JP2004520759A - 拡散スペクトル信号の検出方法と受信機 - Google Patents

拡散スペクトル信号の検出方法と受信機 Download PDF

Info

Publication number
JP2004520759A
JP2004520759A JP2002586521A JP2002586521A JP2004520759A JP 2004520759 A JP2004520759 A JP 2004520759A JP 2002586521 A JP2002586521 A JP 2002586521A JP 2002586521 A JP2002586521 A JP 2002586521A JP 2004520759 A JP2004520759 A JP 2004520759A
Authority
JP
Japan
Prior art keywords
chip sequence
sample
sub
samples
weighted average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002586521A
Other languages
English (en)
Inventor
ケネス アール ライト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2004520759A publication Critical patent/JP2004520759A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • H04B1/7093Matched filter type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/08Systems for determining distance or velocity not using reflection or reradiation using radio waves using synchronised clocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70757Synchronisation aspects with code phase acquisition with increased resolution, i.e. higher than half a chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】拡散スペクトルのチップシーケンスの検出を向上させること。
【解決手段】拡散スペクトル信号の検出方法と受信機であって、チップシーケンスを、サンプリングし(110)、かつ整合フィルタ(120)でフィルタリングし、フィルタの出力を、連続したチップシーケンスの各サンプル上で平均化し(130)、サブサンプルを、平均化されたサンプルの間を補間することによって決定し(180)、かつ、拡散スペクトル信号中のチップシーケンスの位置を、同じ間隔で得られるサブサンプルとサンプルとの間における最も近い整合位置を、チップシーケンスの参照相関関数(160)から決定することによって、決定する(170)、検出方法と受信機。拡散スペクトル信号の到達時間を、チップシーケンスの位置、または複数のそのような位置の平均を、時間参照と比較することによって、決定しても良い。最も近い整合位置を、相関によって決定しても良い。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、拡散スペクトルの検出方法、および拡散スペクトル信号の受信機に関し、かつ、例えば、信号の到達時間を推定するための装置、信号が、送信機から受信機まで移動した距離を推定するための装置、および場所を決定する装置に適用することができる。
【0002】
【従来の技術】
受信信号を、相関関数のピークがシーケンスの検出を示す参照信号に相関させることによって、拡散スペクトルのチップシーケンスを検出することは、知られている。一般的に、この検出は、受信信号のサンプルと参照信号のサンプルとを使用して行われる。サンプリングのため、受信信号内のシーケンスの位置を決定するための最大分解能は、サンプル間隔の±0.5である。例えば、2.2Mchip.s−1のチップレートで送信され、かつ受信機において22Msample.s−1でサンプリングされたシーケンスは、±0.5/22 10−6 = ±2.27 10−8秒の検出分解能をもたらすことになる。このような検出処理を、送信機から受信機までの信号の伝播時間を計算するために使用する場合、この伝播時間計算の精度は、±2.27 10−8秒である。更に、このように計算された伝播時間を、信号が送信機から受信機まで移動した距離を計算するために使用する場合、この距離計算の精度は、±c × 2.27 10−8である(cは、光速であり、約3.10 m.s−1である)。したがって、結果として得られる距離分解能は、±6.81mである。
【0003】
サンプリングレートを増加させることによってより高い分解能を達成することは可能であるが、その代償として、電力消費と複雑さが増加する。受信信号内に発生した幾つかのチップシーケンスについての測定を平均化することによって、より高い分解能を得ることも可能であるが、その代償として、電力消費と時間遅滞が増加する。例えば、携帯測距装置、および屋内環境で使用される携帯場所決定装置のような、一部のアプリケーションにおいては、高速で高い検出分解能を有し、かつ電力消費が低いことが望ましい。
【0004】
【課題を解決するための手段】
本発明の目的は、拡散スペクトルのチップシーケンスの検出を向上させることである。
【0005】
本発明の一態様において、チップシーケンスを有する拡散スペクトル信号の検出方法であって、
受信信号をサンプリング間隔でサンプリングし、
それによって得たサンプルを、整合フィルタでフィルタリングし、
フィルタリングされたサンプルの絶対値を決定し、
チップシーケンス長と等しい間隔で発生する、フィルタリングされたサンプルの絶対値の加重平均値を導出し、この加重平均値を、少なくとも2つのそのような絶対値で計算し、
連続した加重平均値を補間し、それによって、この加重平均値のサブサンプルを、サンプリング間隔より短いサブサンプリング間隔で生成し、
かつ、
サブサンプリング間隔で得られるサブサンプルとサンプルとの間における最も近い整合位置を、チップシーケンスの参照相関関数から決定することによって、受信信号内のチップシーケンスの位置を決定する方法が、提供される。
【0006】
本発明の別の態様では、チップシーケンスを有する拡散スペクトル信号用の受信機であって、
受信信号を、サンプリング間隔でサンプリングするためのサンプリング手段と、それによって得たサンプルを、フィルタリングするための整合フィルタリング手段と、
フィルタリングされたサンプルの絶対値を決定するためのモジュラス手段と、
チップシーケンス長に等しい間隔で発生する、フィルタリングされたサンプルの絶対値の加重平均値を計算し、この加重平均値を、少なくとも2つのそのような絶対値で計算するための平均化手段と、
連続した加重平均値を補間し、それによって、この加重平均値のサブサンプルを、サンプリング間隔より短いサブサンプリング間隔で生成するための補間手段と、
サブサンプリング間隔で得られるサブサンプルとサンプルとの間における最も近い整合位置を、チップシーケンスの参照相関関数から決定することによって、受信信号内のチップシーケンスの位置を決定するための整合手段と、
を有する受信機が、提供される。
【0007】
受信信号内のチップシーケンスと参照相関関数との間における最も近い整合位置を決定するために、補間されたサブサンプルをサブサンプリング間隔で使用することによって、サンプリング間隔でサンプルを使用する場合よりも高い検出分解能を得ることができる。より高い分解能が、サブサンプリングレートで動作する、アナログ−デジタルサンプリング回路を必要とせずに得られ、これによって、このようなサンプリング回路の消費電力と複雑さが増加することを防止される。
【0008】
サブサンプルと、チップシーケンスの参照相関関数のサンプルとの間における最も近い整合位置は、サブサンプルをチップシーケンスの参照相関関数のサンプルに相関させることによって、決定する事が出来る。
【0009】
拡散スペクトル信号の到達時間は、時間参照を基準に受信信号内で決定されたチップシーケンスの位置として決定することが出来る。
【0010】
拡散スペクトル信号の到達時間を、時間参照を基準に受信信号内で決定された複数のチップシーケンスの位置の平均として、決定する事が出来る。
【0011】
送信機と受信機が、同期している時間参照を有する場合、無線信号が、送信機と受信機との間を伝播するのにかかる時間を、到達時間から決定することが出来る。
【0012】
送信機と受信機との間の距離は、無線信号が、送信機と受信機との間を伝播するのにかかる時間から、決定することが出来る。
【0013】
補間と整合を、完全なチップシーケンスの持続時間で行う必要はなく、フィルタリングされたサンプルの絶対値の加重平均値のピーク領域において、より短い持続時間で行っても良い。これによって、完全なチップシーケンスの持続時間に補間と整合を行うことによる、電力消費と回路の複雑さの増加を避けることが出来る。
【0014】
本発明の一実施例では、フィルタリングされたサンプルの絶対値の加重平均値は、方程式、
Figure 2004520759
によって計算される。ここで、
Figure 2004520759
は、n番目のチップシーケンスにおけるi番目のフィルタリングされたサンプルの絶対値であり、
Figure 2004520759
は、n番目のチップシーケンスにおけるi番目のフィルタリングされたサンプルの絶対値の加重平均値であり、
Figure 2004520759
は、n−1番目のチップシーケンスにおけるi番目のフィルタリングされたサンプルの絶対値の加重平均値であり、かつ、
αは、平均ゲインであり、
Figure 2004520759
の範囲内に値を有する。
【0015】
次に、本発明を、添付の図面を参照して、例として説明する。図面では、一致するフィーチャには、同じ参照番号が使用されている。
【0016】
【発明を実施するための形態】
図1に示されるように、拡散スペクトルシステムは、送信機Txと受信機Rxとを有する。このシステムは、拡散のためのCチップP−N(偽ノイズ)シーケンスを使用する。説明の便宜のため、このシステムは、2.4GHzのISMバンドにおいて、200kbit.s−1のビットレートで動作し、信号拡散は、11個のチップ(C=11)のシーケンスを2.2Mchip.s−1のチップレートで使用した場合、2.2MHzまでであると仮定する。送信機Txは、200kbit.s−1のビットの形態でシンボルを生じる、データソース10を有する。このシンボルは、11個のチップのP−Nシーケンスを供給するコード生成器14が接続されている、ミキサー12に供給される。2.2MHzの拡散信号は、ミキサー12によって、GFSKモジュレータ16に供給される。これの出力は、パワーアンプ18で増幅され、かつアンテナ20によって伝播される、変調された無線信号である。この無線信号は、伝播されて行くうちに、ノイズを帯び、歪みやすくなる。
【0017】
受信機Rxでは、伝播された無線信号が、アンテナ22によって受信され、かつ、RFフロントエンドと復調器24に渡される。RFフロントエンドと復調器24の出力23は、以下に詳述するベースバンド処理部26に結合されている。ベースバンド処理部26には、2つの出力がある。第一出力25は、受信されたシンボルの値の表示を供給する。第二出力27は、受信信号のチップシーケンスの位置の表示を供給し、かつ、遅延決定手段30の第一入力に結合されている。遅延決定手段30は、時間参照ソース28から、時間参照信号も受信する。遅延決定手段30は、時間参照信号と、受信信号のチップシーケンスの位置の表示との間の時間差を決定する。この時間差は、受信信号の到達時間を、時間参照を基準にして表示し、かつ、この到達時間の表示は、出力29に供給される。
【0018】
図2には、受信機Rxのベースバンド処理部26のブロック線図が示されている。RFフロントエンドと復調器24によって送出される信号は、受信信号をチップ毎にNのレートでサンプリングし、+1または−1の値を有するサンプルを生成する、1ビットのアナログ−デジタルコンバータ(ADC(analogue−to−digital converter))110に結合される。説明のため、本願発明者らは、N=10という例を使用するが、この場合、ADC 110は、22 Msample.s−1を送出する。サンプリングのために、サンプルレートクロックCK1が、クロック生成器190によってADC 110に供給される。
【0019】
ADC 110からのサンプルは、チップシーケンスと整合を取った整合フィルタに送出される。整合フィルタは、受信信号のサンプルを、参照サンプル生成器150によって相関器120に供給される参照チップシーケンスのサンプルに相関させる、相関器120を有する。参照サンプルを生成するために、参照サンプル生成器150には、クロック生成器190からサンプルレートクロックCK1が供給される。
【0020】
相関器120は、サンプルレートクロックCK1によってクロッキングされ、かつ、サンプルクロックCK1の割合で、相関値を出力125に送出する。
【0021】
P−Nシーケンスの自己相関属性のため、相関値は、参照サンプル生成器150が発生する参照チップシーケンスのサンプルが、受信信号のサンプルと同期する時点で、ノイズと歪みがない状態でピークに達し、かつ、更に、ピークのサインは、送信されたビットの値と一致するであろう。しかしながら、ノイズまたは歪みがある場合は、相関器120の出力の疑似ピークによって、誤ったビットが決定される場合がある。更に、受信機Rxにおける、この点でのピーク位置は、本発明による処理を更に行わない場合、±0.5のサンプル間隔の分解能を有する。
【0022】
ノイズと歪みの影響は、相関器120から送出される相関値を出力125から平均化回路130に供給することによって、軽減される。この平均化回路130は、各サンプルに対し、チップシーケンス長の間隔で発生する相関値の絶対値の加重平均を計算する。この計算は、方程式、
Figure 2004520759
(i = 1〜C.N)
によって要約される。ここで、
Figure 2004520759
は、n番目のチップシーケンスの相関値のi番目の加重平均値であり、
Figure 2004520759
は、n番目のチップシーケンスのi番目の相関値の絶対値であり、
Figure 2004520759
は、n−1番目のチップシーケンスの相関値のi番目の加重平均値であり、かつ、
αは平均ゲインであり、かつ
Figure 2004520759
の範囲内の値を有する。一般的に、単純平均の場合には、α= 0.5であるが、ノイズと歪みの効果に対してより抵抗力があるシステムの場合には、0.5より高く1に近い値である。
【0023】
図3には、平均化回路130の実施が示されている。モジュラス手段49は、
Figure 2004520759
、すなわち、各相関値の絶対値を、第一乗算器58の第一入力に送出する。第一乗算器58の第二入力には、第一記憶装置60に保持されている定数1−αが供給され、かつ、第一乗算器58は、第一加算段62の第一入力に、積
Figure 2004520759
を送出する。第一加算段62の第二入力には、第二乗算器54から積
Figure 2004520759
が供給される。第二乗算器54には、第二記憶装置56に保持されている定数αが、第一入力に供給され、かつ
Figure 2004520759
が第二入力に供給される。第二乗算器54から、
Figure 2004520759
の生成を、以下に説明する。第一加算段62は、加重平均の相関値である和
Figure 2004520759
を送出する。
【0024】
Figure 2004520759
を生成するために、多段記憶装置50と、マルチプレクシング配置66と、デマルチプレクシング配置52とを有する、マルチプレクサ−デマルチプレクサ40がある。多段記憶装置50は、マルチプレクシング配置66によって、第一加算段62の出力に結合する。追加的な1つの値が追加されたチップシーケンスの持続時間を有するC.Nサンプルに対応する、各々のC.N加重平均相関値を記憶させるために、多段記憶装置50は、C.N+1段(本実施例では、11.10 + 1 = 111段)を有する。各値は、マルチプレクシング配置66によって、多段記憶装置50の、その各々の段に入れられる。記憶されている各値が、連続して読み出され、かつ第二乗算器54の第二入力に印加されるように、多段記憶装置50の各段は、デマルチプレクシング配置52に結合されている。デマルチプレクシング配置52は、前のチップシーケンスの一致するi番目の加重平均相関値を読み出すように構成されている。マルチプレクサ−デマルチプレクサ40におけるマルチプレクシングとデマルチプレクシングは、サンプルレートクロックCK1に同期している。
【0025】
図2を再び参照すると、平均化回路130の出力を実測することによって、相関器120による相関値出力のピークを、サンプル間隔の±0.5という時間分解能で、検出することができる。しかしながら、本発明では、以下のように、より高い分解能を得るために、追加的な処理が施される。平均化回路130によって計算される、加重平均相関値
Figure 2004520759
(i=1〜C.N)は、補間回路180に供給される。
【0026】
補間回路180は、平均加重相関値の連続する値の間の中間サンプルを計算する。平均加重相関値が、平均化回路130によって、サンプル間隔に等しい間隔で計算されるのに対し、中間サンプルは、サブサンプル間隔で算出される。例えば、本実施例の場合、M個のサブサンプル(M=10)が、各サンプル間隔に対して発生し、これによって、チップごとに、N.M = 10.10 = 100個のサブサンプルが発生する。サブサンプルの間隔は、1/(2.2 106. 100)= 4.54 10−9 秒である。サブサンプル値の計算は、方程式、
Figure 2004520759
(i = 1〜C.N、j = 1〜M)
によって要約される。ここで、
Figure 2004520759
は、n番目のチップシーケンスのi番目の平均加重相関値のj番目のサブサンプルであり、
Figure 2004520759
は、n番目のチップシーケンスのi番目の加重平均相関値であり、かつ、
Figure 2004520759
は、前の(すなわち、i−1の)サンプルから発生する(i−1)番目の加重平均相関値である。
【0027】
図4には、補間回路180の実施例が、示されている。第一段210と第二段220を有する、2段のシフトレジスタがある。第一段210は、平均化回路130が計算した、現在の加重平均相関値
Figure 2004520759
を記憶し、かつ、第二段220は、平均化回路130が前のサンプルに対して計算した、加重平均相関値
Figure 2004520759
を記憶させる。2段のシフトレジスタのクロッキングは、サンプルレートクロックCK1に同期している。シフトレジスタの第一段210に記憶される値と、第二段220に記憶される値との間の差は、減算段230において決定され、かつ、結果として生じる差分値
Figure 2004520759
は、第三記憶装置240に記憶される。サブサンプルの増分は、第三記憶装置240によって供給される差分値に、第四記憶装置290に保持されている値1/Mを乗じる、第三乗算器250により計算される。連続するサブサンプルの増分は、第三乗算器250が供給するサブサンプルの増分に、サブサンプルカウンタ270が送出する計数値jを乗じる、第四乗算器280により計算される。このサブサンプルカウンタは、クロック生成器190が生成するサブサンプルクロックCK2によって制御されるサブサンプルレートで、j=1〜Mを計数する。このサブサンプル値
Figure 2004520759
(j=1〜M)は、シフトレジスタの第二段220に保持されている、前の平均加重された相関器の値
Figure 2004520759
に、連続したサブサンプルの増分を加算する、第二加算段260で形成され、かつ、このサブサンプル値は、補間回路180の出力に送出される。
【0028】
図2を再び参照すると、サブサンプル値
Figure 2004520759
は、整合回路170に送出される。参照サンプル生成器150によって生成される参照チップシーケンスのサンプルは、参照チップシーケンスの相関関数のサブサンプルを、サブサンプル値
Figure 2004520759
と同じ間隔で生成する、参照サブサンプル生成器160に供給される。参照サブサンプル生成器160では、参照チップシーケンスの相関関数のサブサンプルの生成を、相関器、および補間回路180と同じ構造を有する回路によって行うことができる。これに代えて、参照チップシーケンスの相関関数のサブサンプルを予め計算し、かつ記憶装置に記憶させることができる。参照チップシーケンスの相関関数のサブサンプルは、整合回路170に送出される。
【0029】
整合回路170は、補間回路180によって送出されるサブサンプル
Figure 2004520759
と、参照サブサンプル生成器160によって送出される、参照チップシーケンスの相関関数のサブサンプルとの間における、最も近い整合位置を決定することによって、受信信号のチップシーケンスの位置を決定する。一例として、最も近い整合位置を、相関器を使用することによって決定することができる。
【0030】
整合回路は、受信信号のチップシーケンスの位置を決定すると、出力27に表示を生成する。受信機Rxにおける、この位置表示の処理は、上述した。更にオプションとして、クロック信号CK1、CK2、およびCK3(後述する)を受信されたチップシーケンスに同期させるために、位置表示を使用するクロック生成器190に、位置表示を送出することができる。クロック生成器190は、シンボルレート(本実施例では、200kbit.s−1である)で、シンボルクロックCK3を生成する。このシンボルクロックCK3は、決定段140に供給される。相関器120によって送出される相関値は、決定段140にも送出される。決定段140は、シンボルクロックCK3によって決定された時における相関値を記憶し、かつ、この値は、受信されたビットのソフト決定値として、出力25に送出される。これに代えて、この決定段140は、
Figure 2004520759
の最大値によって決定された時現在の相関値を記憶し、かつこの相関値は、受信されたビットソフト決定値として出力25に送出される。オプションとしては、現在の相関値を量子化することによって、ハード決定値を、送出することができる。
【0031】
図5のグラフにおいて、横座標は、チップ周期の時間を表し、かつ、1000のチップ周期の全スケールは、各々が11チップである、1000/11 = 90.9シーケンスと一致する。
【0032】
図5のトレースAは、受信信号のSN比が3dBで、かつチップ毎にN=10サンプルのサンプリングレートという条件の下で、サンプル相関器120の出力で得られる相関値を示す。ノイズがない条件下では、相関値のピークは、シーケンスごとに発生しているであろうが、トレースAのピークは、ノイズによって歪められ、かつ部分的に不明瞭になっている。
【0033】
図5のトレースBは、平均ゲインα= 0.975を有する平均化回路130の出力で得られる、加重平均相関値を示す。平均化処理により、ノイズの効果が滑らかになり、それによって、加重平均相関値のピークが明瞭になったことが認められる。
【0034】
図5のトレースCは、トレースBの加重平均相関値のピークの位置によって(すなわち、サブサンプリングを使用しない場合に)示される、受信信号のチップシーケンスの位置を示す。示されたチップシーケンスの位置が、ノイズのために、11サンプルと12サンプルという値の間で変化しながら、1つのサンプル間隔(4.54 10−8秒)ずつ変化することを、観察することができる。従って、単一の位置表示は、サンプル間隔の±0.5、すなわち±2.27 10−8秒の精度しかない。より高い精度は、処理電力と時間遅滞が増加することを犠牲にして、位置表示を平均化することにより得ることができるが、特定の精度を得るために必要な平均化周期は、受信機のノイズのレベルに依存し、かつ、必要な平均化周期は、非常に低いレベルのノイズと非常に高いレベルのノイズに対しては増加する。受信機にノイズがない場合、平均化することができる異なる値の間に変化を発生させるノイズがないため、チップ位置表示には、サンプル間隔の±0.5のエラーがある場合がある。例えば、真のチップシーケンス位置が11.6サンプルである場合、ノイズがなければ、示されるチップ位置は、12の値まで量子化されることになり、これによって、サンプル間隔の0.4というエラーが導かれる。
【0035】
図5のトレースDは、整合回路170の出力27で生成される表示によって示される、受信信号内のチップシーケンスの位置を示し、かつ、補間回路180によって送出されるサブサンプル
Figure 2004520759
と、参照サブサンプル生成器160によって送出される参照チップシーケンスの相関関数のサブサンプルとの間における最も近い整合位置を示す。サブサンプルを使用することによって、分解能が、サブサンプル間隔±2.27 10−9に増加したことが、認められる。ノイズが原因で、チップシーケンスが示される位置に変化が生じるが、特定の精度を得るために必要となる平均化周期は、トレースCの場合よりも小さい。
【0036】
本発明により動作する受信機を使用することによって得られるサブサンプル分解能は、±0.681mという、送信機と受信機との間の距離測定の分解能と同等である。
【0037】
オプションとして、遅延決定手段の出力29に供給される到達時間は、時間参照信号と、受信信号内のチップシーケンスの位置の表示との間での時間が異なる、受信信号内で複数回発生するチップシーケンスから導出される平均を有することができる。この方法で平均化することによって、より高い分解能を得ることができる。例えば、図5のトレースDに表される1000のチップ周期を平均化することによって、チップシーケンスの平均位置は、11.76(分散:0.04サンプル周期)となる。時間参照信号と、受信信号内のチップシーケンスの位置の表示との間の時間差を決定するために、サブサンプルを使用せず、サンプルのみを使用していたとすると、一致する平均は、11.92(分散:0.07サンプル)となっていたであろう。
【0038】
オプションとして、平均加重相関値のサブサンプルを、平均加重相関値のピークの近くに制限したまま、チップシーケンス長より短い周期上で生成することができる。
【0039】
オプションとして、参照サブサンプル生成器160によって生成される参照チップシーケンスのサブサンプルは、伝播チャンネルによって発生する受信信号内の歪みを表す歪み、または、送信機Txまたは受信機Rx.によって発生する歪みを含むことができる。
産業上の適用可能性:測距装置や、場所決定装置のような、拡散スペクトル信号を受信するための装置。
【図面の簡単な説明】
【図1】拡散スペクトルシステムの実施例のブロック線図である。
【図2】拡散スペクトル受信機のベースバンド処理部のブロック線図である。
【図3】平均化回路のブロック線図である。
【図4】補間回路のブロック線図である。
【図5】拡散スペクトル受信機内の信号のグラフを示す。
【符号の説明】
10…データソース
12…ミキサー
14…コード生成器
16…GFSKモジュレータ
18…パワーアンプ
20…アンテナ
22…アンテナ
23…出力
24…復調器
25…第一出力
26…ベースバンド処理部
27…第二出力
28…時間参照ソース
29…出力
30…遅延決定手段
40…マルチプレクサ−デマルチプレクサ
49…モジュラス手段
50…多段記憶装置
52…デマルチプレクシング配置
54…第二乗算器
56…第二記憶装置
58…第一乗算器
60…第一記憶装置
62…第一加算段
66…マルチプレクシング配置
110…アナログデジタルコンバータ
120…相関器
125…出力
130…平均化回路
140…決定段
150…参照サンプル生成器
160…参照サブサンプル生成器
170…整合回路
180…補間回路
190…クロック生成器
210…シフトレジスタ第一段
220…シフトレジスタ第二段
230…減算段
240…第三記憶装置
250…第三乗算器
260…第二加算段
270…サブサンプルカウンタ
280…第四乗算器
290…第四記憶装置

Claims (10)

  1. チップシーケンスを有する拡散スペクトル信号を検出する方法であって、
    受信信号をサンプリング間隔でサンプリングし、
    それによって得られる前記サンプルを、整合フィルタでフィルタリングし、
    前記フィルタリングされたサンプルの前記絶対値を決定し、
    前記チップシーケンス長に等しい間隔で発生する、前記フィルタリングされたサンプルの前記絶対値の、少なくとも2つのそのような絶対値について計算される前記加重平均値を導出し、
    連続した加重平均値を補間し、それによって、前記加重平均値のサブサンプルを、前記サンプリング間隔より短いサブサンプリング間隔で生成し、かつ、
    前記サブサンプリング間隔で得られる前記サブサンプルとサンプルとの間における最も近い整合の前記位置を、前記チップシーケンスの参照相関関数から決定することによって前記受信信号の前記チップシーケンスの前記位置を決定する、チップシーケンスを有する拡散スペクトル信号を検出する方法。
  2. 前記チップシーケンスの前記参照相関関数の前記サブサンプルと、前記サブサンプリングとサンプルとの間における最も近い整合の前記位置を、前記サブサンプルを前記チップシーケンス長さの少なくとも一部である周期上で、前記チップシーケンスの前記参照相関関数の前記サンプルに相関させることによって決定する、請求項1に記載の方法。
  3. 前記フィルタリングされたサンプルの前記絶対値の前記加重平均値が、方程式、
    Figure 2004520759
    によって計算され、ここで、
    Figure 2004520759
    は、前記n番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値であり、
    Figure 2004520759
    は、前記n番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値の前記加重平均値であり、
    Figure 2004520759
    は、前記n−1番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値の前記加重平均値であり、かつ、
    αは、前記平均ゲインであり、かつ、前記範囲
    Figure 2004520759
    に値を有する、請求項1または2に記載の方法。
  4. 前記拡散スペクトル信号の前記到達時間を、時間参照を基準に決定された前記受信信号内の前記チップシーケンスの前記決定された位置として決定する、請求項1、2または3に記載の方法。
  5. 前記拡散スペクトル信号の前記到達時間を、時間参照を基準に決定された前記受信信号内の前記チップシーケンスの複数の位置の前記平均として決定する、請求項1、2または3に記載の方法。
  6. チップシーケンスを有する拡散スペクトル信号用の受信機であって、
    受信信号をサンプリング間隔でサンプリングするためのサンプリング手段と、
    それによって得られる前記サンプルをフィルタリングするための整合フィルタリング手段と、
    フィルタリングされたサンプルの前記絶対値を決定するためのモジュラス手段と、
    前記チップシーケンス長に等しい間隔で発生する前記フィルタリングされたサンプルの前記絶対値の、少なくとも2つのそのような絶対値について計算される前記加重平均値を計算し、前記加重平均値をための平均化手段と、
    連続した加重平均値を補間し、それによって、前記加重平均値のサブサンプルを、前記サンプリング間隔より短いサブサンプリング間隔で生成するための補間手段と、
    前記サブサンプリング間隔で得られる前記サブサンプルとサンプルとの間における最も近い整合の前記位置を、前記チップシーケンスの参照相関関数から決定することによって、前記受信信号の前記チップシーケンスの前記位置を決定するための整合手段と、
    を有する受信機。
  7. 前記整合手段が、前記サブサンプルを、前記チップシーケンス長の少なくとも一部である周期上で、前記チップシーケンスの前記参照相関関数の前記サンプルに相関させるための相関手段を有する、請求項6に記載の受信機。
  8. 前記フィルタリングされたサンプルの前記絶対値の前記加重平均値が、前記方程式、
    Figure 2004520759
    によって計算され、ここで、
    Figure 2004520759
    は、前記n番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値であり、
    Figure 2004520759
    は、前記n番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値の前記加重平均値であり、
    Figure 2004520759
    は、前記n−1番目のチップシーケンスの前記i番目のフィルタリングされたサンプルの前記絶対値の前記加重平均値であり、かつ、
    αは、前記平均ゲインであり、かつ前記範囲
    Figure 2004520759
    に値を有する、請求項6または7に記載の受信機。
  9. 前記拡散スペクトル信号の前記到達時間を、時間参照を基準に前記受信信号内の前記チップシーケンスの前記決定された位置として決定するための遅延決定手段を有する、請求項6または7に記載の受信機。
  10. 前記拡散スペクトル信号の前記到達時間を、時間参照を基準に前記受信信号内の前記チップシーケンスの前記決定された複数の位置の前記平均として決定するための遅延決定手段を有する、請求項6または7に記載の受信機。
JP2002586521A 2001-04-28 2002-04-22 拡散スペクトル信号の検出方法と受信機 Withdrawn JP2004520759A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0110464.5A GB0110464D0 (en) 2001-04-28 2001-04-28 A method of detecting and a receiver for a spread spectrum signal
PCT/IB2002/001423 WO2002089349A1 (en) 2001-04-28 2002-04-22 Method and apparatus for code synchronisation in cdma

Publications (1)

Publication Number Publication Date
JP2004520759A true JP2004520759A (ja) 2004-07-08

Family

ID=9913672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002586521A Withdrawn JP2004520759A (ja) 2001-04-28 2002-04-22 拡散スペクトル信号の検出方法と受信機

Country Status (7)

Country Link
US (1) US7082156B2 (ja)
EP (1) EP1386412A1 (ja)
JP (1) JP2004520759A (ja)
KR (1) KR20030097638A (ja)
CN (1) CN1462512A (ja)
GB (1) GB0110464D0 (ja)
WO (1) WO2002089349A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504802A (ja) * 2014-01-16 2017-02-09 キネテイツク・リミテツド 無線受信機用プロセッサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442145B2 (en) 2019-03-26 2022-09-13 Infineon Technologies Ag Signal temporal position determination
CN112398566B (zh) * 2020-11-16 2022-05-24 中国电子科技集团公司第二十九研究所 一种用于猝发通信体制的高精度到达时间计算方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2751959B2 (ja) * 1996-07-15 1998-05-18 日本電気株式会社 Cdma受信装置の受信タイミング検出回路
JPH1141141A (ja) * 1997-05-21 1999-02-12 Mitsubishi Electric Corp スペクトル拡散信号受信方法及びスペクトル拡散信号受信装置
JP3322243B2 (ja) * 1999-06-30 2002-09-09 日本電気株式会社 直接拡散cdma受信機
EP1089452A1 (en) * 1999-09-28 2001-04-04 Lucent Technologies Inc. Fractional sample timing error estimation for W-CDMA
EP1117186A1 (en) * 2000-01-14 2001-07-18 Lucent Technologies Inc. Adaptive code-tracking RAKE receiver for direct-sequence code-division multiple access (cdma) communications
JP3438701B2 (ja) * 2000-06-09 2003-08-18 日本電気株式会社 Ds−cdmaシステムにおける受信パスタイミング検出回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504802A (ja) * 2014-01-16 2017-02-09 キネテイツク・リミテツド 無線受信機用プロセッサ

Also Published As

Publication number Publication date
WO2002089349A1 (en) 2002-11-07
EP1386412A1 (en) 2004-02-04
GB0110464D0 (en) 2001-06-20
US20020181564A1 (en) 2002-12-05
KR20030097638A (ko) 2003-12-31
WO2002089349A8 (en) 2003-01-09
US7082156B2 (en) 2006-07-25
CN1462512A (zh) 2003-12-17

Similar Documents

Publication Publication Date Title
US7266164B2 (en) Apparatus for symbol timing detection for wireless communication system
KR100868679B1 (ko) 무선 통신시스템에서 프리앰블 신호 송수신 장치 및 방법
US6064688A (en) CDMA synchronous acquisition circuit
US7826567B2 (en) Method and apparatus for coarse and fine frequency and timing synchronisation
EP1376150A1 (en) Radio positioning system using interference cancellation
WO2001081944A1 (en) Time of arrival estimation for positioning systems
KR100430157B1 (ko) 직접순차주파수확산방식링크에대한짧은버스트포착방법및장치
US5199050A (en) Pseudorandom (PN) signal synchronization circuit and related method
US6445756B1 (en) Peak detecting circuit for detecting a peak of a time discrete signal by an approximate function
EP3094989B1 (en) A processor for a radio receiver
WO2006033676A2 (en) Digital broadband frequency measurement
JP2008523748A (ja) 相関値を決定するための装置および方法
JP2009500592A (ja) 遅延算出装置及び方法
JP2004520759A (ja) 拡散スペクトル信号の検出方法と受信機
US20060159206A1 (en) Device and method for determining a time of arrival of a receive sequence
US6542101B1 (en) Method and apparatus for performing analog-to-digital conversion using previous signal sample(s)
JP5344825B2 (ja) 基準シンボルレートのナイキスト周波数よりも大きなオフセットを有するtdma信号のための、繰り返しによるパイロット信号を用いた周波数オフセット推定及びc/i比計測法
JP3275780B2 (ja) 最尤系列推定受信装置
JP2010534967A (ja) 既知構造を有する信号への受信装置の同期
US20020181563A1 (en) Spread spectrum receiver and method of detection
KR100823252B1 (ko) Ofdm 기반 동기 검출 장치 및 방법
JPH11160422A (ja) 電波高度計
US6801605B1 (en) Telephone network signal conversion system
JP2004085340A (ja) Drfm装置
KR20020091400A (ko) 심볼 타이밍 복구 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060614

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070205