WO2003052450A1 - Station mobile gps pour portique sur pneus - Google Patents

Station mobile gps pour portique sur pneus Download PDF

Info

Publication number
WO2003052450A1
WO2003052450A1 PCT/CN2002/000842 CN0200842W WO03052450A1 WO 2003052450 A1 WO2003052450 A1 WO 2003052450A1 CN 0200842 W CN0200842 W CN 0200842W WO 03052450 A1 WO03052450 A1 WO 03052450A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
mobile station
cart
control processor
container crane
Prior art date
Application number
PCT/CN2002/000842
Other languages
English (en)
French (fr)
Inventor
Qing Lu
Original Assignee
Shanghai Zhenhua Port Machinery Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhenhua Port Machinery Co. Ltd. filed Critical Shanghai Zhenhua Port Machinery Co. Ltd.
Priority to AU2002354347A priority Critical patent/AU2002354347A1/en
Priority to APAP/P/2004/003076A priority patent/AP2004003076A0/en
Publication of WO2003052450A1 publication Critical patent/WO2003052450A1/zh
Priority to US10/875,154 priority patent/US20050033514A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to a container crane, in particular to a tire-type gantry container crane.
  • RTG compared with tracked loading and unloading equipment, RTG has the following two problems, although it has the advantage of flexible transitions:
  • RTG cannot use traditional encoders to detect its position relative to the yard, making terminal management software unable to know the current container stacking position, which is not conducive to the automatic management of container positions. How to monitor the position of the RTG's cart has become the subject of automating the management of container positions to improve work efficiency.
  • the driver must constantly correct the deviation when the big car is moving. In this way, on the one hand, the driver is prone to fatigue, and on the other hand, as the number of stacking boxes increases (such as stacking six to seven), it will become increasingly difficult for the driver to see the runway baseline, especially at night.
  • Automatic deviation correction usually adopts two methods: one is to combine with the above-mentioned cart position monitoring system to calculate the wheel offset by detecting the deviation of the sensor from the code sensor; the second is to draw two black and white reference lines on the runway, and Install two cameras on the aircraft.
  • the disadvantages of the former are as mentioned above, high cost and poor reliability; the disadvantages of the latter are that the baseline is susceptible to pollution, and the system cannot be combined with cart position monitoring.
  • GPS global satellite positioning system
  • the receiving frequency is single frequency and dual frequency.
  • the processing accuracy is meters, decimeters, centimeters and millimeters.
  • the update rate is 20HZ. 10HZ ⁇ is even smaller, and the built-in processing technology is divided into differential positioning system (DGPS) and real-time dynamic differential technology (RTK).
  • DGPS differential positioning system
  • RTK real-time dynamic differential technology
  • the task of the present invention is to provide a mobile station for a satellite positioning system for a tyre type gantry container crane, which can make the tyre type gantry container crane (RTG) not only keep the transfer flexibility, but also can be like a rail type gantry Crane (RMG) —Sample guarantees the stable and reliable operation of the cart, accurately reports the bin position, and makes the bin management highly automated.
  • RMG tyre type gantry container crane
  • RMG rail type gantry Crane
  • a satellite positioning system mobile station for a tire-type gantry container crane includes a global satellite positioning system (GPS) receiver and a cart encoder on the tire-type gantry container crane.
  • the mobile station includes a global satellite Positioning system receiver, wireless receiving station, cart encoder, control processor and programmable logic controller (PLC); the mobile station uses GPS phase real-time dynamic difference technology (RTK :) to obtain high 3D coordinates of mobile station with precision, sent to control
  • the processor obtains the current cart position of the tyre gantry container crane and the offset of the wheel of the tyre gantry container from the center line of the tyre runway; at the same time, the control processor receives and calculates the signal sent by the coder of the tyre gantry container crane To check the cart position and cart wheel offset of the tyre-type gantry container crane calculated by the aforementioned global positioning satellite system, and estimate the cart wheel offset obtained by the control processor, and use a digital-to-analog converter (D
  • FIG. 1 is a schematic diagram of a satellite positioning system mobile station for a tire-type gantry container crane according to the present invention.
  • Fig. 2 is a control principle block diagram of a satellite positioning system mobile station for a tire-type gantry container crane according to the present invention. Best Mode of the Invention
  • the present invention selects a GPS system with carrier phase real-time difference (RTK) technology, and its configuration is as follows:
  • a GPS reference station which includes a GPS dual-frequency receiver and a modulated wireless transmitting station for providing a reference position signal to the GPS mobile station on the crane.
  • a GPS mobile station is configured.
  • the specific hardware includes two GPS receivers and a public wireless receiving station, which are used to detect the current position of the crane and receive the differential signal from the base station to obtain centimeter-level detection accuracy.
  • the position signal will be sent to the on-board PLC after the host computer calculates, and will further carry out processing such as bin management and automatic correction.
  • the entire GPS system has a compact structure and simple installation.
  • the system has strong independence and does not have any structural impact on the design of the RTG.
  • the mobile station is installed inside the RTG electrical room, and is mainly composed of GPS module ST-CTL-0728- GPS (ST1001), microprocessor unit CTL-0728-CU (ST1002), communication station (ST1003), AC It consists of a regulated power supply (ST1006) and other components.
  • the RTG also includes a GPS antenna (ST1004), a communication station antenna (ST1005), and a communication cable.
  • the GPS receives the information of the differential base station, and sends geographic coordinate information with an accuracy of 1 to 2 cm to the microprocessor unit through a serial port.
  • the microprocessor simultaneously collects the encoded data and processes the data.
  • Various status indicators are provided on the panel, which indicate information such as power-on, work, positioning, data transmission reliability, and link quality.
  • the offset information control amount is converted into 4 ⁇ 20MA analog signal to the PLC control part. It can also output digital value through the standard RS232 serial port according to the user's needs, and control the cart to run along the predetermined trajectory, and control within the effective accuracy range.
  • Carrier phase real-time dynamic positioning technology also called real-time dynamic differential technology (RTK)
  • RTK real-time dynamic differential technology
  • the GPS relative positioning method is as follows: two GPS receivers are placed at both ends of the baseline, and the GPS satellites are synchronized to determine the relative position or baseline vector of the baseline endpoint in the protocol coordinate system. Since two receivers observe satellites simultaneously, the satellite orbit error, satellite clock error, receiver clock error, and ionospheric and tropospheric refraction errors are related to the impact of observations, so different combinations of these observations can be used for Relative positioning can effectively eliminate or reduce the above errors, thereby improving positioning accuracy.
  • the carrier phase is relatively dynamically determined in real time.
