。
Aout = ^{smo+ sm l + smi - sm - SHS - SHS一 SHU} ( 9 ) 并且, 所述的互相关运算器可以是一种如图 5所示的数字互 相关运算器,且由至少一组十六个并行数字开关 SWBankl、 一组 用于控制十六个并行数字开关的十六位移位寄存器 SR,—组由并 行数字开关 SWBankl控制并且与输入信号连接的复数位寄存器组 RegBank,一组用于实现取值为 0, 1, -1的特征码与输入信号相乘运 算的十六级移位寄存器对 (CxO, Cxi, x为 0至 15的整数值),一组与 加法器连接的由移位寄存器对 (CxO, Cxi)控制的开关 SWBank2,— 组与控制开关 SWBank2连接的加法器 ADDB构成,并且用于控制 十六个并行数字开关 SWBankl的十六位移位寄存器 SR的初始状 态可设为 1000000000000000; 用于实现取值为 0, 1, -1的特征码与 输入信号相乘运算的十六级 2比特移位寄存器 (CxO, Cxi)的初始状 态可设为 (0,0) ( 1,0) (0,0) (0,0) (0,0) ( 1,0) (0,0) (0,0) ( 1,0) (0,0) (0,1) (0, 1 ) (0, 1) (0,0) (1,0) (0,0) 。 并且移位寄存器 SR及移位寄存器对的移位动作由与输 入信号具有相同频率的时钟信号控制。
以上过程仅介绍了短特征码与输入信号的互相关运算的电路 实现方法, 对于长特征码与输入信号的互相关运算, 只需将上述 整即可利用相似的电路结构实现。

Claims

权利要求
1. 一种同步信号检测电路装置, 至少包括一互相关运算 器、 一相关峰值检出器,
其特征在于 所述互相关运算器是由输入采样信号与特征码 信号作互相关运算的互相关运算器, 所述相关峰值检出器是接收 所述互相关运算器输出的互相关信号与预先设定的门阀电压进行 比较后检测出同步头的相关峰值运算器, 且所述的互相关运算器 其信号输出端与所述的相关峰值运算器的信号输入端相连接。
2. 根据权利要求 1所述的同步信号检测电路装置,
其 特 征 在 于 所述的互相关运算器包括至少一组特征码 实部和特征码虛部各自分别与输入实部或输入虛部^:互相关运算 的互相关运算电路, 所述互相关运算电路的输出端分别与至少一 组加法电路相连, 所述加法电路其输入端与平方和运算电路相 连, 所述平方和运算电路与峰值检出器的输入端相连。
3. 根据权利要求 1或 2所述的同步信号检测电路装置, 其特征在于 所述的互相关运算器是一种数模混合互相关运 算器, 且由至少一组取样保值电路、 一组反向运算放大器构成。
4. 根据权利要求 1或 2所述的同步信号检测电路装置, 其特征在于 所述的互相关运算器是一种对取值仅为 0, -
1, 1 的特征码, 而对输入的模拟信号经 A/D转换后进行互相关运 算的数字互相关运算器, 且由至少一组十六个并行数字开关 SWBankl、 一组用于控制十六个并行数字开关的十六位移位寄存 器 SR,一组由并行数字开关 SWBankl控制并且与输入信号连接的 复数位寄存器组 RegBank,—组用于实现取值为 0, 1, -1 的特征码 与输入信号相乘运算的十六级 2比特移位寄存器对 (CxO, Cxi, x为 0至 15的整数值),一组与加法器连接的由移位寄存器对控制的开 关 SWBank2,—组与控制开关 SWBank2连接的加法器 ADDB构 成。 并且用于控制十六个并行数字开关 SWBankl的十六位移位寄 存器 SR的初始状态可设为 1000000000000000; 十六级二比特移 位寄存器对 (Cx0, Cxi)的初始状态可设为 ( 0, 0 ) ( 1, 0) (0, 0) (0,0) (0,0) ( 1, 0) (0,0) (0,0) ( 1,0) (0,0) (0, 1) (0,1) (0, 1) (0,0) ( 1,0) (0,0),并且移位寄存器 SR及移 位寄存器对的移位动作由与输入信号具有相同频率的时钟信号控 制的电路构成。
5. 一种如权利要求 1所述的装置其检测同步信号的检测方 法,
其特征在于 所述方法包括对互相关运算器、 相关峰值检出 器中的特征码、 特征码与输入采样信号、 输入模拟信号与采样保 持器输出模拟信号及相关峰值、 同步头的算式处理步骤, 其中, 同步头信号的算式是: s(t) " ;
Figure imgf000011_0001
式中, S(t)为同步信号且由 M个特征信号组成, "为表示信道衰减 系数的一个常数, 0为特征码信号, 可以是实数或复数信号, N 为特征码信号码元的个数; 特征码信号由 N个码元组成且算式 疋:
Figure imgf000012_0001
式中, 代表长度为 T的一个码元;
特征信号的码元与采样信号的算式是:
Figure imgf000012_0002
= f]{Re{5(m)} + j Im {s{m)} } {Re {C(m -k)}-jlm {C(m -k)}}
(3)
-l
lm{s(m)}l {C(m-k)}
+ {s(m) } Im {C(m ~k)}
Figure imgf000012_0003
式中, ^ )为接受到的信号的复数采样值, 为码元的共轭值, Re{ },Im{ }表示复数的实部和虛部;
并且, 所述特征码信号分为短特征码信号和长特征码信号, 所述 短特征码信号的复数的实部和虛部其量化处理式分别是:
Re{C } .075 , 15 (4)
Im{C,} .075 , (5)
Figure imgf000012_0004
所述长特征码信号的复数的实部和虛部其量化处理式分别是:
1 Re{C, }> 0.080
Re{C,} = 0 - 0.080 < Re{C,. } < 0.080, i = 0, 1, 2 32 (6)
一 1 Re{C, } < -0.080 1 Im{C,.}> 0.080
Im{C,.} = 0 -0.080 < Im{C,.} < 0.080 , i = 0, 1, 2 32 (7)
一 1 Im{C,.} < -0.080
6. 根据权利要求 5所述的检测方法,
其特征在于 所述短特征码信号的实部与输入采样信号 的互相关运算式是:
'ν—1 o、
∑ Re {s(m}} Re {C(m -k)} = a{SHl 0 + SHU + SH12- SHI - SH5― SHS -SHU} ( 8 ) 。
7. 根据权利要求 5所述的检测方法,
其特征在于 所述的同步头信号是一种能够被连续检测 到峰值的且相邻峰值之间的间隔与算式算出的间隔长度相一致的 由相关峰值检出器检测出的同步头信号。
PCT/CN2002/000905 2001-12-20 2002-12-20 Dispositif a circuit de detection de signal synchrone pour systeme de communication ofdm et procede de detection pour detecter le signal synchrone de ce dispositif WO2003055125A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002354167A AU2002354167A1 (en) 2001-12-20 2002-12-20 A synchronous signal detect circuit device of ofdm communication system and a detection method to detect synchronous signal of the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01144557.2 2001-12-20
CNB011445572A CN100461656C (zh) 2001-12-20 2001-12-20 同步信号检测电路装置及其该装置检测同步信号的检测方法

Publications (1)

Publication Number Publication Date
WO2003055125A1 true WO2003055125A1 (fr) 2003-07-03

Family

ID=4677667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000905 WO2003055125A1 (fr) 2001-12-20 2002-12-20 Dispositif a circuit de detection de signal synchrone pour systeme de communication ofdm et procede de detection pour detecter le signal synchrone de ce dispositif

Country Status (3)

Country Link
CN (1) CN100461656C (zh)
AU (1) AU2002354167A1 (zh)
WO (1) WO2003055125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571136A (zh) * 2012-01-29 2012-07-11 北京航空航天大学 一种双路伪码捕获系统的相关峰检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100361423C (zh) * 2004-05-12 2008-01-09 北京信威通信技术股份有限公司 使用智能天线的码分多址系统中下行业务码道的同步方法
CN101039293B (zh) * 2006-03-15 2010-06-23 华为技术有限公司 通信系统中用于初始定时同步的装置、方法及接收机
CN101304402B (zh) * 2008-06-30 2011-08-31 北京海尔集成电路设计有限公司 一种相关峰值处理中锁定方法及其系统
CN101304403B (zh) * 2008-06-30 2012-04-11 北京海尔集成电路设计有限公司 一种帧同步方法及系统
CN101345576B (zh) * 2008-08-29 2012-02-29 芯通科技(成都)有限公司 一种减小td-scdma直放站开关抖动的方法及系统
CN103226169B (zh) * 2012-06-12 2015-07-08 殷明 一种用于无线唤醒电路的方波检测器
CN103414676B (zh) * 2013-07-25 2016-08-24 桂林电子科技大学 一种自适应自同步的tcm-mppm编码调制解调通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077961A1 (en) * 1999-06-15 2000-12-21 Samsung Electronics Co., Ltd. Apparatus and method for achieving symbol timing and frequency synchronization to orthogonal frequency division multiplexing signal
EP1089510A2 (en) * 1999-09-30 2001-04-04 Hitachi Denshi Kabushiki Kaisha Data transmission method and apparatus utilising an OFDM system
CN1309484A (zh) * 2000-02-16 2001-08-22 汤姆森特许公司 正交频分多路复用系统中取样偏移校正

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226336B1 (en) * 1998-02-20 2001-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for detecting a frequency synchronization signal
JP3606761B2 (ja) * 1998-11-26 2005-01-05 松下電器産業株式会社 Ofdm受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077961A1 (en) * 1999-06-15 2000-12-21 Samsung Electronics Co., Ltd. Apparatus and method for achieving symbol timing and frequency synchronization to orthogonal frequency division multiplexing signal
EP1089510A2 (en) * 1999-09-30 2001-04-04 Hitachi Denshi Kabushiki Kaisha Data transmission method and apparatus utilising an OFDM system
CN1309484A (zh) * 2000-02-16 2001-08-22 汤姆森特许公司 正交频分多路复用系统中取样偏移校正

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571136A (zh) * 2012-01-29 2012-07-11 北京航空航天大学 一种双路伪码捕获系统的相关峰检测方法

Also Published As

Publication number Publication date
AU2002354167A1 (en) 2003-07-09
CN100461656C (zh) 2009-02-11
CN1427564A (zh) 2003-07-02

Similar Documents

Publication Publication Date Title
KR101246248B1 (ko) 고정 진폭 제로 자기-상관 시퀀스들을 계산하기 위한 방법들 및 장치
US20060067413A1 (en) Multicode transmission using Walsh Hadamard transform
WO2010120098A2 (en) Non-coherent detection apparatus and method for ieee 802.15.4 lr-wpan bpsk receiver
TW200729756A (en) Fast joint detection
WO2003055125A1 (fr) Dispositif a circuit de detection de signal synchrone pour systeme de communication ofdm et procede de detection pour detecter le signal synchrone de ce dispositif
CN112671431A (zh) 基于部分扩频同步序列的同步方法、装置、设备及介质
KR100471538B1 (ko) 오에프디엠 시스템의 채널추정과 심볼동기 타이밍결정장치 및 방법
CN106453192A (zh) 一种基于屏蔽互补二元序列偶的符号同步方法及系统
JP2004528742A (ja) 高速フイルタ
CN107135540B (zh) 定位装置、方法及电子设备
US6934732B2 (en) Simplified circuit for correlating binary and non-binary sequences
US20040034676A1 (en) Reduced complexity fast hadamard transform and find-maximum mechanism associated therewith
CN114362839A (zh) 基于hplc双模无线系统的信号检测方法、装置和电子设备
JP3691074B2 (ja) デジタル信号受信機の同期方法
WO2003055115A1 (fr) Procede de detection d&#39;un decalage de frequence dans un systeme de communication sans fil ofdm et dispositif associe
KR100823252B1 (ko) Ofdm 기반 동기 검출 장치 및 방법
JP3716846B2 (ja) シンボルタイミング推定装置
US11251999B2 (en) Symbol boundary detection method and processor
JP2982766B2 (ja) 音源方向推定方法及びその装置
US20050187996A1 (en) Multiplierless correlators for HIPERLAN/2 and IEEE 802.11A wireless local area networks
KR100584089B1 (ko) 고속의 버스트 신호 검출 장치 및 그 방법
CN109639385B (zh) 基于cazac序列的宽带分集同步方法及系统
TWI730378B (zh) 偵測電路以及運作方法
JP2004520759A (ja) 拡散スペクトル信号の検出方法と受信機
Zhana et al. Implementation of frequency offset correction using CORDIC algorithm for 5 GHz WLAN applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP