WO2003049936A1 - Superparamagnetic nanostructured materials - Google Patents
Superparamagnetic nanostructured materials Download PDFInfo
- Publication number
- WO2003049936A1 WO2003049936A1 PCT/US2002/008259 US0208259W WO03049936A1 WO 2003049936 A1 WO2003049936 A1 WO 2003049936A1 US 0208259 W US0208259 W US 0208259W WO 03049936 A1 WO03049936 A1 WO 03049936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nanostructured material
- block copolymer
- sol
- superparamagnetic
- gel precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0072—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
- H01F1/0081—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0045—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
- H01F1/0063—Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use in a non-magnetic matrix, e.g. granular solids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/701—Integrated with dissimilar structures on a common substrate
- Y10S977/72—On an electrically conducting, semi-conducting, or semi-insulating substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/788—Of specified organic or carbon-based composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/838—Magnetic property of nanomaterial
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2993—Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2993—Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
- Y10T428/2995—Silane, siloxane or silicone coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
Definitions
- the invention relates generally to superparamagnetic nanostructured materials and a method for making the same.
- Magnetic particles can be used as markers for the detection of biological molecules or in a drug delivery system to target infected biological tissues. The detection and targeting may be monitored or controlled using the magnetic properties of the particles, hi terms of medical needs, magnetic particles are used as directed delivery agents for radionuclides as a method of tumor treatment. Also, magnetic particles can be utilized in sensor and separation technology. For example, the surface of the magnetic particles could be functionalized with specific biomolecular recognition sites, cells or proteins to detect antibodies through separation of a fluidic medium using magnetic fields.
- superparamagnetic particles only exhibit magnetization in the presence of a magnetic field.
- a superparamagnetic nanostrucrure having a well-controlled shape, size, and composition would be useful in the biological field, as well as many other fields.
- Superparamagnetic nanostructures can be easily introduced into a biological fluid without the concerns of agglomeration due to ferromagnetic attraction that would be present in other non-superparamagnetic particles and nanostructures. Additionally, the presence and location of the superparamagnetic nanostructures can be detected using a magnetic field. Iron silicates particles exhibit superparamagnetic properties below a critical size.
- iron silicates Beginning in the early 1980's, the characterization of iron silicates provided useful early information concerning iron species at different calcinations temperatures and a limited study of magnetic properties. In addition, these earlier studies developed a synthesis strategy for producing bulk iron silicates whereby metal alkoxides, specifically iron triethoxide and iron tripropoxide, were mixed with silicon precursors, most commonly iron salts were used such as iron halides (FeCl 3 ) and organic salts like iron nitrate. Moving to the late 1990s, more extensive magnetic measurements were reported on bulk iron silicate composites. Several systems involving silica precursors and iron alkoxides or iron salts produced the phase, ⁇ - Fe 2 0 3 (maghemite), which in bulk form is ferromagnetic.
- metal alkoxides specifically iron triethoxide and iron tripropoxide
- silicon precursors most commonly iron salts were used such as iron halides (FeCl 3 ) and organic salts like iron nitrate.
- the ⁇ - Fe 2 0 3 particles found in the silicates were below the critical size for ferromagnetism resulting, however, in superparamagnetic behavior of the composites.
- Superparamagnetic iron (III) nanoparticles were produced having a narrow size distribution, 4-6 nm, with varying degrees of iron salt content. It was determined that a transition to ferromagnetism occurs at lower temperatures and increased particle size. The transition was clarified to indicate that at low concentrations of Fe 0 3 the change occurs at a particle size of 5 nm.
- Most studies included the effects of thermal treatments on silica composites to maximize magnetization. Two factors contributed to predicting the magnetic moment of an iron silicate, the concentration of iron to that of silica and the various temperature treatments.
- Diamagnetic aluminosilicate mesostructures have been synthesized from block copolymer phases.
- 3-glycidyloxy- propltrimethoxysilane and aluminum--.ec-butoxide expected block copolymer morphologies were exhibiting phase separation on the length scale of about 20 nm. Later studies extended this approach to produce single nano-objects.
- the hydrophilic part of the block copolymer was embedded in the inorganic phase while the hydrophobic part forms the second phase. Then an organic solvent dissolves the bulk materials leading to "hairy" objects.
- amphiphilic block copolymers as structure-directing agents to generate nanostructured material is also known.
- prior attempts at generating nanostructured material do not appear to focus on the magnetisms of the nanostructured material produced.
- amphiphilic block copolymers to produce superparamagnetic nanostructured material has not been explored.
- Superparamagnetic nanostructured materials are produced using an amphiphilic block copolymer having the form AB, ABA, or ABC as a structure directing agent.
- the method is unique in attaining unprecedented structural control over the formation and composition of superparamagnetic nanostructured materials. Whereas conventional techniques are limited to spherical particles, the present approach can be conveniently extended to cylindrical and lamellar shapes. Most importantly, the present approach may be used to produce mesoporous nanostructures exhibiting superparamagnetism. These mesoporous nanostructures are useful as filtration devices and catalytic material.
- Superparamagnetic nanostructured materials are formed by preparing a block copolymer solution containing an amphiphilic block copolymer.
- the block copolymer should have the form AB, ABA, or ABC, such that one of the constituents is a hydrophilic polymer.
- the amphiphilic block copolymer solution is formed by dissolving poly(isoprene-block-polyethylene oxide), which may be denoted PI-b-PEO, in a non-aqueous solvent.
- a silicate precursor solution is then formed, preferably in an aqueous solution.
- the silicate precursor solution undergoes hydrolysis and condensation to form a sol-gel precursor.
- an dummum-containing compound is mixed with the silicate precursor solution.
- An iron precursor is added to either the block copolymer solution or the sol-gel precursor.
- iron alkoxide is added to the block copolymer solution.
- the sol-gel precursor is mixed with the block copolymer solution whereby a hybrid inorganic nanostructured material is produced.
- Solvent is removed from the hybrid inorganic nanostructured material to produce individual nanostructured material which are calcinated to form a superparamagnetic nanostructure material.
- the superparamagnetic nanostructured material is superparamagnetic aluminosilicate nanostructured material.
- the resulting superparamagnetic nanostructure material is preferably in the shape of a sphere, cylinder or lamellae, the most preferred shape is a mesoporous material.
- FIG. 1 is a synthesis schematic of the formation of superparamagnetic nanostructured materials.
- FIG. 2 shows TEM (left) and AFM (right) images of the resulting nanospheres and cylinders.
- An amphiphilic block copolymer having the form AB, ABA, or ABC, is used as a structure-directing agent to produce superparamagnetic nanostructured material.
- a block copolymer solution containing the amphiphilic block copolymer and a separate silicate sol- gel precursor are formed.
- An iron precursor is added to either the block copolymer solution or the sol-gel precursor.
- the block copolymer solution and the sol-gel precursor are mixed forming nanostructured material.
- the nanostructured material is then calcinated to produce superparamagnetic nanostructured material.
- the structure-directing agent may be selected from a variety of AB, ABA, or ABC amphiphilic block copolymers.
- amphiphilic block copolymers include, but are not limited to, poly(isoprene-block-ethylene oxide) block copolymers (PI-b-PEO), polyethylene propylene-b-ethylene oxide) block copolymers (PEP- b-PEO), poly(butadiene-b-ethylene oxide) block copolymers (PB-b-PEO), poly(isoprene-b- ethylene oxide-b-isoprene block copolymers (PI-b-PEO-PI), and poly(isoprene-b-ethylene oxide-b-methylmethacrylate) block copolymers (PI-b-PEO-b-PMMA).
- preferred amphiphilic block copolymers would include the above-identified block copolymers wherein the PEO is replaced by any suitable hydrophilic polymer.
- the superparamagnetic nanostructured material is produced by selectively swelling the hydrophilic phase of the block copolymer, such as the PEO phase of the preferred embodiment, with a sol-gel precursor, which is molecularly compatible with only the hydrophilic polymer.
- the amphiphilic block copolymer is preferably dissolved in a non- aqueous solvent to form a block copolymer solution.
- a sol-gel precursor is formed by first forming a silicate precursor solution containing a silicon-containing compound.
- the silicon- containing compound is a silicon alkoxide, such as 3-glycidoxy-propyltrimethoxysilane (GLYMO), tetramethoxysilane (TMOS), or tetraethyoxysilane (TEOS).
- GLYMO 3-glycidoxy-propyltrimethoxysilane
- TMOS tetramethoxysilane
- TEOS tetraethyoxysilane
- the silicon- containing compound may be mixed with or without an aluminum-containing compound, such as an aluminum alkoxide, most preferably aluminum-tri--.ec-butoxide. If an aluminum- containing compound is added to the silicate precursor solution, a preferred ratio of silicon- containing compound and aluminum-contaimng compound of 90:10 provides for the incorporation of the iron phase later in the process. The preferred ratio results in a higher loading of iron and still maintains a cross-linked ceramic gel after the process is complete.
- the silicate precursor solution is an aqueous solution.
- the silicate precursor solution undergoes hydrolysis and condensation whereby the sol-gel precursor is formed, hi one embodiment, the silicate precursor solution undergoes hydrolysis and condensation for approximately 50 minutes.
- the sol-gel precursor contains a silicate matrix which hosts the magnetic iron phase . This iron phase is primarily composed of ⁇ -Fe 2 0 3 , a magnetically active form of iron oxide.
- a salt may be added to the sol-gel precursor to help shield surface charges for better gelation of the sol wimin the hydrophilic polymer. The salt may also act as nucleation sites for the iron oxide precipitates that are formed later.
- salts examples include, but are not limited to, alkali halides or alkaline metals salts, such as potassium chloride and cesium chloride.
- a salt such as potassium chloride
- GLYMO alummum-tri--.e-.-butoxide
- An iron precursor is added to either the block copolymer solution or the sol-gel precursor.
- the iron precursor is an iron alkoxide
- the iron precursor is added to the block copolymer solution.
- the block copolymer solution and the sol-gel precursor are combined whereby the iron undergoes hydrolysis leading to the formation of a hybrid inorganic nanostructured material.
- the concentration of the iron is low enough to prevent precipitation of a condensed iron oxide phase.
- the resulting material has the iron phase molecularly mixed within the nanostructured material.
- Solvent in the hybrid inorganic nanostructured material is then removed.
- the solvent is removed by dissolving the material in a solvent, such as toluene, selective for non-hydrophilic polymer, poly(isoprene) in the preferred PI-b-PEO block copolymer embodiment, to disperse the bulk material into individual nanostructured material or by casting films to evaporate the solvents.
- the dimensions of the superparamagnetic nanostructured material can be tailored with a characteristic length scale between 5-100 nm depending on the molecular weight of the amphiphilic block copolymer used and the amount of inorganic sol-gel precursor added within a single morphology.
- FIG.l shows a synthesis diagram of the formation of the superparamagnetic nanostructured material using an example block copolymer of PI-b-PEO containing an iron precursor.
- a pure block copolymer in a body-centered cubic (BCC) mesophase 2 or a pure block copolymer in a hexagonal cylinder mesophase 4 may be used in the present invention.
- FIG.l shows the morphology of one preferred block copolymer PI-b-PEO.
- the pure block copolymers 2, 4 as depicted in FIG. 1 show the PI phase in black and the PEO phase in dark gray.
- the hexagonal cylinder mesophase 4 is achieved by increasing the polymer block fraction of PEO with respect to PI, generally 17-46 wt% PEO. Both morphologies can be used to generate the different structures described below. As increasing amount of inorganic sol-gel precursor material is added to the parent pure block copolymer similar mesophases seen in a pure block copolymer system can be achieved. However, the "plumber's nightmare" (PN) morphology, a bicontinuous morphology, is only observed when using the hexagonal cylinder mesophase 4. Hence, the following morphologies will be produced using the hexagonal cylinder mesophase 4 block copolymer.
- PN plumber's nightmare
- a BCC phase 6 is produced by adding an inorganic sol-gel precursor to obtain a volume of PEO + inorganic sol-gel precursor approximately equal to 23 vol%.
- a hexagonal cylinder phase 8 is produced by adding inorganic sol-gel precursor to obtain 26-35 vol% PEO + inorganic sol-gel precursor.
- a lamellae phase 10 is produced by adding inorganic sol-gel precursor to obtain 40-55 vol% PEO + inorganic sol-gel precursor.
- the "plumber's nightmare" phase 12 occurs when 60-62 vol% of PEO + inorganic sol-gel precursor is achieved.
- An inverse hexagonal cylinder phase 14 is produced when the PEO + inorganic sol-gel precursor achieves a vol% between 65- 75%.
- blocks 6, 8, 10, 12 and 14 show the PI phase in black and a PEO + inorganic phase in light gray.
- a solvent e.g. toluene
- individual spheres 16, cylinders 18 and lamellae 20, respectively are produced.
- PI chains remain attached to the inorganic nanostructured material because of the PEO block embedded inside.
- the "plumber's nightmare" phase 12 is calcined to higher temperatures to pyrolze the organic components leading to empty channels in the PN inorganic matrix that was once occupied by PI thereby producing a PN mesoporous material 22.
- the organic material in the inverse cylinder phase 14 is pyrolyzed at a heat treatment to 550°C leaving empty channels in the inorganic mesoporous matrix 24.
- the morphologies where the minority phase is inorganic give rise to individual nanoparticles while the inorganic rich morphologies give rise to mesoporous materials.
- FIG. 1 shows TEM (left) and AFM (right) images of the resulting nanospheres and cylinders. These images demonstrate that dissolving the bulk copolymer with a solvent is successful in dispersing individual object in a solution. This is necessary for the utility of nanoparticles in the application as described.
- Poly(isoprene-block-ethylene oxide) block copolymer (PI-b-PEO) is synthesized using conventional anionic polymerization techniques.
- a block copolymer solution of 5 wt% is prepared in a 50-50 solution of dry tetrahydrofuran (THF) and chloroform. Iron ethoxide is dissolved in the block copolymer solution to obtain a final mole fraction of 25% with respect to the silicon and aluminum alkoxide compounds added later in the process.
- a separate silicate precursor solution is formed by mixing 3-glycidoxypropyltrimethoxysilane (GLYMO) and aluminum tri-sec-butoxide,whereby the silicate precursor solution undergo a two step hydrolysis and condensation reaction using an acid catalyst.
- GLYMO 3-glycidoxypropyltrimethoxysilane
- aluminum tri-sec-butoxide aluminum tri-sec-butoxide
- sol-gel precursor having an organically modified aluminosilicate phase.
- the aluminum acts as a network hardener of the organic-inorganic matrix and as a Lewis acid in opening up the epoxy ring on the silicon hybrid precursor, which also aids in mamtaining network integrity.
- the sol-gel precursor solution is added to the iron-block copolymer solution and subsequent films are cast by evaporation of the solvents.
- the amphiphilic block copolymer structures the inorganic materials into well-defined morphologies depending on the volume fraction between the poly(isoprene) polymer phase and the poly(ethylene oxide)-inorganic phase.
- the PEO is completely intermixed with the inorganic at a molecular level to generate a single homogenous phase of inorganic-organic material; thus, only a two-phase system is observed. Unprecedented structural control is exhibited and a large number of microstructures across the phase diagrams of block copolymers can be formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Silicon Polymers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2002364925A AU2002364925A1 (en) | 2001-04-13 | 2002-04-12 | Superparamagnetic nanostructured materials |
| JP2003550975A JP5101791B2 (ja) | 2001-04-13 | 2002-04-12 | 超常磁性ナノ構造材料 |
| AT02802541T ATE522347T1 (de) | 2001-04-13 | 2002-04-12 | Superparamagnetische nanostrukturierte materialien |
| EP02802541A EP1397243B1 (en) | 2001-04-13 | 2002-04-12 | Superparamagnetic nanostructured materials |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US28335401P | 2001-04-13 | 2001-04-13 | |
| US60/283,354 | 2001-04-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003049936A1 true WO2003049936A1 (en) | 2003-06-19 |
Family
ID=23085642
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2002/008259 Ceased WO2003049936A1 (en) | 2001-04-13 | 2002-04-12 | Superparamagnetic nanostructured materials |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6645626B2 (enExample) |
| EP (1) | EP1397243B1 (enExample) |
| JP (1) | JP5101791B2 (enExample) |
| AT (1) | ATE522347T1 (enExample) |
| AU (1) | AU2002364925A1 (enExample) |
| WO (1) | WO2003049936A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2369466C1 (ru) * | 2008-02-26 | 2009-10-10 | Государственное образовательное учреждение высшего профессионального образования "Курский государственный университет" | Способ получения наночастиц металлов или гибридов наночастиц металлов |
| WO2009151490A3 (en) * | 2008-02-25 | 2010-03-04 | The Regents Of The University Of California | Use of magnetic nanoparticles to remove environmental contaminants |
| WO2011054787A1 (en) * | 2009-11-09 | 2011-05-12 | Basf Se | Process for preparing mesoporous materials |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6893705B2 (en) * | 2001-05-25 | 2005-05-17 | Massachusetts Institute Of Technology | Large area orientation of block copolymer microdomains in thin films |
| US8449601B2 (en) * | 2002-11-19 | 2013-05-28 | Boston Scientific Scimed, Inc. | Medical devices |
| US7087656B2 (en) * | 2003-08-12 | 2006-08-08 | Cornell Research Foundation, Inc. | High temperature SiCN and SiC-type nanostructured ceramic material from block copolymer mesophases |
| DE102004009287A1 (de) * | 2004-02-26 | 2005-09-15 | Institut Für Neue Materialien Gem. Gmbh | Amphiphile Nanopartikel |
| CN100429142C (zh) * | 2004-03-24 | 2008-10-29 | 哈尔滨工业大学 | 面向纳米微加工嵌段共聚物模板自组装形态调控方法 |
| US20060019096A1 (en) * | 2004-06-01 | 2006-01-26 | Hatton T A | Field-responsive superparamagnetic composite nanofibers and methods of use thereof |
| EP1923131A4 (en) * | 2005-08-12 | 2010-10-27 | Toyo University Educational Fo | METHOD OF HANDLING THROUGH A MAGNETIC TURNING FIELD |
| US20070281036A1 (en) * | 2005-12-19 | 2007-12-06 | University Of Vermont And State Agricultural College | System and method of delivering a desired material to a cell |
| JP2009138014A (ja) * | 2007-12-03 | 2009-06-25 | Toyota Central R&D Labs Inc | ナノ構造材料の製造方法 |
| WO2010014703A2 (en) * | 2008-07-31 | 2010-02-04 | Boston Scientific Scimed, Inc. | Medical articles comprising biodegradable block copolymers |
| US8507287B2 (en) * | 2008-09-26 | 2013-08-13 | Wisconsin Alumni Research Foundation | Mesoporous metal oxide materials for phosphoproteomics |
| US8603999B2 (en) | 2008-12-05 | 2013-12-10 | Commonwealth Scientific And Industrial Research Organisation | Amphiphile prodrugs |
| JP5472446B2 (ja) * | 2010-03-18 | 2014-04-16 | 株式会社豊田中央研究所 | ナノヘテロ構造体およびその製造方法 |
| JP5850308B2 (ja) * | 2011-09-16 | 2016-02-03 | 株式会社豊田中央研究所 | ナノヘテロ構造軟磁性材料およびその製造方法 |
| JP5871118B2 (ja) * | 2011-09-16 | 2016-03-01 | 株式会社豊田中央研究所 | ナノヘテロ構造磁気記録材料およびその製造方法 |
| US9754709B2 (en) | 2011-09-16 | 2017-09-05 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Nanoheterostructured permanent magnet and method for producing the same |
| KR101363934B1 (ko) | 2012-02-23 | 2014-02-20 | 한서대학교 산학협력단 | 다이렉트 발포방식을 이용한 기능성 다공체 세라믹 재료의 제조방법 |
| DE102015118816A1 (de) * | 2015-11-03 | 2017-05-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Superparamagnetische Plättchen, aufgebaut aus Nanomagnetit-Silica-Komposit-Nadeln, mit optischen Farbeffekten in Dispersion |
| DE102016009514A1 (de) * | 2016-08-04 | 2018-02-08 | Giesecke+Devrient Currency Technology Gmbh | Verfahren und Vorrichtung zum Erzeugen von Kompositpartikeln |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5864222A (ja) * | 1981-10-12 | 1983-04-16 | Ishihara Sangyo Kaisha Ltd | コバルト含有磁性酸化鉄粉末の製造方法 |
| DE3709851A1 (de) * | 1987-03-24 | 1988-10-06 | Silica Gel Gmbh Adsorptions Te | Nmr-diagnostische fluessigkeitszusammensetzungen |
| DE68920778T2 (de) * | 1988-05-24 | 1995-05-18 | Anagen Uk Ltd | Magnetisch anziehbare Teilchen und Herstellungsverfahren. |
| JPH08500700A (ja) * | 1992-06-08 | 1996-01-23 | バイオクエスト インコーポレイテッド | 分離、磁気分子スイッチ、および医療用途の無機リポソームとして使用する粒径を制御した無機粒子の製造 |
| JP2931182B2 (ja) * | 1992-07-17 | 1999-08-09 | 石原産業株式会社 | 針状γ−FeOOHの製造方法 |
| JPH08508721A (ja) * | 1993-03-17 | 1996-09-17 | シリカゲル ゲス.エム.ビー.エイチ | 超常磁性粒子、その製法及びその用途 |
| US5952040A (en) * | 1996-10-11 | 1999-09-14 | Nanomaterials Research Corporation | Passive electronic components from nano-precision engineered materials |
| US6451220B1 (en) * | 1997-01-21 | 2002-09-17 | Xerox Corporation | High density magnetic recording compositions and processes thereof |
| DE19738913B4 (de) | 1997-09-05 | 2004-03-18 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Blockcopolymerphasen als Template für strukturierte organisch-anorganische Hybridmaterialien |
| US6262129B1 (en) * | 1998-07-31 | 2001-07-17 | International Business Machines Corporation | Method for producing nanoparticles of transition metals |
| US6548264B1 (en) * | 2000-05-17 | 2003-04-15 | University Of Florida | Coated nanoparticles |
-
2002
- 2002-04-12 EP EP02802541A patent/EP1397243B1/en not_active Expired - Lifetime
- 2002-04-12 WO PCT/US2002/008259 patent/WO2003049936A1/en not_active Ceased
- 2002-04-12 AT AT02802541T patent/ATE522347T1/de not_active IP Right Cessation
- 2002-04-12 JP JP2003550975A patent/JP5101791B2/ja not_active Expired - Fee Related
- 2002-04-12 AU AU2002364925A patent/AU2002364925A1/en not_active Abandoned
- 2002-04-12 US US10/120,779 patent/US6645626B2/en not_active Expired - Fee Related
Non-Patent Citations (5)
| Title |
|---|
| FINNEFROCK A.C. ET AL: "Metal oxide containing mesoporous silica...", ANGEW. CHEM. INT. ED., vol. 40, no. 7, 2001, pages 1208 - 1210, XP002960652 * |
| LI G. ET AL: "An effective synthetic route for a novel electrolyte: nanocrystalline solid solutions", ADV. MATER., vol. 11, no. 2, 1999, pages 146 - 149, XP000877979 * |
| SATO ET AL., J APPL. PHYS., vol. 88, no. 5, 2000, pages 2771 - 2774 |
| ULRICH ET AL., ADV. MAT., vol. 11, no. 2, 1999, pages 141 - 146 |
| ULRICH R. ET AL: "Nono-objects with controlled shape, size and composition from block copolymer mesophases", ADV. MATER., vol. 11, no. 2, 1999, pages 141 - 145, XP002960653 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009151490A3 (en) * | 2008-02-25 | 2010-03-04 | The Regents Of The University Of California | Use of magnetic nanoparticles to remove environmental contaminants |
| RU2369466C1 (ru) * | 2008-02-26 | 2009-10-10 | Государственное образовательное учреждение высшего профессионального образования "Курский государственный университет" | Способ получения наночастиц металлов или гибридов наночастиц металлов |
| WO2011054787A1 (en) * | 2009-11-09 | 2011-05-12 | Basf Se | Process for preparing mesoporous materials |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2002364925A1 (en) | 2003-06-23 |
| ATE522347T1 (de) | 2011-09-15 |
| JP2005511335A (ja) | 2005-04-28 |
| JP5101791B2 (ja) | 2012-12-19 |
| US6645626B2 (en) | 2003-11-11 |
| EP1397243A1 (en) | 2004-03-17 |
| US20020164481A1 (en) | 2002-11-07 |
| EP1397243A4 (en) | 2008-07-30 |
| EP1397243B1 (en) | 2011-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6645626B2 (en) | Superparamagnetic nanostructured materials | |
| Kalia et al. | Magnetic polymer nanocomposites for environmental and biomedical applications | |
| Gharibshahian et al. | Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method | |
| Yue et al. | Advances in the interfacial assembly of mesoporous silica on magnetite particles | |
| Chen et al. | Reversible pore‐structure evolution in hollow silica nanocapsules: large pores for siRNA delivery and nanoparticle collecting | |
| Garcia et al. | Mesoporous aluminosilicate materials with superparamagnetic γ‐fe2o3 particles embedded in the walls | |
| Lei et al. | A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres | |
| Deng et al. | Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials | |
| Teng et al. | Highly magnetizable superparamagnetic iron oxide nanoparticles embedded mesoporous silica spheres and their application for efficient recovery of DNA from agarose gel | |
| Klapiszewski et al. | Magnetite nanoparticles conjugated with lignin: a physicochemical and magnetic study | |
| Liu et al. | Hierarchical magnetic core–shell nanoarchitectures: non-linker reagent synthetic route and applications in a biomolecule separation system | |
| Ha et al. | Periodic Mesoporous Organosilicas | |
| CN103559973B (zh) | 一种Fe3O4SiO2磁性单孔中空微球及其制备方法 | |
| Anokhin et al. | Silica coated hard-magnetic strontium hexaferrite nanoparticles | |
| CN103143305A (zh) | 一种酸性条件合成核壳结构磁性介孔二氧化硅纳米微球的方法 | |
| Ding et al. | A wrinkle to sub-100 nm yolk/shell Fe3O4@ SiO2 nanoparticles | |
| Wang et al. | A simple route to form magnetic chitosan nanoparticles from coaxial-electrospun composite nanofibers | |
| Wang et al. | Preparation and characterization of magnetic hollow PMMA nanospheres via in situ emulsion polymerization | |
| Bao et al. | Self-assembly of superparamagnetic nanoparticles | |
| Cheng et al. | Liquid–liquid interface-assisted solvothermal synthesis of durian-like α-Fe 2 O 3 hollow spheres constructed by nano-polyhedrons | |
| Song et al. | Engineering the internal structure of magnetic silica nanoparticles by thermal control | |
| Shi et al. | Fabrication, structure, and properties of Fe3O4@ C encapsulated with YVO4: Eu3+ composites | |
| Men et al. | Preparation of Magnetic Microspheres Based on Poly (-Caprolactone)-Poly (Ethylene Glycol) Poly (-Caprolactone) Copolymers by Modified Solvent Diffusion Method | |
| Liu et al. | A general method for the synthesis of various rattle-type microspheres and their diverse applications | |
| Li et al. | Epsilon‐Fe2O3 Nanocrystals inside Mesoporous Silicas with Tailored Morphologies of Rod, Platelet and Donut |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2003550975 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2002802541 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002802541 Country of ref document: EP |