  • the GPS phase is used as the carrier phase observation value, that is, the phase difference between the reference signal of the receiver and the satellite carrier signal received by the receiver is measured. Due to the high carrier frequency (L1 carrier: 1575.42MHZ, L2 carrier: 1227.6 MHZ) and short wavelength (L1 carrier: 19.05CM, L2 carrier: 24.45CM) transmitted by GPS satellites, the accuracy of the carrier phase real-time dynamic positioning can be very high. high.
  • the reference station transmits its carrier observation measurement and station coordinate information to the mobile station in real time through the data link.
  • the mobile station receives the carrier phase of the GPS satellite and the carrier phase from the reference station, and composes phase difference observations for real-time processing. Calculate the three-dimensional coordinates of the mobile station, and achieve high-precision positioning results at the centimeter level.
  • the satellite signals received by the GPS receiver are subject to ionosphere diffraction and refraction during the process of passing through the atmosphere, which affects the GPS positioning accuracy, and the system itself has some errors, resulting in a single GPS positioning accuracy of 10M.
  • the internationally common method is differential.
  • pseudorange and carrier phase There are two main types of difference: pseudorange and carrier phase.
  • This system uses GPS to achieve real-time dynamic carrier phase differential positioning to achieve positioning accuracy requirements of 1 ⁇ 2CM.
  • the control system of the present invention mainly includes a control center, a differential base station, and a mobile station.
  • the reference station receives the satellite signal and uses the carrier phase observations of the GPS receiver to determine the phase difference between the receiver reference signal and the satellite carrier signal received by the receiver.
  • the reference station transmits its carrier observation measurement and station coordinate information to the mobile station in real time through the data link.
  • the mobile station receives the carrier phase of the GPS satellite and the carrier phase from the reference station, and composes phase difference observations for real-time processing. Calculate the three-dimensional coordinates of the mobile station.
  • the GPS data is transmitted to the industrial computer in real time through the serial port, and the industrial computer calculates the deviation of the current point from the reference line to calculate the control amount.
  • the control amount is converted into a current signal of 4 ⁇ 20MA by the D / A conversion circuit and sent to the PLC, or the data is directly transmitted to the PLC through the serial port, and the RTG is controlled to realize automatic correction.
  • the position coordinates of the current RTG are output to the PLC through the serial port, and the data is sent to the control center through the computer communication system.
  • the control center establishes a database that stores all the container locations, including yard location and elevation information, as well as information about cargo and consignees. It establishes a database that stores all tire hoisting track information, including contour data of the site area based on geographic coordinates, and tire hoisting. Route data, container truck driving route data, yard location data; Establish a database of current tire crane position information and working status, indicating whether the current tire crane is idle or performing tasks, and the tire crane information can be passed between the center and the tire crane Communication link transmission. All of this position data is visually displayed on the computer screen in the control center. The control center can select the appropriate idle tire crane according to the location of the container to be moved, and send the container location and the best driving route information to the tire crane.
  • the differential base station receives satellite signals, generates differential GPS information, and broadcasts it out via a 230M or 450 or 2.4G communication link. To ensure reliability, spread spectrum technology can be used.
  • the antenna of the base station should be set up in a relatively high and open place to ensure the accuracy of the differential information.
  • the transmit power of the base station can be adjusted according to the site range.
  • the mobile station consists of a global satellite positioning system (GPS), an industrial microprocessor (PC :), a programmable logic controller (PLC), and a D / A circuit (optional according to different user needs).
  • GPS global satellite positioning system
  • PC industrial microprocessor
  • PLC programmable logic controller
  • D / A circuit optionally according to different user needs.
  • the GPS receives the information of the differential base station, and outputs geographic coordinate information with an accuracy of 1 ⁇ 2cm once per second, and sends it to the PC through the serial port.
  • it uses encoder-assisted control to output the deviation amount derived from the coded count data within 1 second. , Auxiliary control tire crane truck to drive more accurately.
  • the PC stores the yard information, and according to the GPS information, guides the tire crane to run in a straight direction to assist the driver's operation.
  • the cart position, the yard status and the relative position of the cart are displayed in real time.
  • the cart position offset information calculated by the PC is transmitted to the PLC through the serial port, or converted to an analog signal (current) by the D / A and sent to the PLC.
  • the device provides operating status monitoring lights, which indicate information such as power on, work, and positioning reliability of the device.
  • the system is extensible for future computer communication (including X and Y position signals at the yard) and ground control center.
  • the tire crane will report the working status to the control center in time during the work.
  • the speed of the cart is generally 90 m / min to 120 m / min, and gp i.5 to 2 m / sec. Therefore, the position response speed of GPS should not be lower than 1HZ to ensure timely update of the cart position.
  • the layout of the container yards at the dock yard is usually relatively compact.
  • the safety distance is about 750 mm. Therefore, the present invention requires that the position detection accuracy of the GPS on the crane should be no more than 2 cm, so as to be suitable for the cart position monitoring and automatic correction control.
  • the GPS system of the present invention can implement the following functions:
  • the container location management of the terminal yard has its own habits according to the provisions of the tally department. Each port is different, but generally follows the following model:
  • the tally operation department arranges the containers to be loaded and unloaded on the day according to the original plan. And store the location in the terminal, through the intercom system (some terminals display information on the monitor screen in the driver's cab through the radio system), the box code and location (such as the number of the box area and the number of locations, etc.) ⁇ inform the driver, The driver then drove the car to the corresponding position for operation. Its lack The point is that the RTG control system is unable to feed back the objective container situation to the terminal management system due to the lack of the location of the cart.
  • RTG After being equipped with a GPS system, RTG can automatically detect the current location, and can realize the mutual conversion output of the position and the position of the container being loaded and unloaded. In this way, the following objectives are achieved: one is to obtain the box position of each RTG loading and unloading to achieve automatic statistics; the second is to prevent misoperation and confirm that the loading and unloading plan is consistent with the actual implementation, that is, to ensure that the container is loaded / unloaded to the designated location.
  • PLC programmable logic controller
  • Equipped with a GPS system it is conducive to the semi-automatic function of RTG including hoisting, trolley and cart, creating conditions for higher automation in the future.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

用于轮胎式龙门集装箱起重机的卫星定位系统移动站 技术领域
本发明涉及集装箱起重机, 特别涉及一种用于轮胎式龙门集装箱起重机
(RTG)的卫星定位系统 (GPS)移动站。 背景技术
国际贸易, 离不开集装箱运输, 因而带动了集装箱装卸机械的发展。 航 运界激烈竞争, 出现了集装箱船的大型化, 促进了港口集装箱机械加速更新 换代, 其中, 尤令人关注的是, 轮胎式龙门集装箱起重机 (RTG)的需求量近年 来不断上升。 与此同时, 其技术参数也日益变大, 譬如, 起升高度从堆三过 四、 堆四过五一直提髙到目前的堆五过六; 现在堆六过七的 RTG也开始出 现。 起升速度由过去的每分钟 15〜16米提高到 20〜23米, 近年来又有加大到 32米的趋势。 起重量由吊具下 30.5吨变为 40吨, 近年来出现了 50吨和吊双箱趋 势。 同时, 自动化要求也不断被提高, 如小车和起升的半自动运行, 以及司 机作业自动管理软件等已逐渐变得普遍。
但是, 与有轨道的装卸设备相比, RTG虽然有转场灵活的优点, 却一直 存在着下列两个问题:
1、 位置监控
由于没有固定轨道, RTG无法用传统的编码器来检测其相对于堆场的位 置, 使码头管理软件无法得知当前集装箱的堆放位置, 因而不利于实现箱位 自动管理。 如何监控 RTG的大车位置, 成为使箱位管理自动化从而提高工效 的课题。
2、 大车纠偏
由于没有固定轨道, 且 RTG本身结构的限制, 大车在行驶时, 司机必须 不断进行纠偏。 这样, 一方面司机作业易受疲劳, 另一方面随着堆码箱数的 增加 (如堆六过七), 司机将愈来愈困难地看清跑道基准线, 尤其在晚上。
自 RTG问世以来, 制造广和科研部门都在研究解决上述两个问題。 比较 有成效的大车位置监控方法, 是在 RTG跑道上每隔 3〜4米埋设代码传感器, 并在机上安装感应设备, 通过每个传感器的不同代码来鉴别 RTG在堆场上的 位置, 然后再通过 RTG自身的编码器来测知和控制箱位。 其缺点是, 需在码 头上埋置传感器, 其工作量大, 且因传感器间隔埋置, 无法连续监测大车位 置; 因 RTG振动而发生信号读取不可靠的现象; 在传感器损坏时不易更换, 且软件修改困难。
自动纠偏通常采用两种方法: 一是同上述大车位置监控系统相结合, 通 过感应设备检测与代码传感器的偏离来计算车轮偏移; 二是在跑道上画黑白 分明的两条基准线, 并在机上装设两个摄像头。 前者的缺点如上所述, 代价 高, 可靠性差; 后者的缺点是基准线易受污染, 且系统无法同大车位置监控 相结合。
目前市场上存在着不同规格和精度的全球卫星定位系统 (GPS)接收设备, 譬如接收频率有单频和双频的, 处理精度有米、 分米、 厘米级和毫米级的, 更新速率有 20HZ、 10HZ犮更小的, 还有内置处理技术分为差分定位系统 (DGPS)和实时动态差分技术 (RTK)的。 这些规格的不同决定了 GPS设备的精 度、 可靠性、 稳定性和响应快慢, 也将会对 GPS在 RTG的应用带来很大的差 别。 发明内容
为了解决上述问题, 本发明的任务是提供一种用于轮胎式龙门集装箱起 重机的卫星定位系统移动站, 它能使轮胎式龙门集装箱起重机 (RTG)既保持转 场灵活, 又能象轨道式龙门起重机 (RMG)—样保证大车运行稳定可靠, 准确 报告箱位, 使箱位管理具有高度自动化。
本发明的技术方案如下;
一种用于轮胎式龙门集装箱起重机 (RTG)的卫星定位系统移动站, 它包括 全球卫星定位系统 (GPS)接收器和轮胎式龙门集装箱起重机上的大车编码器, 所述移动站包括全球卫星定位系统接收器, 无线接收电台, 大车编码器以及 控制处理器和可编程逻辑控制器 (PLC); 所述移动站利用全球卫星定位系统的 载波相位实时动态差分技术 (RTK:), 获得高精度的移动站三维坐标, 送至控制处 理器获得轮胎式龙门集装箱起重机的当前大车位置和大车车轮离大车跑道中 心线的偏移量; 同时控制处理器接收并计算由轮胎式龙门集装箱起重机上的 大车编码器发出的信号, 对前述利用全球卫星定位系统计算获得的轮胎式龙 门集装箱起重机的大车位置和大车车轮偏移量进行检验, 并推算由控制处理 器获得的大车车轮偏移量, 通过数模转换器 (D/A)转换成 4〜20MA电流信号或 直接通过串行口传输到可编程逻辑控制器, 控制轮胎式龙门集装箱起重机实现 大车自动纠偏; 另一方面, 由控制处理器计算获得的轮胎式龙门集装箱起重机的 大车位置通过串行口传输到可编程逻辑控制器, 实现轮胎式龙门集装箱起重机 集装箱作业的自动记录。 附图概述
图 1是本发明的一种用于轮胎式龙门集装箱起重机的卫星定位系统移动站 的组成示意图。
图 2是本发明的一种用于轮胎式龙门集装箱起重机的卫星定位系统移动站 的控制原理框图。 本发明的最佳实施方式
本发明选用的是具有载波相位实时差分 (RTK)技术的 GPS系统, 其配置如 下:
配备一个 GPS基准站, 具体包括一个 GPS双频接收器和一个调制无线发射 电台, 用于提供基准位置信号给起重机上的 GPS移动站。
配置一个 GPS移动站, 具体硬件包括两个 GPS接收器和一个公共无线接收 电台, 用于检测当前起重机所处位置, 并接收基准站差分信号, 从而获得厘 米级的检测精度。 位置信号将在主机运算后送至机上 PLC, 进一步进行箱位 管理和自动纠偏等处理。
整个 GPS系统结构精巧, 安装简单, 系统具有很强的独立性, 对 RTG的 设计不产生任何结构上的影响。
移动站安装在 RTG电气房内部, 主要由 GPS模块 ST-CTL-0728- GPS(ST1001)、 微处理器单元 CTL-0728-CU(ST1002) 、 通信电台 (ST1003)、 交流 稳压电源 (ST1006)等组成, 在 RTG上还包括 GPS天线 (ST1004) 、 通信电台天线 (ST1005) 、 通信电缆等。 GPS接收差分基站的信息, 将精度 l〜2cm的地理坐标信 息, 通过串行口发送到微处理器单元, 微处理器同时采集编码数据, 处理数据。 面板上设有各种状态指示灯, 表明设备加电、 工作、 定位、 数据传输可靠性、 链 路质量等信息。 偏移信息控制量转化为 4〜20MA的模拟信号给 PLC控制部分, 也 可以根据用户需要通过标准 RS232串行口输出数字量, 控制大车沿预定的轨迹行 使, 并控制在有效精度范围内。
载波相位实时动态定位技术又称为实时动态差分技术 (RTK), 是建立在实 时处理两个测站的载波相位基础上的, 其实质就是载波相位测量相对定位。
GPS相对定位的方法是: 将两台 GPS接收机分别安置在基线的两端, 同步 观测 GPS卫星以确定基线端点在协议坐标系中的相对位置或基线向量。 由于 有二台接收机同步观测卫星, 同时卫星轨道误差、 卫星钟差、 接收机钟差及 电离层和对流层的折射误差对观测量的影响具有相关性, 因此可以利用这些 观测量的不同组合进行相对定位, 可有效地消除或减弱上述误差, 从而提高 定位精度。
载波相位实时动态相对定,位采用的是 GPS接收机的载波相位观测值, 即 测定的是接收机基准信号与接收机收到的卫星载波信号之间的相位差。 由于 GPS卫星发射的载波频率高 (L1载波: 1575.42MHZ , L2载波: 1227.6 MHZ ) , 波长短 (L1载波: 19.05CM, L2载波: 24.45CM ) , 所以, 载波相 位实时动态定位的精度可以达到很高。 基准站通过数据链实时将其载波观测 量及站坐标信息一同传送给移动站, 移动站接收 GPS卫星的载波相位与来自 基准站的载波相位, 并组成相位差分观测值进行实时处理, 能实时解算出移 动站的三维坐标, 并达到厘米级的高精度定位结果。
由于 GPS接收机收到的卫星信号在通过大气层过程中受到了电离层的衍 射、 折射, 影响了 GPS定位精度, 而系统本身又固有一些误差, 导致单个 GPS 定位精度达到 10M。 为了减少并消除部分误差, 提高定位精度, 国际上通用 的方法是差分。 差分主要有两种: 伪距差分和载波相位差分。 本系统采用 GPS来实现实时动态载波相位差分定位, 以达到 1〜2CM的定位精度要求。 参看图 1, 本发明的控制系统主要包括控制中心、 差分基站和移动站。 基准站接收卫星信号, 釆用 GPS接收机的载波相位观测值, 测定的是接 收机基准信号与接收机收到的卫星载波信号之间的相位差。 基准站通过数据 链实时将其载波观测量及站坐标信息一同传送给移动站, 移动站接收 GPS卫 星的载波相位和来自基准站的载波相位, 并组成相位差分观测值进行实时处 理, 能实时解算出移动站的三维坐标。 GPS数据通过串行口实时传输到工控 机, 工控机计算出当前点相对基准线的偏差, 从而计算出控制量。 该控制量 通过 D/A转换电路转换成 4〜20MA的电流信号送到 PLC, 或直接通过串行口将 数据传输到 PLC , 控制 RTG实现自动纠偏。 另一方面, 通过串行口输出当前 RTG的位置坐标到 PLC, 通过计算机通信系统将数据发送到控制中心。
控制中心建立存储所有的集装箱位置的数据库, 包括场箱位和高程信息 以及货物、 货主的信息; 建立存储所有的轮胎吊轨道信息的数据库, 包括基 于地理坐标的场区的轮廓数据、 轮胎吊行驶路线数据、 集装箱运载卡车行驶 路线数据、 场箱位数据; 建立当前轮胎吊位置信息和工作状态的数据库, 表 明当前轮胎吊处于空闲还是执行任务状态, 轮胎吊的信息可以通过中心和轮 胎吊之间的通信链路传输。 所有这些位置数据都在控制中心的计算机屏幕上 直观地显示出来。 控制中心可以根据需要搬运的集装箱位置选择合适的空闲 轮胎吊, 并将集装箱位置和最佳行驶路线信息发送到轮胎吊。
差分基站接收卫星信号, ,生成差分 GPS信息并通过 230M或 450或 2.4G的通 信链路广播出去, 为保证可靠性可采用扩频技术。 基站天线要架设在较 高、 较空旷的地点, 可以保 ffi差分信息的准确性, 基站发送功率可根据场地 范围做调整。
参看图 2, 移动站自动 ¾制原理如下:
移动站由全球卫星定位系统 (GPS)、 工业微处理机 (PC:)、 可编程逻辑控制 器 (PLC)以及 D/A电路 (根据不同的用户需要可选配)组成。 由于车辆运行速度 能达到 2米 /秒, 所以要求 GPS每秒输出 1次位置数据, 才能较好的控制其运行 状态。 GPS接收差分基站的信息, 每秒输出 1次精度 l〜2cm的地理坐标信息, 通过串行口发送到 PC机; 同时采用编码器辅助控制, 1秒内可输出由编码计数 数据推导的偏差量, 辅助控制轮胎吊大车更精确地行驶。 PC机中存储堆场信息, 根据 GPS信息, 引导轮胎吊沿直线方向运行, 辅 助驾驶员的操作。 途中根据 GPS输出信息和道路信息实时显示大车位置、 堆 场状况和小车相对位置。 经 PC机运算后的大车位置偏移信息通过串行口传输 到 PLC, 或通过 D/A转换成模拟信号 (电流)送到 PLC。 同时设备提供运行状态 监控灯, 表明设备加电、 工作、 定位可靠性等信息。
本系统具有扩展性, 以备用于今后计算机通信 (包括堆场 X、 Y位置信号) 和地面主控中心通信, 轮胎吊在工作过程中将工作状态及时反馈到控制中 心。 工业应用性
本发明在进行全球卫星定位系统 (GPS)选型时, 充分考虑了 RTG的如下特 点: '
1、 对大车速度反映快
目前大车速度普遍处于 90米 /分钟〜 120米 /分钟, gp i.5〜2米 /秒钟。 故 GPS的位置反应速度应不低于 1HZ, 以保证大车位置的及时更新。
2、 检测精度要高
码头堆场的箱位布置通常都比较紧凑, 相邻箱区的两台 RTG在交错时, 安全间距在 750毫米左右。 故本发明要求 GPS在起重机上的位置检测精度应不 大于 2厘米, 以适用于大车位置监控和自动纠偏控制。
3、 初始化时间要短
GPS系统在启动初期, 需要一段时间用于跟踪锁定卫星以获得位置精 度。 一般这个时间不大于 3分钟, 司机操作必须服从这个习惯。
本发明的 GPS系统可以实现如下功能:
1、 箱位管理
码头堆场集装箱的箱位管理, 根据理货部门的规定都有自己的习惯, 各 港不尽相同, 但是一般都呈如下模式: 理货操作部把当日要装卸的集装箱, 根据原先计划安排好并储存在码头主机中的位置, 通过对讲机系统 (有些码 头通过无线电系统把信息显示在司机室监控屏上) , 把箱子代码和位置 (如 几号箱区几号位置等信息) ·告知司机, 司机再把车开到对应位置操作。 其缺 点是, RTG控制系统因缺乏大车的位置而无法把客观的箱位情况反馈给码头 管理系统。 配备了 GPS系统以后, RTG就能够自动检测当前所处位置, 并能 够对正在装卸的集装箱实现位置和箱位的相互转换输出。 这样, 就达到以下 目的: 一是获得 RTG每次装卸的箱子位置, 实现自动统计; 二是防止误操 作, 确认装卸计划与实际执行相一致, 即保证集装箱被装 /卸到了指定位置。
2、 大车自动纠偏功能
利用 GPS的位置信号, 再通过可编程逻辑控制器 (PLC)软件编程, 使 RTG 能够在码头堆场大车行驶时进行自动纠偏。
3、 辅助半自动功能
配备了 GPS系统, 有利于实现 RTG包括起升、 小车和大车的半自动功 能, 为今后更高自动化创立条件。

Claims

权利要求
1.一种用于轮胎式龙门集装箱起重机的卫星定位系统移动站, 它包括全 球卫星定位系统接收器和轮胎式龙门集装箱起重机上的大车编码器, 其特征 在于, 所述移动站包括全球卫星定位系统接收器, 无线接收电台, 大车编码 器以及控制处理器和可编程逻辑控制器; 所述移动站利用全球卫星定位系统 的载波相位实时差分技术, 获得高精度的移动站三维坐标, 送至控制处理器获得 轮胎式龙门集装箱起重机的.当前大车位置和大车车轮离大车跑道中心线的偏 移量; 同时控制处理器接收并计算由轮胎式龙门集装箱起重机上的大车编码 器发出的信号, 对前述利用全球卫星定位系统计算获得的轮胎式龙门集装箱 起重机的大车位置和大车车轮偏移量进行检验, 并推算由控制处理器获得的 大车车轮偏移量, 通过数模-转换器 (D/A)转换成 4〜20MA电流信号或直接通过串 行口传输到可编程逻辑控制器, 控制轮胎式龙门集装箱起重机实现大车自动纠 偏; 另一方面, 由控制处理器计算获得的轮胎式龙门集装箱起重机的大车位置通 过串行口传输到可编程逻辑控制器, 实现轮胎式龙门集装箱起重机集装箱作业 的自动记录。
PCT/CN2002/000842 2001-12-12 2002-11-25 Station mobile gps pour portique sur pneus WO2003052450A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002354347A AU2002354347A1 (en) 2001-12-12 2002-11-25 A mobile station of global position system for rubber-tyred gantry crane
APAP/P/2004/003076A AP2004003076A0 (en) 2001-12-12 2002-11-25 A mobile station of global position system for rubber & minus; tyred gantry crane.
US10/875,154 US20050033514A1 (en) 2001-12-12 2004-06-23 Mobile station of global position system for rubber-tyred gantry crane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB011426314A CN1185155C (zh) 2001-12-12 2001-12-12 用于轮胎式龙门集装箱起重机的卫星定位系统移动站
CN01142631.4 2001-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/875,154 Continuation US20050033514A1 (en) 2001-12-12 2004-06-23 Mobile station of global position system for rubber-tyred gantry crane

Publications (1)

Publication Number Publication Date
WO2003052450A1 true WO2003052450A1 (fr) 2003-06-26

Family

ID=4676863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000842 WO2003052450A1 (fr) 2001-12-12 2002-11-25 Station mobile gps pour portique sur pneus

Country Status (5)

Country Link
US (1) US20050033514A1 (zh)
CN (1) CN1185155C (zh)
AP (1) AP2004003076A0 (zh)
AU (1) AU2002354347A1 (zh)
WO (1) WO2003052450A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646367A (zh) * 2020-04-15 2020-09-11 张�杰 一种电动葫芦起重机的控制系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344037B1 (en) * 2002-11-18 2008-03-18 Mi-Jack Products, Inc. Inventory storage and retrieval system and method with guidance for load-handling vehicle
CN100403197C (zh) * 2004-05-14 2008-07-16 李俊 基于差分gps技术轮胎吊自动驾驶及箱位管理系统
CN100337090C (zh) * 2005-10-13 2007-09-12 上海交通大学 自动化无人堆场吊具-集卡对箱的分级快速定位方法
DE102005050864A1 (de) * 2005-10-24 2007-04-26 Siemens Ag Lasttransportsystem mit speicherprogrammmierbarer Steuerung als Steuereinrichtung
DE102005050865A1 (de) * 2005-10-24 2007-04-26 Siemens Ag Lasttransportvorrichtung mit speicherprogrammierbarer Steuerung als Steuereinrichtung
WO2008037649A1 (de) * 2006-09-25 2008-04-03 Siemens Aktiengesellschaft Speicherprogrammierbare steuerung mit kalman-filter
CN100497152C (zh) * 2007-04-24 2009-06-10 青岛港(集团)有限公司 一种轮胎式集装箱龙门起重机的纠偏方法
CN101229883A (zh) * 2008-01-24 2008-07-30 上海振华港口机械(集团)股份有限公司 集装箱码头装卸系统
CN101920912A (zh) * 2009-06-11 2010-12-22 上海振华重工(集团)股份有限公司 用于自动化码头的堆场后方起重机
CN101704472B (zh) * 2009-11-19 2011-08-17 绍兴文理学院 塔吊全自动控制系统
CN103298728B (zh) * 2011-07-05 2015-04-08 天宝导航有限公司 起重机操纵辅助
CN103145045A (zh) * 2013-03-21 2013-06-12 中船第九设计研究院工程有限公司 一种以太网构架的门式起重机plc现场总线网络
CN103941610B (zh) * 2014-04-30 2016-07-13 山东科技大学 一种单gps定位的轮胎吊区域识别系统及其使用方法
CN104199280B (zh) * 2014-09-23 2017-12-15 中国电子科技集团公司第二十九研究所 一种基于差分gps的时间同步误差测量方法
CN104925667A (zh) * 2015-04-14 2015-09-23 赤湾集装箱码头有限公司 一种场桥gps防打保龄系统及其方法
CN105366552B (zh) * 2015-11-30 2017-07-11 西安宝德自动化股份有限公司 一种自由轮定位系统
CN107487715B (zh) * 2016-06-11 2019-06-18 上海梅山钢铁股份有限公司 一种用于室外行车吊装钢卷库位精确定位的方法
CN106516985A (zh) * 2016-12-26 2017-03-22 深圳市招科智控科技有限公司 一种远程控制rtg大车自动定位的系统及方法
CN107265298A (zh) * 2017-06-16 2017-10-20 荆门创佳机械科技有限公司 一种自动寻找盲区吊位的塔吊设备
CN107943020B (zh) * 2017-10-17 2021-07-23 上海辛格林纳新时达电机有限公司 一种轮胎吊大车自动纠偏方法
CN109307874B (zh) * 2018-11-11 2020-02-21 北京国泰星云科技有限公司 一种rtg大车定位测姿系统
CN109557569A (zh) * 2019-01-02 2019-04-02 中冶华天南京电气工程技术有限公司 实现带机械臂移动装置本体及机械臂高精度定位的方法
CN110333523B (zh) * 2019-07-23 2021-01-26 北京国泰星云科技有限公司 一种用于rtg自动行走系统的轨道线三维数据生成方法
CN111289841A (zh) * 2020-03-23 2020-06-16 云南电网有限责任公司电力科学研究院 一种接地网腐蚀探测定位方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155664A (zh) * 1996-12-11 1997-07-30 大连菲朦发展科技有限公司 全球导航定位卫星差分数据链系统
WO1998034127A1 (en) * 1997-01-13 1998-08-06 Sisu Terminal Systems Inc. Automatic gantry steering system for a container handling machine
JP2001240372A (ja) * 2000-03-03 2001-09-04 Ohbayashi Corp ケーブルクレーンの制御システム

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278134A (en) * 1969-07-25 1972-06-14 Port Autonome De Dunkerque Plant for unloading and handling loose solid material
JPS5141273B1 (zh) * 1970-12-30 1976-11-09
SE351830B (zh) * 1971-02-05 1972-12-11 L Andersson
US3837503A (en) * 1971-04-27 1974-09-24 Ishikawajima Harima Heavy Ind Hoisting device for use with cranes
US3888536A (en) * 1974-01-29 1975-06-10 Us Army Automatic {13 {0 self contained {13 {0 light weight spreader bar
JPS51140957U (zh) * 1975-05-08 1976-11-13
US4244615A (en) * 1979-05-29 1981-01-13 Matson Navigation Company Lifting spreader actuated crank
JPS5982290A (ja) * 1982-11-01 1984-05-12 株式会社日立製作所 クレ−ンの吊具傾転装置
US5039275A (en) * 1987-06-05 1991-08-13 Ide Allan R Method for transferring cargo between vessel and dock
US5183305A (en) * 1989-12-18 1993-02-02 Nordstrom Immo R Method and apparatus for handling cargo containers
US5718550A (en) * 1992-04-16 1998-02-17 Mi-Jack Products, Inc. Load transferring system
FI942218A0 (fi) * 1994-05-13 1994-05-13 Modulaire Oy Automatiskt styrningssystem foer obemannat fordon
US5775866A (en) * 1994-05-20 1998-07-07 Tax Ingenieurgesellschaft Mbh Cargo loading crane
US5671912A (en) * 1994-08-10 1997-09-30 Ederer Corporation Method & apparatus for providing low speed safety braking for a hoist system
BR9508854A (pt) * 1994-09-20 1997-12-30 Fantuzzi Reggiane Spa Planta de manuseio de frete em depósitos e depósitos relacionados
US6145903A (en) * 1996-04-25 2000-11-14 Stinis Beheer B.V. Hoisting frame and method for hoisting containers
US5871249A (en) * 1996-11-12 1999-02-16 Williams; John H. Stable positioning system for suspended loads
WO1998055381A1 (en) * 1997-06-05 1998-12-10 Barry Leonard D Container crane hoist and system
FI104816B (fi) * 1997-09-24 2000-04-14 Kci Kone Cranes Int Oy Laite nosturin nostoköysistöön kohdistuvan ylikuormituksen ja törmäysliike-energian vaimentamiseksi
US6243649B1 (en) * 1999-08-02 2001-06-05 Trimble Navigation Limited GPS true course guidance correction system for correcting antenna offset error
SE0002351D0 (sv) * 2000-06-22 2000-06-22 Bromma Conquip Ab Dubbellyftok och förfarande
DE10041932B4 (de) * 2000-08-27 2012-07-12 Fm Patentverwertung Kg Laschkorb zum sicheren Lösen und Verriegeln von Twistlocks
WO2002057175A1 (de) * 2001-01-18 2002-07-25 KGW Förder- und Servicetechnik GmbH Hebegerät
NO316438B1 (no) * 2001-08-31 2004-01-26 Lars Magnus Solstad Fjernstyrt tilkoplingsanordning for löfteinnretning
US6602036B2 (en) * 2001-12-11 2003-08-05 Toru Takehara Buffer bridge crane for cargo container handling operations
KR100890531B1 (ko) * 2002-06-10 2009-03-27 슈티니스 베헤르 비.브이. 호이스트 프레임 및 호이스트 프레임의 사용 방법
US7032763B1 (en) * 2002-11-18 2006-04-25 Mi-Jack Products, Inc. System and method for automatically guiding a gantry crane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155664A (zh) * 1996-12-11 1997-07-30 大连菲朦发展科技有限公司 全球导航定位卫星差分数据链系统
WO1998034127A1 (en) * 1997-01-13 1998-08-06 Sisu Terminal Systems Inc. Automatic gantry steering system for a container handling machine
JP2001240372A (ja) * 2000-03-03 2001-09-04 Ohbayashi Corp ケーブルクレーンの制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646367A (zh) * 2020-04-15 2020-09-11 张�杰 一种电动葫芦起重机的控制系统

Also Published As

Publication number Publication date
US20050033514A1 (en) 2005-02-10
CN1425601A (zh) 2003-06-25
CN1185155C (zh) 2005-01-19
AU2002354347A1 (en) 2003-06-30
AP2004003076A0 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
WO2003052450A1 (fr) Station mobile gps pour portique sur pneus
US7983808B2 (en) Fully automatic straddle carrier with local radio detection and laser steering
CN105197800B (zh) 基于uwb的起重机无线定位控制系统及方法
US8452527B2 (en) Method of automatic positioning for loading and unloading of container ships in container terminals
CN105398474B (zh) 一种北斗智能铁路防溜铁鞋实时监控可视化管理系统
EP0909394B1 (en) Automatic gantry steering system for a container handling machine
CN111948999A (zh) 一种架梁自动控制系统
Barnes et al. Indoor industrial machine guidance using Locata: A pilot study at BlueScope Steel
CN111338313B (zh) 基于船舶航行状态信息的船舶辅助调度方法及系统
CN107416541A (zh) 料仓自动布料装置和布料方法
CN203740901U (zh) 轨道吊自动化堆场操作控制系统
CN105197799A (zh) 一种基于uwb的起重机无线定位控制系统及方法
CN201825668U (zh) 轮胎式集装箱龙门起重机运行位置控制系统
CN204384730U (zh) 集装箱码头rtg、rmg下集卡对位引导系统
KR20090073284A (ko) 위치 기반 완전 자동 야드 크레인 시스템
CN105501722A (zh) 集装箱装车组合优化方法及偏载实时监控系统
CN111290353A (zh) 一种机坪升降平台车控制系统及控制方法
CN212425175U (zh) 一种桥式起重机防摆系统
CN212276263U (zh) 一种架梁自动控制系统
CN107340760A (zh) 皮带输送机卸料小车的定位装置及定位方法
CN213302521U (zh) 一种龙门吊与门座机防撞系统
AU2011334123B2 (en) Method and system for the georeferenced determination of the location of containers in the loading range of container cranes
CN111787086B (zh) 一种混凝土施工中缆机停靠装料平台桩号识别的方法
US11507902B2 (en) System and method for vehicle project tracking
CN212639739U (zh) 一种全自动轮胎吊大车定位系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10875154

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP