WO2003049356A1 - Clock switching circuit and node device - Google Patents

Clock switching circuit and node device Download PDF

Info

Publication number
WO2003049356A1
WO2003049356A1 PCT/JP2001/010513 JP0110513W WO03049356A1 WO 2003049356 A1 WO2003049356 A1 WO 2003049356A1 JP 0110513 W JP0110513 W JP 0110513W WO 03049356 A1 WO03049356 A1 WO 03049356A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
clock
phase difference
phase
synchronous
Prior art date
Application number
PCT/JP2001/010513
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Umeda
Akihiro Hata
Hiroyuki Sato
Hideo Tsuji
Satoshi Sumino
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2001/010513 priority Critical patent/WO2003049356A1/en
Publication of WO2003049356A1 publication Critical patent/WO2003049356A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0688Change of the master or reference, e.g. take-over or failure of the master

Definitions

  • a clock signal corresponding to a plurality of elements constituting a redundant system is provided, and a clock signal corresponding to an active system is output while alleviating a phase change according to a change in the system configuration of the system.
  • the present invention relates to a clock switching circuit and a node device provided with the clock switching circuit. Skill
  • FIG. 7 is a diagram illustrating a configuration example of a clock switching circuit provided in a node device of a redundantly configured network.
  • a clock signal (hereinafter referred to as “clock signal 0”) is supplied to one input of a selector 60 p and a synchronous oscillator 61 via a transmission line 62-0.
  • the other input of the selector 6 Op and the other input of the synchronous oscillator 61 are connected to a clock signal (hereinafter referred to as a “clock”) via a transmission line 62-0 that forms a duplex network with the transmission line 62-0 described above.
  • Signal 1 is given.
  • the output of the selector 6 Op is connected to the selector 60 s and one input of the phase comparator 63, and the output of the synchronous oscillator 61 is connected to the selector 60 s and the other input of the phase comparator 63. Connected to.
  • the output of the phase comparator 63 is connected to one control input of the selector 60 s and the input of the phase controller 64, and the output of the phase controller 64 is connected to one control input of the synchronous oscillator 61. Is done.
  • the output of the selector 60 s is connected to the input of the phase locked oscillator 65, and a “reference clock signal” is obtained at the output of the phase locked oscillator 65.
  • the control input of the selector 60 p, the other control input of the selector 60 s, the other control input of the synchronous oscillator 61, and the control input of the phase comparator 63 are connected to a system component (not shown). The generated system configuration information is provided.
  • the transmission path (indicated by one of “6 2 -0” and “6 2 -1”) that is indicated by the system configuration information described above and that is to be used for the current operation
  • the selector 60 p will select the “working transmission path” of the clock signal 0 and the clock signal 1 described above. Select one of the clock signals given via In the following, the clock signal selected by the selector 60p in this manner is simply referred to as “provisional clock signal”.
  • the synchronous oscillator 61 identifies “the time when the“ working transmission line ”is updated” (hereinafter, referred to as “system configuration time”) based on the system configuration information described above. However, at the time of the system configuration, the synchronous oscillator 61 synchronizes with the transmission line previously selected as the “working transmission line” (hereinafter referred to as “preceding working transmission line”), and has the clock signal 0 ( The clock signal whose frequency is the same as that of the clock signal 1) (hereinafter referred to as “synchronous clock signal”) is continuously generated.
  • the synchronous oscillator 61 will be described below as a variable divider that divides the clock in synchronization with the clock signal 0 (or clock signal 1) corresponding to the “preceding active transmission line” (see FIG. It is assumed that the above-mentioned “synchronous clock signal” is generated according to a predetermined frequency division ratio set in the variable frequency divider.
  • the selector 60 s selects the above-mentioned “synchronous clock signal” after the system configuration time (FIG. 8 (1)).
  • phase comparison unit 63 measures, at a predetermined frequency, the phase difference (hereinafter, simply referred to as “phase difference”) between the “temporary clock signal” and the “synchronous clock signal” described above. I do.
  • the phase control unit 64 sends a command to the synchronous oscillator 61 indicating that the phase of the “synchronous clock signal” should be advanced (or delayed) as long as the phase difference exceeds a predetermined threshold. Give intermittently at a predetermined frequency.
  • the synchronous oscillator 61 advances (or delays) the phase of the “synchronous clock signal” as appropriate by intermittently setting the division ratio to a small (or large) value in response to this command. . Therefore, the phase difference measured by the phase comparison unit 63 decreases stepwise (FIG. 8 (2)).
  • the selector 60 compares the phase difference with a predetermined threshold value, and after the time when the former falls below the latter (FIG. 8 (3)), replaces the “temporary clock signal” with the “synchronous clock signal”. Select ".
  • the phase locked oscillator 65 generates a “reference clock signal” having a desired frequency in synchronization with the “synchronous clock signal” or the “temporary clock signal” selected by the selector 60 s in this way.
  • the phase-locked oscillator 65 will output the “synchronous clock signal” and the “temporary clock”.
  • the “temporary clock signal” is given after the phase difference with the "signal” is compressed stepwise.
  • the frequency of the clock signal input to the phase-locked oscillator 65 is stably maintained without excessively jumping the phase of the clock signal.
  • a signal synchronized with the duplexed network and having the desired frequency can be obtained with high accuracy.
  • the frequency division ratio set in the variable frequency divider provided in the synchronous oscillator 61 is one of an intermittently large value and a small value in accordance with the above-mentioned command. Was set to the value of
  • the phase of the “synchronous clock signal” advances (or delays) each time the “working transmission line” is updated, and in particular, the synchronous transfer mode is applied to the transmission lines 6 2 -0 and 6 2 -1.
  • the more frequently the “working transmission line” is updated the more unnecessary the slip occurs or the faster the transmission delay time increases, so the transmission quality and service quality may decrease. The nature was high. Disclosure of the invention
  • An object of the present invention is to provide a clock switching circuit and a node device that can avoid unnecessary accumulation of phase errors that occur when updating a system configuration without causing a significant change in the configuration and a decrease in performance. is there. Another object of the present invention is to prevent an excessive error in the phase of the output clock signal.
  • an object of the present invention is to maintain a small error in the phase of a clock signal to be output, to have high responsiveness and high performance of a device or system that synchronizes with the clock signal or performs a predetermined process, And is maintained stably.
  • an object of the present invention is to maintain the error occurring in the phase of the output clock signal at a small value with high accuracy, and to improve the responsiveness and performance of devices and systems that synchronize with the clock signal or perform predetermined processing. It is still higher and more stable. Further, an object of the present invention is to simplify the processing for determining the direction in which the phase of the synchronous clock is to be varied, and to stably maintain a suitable response to the system configuration.
  • an object of the present invention is to change the phase of the clock signal until the period in which the phase of the synchronous clock signal should be changed first after the current element is updated based on the system configuration. Responsiveness is higher than when the direction is not changed.
  • a further object of the present invention is to enable flexible application to various devices and systems.
  • an object of the present invention is to prevent the occurrence of slips due to the phase of the clock signal continuing to be varied only in a specific direction and the unnecessary integration of transmission delay times, thereby improving service quality and transmission quality. The point is that it is kept stable.
  • phase of the synchronous clock is prevented from being continuously varied in a specific direction.
  • the above-mentioned object corresponds to a phase difference between a clock signal selected by the first selecting means and a synchronous clock signal generated by the clock reproducing means, and an element previously used for the current operation.
  • Synchronous clock signal phase synchronized to clock Is achieved by the clock switching circuit characterized in that the phase of the synchronous clock signal is stepwise varied over the phase shift amount in which the sum of the phase shift amounts that have been varied as a result decreases.
  • phase of the synchronous clock is appropriately changed in such a direction that the integrated value of the phase shift amount actually changed before the phase does not increase.
  • the above-mentioned object is achieved by a clock switching circuit characterized in that the phase of a synchronous clock signal is varied more rapidly as the absolute value of the sum of the above-mentioned phase shift amounts is larger.
  • the phase of the synchronous clock can be changed in such a direction that the integrated value of the phase shift amount that has been actually changed earlier becomes larger as the integrated value becomes larger. Is done.
  • the above-mentioned object is achieved by that the phase of the synchronous clock signal is changed stepwise in a direction in which the phase difference monitored by the phase difference monitoring means is compressed in the shortest time every time the current element is updated.
  • a clock switching circuit characterized in that In such a clock switching circuit, the redundancy due to the two directions in which the phase of the synchronous clock can be varied depends on the number of clock signals individually corresponding to the plurality of elements constituting the redundant system. The element that is currently used and the element that has been used before the element are eliminated based on the phase difference of the clock signal corresponding to the element.
  • the above-mentioned object is to provide a system in which the system is configured as a dual system, and the difference between the phase of the clock signal individually corresponding to the element currently used and the element currently used prior to the element is determined.
  • a clock characterized in that the phase of the synchronous clock signal is varied stepwise in the direction of the shortest compression, and the phase of the synchronous clock signal is varied stepwise each time the working element is updated. This is achieved by a switching circuit.
  • the direction in which the phase of the synchronous clock should be varied depends on whether the current element is specified for the first time based on the system configuration, and one element used for the current operation and the other element And the phase difference of the clock signal corresponding to each is set in the direction to be compressed in the shortest time, and is inverted each time the working element is subsequently updated. Further, the above object is achieved by a clock switching circuit characterized in that the larger the absolute value of the phase difference monitored by the phase monitoring means, the faster the phase of the synchronous clock signal is changed.
  • the difference between the phases of the synchronous clocks decreases as the phases of the clock signals individually corresponding to the two elements constituting the duplex system differ greatly. Variable at high speed.
  • the above-described object is achieved in such a manner that, during a period in which the phase of the synchronous clock signal is varied, the direction in which the phase of the synchronous clock signal is to be varied is inverted at a time after the current element is updated. This is achieved by a clock switching circuit characterized by the point.
  • the above-mentioned object is achieved by providing a frequency synthesizing unit which generates a signal by performing a frequency synthesizing process on the synchronous clock signal or the clock signal selected by the second selecting unit, and has a desired response.
  • a frequency synthesizing unit which generates a signal by performing a frequency synthesizing process on the synchronous clock signal or the clock signal selected by the second selecting unit, and has a desired response.
  • This is achieved by a clock switching circuit characterized by a point.
  • the clock switching circuit is suitable for the frequency synthesizing means. As long as a proper combination ratio is set, signals of the frequency and phase necessary for realizing these processes and functions synchronized with these clock signals can be obtained.
  • a node device is characterized by taking an interface with a redundantly configured network and performing predetermined communication control in synchronization with a clock signal given by the above-described clock switching circuit.
  • FIG. 1 is a principle block diagram of a clock switching circuit according to the present invention.
  • FIG. 2 is a principle block diagram of the node device according to the present invention.
  • FIG. 3 is a diagram showing first and second embodiments of the present invention.
  • FIG. 4 is an operation time chart of the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration example of a clock switching circuit provided in a redundant network.
  • FIG. 8 is an operation time chart of the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a principle block diagram of a clock switching circuit according to the present invention.
  • the clock switching circuit shown in FIG. 1 includes first selection means 11 and 11 A, clock recovery means 12 and 12 A, phase difference measurement means 13 and 13 A second selection means 14 and 1 It comprises 4 A, phase difference monitoring means 15 and 15 A, and frequency synthesis means 16 and 16 A.
  • the principle of the first clock switching circuit according to the present invention is as follows.
  • the first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration.
  • the clock regenerating means 12 generates a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among the plurality of clock signals.
  • the phase difference between the clock signal selected by the means 11 and the synchronous clock signal generated by the clock recovery means 12 is measured.
  • the second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13.
  • the clock signal selected by the first selecting means 11 is selected.
  • Clock recovery means 1 and 2 Each time the element is updated, the phase of the synchronous clock signal is changed stepwise in the opposite direction alternately, and the phase difference measured by the phase difference measuring means 13 is compressed.
  • phase of the synchronous clock is prevented from being continuously varied in a specific direction.
  • the principle of the second clock switching circuit according to the present invention is as follows.
  • the first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration.
  • the clock regenerating means 12 generates a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among the plurality of clock signals.
  • the phase difference between the clock signal selected by the selection unit 11 and the synchronous clock signal generated by the clock recovery unit 12 is measured.
  • the second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13.
  • the clock signal selected by the first selecting means 11 is selected.
  • the clock regenerating means 12 converts the phase difference measured by the phase difference measuring means 13 and the phase shift amount at which the sum of the phase shift amounts actually changed earlier by the phase of the synchronous clock signal decreases. Then, the phase of the synchronous clock signal is varied stepwise.
  • the phase of the synchronous clock is appropriately changed in such a direction that the integrated value of the phase shift amount actually changed before the phase does not increase. Therefore, the phase error of the clock signal output by the clock switching circuit according to the present invention is maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And high performance and are maintained stably.
  • the principle of the third clock switching circuit according to the present invention is as follows.
  • the clock recovery means 12 changes the phase of the synchronous clock signal at a higher speed as the absolute value of the sum of the phase shift amounts increases.
  • the phase of the synchronous clock can be changed in such a direction that the integrated value of the phase shift amount that has been actually changed earlier becomes larger as the integrated value becomes larger. Is done.
  • the phase error of the clock signal output by the clock switching circuit according to the present invention is accurately maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And performance are kept higher and stable.
  • the principle of the fourth clock switching circuit according to the present invention is as follows.
  • the first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration.
  • the clock regenerating means 12 is a c phase difference measuring means 13 for generating a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among a plurality of clock signals. The phase difference between the clock signal selected by the selecting means 11 and the synchronous clock signal generated by the clock reproducing means 12 is measured.
  • the second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13.
  • the clock signal selected by the first selecting means 11 is selected.
  • the phase difference monitoring means 15 monitors the phase difference between the clock signal individually corresponding to the currently used element and the element previously used for the element among the plurality of clock signals. .
  • the clock recovery means 12 steps the phase of the synchronous clock signal in a direction to compress the phase difference monitored by the phase difference monitoring means 15 in the shortest time. variable, and it compresses the difference in phase of the I u connection measuring the phase difference measurement unit 1 3.
  • the redundancy due to the two directions in which the phase of the synchronous clock can be varied depends on the number of clock signals individually corresponding to the plurality of elements constituting the redundant system. Based on the phase difference of the clock signal corresponding to the element currently used and the element previously used for the element that is currently used. Be excluded.
  • the phase of the synchronous clock is maintained at a suitable value that enables rapid compression of the above-described phase difference, and the phase of the clock signal output by the clock switching circuit according to the present invention corresponds to each element. Even when the phase of the clock signal varies widely or is significantly different, the phase is properly and stably maintained without unnecessary fluctuation.
  • the principle of the fifth clock switching circuit according to the present invention is as follows.
  • the first selecting means 11A selects a clock signal corresponding to the current element from the two clock signals individually corresponding to the two elements constituting the duplicated system based on the system configuration.
  • the clock regenerating means 12A generates a synchronous clock signal synchronized with the clock signal corresponding to the element which has been used in advance of the two clock signals.
  • the phase difference measuring means 13A measures a phase difference between the clock signal selected by the first selecting means 11A and the synchronous clock signal generated by the clock reproducing means 12A.
  • the second selecting means 14A selects the synchronous clock signal generated by the clock regenerating means 12A when the current element is updated, and at the time of starting, and by the phase difference measuring means 13A.
  • the clock signal selected by the first selecting means 11A is selected.
  • the phase difference monitoring means 15A monitors a phase difference between clock signals individually corresponding to one element currently used and the other element among the two clock signals.
  • the clock regenerating means 12 A gradually changes the phase of the synchronous clock signal in a direction in which the phase difference monitored by the phase difference monitoring means 15 A is compressed in the shortest time when the working element is determined for the first time.
  • the phase difference measured by the phase difference measuring means 13 A is changed by changing the phase of the synchronous clock signal stepwise in the opposite direction alternately each time the working element is updated. Compress.
  • the direction in which the phase of the synchronous clock should be changed depends on whether the current element is specified for the first time based on the system configuration, and one of the elements currently used and the other is used.
  • the phase difference of the clock signal corresponding to each of the elements is set in the direction to be compressed in the shortest time, and is alternately inverted each time the working element is subsequently updated. Therefore, the process for determining the direction in which the phase of the synchronous clock should be varied is simplified while adapting to the above-described phase difference, and the suitable responsiveness to the system configuration is stably maintained.
  • the principle of the sixth clock switching circuit according to the present invention is as follows.
  • the clock recovery means 12 changes the phase of the synchronous clock signal at a higher speed as the absolute value of the phase difference monitored by the phase monitoring means 15 and 15A increases.
  • the phase error of the clock signal output by the clock switching circuit according to the present invention is accurately maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And performance are kept higher and stable.
  • the principle of the seventh clock switching circuit according to the present invention is as follows.
  • the clock regenerating means 12 A inverts the direction in which the phase of the synchronous clock signal is to be varied during the period after the current element is updated during the period in which the phase of the synchronous clock signal is varied. .
  • the responsiveness is improved compared to the case where the direction in which the phase of the clock signal is changed is not changed until the phase where the phase of the synchronous clock signal is changed first after the time when the working element is updated. Enhanced.
  • the principle of the eighth clock switching circuit according to the present invention is as follows.
  • the frequency synthesizing means 16 and 16 A have desired responsiveness, and perform frequency synthesizing processing on the synchronous clock signal or the clock signal selected by the second selecting means 14 and 14 A. To generate a signal.
  • the second selecting means 14 and 14 A Even if the selected synchronous clock signal or clock signal cannot be directly applied to achieve the desired processing or function, as long as the appropriate synthesizing ratio is set in the frequency synthesizing means 16 and 16 A, A signal having the frequency and phase necessary for realizing these processes and functions is obtained in synchronization with the clock signal.
  • FIG. 2 is a principle block diagram of the node device according to the present invention.
  • the node device shown in FIG. 2 includes a network interface unit 21, a clock switching circuit 22, 22 A, 22 B, 22 C, and communication control units 23, 23 A, 23 B, 23 C. Composed 1
  • the principles of the first to fourth node devices according to the present invention are as follows.
  • the network interface means 21 takes an interface with a redundantly configured network.
  • the second selecting means 14 and 14 A are, like the clock switching circuit described above, the first selecting means 11 and 11 A, the clock generating means 12 and 12 A, and the phase difference measuring means 1
  • the communication control means 23, 23A, 23B, and 23C cooperate with the network interface means 21 in synchronization with the clock signal selected in this way to perform predetermined communication control.
  • the clock signal supplied to the above-described communication control by the network interface means 21 has a frequently updated system configuration, and further has a phase of the clock signal individually corresponding to the above-described plurality of elements. Even if is widely fluctuated or greatly different, it can be supplied stably without excessive jumps or errors in phase.
  • FIG. 3 is a diagram showing first and second embodiments of the present invention.
  • phase control shown in FIG. A phase control section 31 different from the section 64 is provided in place of the phase control section 64.
  • FIG. 4 is an operation time chart of the first embodiment of the present invention.
  • the phase controller 31 has a flip-flop (not shown) therein, and resets the flip-flop at the time of start-up, and further updates the “working transmission line” indicated by the system configuration information described above. By inverting the flip-flop every time (Fig. 4 (1)), binary control information (hereinafter referred to as “phase flag”) is generated.
  • the phase controller 31 gives the following command to the synchronous oscillator 61 at a predetermined frequency only during a period (FIG. 4 (2)) in which the phase difference measured by the phase comparator 63 exceeds the predetermined threshold. I can.
  • the synchronous oscillator 61 intermittently sets the above-described frequency division ratio to a small value or a large value in response to such a command, thereby advancing or delaying the phase of the “synchronous clock signal” as appropriate.
  • phase of the “synchronous clock” generated by the synchronous oscillator 61 is changed in the opposite direction each time the system configuration is updated.
  • the phase of the “synchronous clock signal” is specific, regardless of how frequently the “working transmission line” is updated, as compared with the conventional example in which the direction is fixed as described above. A shift in the direction is avoided.
  • phase control unit 31 is used instead of the phase control unit 31.
  • A is provided.
  • the phase controller 31A has an up / down counter (not shown) in addition to the above-mentioned flip-flop inside, resets the flip-flop and the up / down counter at the time of starting, and During the period in which the phase difference measured by the comparing unit 63 exceeds a predetermined threshold, the following processing is performed at a predetermined frequency.
  • phase flag The logical value held in the flip-flop is “0”, and the count value of the up / down count (hereinafter, simply referred to as “count value”) is “default”. If the value falls below the lower limit value and is less than the predetermined upper limit value (hereinafter referred to as “intermediate value”), the “count value” is incremented and the synchronous oscillator 61 receives the “count value”. Command indicating that the phase of the “synchronous clock signal” should be advanced (or delayed) ”.
  • phase flag is “0” and the “count value” is equal to the upper limit described above, the “phase flag” is inverted and the “count value” is decremented and synchronized.
  • a command indicating that the phase of the “synchronous clock signal” should be delayed (or advanced) is given to the oscillator 61.
  • phase flag is “1” and the “count value” corresponds to the “intermediate value”, the “count value” is decremented, and the “sync clock signal” is sent to the synchronous oscillator 61. To indicate that the phase of “should be delayed (or advanced)”.
  • phase flag is “1” and the “count value” is equal to the lower limit described above, the “phase flag” is inverted and the “count value” is incremented, and the synchronous oscillator is used. 6 Give 1 a command to indicate that the phase of the “synchronous clock signal” should be advanced (or delayed).
  • the synchronous oscillator 61 intermittently sets the above-described frequency division ratio to a small value or a large value in response to such a command, thereby advancing or delaying the phase of the “synchronous clock signal” as appropriate.
  • the phase of the “synchronous clock signal” generated by the synchronous oscillator 61 is within the range of the “count value” defined in advance as a pair of the upper limit value and the lower limit value described above. It is updated as appropriate according to the system configuration. Note that, for simplicity, these upper and lower limits are assumed to have different signs and the same absolute value in the following.
  • the phase of the “synchronous clock signal” is simply changed in the opposite direction. Flexibly, the phase is kept from being updated in a particular direction. Furthermore, it is possible to apply various algorithms that can maintain the phase of the “synchronous clock signal” at a suitable value according to the phase fluctuation of the clock signal 0 and the clock signal 1 and the combination of these phases. .
  • phase of the “synchronous clock signal” is updated at a constant speed according to the above-mentioned command.
  • the present invention is not limited to such a configuration.
  • the following frequency (or rate of change) adapted to the above-described count value of the down-counting and the direction in which the count value should be updated is used.
  • the responsiveness may be improved by updating the phase of the “synchronous clock signal”.
  • FIG. 5 is a diagram showing a third embodiment of the present invention.
  • phase difference measuring section 41 is provided which is provided and whose output is connected to a corresponding control input of the phase control section 31.
  • the phase difference measuring unit 41 identifies the “working transmission line” based on the system configuration information, and selects one of the clock signal 0 and the clock signal 1 that does not correspond to the “working transmission line” ( It measures the phase difference (hereinafter, simply referred to as “phase deviation”) between the clock signal and the other clock signal at a predetermined frequency.
  • phase control unit 31 has a flip-flop and inverts this flip-flop every time the “working transmission path” indicated by the system configuration information is updated, as in the first embodiment described above. This generates a binary “phase flag”.
  • the phase control unit 31 determines the ⁇ change rate '' to be added to the command described later according to the ⁇ phase deviation '' described above. Calculated as follows.
  • phase deviation is greater than or equal to 0 degrees and less than 180 degrees, the value given as a positive monotone non-decreasing function for that “phase deviation”
  • phase deviation is greater than or equal to 180 degrees and less than 360 degrees, it is given as a positive monotone non-decreasing function for the difference between that “phase deviation” and 180 degrees value
  • phase controller 64 gives the following command to the synchronous oscillator 61 at a predetermined frequency during a period in which the phase difference measured by the phase comparator 63 exceeds a predetermined lower limit.
  • phase of the “synchronous clock signal” is advanced by the “change rate” described above. Or delay) Directive to indicate
  • phase of the “synchronous clock signal” is delayed by the “change rate” described above.
  • the synchronous oscillator 61 intermittently sets the above-mentioned division ratio to a small value or a large value over a value corresponding to the above-mentioned “rate of change” included in such a command, thereby obtaining “ Advance or delay the phase of the “synchronous clock signal” as appropriate.
  • phase of the “synchronous clock” generated by the synchronous oscillator 61 is not biased in a specific direction every time the system configuration is updated, and changes with a higher frequency or speed as the difference from the target value increases. Is done.
  • the “working transmission path” is updated frequently, it is constant based on the logical value of the “phase flag” regardless of the “phase deviation” described above. It is more accurate than in the first embodiment in which the "phase deviation" is compressed at the speed of, and the phase is prevented from being continuously updated in a specific direction.
  • the “phase deviation” is measured as the phase difference between the clock signal corresponding to the “working transmission line” and the “working transmission line” identified based on the system configuration information. Have been.
  • phase deviation is measured as the difference between the phase of the clock signal 0 and the phase of the clock signal 1 and transmitted.
  • the “phase deviation” is the sum of 180 ° and 180 °. (Or a difference from 360 degrees), and then applied to the above-described operation, thereby simplifying the configuration or distributing functions and loads.
  • the phase of the “synchronous clock signal” is changed at a different “change rate” adapted to the “phase deviation”.
  • the present invention is not limited to such a configuration.
  • the “phase deviation” can be compressed with a desired accuracy
  • the “synchronization” can be performed at a constant “rate of change” regardless of the “phase deviation”.
  • the configuration may be simplified and the responsiveness may be improved.
  • the present invention is applied to the above-described first embodiment.
  • the present invention is not limited to such a configuration.
  • the phase shift amount of the phase of the “synchronous clock signal” that is actually changed The phase may be updated at a higher speed as the integrated value of is larger.
  • the “change rate” described above is updated according to the “phase deviation” measured by the phase difference measurement unit 41, and the phase of the “synchronous clock signal” is updated by the “change rate”. Have been.
  • the present invention is not limited to such a configuration. If the transmission delay time is kept constant with a desired accuracy and the occurrence of slip is avoided, for example, the phase difference as shown by the dotted line in FIG.
  • the measuring unit 41 is added to the above-described first embodiment, and only at the time of start-up, the phase and / or value of the phase of the “synchronous clock signal” is determined for determining one or both values. By providing the “phase deviation” measured by the phase difference measurement unit 41, unnecessary decrease in responsiveness and increase in power consumption may be avoided.
  • the “working transmission line” indicated by the system configuration information is identified at each time when the above-described command is generated.
  • the present invention is not limited to such a configuration.
  • the “working transmission path” is updated during the period in which the “synchronous clock signal” is updated
  • the “system” The direction in which the phase of this “synchronous clock signal” should be updated during the period after the “configuration time” is independently autonomously by the synchronous oscillator 61 (or in cooperation with the phase control units 31 and 31A).
  • transmission quality and service quality may be further enhanced along with responsiveness.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention.
  • the transmission directions are opposite to each other, and two links 51-0 and 51-1 laid in two adjacent transmission sections are cascaded interface sections 52 and communication These transmission sections are divided by the control section 53 and the interface section 54.
  • An input of a clock recovery unit 55 is connected to an output provided in the interface unit 52 and corresponding to the link 51-0 described above.
  • the output provided in the interface section 54 and corresponding to the link 51-1 described above is connected to the clock recovery section 56.
  • Input is connected.
  • the outputs of the clock recovery units 55 and 56 are connected to the corresponding inputs of the clock switching circuit 57, and the output of the clock switching circuit 57 is connected to the clock input of the communication control unit 53.
  • System configuration information is given to control inputs of the communication control unit 53 and the clock switching circuit 57.
  • the interface section 52 supplies a signal (hereinafter, referred to as “signal 0”) received via the link 51-0 to the communication control section 53 and the clock recovery section 55, and the interface section.
  • Numeral 54 gives a signal (hereinafter, referred to as "signal 1”) received via the link 51-1 to the communication controller 53 and the clock reproducer 56.
  • the clock reproducing unit 55 reproduces a clock signal superimposed on the signal 0 in a predetermined format and synchronized with the signal 0 (hereinafter, referred to as “clock signal 0”).
  • the clock reproducing unit 56 reproduces a clock signal superimposed on the signal 1 in a predetermined format and synchronized with the signal 1 (hereinafter, referred to as “clock signal 1”).
  • the clock switching circuit 57 is configured as a clock switching circuit according to any of the first to third embodiments described above, and stably supplies a clock signal synchronized with the “working transmission line”.
  • the communication control unit 53 performs communication control in synchronization with the clock signal and based on a predetermined transmission method, communication method, and communication procedure.
  • the system configuration (“working transmission line”) is frequently updated according to the system configuration information described above, or the phase difference between the clock signal 0 and the clock signal 1 described above. Even if can vary widely, this phase error and variation can be minimized without significant jumps in phase during system configuration.
  • the phase of the “synchronous clock signal” is changed only in a specific direction along with the unnecessary integration of the transmission delay time. Since the occurrence of a slip due to the transmission is avoided, the service quality and the transmission quality are maintained at a high level and stably.
  • the present invention in order to obtain a clock signal synchronized with the clock signal corresponding to the active system among the two transmission lines constituting the duplexed transmission line and the clock signal individually corresponding to the link,
  • the present invention has been applied.
  • the present invention is not limited to such a duplicated system, and is similarly applicable to a system configured redundantly based on the N + 1 system or another system.
  • the present invention is applied to a duplex transmission system.
  • the present invention is not limited to such a transmission system, and a clock corresponding to each of the redundantly provided elements is provided, and any of these elements is provided for a current operation under a predetermined system configuration.
  • the same can be applied to any of packages, units, and shelves that can be detached, closed, or restored as needed in the course of maintenance and operation.
  • the phase-locked oscillator 65 is provided after the selector 60 s.
  • the present invention is not limited to such a configuration, and when a clock signal of a desired frequency to be stably obtained in accordance with the system configuration is directly provided by the selector 60 s, the above-described phase-locked oscillator 6 5 need not be provided.
  • the phase-locked oscillator 65 is provided for the purpose of generating a clock signal that synchronizes with the “clock signal 0” and “clock signal 1” and provides a desired next-group speed higher in speed than the frequency of these clock signals.
  • a circuit capable of securing a desired time constant and responsiveness and a method of frequency synthesis are applied to the phase-locked oscillator 65 in cooperation with the clock switching circuit disposed in the preceding stage. Good.
  • transmission lines 62-0 and 62-1 and links 51-0 andtown51-1 have redundant networks and transmission systems. Any element may be used as long as it is an element.
  • Lock signal 0 and “Clock signal 1” are redundantly configured. It can be supplied by any source as long as it is individually addressed and supplied in parallel.
  • the transmission line used for supplying such “clock signal 0” and “clock signal 1” may be supplied for each transmission section or may not be supplied via DCS, and may be used for transmission systems and networks. It may be either a specific path or link formed or a dedicated link laid separately from these paths and links.
  • the synchronous oscillator 61 is configured as a variable frequency divider.
  • such a synchronous oscillator 61 may be realized based on any frequency synthesizing method as long as a “synchronous clock signal” having a desired frequency can be generated in synchronization with the “preceding working transmission line”.
  • the phase of the “synchronous clock signal” is updated by intermittently changing the above-described division ratio at a predetermined frequency.
  • phase of such a “synchronous clock signal” is determined by, for example, the output terminal of the synchronous oscillator 61 or a delay circuit (an analog circuit that may be configured as an analog circuit, and a shift register or other digital circuit). It may be updated by changing the amount of delay of.
  • the first clock switching circuit it is possible to prevent the phase error of the output clock signal from becoming too large according to the update of the system configuration.
  • the phase error of the output clock signal is maintained at a small value.
  • the phase error of the output clock signal is accurately maintained at a small value.
  • each element is Even if the phase of the clock signal changes widely, and these phases differ greatly, the phase of the output clock signal is maintained properly and stably without unnecessary fluctuation.
  • the processing for determining the direction in which the phase of the synchronous clock should be varied is simplified, and the responsiveness to the system configuration is stably maintained.
  • the response is improved.
  • the first to fourth node devices it is possible to avoid the occurrence of slips due to the phase of the clock signal being continuously varied only in a specific direction and the unnecessary integration of the transmission delay time.
  • the service quality and transmission quality are kept high and stable.
  • the overall reliability and performance are improved and the device is stably maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A clock switching circuit which is fed with clock signals corresponding to respective elements of a redundant system and outputs a clock signal corresponding to the system in operation while relaxing the phase fluctuation in response to a change in the system construction and a node device which is provided with the clock switching circuit. Useless accumulation of phase error is prevented with neither a drastic change in the construction nor a degradation of performance. Therefore, the clock switching circuit is constructed such that the phase of a synchronous clock signal synchronized with a clock signal corresponding to an element used antecedently is stepwise varied alternately in opposite directions each time the element being used is updated.

Description

明細書 クロック切り替え回路およびノード装置 技術分野  Description Clock switching circuit and node device
本発明は、冗長な系を構成する複数の要素に対応したクロック信号が与えられ、 その系の系構成の変更に応じて位相の変動を緩和しつつ現用系に対応したクロッ ク信号を出力するクロック切り替え回路と、 そのクロック切り替え回路が備えら れたノード装置とに関する。 景技  According to the present invention, a clock signal corresponding to a plurality of elements constituting a redundant system is provided, and a clock signal corresponding to an active system is output while alleviating a phase change according to a change in the system configuration of the system. The present invention relates to a clock switching circuit and a node device provided with the clock switching circuit. Skill
近年、 公衆網だけではなく、 私設網の多くは、 高いサービス品質や信頼性の達 成および維持を目的として冗長に構成され、 かつ高度に進展した伝送技術および ディジタル制御技術に基づいて網同期が図られている。  In recent years, many private networks as well as public networks have been redundantly configured to achieve and maintain high quality of service and reliability, and network synchronization has been established based on highly advanced transmission and digital control technologies. It is planned.
図 7は、 冗長に構成された網のノード装置に備えられたクロック切り替え回路 の構成例を示す図である。  FIG. 7 is a diagram illustrating a configuration example of a clock switching circuit provided in a node device of a redundantly configured network.
図において、 セレクタ 6 0 pおよび同期発振器 6 1の一方の入力には、 伝送路 6 2 -0を介してクロック信号 (以下、 「クロック信号 0」 という。 ) が与えられ る。 これらのセレクタ 6 O pおよび同期発振器 6 1の他方の入力には、 上述した 伝送路 6 2 -0 と共に二重化された網を構成する伝送路 6 2 -0 を介してクロック 信号 (以下、 「クロック信号 1」 という。 ) が与えられる。 セレクタ 6 O pの出 力はセレクタ 6 0 sおよび位相比較部 6 3の一方の入力に接続され、 かつ同期発 振器 6 1の出力はセレクタ 6 0 sおよび位相比較部 6 3の他方の入力に接続され る。 位相比較部 6 3の出力はセレクタ 6 0 sの一方の制御入力と位相制御部 6 4 の入力とに接続され、 その位相制御部 6 4の出力は同期発振器 6 1の一方の制御 入力に接続される。 セレクタ 6 0 sの出力は位相同期発振器 6 5の入力に接続さ れ、 その位相同期発振器 6 5の出力には 「基準クロック信号」 が得られる。 セレ クタ 6 0 pの制御入力、 セレクタ 6 0 sの他方の制御入力、 同期発振器 6 1の他 方の制御入力および位相比較部 6 3の制御入力には、 図示されない系構成部によ つて生成された系構成情報が与えられる。 In the figure, a clock signal (hereinafter referred to as “clock signal 0”) is supplied to one input of a selector 60 p and a synchronous oscillator 61 via a transmission line 62-0. The other input of the selector 6 Op and the other input of the synchronous oscillator 61 are connected to a clock signal (hereinafter referred to as a “clock”) via a transmission line 62-0 that forms a duplex network with the transmission line 62-0 described above. Signal 1 ") is given. The output of the selector 6 Op is connected to the selector 60 s and one input of the phase comparator 63, and the output of the synchronous oscillator 61 is connected to the selector 60 s and the other input of the phase comparator 63. Connected to. The output of the phase comparator 63 is connected to one control input of the selector 60 s and the input of the phase controller 64, and the output of the phase controller 64 is connected to one control input of the synchronous oscillator 61. Is done. The output of the selector 60 s is connected to the input of the phase locked oscillator 65, and a “reference clock signal” is obtained at the output of the phase locked oscillator 65. The control input of the selector 60 p, the other control input of the selector 60 s, the other control input of the synchronous oscillator 61, and the control input of the phase comparator 63 are connected to a system component (not shown). The generated system configuration information is provided.
このような構成のクロック切り替え回路では、 上述した系構成情報で示され、 かつ現用に供されるべき伝送路 (符号 「6 2 -0」、 「6 2 -1」 の何れかで示され る。 なお、 以下では、 簡単のため、 「現用伝送路」 という。 ) が更新されると、 セレクタ 6 0 pは、 上述したクロック信号 0とクロック信号 1との内、 その 「現 用伝送路」を介して与えられた一方のクロック信号を選択する。 なお、 以下では、 このようにしてセレクタ 6 0 pによって選択されたクロック信号については、 単 に 「暫定クロック信号」 という。  In the clock switching circuit having such a configuration, the transmission path (indicated by one of “6 2 -0” and “6 2 -1”) that is indicated by the system configuration information described above and that is to be used for the current operation In the following, for the sake of simplicity, when the “working transmission path” is updated, the selector 60 p will select the “working transmission path” of the clock signal 0 and the clock signal 1 described above. Select one of the clock signals given via In the following, the clock signal selected by the selector 60p in this manner is simply referred to as “provisional clock signal”.
また、 同期発振器 6 1は、 『 「現用伝送路」 が更新された時点』 (以下、 「系 構成時点」 という。 ) を上述した系構成情報に基づいて識別する。 しかし、 同期 発振器 6 1は、 その系構成時点では、 先行して 「現用伝送路」 として選択されて いた伝送路 (以下、 「先行現用伝送路」 という。 ) に同期し、 かつクロック信号 0 (クロック信号 1 ) と周波数の公称値が同じであるクロック信号 (以下、 「同 期クロック信号」 という。 ) を継続して生成する。  Further, the synchronous oscillator 61 identifies “the time when the“ working transmission line ”is updated” (hereinafter, referred to as “system configuration time”) based on the system configuration information described above. However, at the time of the system configuration, the synchronous oscillator 61 synchronizes with the transmission line previously selected as the “working transmission line” (hereinafter referred to as “preceding working transmission line”), and has the clock signal 0 ( The clock signal whose frequency is the same as that of the clock signal 1) (hereinafter referred to as “synchronous clock signal”) is continuously generated.
なお、 同期発振器 6 1については、 以下では、 簡単のため、 「先行現用伝送路」 に対応してクロック信号 0 (あるいはクロック信号 1 ) に同期して分周を行う可 変分周器 (図示されない。 ) を有し、 その可変分周器に設定された所定の分周比 に応じて上述した 「同期クロック信号」 を生成すると仮定する。  For the sake of simplicity, the synchronous oscillator 61 will be described below as a variable divider that divides the clock in synchronization with the clock signal 0 (or clock signal 1) corresponding to the “preceding active transmission line” (see FIG. It is assumed that the above-mentioned “synchronous clock signal” is generated according to a predetermined frequency division ratio set in the variable frequency divider.
セレクタ 6 0 sは、 既述の系構成時点 (図 8 ( 1 ) )以降には、 上述した 「同期ク ロック信号」 を選択する。  The selector 60 s selects the above-mentioned “synchronous clock signal” after the system configuration time (FIG. 8 (1)).
位相比較部 6 3は、 系構成時点以降には、 上述した「暫定クロック信号」 と「同 期クロック信号」 との位相の差 (以下、 単に 「位相差」 という。 ) を所定の頻度 で計測する。  After the system configuration time, the phase comparison unit 63 measures, at a predetermined frequency, the phase difference (hereinafter, simply referred to as “phase difference”) between the “temporary clock signal” and the “synchronous clock signal” described above. I do.
位相制御部 6 4は、 この位相差が既定の閾値を上回る限り、 「同期クロック信 号」 の位相を進める (あるいは遅らせる) べき旨を示す指令を同期発振器 6 1 に。 所定の頻度で間欠的に与える。  The phase control unit 64 sends a command to the synchronous oscillator 61 indicating that the phase of the “synchronous clock signal” should be advanced (or delayed) as long as the phase difference exceeds a predetermined threshold. Give intermittently at a predetermined frequency.
同期発振器 6 1は、 この指令に応じて既述の分周比を間欠的に小さな (あるい は大きな) 値に設定することによって、 「同期クロック信号」 の位相を適宜進め る (あるいは遅らせる) 。 したがって、 位相比較部 6 3によって計測さ る位相差は、 段階的に減少する (図 8 (2 ) )。 The synchronous oscillator 61 advances (or delays) the phase of the “synchronous clock signal” as appropriate by intermittently setting the division ratio to a small (or large) value in response to this command. . Therefore, the phase difference measured by the phase comparison unit 63 decreases stepwise (FIG. 8 (2)).
セレクタ 6 0 sは、 この位相差と所定の閾値とを比較し、 前者が後者を下回つ た時点 (図 8 ( 3 ) )以降には、 「同期クロック信号」 に代えて 「暫定クロック信号」 を選択する。  The selector 60 s compares the phase difference with a predetermined threshold value, and after the time when the former falls below the latter (FIG. 8 (3)), replaces the “temporary clock signal” with the “synchronous clock signal”. Select ".
位相同期発振器 6 5は、このようにしてセレクタ 6 0 sによって選択された「同 期クロック信号」 あるいは 「暫定クロック信号」 に同期し、 かつ所望の周波数を 有する 「基準クロック信号」 を生成する。  The phase locked oscillator 65 generates a “reference clock signal” having a desired frequency in synchronization with the “synchronous clock signal” or the “temporary clock signal” selected by the selector 60 s in this way.
すなわち、 クロック信号 0とクロック信号 1との位相が大幅に異なる状態で現 用伝送路が更新された場合であっても、 位相同期発振器 6 5には、 「同期クロッ ク信号」 と「暫定クロック信号」 との位相差が段階的に圧縮された後に、 その「暫 定クロック信号」 が与えられる。  In other words, even if the working transmission line is updated in a state where the phases of the clock signal 0 and the clock signal 1 are significantly different, the phase-locked oscillator 65 will output the “synchronous clock signal” and the “temporary clock”. The "temporary clock signal" is given after the phase difference with the "signal" is compressed stepwise.
このように上述した従来例では、 位相同期発振器 6 5に入力されるクロック信 号の周波数はそのクロック信号の位相が過大に跳躍することなく安定に維持され るので、 この位相同期発振器 6 5の出力には、 二重化された網に同期し、 かつ所 望の周波数を有する信号が確度高く得られる。  As described above, in the above-described conventional example, the frequency of the clock signal input to the phase-locked oscillator 65 is stably maintained without excessively jumping the phase of the clock signal. At the output, a signal synchronized with the duplexed network and having the desired frequency can be obtained with high accuracy.
ところで、 このような従来例では、 同期発振器 6 1に備えられた可変分周器に 設定される分周比は、 既述の指令に応じて間欠的に大きな値と小さな値との何れ か一方の値に設定されていた。  By the way, in such a conventional example, the frequency division ratio set in the variable frequency divider provided in the synchronous oscillator 61 is one of an intermittently large value and a small value in accordance with the above-mentioned command. Was set to the value of
したがって、 「同期クロック信号」 の位相は 「現用伝送路」 が更新される度に 進み (あるいは遅れ) 、 かつ特に、 伝送路 6 2 -0、 6 2 -1に同期転送モードが適 用されている場合には、 「現用伝送路」 が更新される頻度が高いほど、 無用にス リップが発生し、 あるいは伝送遅延時間が高速に増加するために、 伝送品質ゃサ —ビス品質が低下する可能性が高かつた。 発明の開示  Therefore, the phase of the “synchronous clock signal” advances (or delays) each time the “working transmission line” is updated, and in particular, the synchronous transfer mode is applied to the transmission lines 6 2 -0 and 6 2 -1. In this case, the more frequently the “working transmission line” is updated, the more unnecessary the slip occurs or the faster the transmission delay time increases, so the transmission quality and service quality may decrease. The nature was high. Disclosure of the invention
本発明の目的は、 構成の大幅な変更と性能の低下とが生じることなく、 系構成 の更新に際して生じる位相の誤差の無用な累積が回避されるクロック切り替え回 路およびノード装置を提供することにある。 また、 本発明の目的は、 出力されるクロック信号の位相に過大な誤差が生じる ことが回避される点にある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a clock switching circuit and a node device that can avoid unnecessary accumulation of phase errors that occur when updating a system configuration without causing a significant change in the configuration and a decrease in performance. is there. Another object of the present invention is to prevent an excessive error in the phase of the output clock signal.
さらに、 本発明の目的は、 出力されるクロック信号の位相に生じる誤差が小さ な値に維持され、 そのクロック信号に同期し、 あるいは所定の処理を施す機器や システムの応答性および性能が高く、 かつ安定に維持される点にある。  Further, an object of the present invention is to maintain a small error in the phase of a clock signal to be output, to have high responsiveness and high performance of a device or system that synchronizes with the clock signal or performs a predetermined process, And is maintained stably.
また、 本発明の目的は、 出力されるクロック信号の位相に生じる誤差が精度よ く小さな値に維持され、 そのクロック信号に同期し、 あるいは所定の処理を施す 機器やシステムの応答性や性能がさらに高く、 かつ安定に維持される点にある。 さらに、 本発明の目的は、 同期クロックの位相が可変されるべき方向の決定に かかわる処理が簡略化され、 かつ系構成に対する好適な応答性が安定に維持され る ある。  Also, an object of the present invention is to maintain the error occurring in the phase of the output clock signal at a small value with high accuracy, and to improve the responsiveness and performance of devices and systems that synchronize with the clock signal or perform predetermined processing. It is still higher and more stable. Further, an object of the present invention is to simplify the processing for determining the direction in which the phase of the synchronous clock is to be varied, and to stably maintain a suitable response to the system configuration.
また、 本発明の目的は、 現用の要素が系構成に基づいて更新された時点以降に 最先に同期ク口ック信号の位相が可変されるべき期間まで、 そのクロック信号の 位相が可変される方向が変更されない場合に比べて、 応答性が高められる点にあ る。  Also, an object of the present invention is to change the phase of the clock signal until the period in which the phase of the synchronous clock signal should be changed first after the current element is updated based on the system configuration. Responsiveness is higher than when the direction is not changed.
さらに、 本発明の目的は、 多様な機器やシステムに対する柔軟な適用が可能と なる点にある。  A further object of the present invention is to enable flexible application to various devices and systems.
また、 本発明の目的は、 クロック信号の位相が特定の方向のみに可変され続け ることに起因するスリップの発生と、 伝送遅延時間の無用な積算とが回避され、 サービス品質および伝送品質が高く安定に維持される点にある。  Further, an object of the present invention is to prevent the occurrence of slips due to the phase of the clock signal continuing to be varied only in a specific direction and the unnecessary integration of transmission delay times, thereby improving service quality and transmission quality. The point is that it is kept stable.
上述した目的は、 現用の要素が更新される度に、 先行して現用に供されていた 要素に対応するクロック信号に同期した同期クロック信号の位相が交互に反対の 方向に段階的に可変される点に特徴があるクロック切り替え回路によって達成さ れる。  The above-described object is that each time the working element is updated, the phase of the synchronization clock signal synchronized with the clock signal corresponding to the element previously used in the work is alternately changed stepwise in the opposite direction. This is achieved by a clock switching circuit characterized in that
このようなクロック切り替え回路では、 同期クロックの位相は、 特定の方向に 可変され続けることが回避される。  In such a clock switching circuit, the phase of the synchronous clock is prevented from being continuously varied in a specific direction.
また、 上述した目的は、 第一の選択手段によって選択されたクロック信号とク ロック再生手段によって生成された同期クロック信号との位相の差と、 先行して 現用に供されていた要素に対応するクロックに同期した同期クロック信号の位相 が実績として可変された移相量の総和とが減少する移相量に亘つて、 その同期ク 口ック信号の位相が段階的に可変される点に特徴があるクロック切り替え回路に よって達成される。 Further, the above-mentioned object corresponds to a phase difference between a clock signal selected by the first selecting means and a synchronous clock signal generated by the clock reproducing means, and an element previously used for the current operation. Synchronous clock signal phase synchronized to clock Is achieved by the clock switching circuit characterized in that the phase of the synchronous clock signal is stepwise varied over the phase shift amount in which the sum of the phase shift amounts that have been varied as a result decreases. You.
このようなクロック切り替え回路では、 同期クロックの位相は、 その位相が先 行して実際に可変された移相量の積分値が増大しない方向に適宜可変される。 さらに、 上述した目的は、 既述の移相量の総和の絶対値が大きいほど、 高速に 同期クロック信号の位相が可変される点に特徴があるクロック切り替え回路によ つて達成される。  In such a clock switching circuit, the phase of the synchronous clock is appropriately changed in such a direction that the integrated value of the phase shift amount actually changed before the phase does not increase. Further, the above-mentioned object is achieved by a clock switching circuit characterized in that the phase of a synchronous clock signal is varied more rapidly as the absolute value of the sum of the above-mentioned phase shift amounts is larger.
このようなクロック切り替え回路では、 同期クロックの位相は、 その位相が先 行して実際に可変された移相量の積分値が大きいほど、 高速にその積分値が小さ な値となる方向に可変される。  In such a clock switching circuit, the phase of the synchronous clock can be changed in such a direction that the integrated value of the phase shift amount that has been actually changed earlier becomes larger as the integrated value becomes larger. Is done.
また、 上述した目的は、 現用の要素が更新される度に、 位相差監視手段によつ て監視された位相の差が最短で圧縮される方向に同期クロック信号の位相が段階 的に可変される点に特徴があるクロック切り替え回路によって達成される。 このようなクロック切り替え回路では、 同期クロックの位相が可変され得る方 向が 2通りあることによる冗長性は、 冗長な系を構成する複数の要素に個別に対 応した複数のクロック信号の内、 現用に供されている要素と、 その要素に先行し て現用に供されていた要素とにそれそれ対応したクロック信号の位相の差に基づ いて排除される。  Further, the above-mentioned object is achieved by that the phase of the synchronous clock signal is changed stepwise in a direction in which the phase difference monitored by the phase difference monitoring means is compressed in the shortest time every time the current element is updated. This is achieved by a clock switching circuit characterized in that In such a clock switching circuit, the redundancy due to the two directions in which the phase of the synchronous clock can be varied depends on the number of clock signals individually corresponding to the plurality of elements constituting the redundant system. The element that is currently used and the element that has been used before the element are eliminated based on the phase difference of the clock signal corresponding to the element.
さらに、 上述した目的は、 系が二重系として構成され、 現用に供されている要 素とその要素に先行して現用に供されていた要素に個別に対応したクロック信号 の位相の差が最短で圧縮される方向に同期クロック信号の位相が段階的に可変さ れ、 その現用の要素が更新される度に、 この同期クロック信号の位相が段階的に 可変される点に特徴があるクロック切り替え回路によって達成される。  Further, the above-mentioned object is to provide a system in which the system is configured as a dual system, and the difference between the phase of the clock signal individually corresponding to the element currently used and the element currently used prior to the element is determined. A clock characterized in that the phase of the synchronous clock signal is varied stepwise in the direction of the shortest compression, and the phase of the synchronous clock signal is varied stepwise each time the working element is updated. This is achieved by a switching circuit.
このようなクロック切り替え回路では、 同期クロックの位相が可変されるべき 方向は、 現用の要素が系構成に基づいて初めて特定された時に限って、 現用に供 されている一方の要素と他方の要素とに個別に対応したクロック信号の位相の差 が最短で圧縮される方向に設定され、 かつ後続して現用の要素が更新される度に 反転される。 また、 上述した目的は、 位相監視手段によって監視された位相の差の絶対値が 大きいほど、 高速に同期クロック信号の位相を可変する点に特徴があるクロック 切り替え回路によって達成される。 In such a clock switching circuit, the direction in which the phase of the synchronous clock should be varied depends on whether the current element is specified for the first time based on the system configuration, and one element used for the current operation and the other element And the phase difference of the clock signal corresponding to each is set in the direction to be compressed in the shortest time, and is inverted each time the working element is subsequently updated. Further, the above object is achieved by a clock switching circuit characterized in that the larger the absolute value of the phase difference monitored by the phase monitoring means, the faster the phase of the synchronous clock signal is changed.
このようなクロック切り替え回路では、 同期クロックの位相は、 二重化された 系を構成する 2つの要素に個別に対応したクロック信号の位相が大幅に異なるほ ど、 これらのクロック信号の位相の差が減少する方向に高速に可変される。 また、 上述した目的は、 同期クロック信号の位相が可変されている期間の内、 現用の要素が更新された時点以降の時間に、 この同期クロック信号の位相が可変 されるべき方向が反転される点に特徴があるクロック切り替え回路によって達成 される。  In such a clock switching circuit, the difference between the phases of the synchronous clocks decreases as the phases of the clock signals individually corresponding to the two elements constituting the duplex system differ greatly. Variable at high speed. In addition, the above-described object is achieved in such a manner that, during a period in which the phase of the synchronous clock signal is varied, the direction in which the phase of the synchronous clock signal is to be varied is inverted at a time after the current element is updated. This is achieved by a clock switching circuit characterized by the point.
このようなクロック切り替え回路では、 上述した期間に現用の要素が系構成に 基づいて更新された場合であっても、 その時点に後続するこの期間の残りの時間 に同期クロック信号の位相が可変されるべき方向は、 速やかに、 かつ適正に変更 される。  In such a clock switching circuit, even if the current element is updated based on the system configuration during the above-described period, the phase of the synchronous clock signal is changed during the remaining time of this period following that point. The direction to be changed is changed promptly and appropriately.
さらに、 上述した目的は、 第二の選択手段によって選択された同期クロック信 号またはクロック信号に周波数合成処理を施すことによって信号を生成し、 かつ 所望の応答性を有する周波数合成手段が備えられた点に特徴があるクロック切り 替え回路によって達成される。  Further, the above-mentioned object is achieved by providing a frequency synthesizing unit which generates a signal by performing a frequency synthesizing process on the synchronous clock signal or the clock signal selected by the second selecting unit, and has a desired response. This is achieved by a clock switching circuit characterized by a point.
このようなクロック切り替え回路では、 第二の選択手段によって選択された同 期クロック信号またはクロック信号が所望の処理や機能を実現するために直接適 用できない場合であっても、 周波数合成手段に適正な合成比が設定される限り、 これらのクロック信号に同期し、 かつこれらの処理や機能の実現に必要な周波数 および位相の信号が得られる。  In such a clock switching circuit, even if the synchronous clock signal or the clock signal selected by the second selecting means cannot be directly applied to realize the desired processing or function, the clock switching circuit is suitable for the frequency synthesizing means. As long as a proper combination ratio is set, signals of the frequency and phase necessary for realizing these processes and functions synchronized with these clock signals can be obtained.
また、 上述した目的は、 冗長に構成された網とのイン夕フェースをとり、 かつ 既述のクロック切り替え回路によって与えられるクロック信号に同期して所定の 通信制御を行う点に特徴があるノード装置によって達成される。  Further, the above-mentioned object is characterized in that a node device is characterized by taking an interface with a redundantly configured network and performing predetermined communication control in synchronization with a clock signal given by the above-described clock switching circuit. Achieved by
このような構成のノード装置では、 系構成が頻繁に更新され、 さらに、 上述し た複数の要素に個別に対応したクロック信号の位相が広範に変動し、 あるいは大 幅に異なる場合であっても、 安定に通信制御が行われる。 図面の簡単な説明 In the node device having such a configuration, even when the system configuration is frequently updated, and the phase of the clock signal individually corresponding to the plurality of elements described above fluctuates widely or is largely different, Communication control is performed stably. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明にかかわるクロック切り替え回路の原理プロック図である。 図 2は、 本発明にかかわるノ一ド装置の原理プロック図である。  FIG. 1 is a principle block diagram of a clock switching circuit according to the present invention. FIG. 2 is a principle block diagram of the node device according to the present invention.
図 3は、 本発明の第一および第二の実施形態を示す図である。  FIG. 3 is a diagram showing first and second embodiments of the present invention.
図 4は、 本発明の第一の実施形態の動作タイムチャートである。  FIG. 4 is an operation time chart of the first embodiment of the present invention.
図 5は、 本発明の第三の実施形態を示す図である。  FIG. 5 is a diagram showing a third embodiment of the present invention.
図 6は、 本発明の第四の実施形態を示す図である。  FIG. 6 is a diagram showing a fourth embodiment of the present invention.
図 7は、冗長な網に備えられたクロック切り替え回路の構成例を示す図である。 図 8は、 従来例の動作タイムチャートである。 発明を実施するための最良の形態  FIG. 7 is a diagram illustrating a configuration example of a clock switching circuit provided in a redundant network. FIG. 8 is an operation time chart of the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明にかかわるクロック切り替え回路の原理を説明する。  First, the principle of the clock switching circuit according to the present invention will be described.
図 1は、 本発明にかかかわるクロック切り替え回路の原理プロック図である。 図 1に示すクロック切り替え回路は、 第一の選択手段 1 1、 1 1 A、 クロック 再生手段 1 2、 1 2 A、 位相差計測手段 1 3、 1 3 A 第二の選択手段 1 4、 1 4 A、 位相差監視手段 1 5、 1 5 Aおよび周波数合成手段 1 6、 1 6 Aから構成 される。  FIG. 1 is a principle block diagram of a clock switching circuit according to the present invention. The clock switching circuit shown in FIG. 1 includes first selection means 11 and 11 A, clock recovery means 12 and 12 A, phase difference measurement means 13 and 13 A second selection means 14 and 1 It comprises 4 A, phase difference monitoring means 15 and 15 A, and frequency synthesis means 16 and 16 A.
本発明にかかわる第一のクロック切り替え回路の原理は、 下記の通りである。 第一の選択手段 1 1は、 冗長な系を構成する複数の要素に個別に対応した複数 のクロック信号の内、 現用の要素に対応したクロック信号を系構成に基づいて選 択する。 クロック再生手段 1 2は、 複数のクロック信号の内、 先行して現用に供 されていた要素に対応するクロック信号に同期した同期クロック信号を生成する 位相差計測手段 1 3は、 第一の選択手段 1 1によって選択されたクロック信号と クロック再生手段 1 2によって生成された同期クロック信号との位相の差を計測 する。 第二の選択手段 1 4は、 現用の要素が更新されたときに、 クロック再生手 段 1 2によって生成された同期クロック信号を選択し、 かつ位相差計測手段 1 3 によって計測された位相の差が所定の閾値を下回ったときに、 第一の選択手段 1 1によって選択されたクロック信号を選択する。 クロック再生手段 1 2は、 現用 の要素が更新される度に交互に反対の方向へ同期クロック信号の位相を段階的に 可変し、 位相差計測手段 1 3によって計測される位相の差を圧縮する。 The principle of the first clock switching circuit according to the present invention is as follows. The first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration. The clock regenerating means 12 generates a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among the plurality of clock signals. The phase difference between the clock signal selected by the means 11 and the synchronous clock signal generated by the clock recovery means 12 is measured. The second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13. Is smaller than a predetermined threshold, the clock signal selected by the first selecting means 11 is selected. Clock recovery means 1 and 2 Each time the element is updated, the phase of the synchronous clock signal is changed stepwise in the opposite direction alternately, and the phase difference measured by the phase difference measuring means 13 is compressed.
このようなクロック切り替え回路では、 同期クロックの位相は、 特定の方向に 可変され続けることが回避される。  In such a clock switching circuit, the phase of the synchronous clock is prevented from being continuously varied in a specific direction.
したがって、 本発明にかかわるクロック切り替え回路によって出力されるクロ ック信号の位相の誤差が過大となることが回避され、そのクロック信号に同期し、 あるいは所定の処理を施す機器やシステムでは、 応答性および性能が安定に維持 される。  Therefore, it is possible to prevent the phase error of the clock signal output by the clock switching circuit according to the present invention from becoming excessive, and to provide a device or system that synchronizes with the clock signal or performs a predetermined process with a high response. And the performance is maintained stably.
本発明にかかわる第二のクロック切り替え回路の原理は、 下記の通りである。 第一の選択手段 1 1は、 冗長な系を構成する複数の要素に個別に対応した複数 のクロック信号の内、 現用の要素に対応したクロック信号を系構成に基づいて選 択する。 クロック再生手段 1 2は、 複数のクロック信号の内、 先行して現用に供 されていた要素に対応するクロック信号に同期した同期クロック信号を生成する < 位相差計測手段 1 3は、 第一の選択手段 1 1によって選択されたクロック信号と クロック再生手段 1 2によって生成された同期クロック信号との位相の差を計測 する。 第二の選択手段 1 4は、 現用の要素が更新されたときに、 クロック再生手 段 1 2によって生成された同期クロック信号を選択し、 かつ位相差計測手段 1 3 によって計測された位相の差が所定の閾値を下回ったときに、 第一の選択手段 1 1によって選択されたクロック信号を選択する。 クロック再生手段 1 2は、 位相 差計測手段 1 3によって計測された位相の差と、 同期クロック信号の位相が先行 して実際に可変された移相量の総和とが減少する移相量に直ってその同期クロッ ク信号の位相を段階的に可変する。  The principle of the second clock switching circuit according to the present invention is as follows. The first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration. The clock regenerating means 12 generates a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among the plurality of clock signals. The phase difference between the clock signal selected by the selection unit 11 and the synchronous clock signal generated by the clock recovery unit 12 is measured. The second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13. Is smaller than a predetermined threshold, the clock signal selected by the first selecting means 11 is selected. The clock regenerating means 12 converts the phase difference measured by the phase difference measuring means 13 and the phase shift amount at which the sum of the phase shift amounts actually changed earlier by the phase of the synchronous clock signal decreases. Then, the phase of the synchronous clock signal is varied stepwise.
このようなクロック切り替え回路では、 同期クロックの位相は、 その位相が先 行して実際に可変された移相量の積分値が増大しない方向に適宜可変される。 したがって、 本発明にかかわるクロック切り替え回路によって出力されるクロ ック信号の位相の誤差は小さな値に維持され、 そのクロック信号に同期し、 ある いは所定の処理を施す機器やシステムでは、 応答性や性能が高く、 かつ安定に維 持される。  In such a clock switching circuit, the phase of the synchronous clock is appropriately changed in such a direction that the integrated value of the phase shift amount actually changed before the phase does not increase. Therefore, the phase error of the clock signal output by the clock switching circuit according to the present invention is maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And high performance and are maintained stably.
本発明にかかわる第三のクロック切り替え回路の原理は、 下記の通りである。 クロック再生手段 1 2は、 移相量の総和の絶対値が大きいほど、 高速に同期ク 口ック信号の位相を可変する。 The principle of the third clock switching circuit according to the present invention is as follows. The clock recovery means 12 changes the phase of the synchronous clock signal at a higher speed as the absolute value of the sum of the phase shift amounts increases.
このようなクロック切り替え回路では、 同期クロックの位相は、 その位相が先 行して実際に可変された移相量の積分値が大きいほど、 高速にその積分値が小さ な値となる方向に可変される。  In such a clock switching circuit, the phase of the synchronous clock can be changed in such a direction that the integrated value of the phase shift amount that has been actually changed earlier becomes larger as the integrated value becomes larger. Is done.
したがって、 本発明にかかわるクロック切り替え回路によって出力されるクロ ック信号の位相の誤差は精度よく小さな値に維持され、 そのクロック信号に同期 し、 あるいは所定の処理を施す機器やシステムでは、応答性や性能がさらに高く、 かつ安定に維持される。  Therefore, the phase error of the clock signal output by the clock switching circuit according to the present invention is accurately maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And performance are kept higher and stable.
本発明にかかわる第四のクロック切り替え回路の原理は、 下記の通りである。 第一の選択手段 1 1は、 冗長な系を構成する複数の要素に個別に対応した複数 のクロック信号の内、 現用の要素に対応したクロック信号を系構成に基づいて選 択する。 クロック再生手段 1 2は、 複数のクロック信号の内、 先行して現用に供 されていた要素に対応するクロック信号に同期した同期クロック信号を生成する c 位相差計測手段 1 3は、 第一の選択手段 1 1によって選択されたクロック信号と クロック再生手段 1 2によって生成された同期クロック信号との位相の差を計測 する。 第二の選択手段 1 4は、 現用の要素が更新されたときに、 クロック再生手 段 1 2によって生成された同期クロック信号を選択し、 かつ位相差計測手段 1 3 によって計測された位相の差が所定の閾値を下回ったときに、 第一の選択手段 1 1によって選択されたクロック信号を選択する。 位相差監視手段 1 5は、 複数の クロック信号の内、 現用に供されている要素とその要素に先行して現用に供され ていた要素に個別に対応したクロック信号の位相の差を監視する。 クロック再生 手段 1 2は、 現用の要素が更新される度に、 位相差監視手段 1 5によって監視さ れた位相の差が最短で圧縮される方向に同期ク口ック信号の位相を段階的に可変 し、 位相差計測手段 1 3によ uつて計測される位相の差を圧縮する。 The principle of the fourth clock switching circuit according to the present invention is as follows. The first selecting means 11 selects a clock signal corresponding to a current element from among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system based on the system configuration. The clock regenerating means 12 is a c phase difference measuring means 13 for generating a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among a plurality of clock signals. The phase difference between the clock signal selected by the selecting means 11 and the synchronous clock signal generated by the clock reproducing means 12 is measured. The second selecting means 14 selects the synchronous clock signal generated by the clock recovery means 12 when the current element is updated, and selects the phase difference measured by the phase difference measuring means 13. When the clock signal falls below a predetermined threshold, the clock signal selected by the first selecting means 11 is selected. The phase difference monitoring means 15 monitors the phase difference between the clock signal individually corresponding to the currently used element and the element previously used for the element among the plurality of clock signals. . Each time the working element is updated, the clock recovery means 12 steps the phase of the synchronous clock signal in a direction to compress the phase difference monitored by the phase difference monitoring means 15 in the shortest time. variable, and it compresses the difference in phase of the I u connexion measuring the phase difference measurement unit 1 3.
このようなクロック切り替え回路では、 同期クロックの位相が可変され得る方 向が 2通りあることによる冗長性は、 冗長な系を構成する複数の要素に個別に対 応した複数のクロック信号の内、 現用に供されている要素と、 その要素に先行し て現用に供されていた要素とにそれそれ対応したクロック信号の位相の差に基づ いて排除される。 In such a clock switching circuit, the redundancy due to the two directions in which the phase of the synchronous clock can be varied depends on the number of clock signals individually corresponding to the plurality of elements constituting the redundant system. Based on the phase difference of the clock signal corresponding to the element currently used and the element previously used for the element that is currently used. Be excluded.
したがって、 同期クロックの位相は、 上述した位相差の速やかな圧縮が図られ る好適な値に維持され、 本発明にかかわるクロック切り替え回路によって出力さ れるクロック信号の位相は、 個々の要素に対応したクロック信号の位相が広範に 変ィ匕し、 あるいは大幅に異なる場合であっても、 無用な変動を伴うことなく適正 に、 かつ安定に維持される。  Therefore, the phase of the synchronous clock is maintained at a suitable value that enables rapid compression of the above-described phase difference, and the phase of the clock signal output by the clock switching circuit according to the present invention corresponds to each element. Even when the phase of the clock signal varies widely or is significantly different, the phase is properly and stably maintained without unnecessary fluctuation.
本発明にかかわる第五のクロック切り替え回路の原理は、 下記の通りである。 第一の選択手段 1 1 Aは、 二重化された系を構成する 2つの要素に個別に対応 した 2つのクロック信号の内、 現用の要素に対応したクロック信号を系構成に基 づいて選択する。 クロック再生手段 1 2 Aは、 2つのクロック信号の内、 先行し て現用に供されていた要素に対応するクロック信号に同期した同期クロック信号 を生成する。 位相差計測手段 1 3 Aは、 第一の選択手段 1 1 Aによって選択され たクロック信号とクロック再生手段 1 2 Aによって生成された同期クロック信号 との位相の差を計測する。 第二の選択手段 1 4 Aは、 現用の要素が更新されたと きに、 クロック再生手段 1 2 Aによって生成された同期クロック信号を選択し、 かつ始動時、 および位相差計測手段 1 3 Aによって計測された位相の差が所定の 閾値を下回ったときに、 第一の選択手段 1 1 Aによって選択されたクロック信号 を選択する。 位相差監視手段 1 5 Aは、 2つのクロック信号の内、 現用に供され ている一方の要素と他方の要素とに個別に対応したクロック信号の位相の差を監 視する。 クロック再生手段 1 2 Aは、 現用の要素が初めて確定したときに、 位相 差監視手段 1 5 Aによって監視された位相の差が最短で圧縮される方向に同期ク ロック信号の位相を段階的に可変し、 その現用の要素が更新される度に、 交互に 反対の方向へこの同期クロック信号の位相を段階的に可変することによって、 位 相差計測手段 1 3 Aによって計測される位相の差を圧縮する。  The principle of the fifth clock switching circuit according to the present invention is as follows. The first selecting means 11A selects a clock signal corresponding to the current element from the two clock signals individually corresponding to the two elements constituting the duplicated system based on the system configuration. The clock regenerating means 12A generates a synchronous clock signal synchronized with the clock signal corresponding to the element which has been used in advance of the two clock signals. The phase difference measuring means 13A measures a phase difference between the clock signal selected by the first selecting means 11A and the synchronous clock signal generated by the clock reproducing means 12A. The second selecting means 14A selects the synchronous clock signal generated by the clock regenerating means 12A when the current element is updated, and at the time of starting, and by the phase difference measuring means 13A. When the measured phase difference falls below a predetermined threshold, the clock signal selected by the first selecting means 11A is selected. The phase difference monitoring means 15A monitors a phase difference between clock signals individually corresponding to one element currently used and the other element among the two clock signals. The clock regenerating means 12 A gradually changes the phase of the synchronous clock signal in a direction in which the phase difference monitored by the phase difference monitoring means 15 A is compressed in the shortest time when the working element is determined for the first time. The phase difference measured by the phase difference measuring means 13 A is changed by changing the phase of the synchronous clock signal stepwise in the opposite direction alternately each time the working element is updated. Compress.
このようなクロック切り替え回路では、 同期クロッ„クの位相が可変されるべき 方向は、 現用の要素が系構成に基づいて初めて特定された時に限って、 現用に供 されている一方の要素と他方の要素とに個別に対応したクロック信号の位相の差 が最短で圧縮される方向に設定され、かつ後続して現用の要素が更新される度に、 交互に反転される。 したがって、 同期クロックの位相が可変されるべき方向の決定にかかわる処理 は、 上述した位相の差に適応しつつ簡略化され、 かつ系構成に対する好適な応答 性が安定に維持される。 In such a clock switching circuit, the direction in which the phase of the synchronous clock should be changed depends on whether the current element is specified for the first time based on the system configuration, and one of the elements currently used and the other is used. The phase difference of the clock signal corresponding to each of the elements is set in the direction to be compressed in the shortest time, and is alternately inverted each time the working element is subsequently updated. Therefore, the process for determining the direction in which the phase of the synchronous clock should be varied is simplified while adapting to the above-described phase difference, and the suitable responsiveness to the system configuration is stably maintained.
本発明にかかわる第六のクロック切り替え回路の原理は、 下記の通りである。 クロック再生手段 1 2は、 位相監視手段 1 5、 1 5 Aによって監視された位相 の差の絶対値が大きいほど、 高速に同期クロック信号の位相を可変する。  The principle of the sixth clock switching circuit according to the present invention is as follows. The clock recovery means 12 changes the phase of the synchronous clock signal at a higher speed as the absolute value of the phase difference monitored by the phase monitoring means 15 and 15A increases.
このようなクロック切り替え回路では、 同期クロックの位相は、 二重化された 系を構成する 2つの要素に個別に対応したクロック信号の位相が大幅に異なるほ ど、 これらのクロック信号の位相の差が減少する方向に高速に可変される。  In such a clock switching circuit, the difference between the phases of the synchronous clocks decreases as the phases of the clock signals individually corresponding to the two elements constituting the duplex system differ greatly. Variable at high speed.
したがって、 本発明にかかわるクロック切り替え回路によって出力されるクロ ック信号の位相の誤差は精度よく小さな値に維持され、 そのクロック信号に同期 し、 あるいは所定の処理を施す機器やシステムでは、応答性や性能がさらに高く、 かつ安定に維持される。  Therefore, the phase error of the clock signal output by the clock switching circuit according to the present invention is accurately maintained at a small value, and in a device or system that synchronizes with the clock signal or performs a predetermined process, the response is low. And performance are kept higher and stable.
本発明にかかわる第七のクロック切り替え回路の原理は、 下記の通りである。 クロック再生手段 1 2 Aは、同期クロック信号の位相を可変している期間の内、 現用の要素が更新された時点以降の時間に、 この同期クロック信号の位相が可変 されるべき方向を反転させる。  The principle of the seventh clock switching circuit according to the present invention is as follows. The clock regenerating means 12 A inverts the direction in which the phase of the synchronous clock signal is to be varied during the period after the current element is updated during the period in which the phase of the synchronous clock signal is varied. .
このようなクロック切り替え回路では、 上述した期間に現用の要素が系構成に 基づいて更新された場合であっても、 その時点に後続するこの期間の残りの時間 に同期クロック信号の位相が可変されるべき方向は、 速やかに、 かつ適正に変更 される。  In such a clock switching circuit, even if the current element is updated based on the system configuration during the above-described period, the phase of the synchronous clock signal is changed during the remaining time of this period following that point. The direction to be changed is changed promptly and appropriately.
したがって、 現用の要素が更新された時点以降に最先に同期クロック信号の位 相が可変されるべき期間まで、 そのクロック信号の位相が可変される方向が変更 されない場合に比べて、 応答性が高められる。  Therefore, the responsiveness is improved compared to the case where the direction in which the phase of the clock signal is changed is not changed until the phase where the phase of the synchronous clock signal is changed first after the time when the working element is updated. Enhanced.
本発明にかかわる第八のクロック切り替え回路の原理は、 下記の通りである。 周波数合成手段 1 6、 1 6 Aは、 所望の応答性 有し、 かつ第二の選択手段 1 4、 1 4 Aによって選択された同期ク口ック信号またはク口ヅク信号に周波数合 成処理を施すことによって信号を生成する。  The principle of the eighth clock switching circuit according to the present invention is as follows. The frequency synthesizing means 16 and 16 A have desired responsiveness, and perform frequency synthesizing processing on the synchronous clock signal or the clock signal selected by the second selecting means 14 and 14 A. To generate a signal.
このようなクロック切り替え回路では、 第二の選択手段 1 4、 1 4 Aによって 選択された同期クロック信号またはクロック信号が所望の処理や機能を実現する ために直接適用できない場合であっても、 周波数合成手段 1 6、 1 6 Aに適正な 合成比が設定される限り、 これらのクロック信号に同期し、 かつこれらの処理や 機能の実現に必要な周波数および位相の信号が得られる。 In such a clock switching circuit, the second selecting means 14 and 14 A Even if the selected synchronous clock signal or clock signal cannot be directly applied to achieve the desired processing or function, as long as the appropriate synthesizing ratio is set in the frequency synthesizing means 16 and 16 A, A signal having the frequency and phase necessary for realizing these processes and functions is obtained in synchronization with the clock signal.
したがって、 多様な機器やシステムに対する柔軟な適用が可能となる。  Therefore, it can be flexibly applied to various devices and systems.
図 2は、 本発明にかかわるノード装置の原理プロック図である。  FIG. 2 is a principle block diagram of the node device according to the present invention.
図 2に示すノード装置は、 網インタフェース手段 2 1、 クロック切り替え回路 2 2、 2 2 A、 2 2 B、 2 2 Cおよび通信制御手段 2 3、 2 3 A、 2 3 B、 2 3 Cから構成される 1  The node device shown in FIG. 2 includes a network interface unit 21, a clock switching circuit 22, 22 A, 22 B, 22 C, and communication control units 23, 23 A, 23 B, 23 C. Composed 1
本発明にかかわる第一ないし第四のノード装置の原理は、 下記の通りである。 網ィン夕フェース手段 2 1は、冗長に構成された網とのィン夕フェースをとる。 第二の選択手段 1 4、 1 4 Aは、 既述のクロック切り替え回路と同様に第一の選 択手段 1 1、 1 1 A、 クロック作成手段 1 2、 1 2 A、 位相差計測手段 1 3、 1 3 Aおよび位相差監視手段 1 5、 1 5 Aと連係することによって、 上述した網を 構成する複数の要素であるリンクに個別に対応した複数のクロック信号の内、 現 用のリンクに対応するクロック信号に同期したクロック信号を系構成に基づいて 選択する。 通信制御手段 2 3、 2 3 A、 2 3 B、 2 3 Cは、 このようにして選択 されたクロック信号に同期して網イン夕フェース手段 2 1と連係し、 所定の通信 制御を行う。  The principles of the first to fourth node devices according to the present invention are as follows. The network interface means 21 takes an interface with a redundantly configured network. The second selecting means 14 and 14 A are, like the clock switching circuit described above, the first selecting means 11 and 11 A, the clock generating means 12 and 12 A, and the phase difference measuring means 1 By linking with 3, 13 A and the phase difference monitoring means 15, 15 A, the current link among the plurality of clock signals individually corresponding to the plurality of links constituting the network described above Select the clock signal synchronized with the clock signal corresponding to, based on the system configuration. The communication control means 23, 23A, 23B, and 23C cooperate with the network interface means 21 in synchronization with the clock signal selected in this way to perform predetermined communication control.
このようなノード装置では、 網インタフェース手段 2 1によって上述した通信 制御に供されるクロック信号は、 系構成が頻繁に更新され、 さらに、 上述した複 数の要素に個別に対応したクロック信号の位相が広範に変動し、 あるいは大幅に 異なる場合であっても、 位相に過大な跳躍や誤差が生じることなく、 安定に供給 される。  In such a node device, the clock signal supplied to the above-described communication control by the network interface means 21 has a frequently updated system configuration, and further has a phase of the clock signal individually corresponding to the above-described plurality of elements. Even if is widely fluctuated or greatly different, it can be supplied stably without excessive jumps or errors in phase.
したがって、 上述した通信制御の過程では、 クロック信号の位相が特定の方向 u のみに可変され続けることに起因するスリップの発生と、 伝送遅延時間の無用な 積算とが回避され、 サービス品質および伝送品質が高く安定に維持される。 Therefore, in the communication control process described above, the occurrence of slip due to the phase of the clock signal being continuously varied only in the specific direction u and the unnecessary integration of the transmission delay time are avoided, and the service quality and transmission quality are prevented. Is maintained high and stable.
以下、 図面に基づいて本発明の実施形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[実施形態 1 ] 図 3は、 本発明の第一および第二の実施形態を示す図である。 [Embodiment 1] FIG. 3 is a diagram showing first and second embodiments of the present invention.
本発明の第一の実施形態には、 図 3に示すように、 系構成情報が与えられる点 で図 Ίに示す位相制!?部 6 4と異なる位相制御部 3 1がその位相制御部 6 4に代 えて備えられる。  In the first embodiment of the present invention, as shown in FIG. 3, the phase control shown in FIG. A phase control section 31 different from the section 64 is provided in place of the phase control section 64.
図 4は、 本発明の第一の実施形態の動作タイムチャートである。  FIG. 4 is an operation time chart of the first embodiment of the present invention.
以下、 図 3および図 4を参照して本発明の第一の実施形態の動作を説明する。 位相制御器 3 1は、 その内部に図示されないフリップフロップを有し、 かつ始 動時には、 そのフリ ップフロップをリセッ トし、 さらに、 上述した系構成情報で 示される「現用伝送路」が更新される度にこのフリップフ口ップを反転させる(図 4 (1))ことによって、 2値の制御情報 (以下、 「位相フラグ」 という。 ) を生成 する。  Hereinafter, the operation of the first embodiment of the present invention will be described with reference to FIGS. The phase controller 31 has a flip-flop (not shown) therein, and resets the flip-flop at the time of start-up, and further updates the “working transmission line” indicated by the system configuration information described above. By inverting the flip-flop every time (Fig. 4 (1)), binary control information (hereinafter referred to as “phase flag”) is generated.
位相制御部 3 1は、 位相比較部 6 3によって計測された位相差が既定の閾値を 上回る期間 (図 4 (2 ) )に限って、 下記の指令を所定の頻度で同期発振器 6 1に与 える。  The phase controller 31 gives the following command to the synchronous oscillator 61 at a predetermined frequency only during a period (FIG. 4 (2)) in which the phase difference measured by the phase comparator 63 exceeds the predetermined threshold. I can.
· 「位相フラグ」 の論理値が 「0」 である場合には、 「同期クロック信号」 の 位相を進める (あるいは遅らせる) べき旨を示す指令 P (図 4 ( 3) )  · If the logic value of the “phase flag” is “0”, a command P indicating that the phase of the “synchronous clock signal” should be advanced (or delayed) (Fig. 4 (3))
• 「位相フラグ」 の論理値が 「1」 である場合には、 「同期クロック信号」 の 位相を遅らせる (あるいは進める) べき旨を示す指令 N (図 4 (4) )  • If the logic value of the “phase flag” is “1”, a command N indicating that the phase of the “synchronous clock signal” should be delayed (or advanced) (Fig. 4 (4))
同期発振器 6 1は、このような指令に応じて間欠的に既述の分周比を小さな値、 または大きな値に設定することによって、 「同期クロック信号」 の位相を適宜進 め、 もしくは遅らせる。  The synchronous oscillator 61 intermittently sets the above-described frequency division ratio to a small value or a large value in response to such a command, thereby advancing or delaying the phase of the “synchronous clock signal” as appropriate.
すなわち、 同期発振器 6 1によって生成される 「同期クロック」 の位相は、 系 構成が更新される度に反対の方向に可変される。  That is, the phase of the “synchronous clock” generated by the synchronous oscillator 61 is changed in the opposite direction each time the system configuration is updated.
このように本実施形態によれば、上述した方向が一定であつた従来例に比べて、 「現用伝送路」 が更新される頻度の如何にかかわらず、 「同期クロック信号」 の 位相が特定の方向にシフトし続けることが回避される。  As described above, according to the present embodiment, the phase of the “synchronous clock signal” is specific, regardless of how frequently the “working transmission line” is updated, as compared with the conventional example in which the direction is fixed as described above. A shift in the direction is avoided.
[実施形態 2 ]  [Embodiment 2]
以下、 本発明の第二の実施形態について説明する。  Hereinafter, a second embodiment of the present invention will be described.
本実施形態には、 図 3に示すように、 位相制御部 3 1に代えて位相制御部 3 1 Aが備えられる。 In this embodiment, as shown in FIG. 3, a phase control unit 31 is used instead of the phase control unit 31. A is provided.
以下、 図 3を参照して本発明の第二の実施形態の動作を説明する。  Hereinafter, the operation of the second embodiment of the present invention will be described with reference to FIG.
位相制御器 3 1 Aは、 その内部に既述のフリ ップフロップに併せて、 図示され ないアップダウンカウン夕を有し、 始動時には、 これらのフリヅプフロップおよ びアップダウンカウンタをリセッ トし、 かつ位相比較部 6 3によって計測された 位相差が既定の閾値を上回る期間には、 所定の頻度で下記の処理を行う。  The phase controller 31A has an up / down counter (not shown) in addition to the above-mentioned flip-flop inside, resets the flip-flop and the up / down counter at the time of starting, and During the period in which the phase difference measured by the comparing unit 63 exceeds a predetermined threshold, the following processing is performed at a predetermined frequency.
- フリ ップフロップに保持された論理値 (以下、 「位相フラグ」 という。 ) が 「0」 であり、 かつァヅプダウンカウン夕の計数値 (以下、 単に 「計数値」 とい う。 ) が「既定の下限値を上回り、 かつ既定の上限値未満である値」 (以下、 「中 間値」 という。 ) に該当する場合には、 その 「計数値」 をインクリメントすると 共に、 同期発振器 6 1に 『 「同期クロック信号」 の位相を進める (あるいは遅ら せる) べき旨を示す指令』 を与える。  -The logical value (hereinafter, referred to as “phase flag”) held in the flip-flop is “0”, and the count value of the up / down count (hereinafter, simply referred to as “count value”) is “default”. If the value falls below the lower limit value and is less than the predetermined upper limit value (hereinafter referred to as “intermediate value”), the “count value” is incremented and the synchronous oscillator 61 receives the “count value”. Command indicating that the phase of the “synchronous clock signal” should be advanced (or delayed) ”.
• 「位相フラグ」 が 「0」 であり、 かつ 「計数値」 が上述した上限値に等しい 場合には、 その 「位相フラグ」 の反転と 「計数値」 のデクリメントとを図ると共 に、 同期発振器 6 1に 『 「同期クロック信号」 の位相を遅らせる (あるいは進め る) べき旨を示す指令』 を与える。  • If the “phase flag” is “0” and the “count value” is equal to the upper limit described above, the “phase flag” is inverted and the “count value” is decremented and synchronized. A command indicating that the phase of the “synchronous clock signal” should be delayed (or advanced) is given to the oscillator 61.
• 「位相フラグ」 が 「 1」 であり、 かつ 「計数値」 が 「中間値」 に該当する場 合には、 その 「計数値」 をデクリメントすると共に、 同期発振器 6 1に 『 「同期 クロック信号」 の位相を遅らせる (あるいは進める) べき旨を示す指令』 を与え る。  • If the “phase flag” is “1” and the “count value” corresponds to the “intermediate value”, the “count value” is decremented, and the “sync clock signal” is sent to the synchronous oscillator 61. To indicate that the phase of “should be delayed (or advanced)”.
• 「位相フラグ」 が 「 1」 であり、 かつ 「計数値」 が上述した下限値に等しい 場合には、 その 「位相フラグ」 の反転と 「計数値」 のインクリメントとを図ると 共に、 同期発振器 6 1に 『 「同期クロック信号」 の位相を進める (あるいは遅ら せる) べき旨を示す指令』 を与える。  • When the “phase flag” is “1” and the “count value” is equal to the lower limit described above, the “phase flag” is inverted and the “count value” is incremented, and the synchronous oscillator is used. 6 Give 1 a command to indicate that the phase of the “synchronous clock signal” should be advanced (or delayed).
同期発振器 6 1は、このような指令に応じて間欠的に既述の分周比を小さな値、 または大きな値に設定することによって、 「同期クロック信号」 の位相を適宜進 め、 もしくは遅らせる。  The synchronous oscillator 61 intermittently sets the above-described frequency division ratio to a small value or a large value in response to such a command, thereby advancing or delaying the phase of the “synchronous clock signal” as appropriate.
すなわち、 同期発振器 6 1によって生成される 「同期クロック信号」の位相は、 上述した上限値と下限値との対として予め定義された「計数値」の範囲において、 系構成に応じて適宜更新される。 なお、 これらの上限値と下限値とについては、 以下では、 簡単のため、 符号が異なり、 かつ絶対値が同じであると仮定する。 このように本実施形態によれば、 「現用伝送路」 が系構成に応じて更新される 度に 「同期クロック信号」 の位相が単に反対の方向に可変される第一の実施形態 に比べて柔軟に、 その位相が特定の方向に更新され続けることが回避される。 さらに、 クロック信号 0、 クロック信号 1の位相の変動と、 これらの位相の組 み合わせとに応じて 「同期クロック信号」 の位相を好適な値に維持可能な多様な アルゴリズムの適用が可能となる。 That is, the phase of the “synchronous clock signal” generated by the synchronous oscillator 61 is within the range of the “count value” defined in advance as a pair of the upper limit value and the lower limit value described above. It is updated as appropriate according to the system configuration. Note that, for simplicity, these upper and lower limits are assumed to have different signs and the same absolute value in the following. As described above, according to the present embodiment, each time the “working transmission line” is updated according to the system configuration, the phase of the “synchronous clock signal” is simply changed in the opposite direction. Flexibly, the phase is kept from being updated in a particular direction. Furthermore, it is possible to apply various algorithms that can maintain the phase of the “synchronous clock signal” at a suitable value according to the phase fluctuation of the clock signal 0 and the clock signal 1 and the combination of these phases. .
なお、 本実施形態は、 既述の第一の実施形態に本発明が適用されることによつ て構成されている。  Note that the present embodiment is configured by applying the present invention to the above-described first embodiment.
しかし、 後述する他の実施形態に本発明が適用されることによって、 上述した 多様なァルゴリズムに対する柔軟な適応がさらに図られてもよい。  However, by applying the present invention to other embodiments described later, flexible adaptation to the various algorithms described above may be further achieved.
また、 本実施形態では、 「同期クロック信号」 の位相は、 上述した指令に応じ て一定の速度で更新されている。  Further, in the present embodiment, the phase of the “synchronous clock signal” is updated at a constant speed according to the above-mentioned command.
しかし、 本発明はこのような構成に限定されず、 例えば、 上述したアップダウ ンカウン夕の計数値と、 その計数値が更新されるべき方向とに適応した下記の頻 度 (または変化率) で 「同期クロック信号」 の位相が更新されることによって、 応答性が高められてもよい。  However, the present invention is not limited to such a configuration. For example, the following frequency (or rate of change) adapted to the above-described count value of the down-counting and the direction in which the count value should be updated is used. The responsiveness may be improved by updating the phase of the “synchronous clock signal”.
• 計数値が正数であり、 その計数値がインクリメントされる期間には、 この計 数値が大きいほど小さな頻度 (または小さな変化率)  • During periods when the count is positive and the count is incremented, the higher the count, the lower the frequency (or small rate of change).
■ 計数値が正数であり、 その計数値がデクリメントされる期間には、 この計数 値が大きいほど大きな頻度 (または大きな変化率)  ■ During periods when the count is positive and the count is decremented, the greater the count, the greater the frequency (or the greater the rate of change).
• 計数値が負数であり、 その計数値がデクリメントされる期間には、 この計数 値が小さいほど小さな頻度 (または大きな変化率)  • During periods when the count is negative and the count is decremented, the smaller the count, the lower the frequency (or the greater the rate of change).
· 計数値が負数であり、 その計数値がインクリメントされる期間には、 この計 数値が小さいほど大きな頻度 (または小さな変化率)  · During periods when the count is negative and the count is incremented, the smaller the count, the greater the frequency (or small rate of change)
[実施形態 3 ]  [Embodiment 3]
図 5は、 本発明の第三の実施形態を示す図である。  FIG. 5 is a diagram showing a third embodiment of the present invention.
本実施形態には、 既述のクロック信号 0、 クロック信号 1および系構成情報が 与えられ、 かつ出力が位相制御部 3 1の対応する制御入力に接続された位相差計 測部 4 1が備えられた点にある。 In this embodiment, the above-described clock signal 0, clock signal 1, and system configuration information are used. A phase difference measuring section 41 is provided which is provided and whose output is connected to a corresponding control input of the phase control section 31.
以下、 図 5を参照して本発明の第三の実施形態の動作を説明する。  Hereinafter, the operation of the third embodiment of the present invention will be described with reference to FIG.
位相差計測部 4 1は、 系構成情報に基づいて 「現用伝送路」 を識別し、 クロッ ク信号 0とクロック信号 1との内、 その 「現用伝送路」 に対応しない一方のクロ ヅク信号 ( 「先行現用伝送路」 に対応する。 ) と他方のクロック信号との位相の 差 (以下、 単に 「位相偏差」 という。 ) を所定の頻度で計測する。  The phase difference measuring unit 41 identifies the “working transmission line” based on the system configuration information, and selects one of the clock signal 0 and the clock signal 1 that does not correspond to the “working transmission line” ( It measures the phase difference (hereinafter, simply referred to as “phase deviation”) between the clock signal and the other clock signal at a predetermined frequency.
一方、 位相制御部 3 1は、 既述の第一の実施形態と同様に、 フリップフロップ を有し、 かつ系構成情報で示される 「現用伝送路」 が更新される度にこのフリツ プフロップを反転させることによって、 2値の 「位相フラグ」 を生成する。  On the other hand, the phase control unit 31 has a flip-flop and inverts this flip-flop every time the “working transmission path” indicated by the system configuration information is updated, as in the first embodiment described above. This generates a binary “phase flag”.
位相制御部 3 1は、 位相比較部 6 3によって計測された位相差が既定の下限値 を上回る期間には、 後述する指令に付加されるべき 「変化率」 を上述した 「位相 偏差」 に応じて下記の値として算出する。  During the period when the phase difference measured by the phase comparison unit 63 exceeds the predetermined lower limit, the phase control unit 31 determines the `` change rate '' to be added to the command described later according to the `` phase deviation '' described above. Calculated as follows.
• 「位相偏差」が 0度以上であり、 かつ 1 8 0度未満である場合には、 その「位 相偏差」 に対する正の単調非減少関数として与えられる値  • If the “phase deviation” is greater than or equal to 0 degrees and less than 180 degrees, the value given as a positive monotone non-decreasing function for that “phase deviation”
• 「位相偏差」 が 1 8 0度以上であり、 かつ 3 6 0度未満である場合には、 そ の 「位相偏差」 と 1 8 0度との差に対する正の単調非減少関数として与えられる 値  • If the “phase deviation” is greater than or equal to 180 degrees and less than 360 degrees, it is given as a positive monotone non-decreasing function for the difference between that “phase deviation” and 180 degrees value
さらに、 位相制御部 6 4は、 位相比較部 6 3によって計測された位相差が既定 の下限値を上回る期間には、下記の指令を同期発振器 6 1に所定の頻度で与える。 Further, the phase controller 64 gives the following command to the synchronous oscillator 61 at a predetermined frequency during a period in which the phase difference measured by the phase comparator 63 exceeds a predetermined lower limit.
• 「位相フラグ」 の論理値が 「0」 であり、 かつ 「位相偏差」 が 1 8 0度未満 である場合には、 上述した「変化率」で「同期クロック信号」の位相を進める (あ るいは遅らせる) べき旨を示す指令 • If the logical value of the “phase flag” is “0” and the “phase deviation” is less than 180 degrees, the phase of the “synchronous clock signal” is advanced by the “change rate” described above. Or delay) Directive to indicate
• 「位相フラグ」 の論理値が 「0」 であり、 かつ 「位相偏差」 が 1 8 0度以上 である場合には、 上述した 「変化率」 で 「同期クロック信号 j の位相を遅らせる • If the logic value of the “phase flag” is “0” and the “phase deviation” is 180 degrees or more, “delay the phase of the synchronous clock signal j with the“ change rate ”described above.
(あるいは進める) べき旨を示す指令 Directive to indicate (or proceed)
• 「位相フラグ」 の論理値が 「 1」 であり、 かつ 「位相偏差」 が 1 8 0度未満 である場合には、 上述した 「変化率」 で 「同期クロック信号」 の位相を遅らせる • If the logic value of the “phase flag” is “1” and the “phase deviation” is less than 180 degrees, the phase of the “synchronous clock signal” is delayed by the “change rate” described above.
(あるいは進める) べき旨を示す指令 • 「位相フラグ」 の論理値が 「 1」 であり、 かつ 「位相偏差」 が 1 8 0度以上 である場合には、 上述した「変化率」で「同期クロック信号」の位相を進める (あ るいは遅らせる) べき旨を示す指令 Directive to indicate (or proceed) • If the logic value of the “phase flag” is “1” and the “phase deviation” is 180 degrees or more, the phase of the “synchronous clock signal” is advanced by the “change rate” described above. Or delay) Directive to indicate
同期発振器 6 1は、 このような指令に含まれる上述した 「変化率」 に相当する 値に亘つて小さな値、 または大きな値に既述の分周比を間欠的に設定することに よって、 「同期クロック信号」 の位相を適宜進め、 もしくは遅らせる。  The synchronous oscillator 61 intermittently sets the above-mentioned division ratio to a small value or a large value over a value corresponding to the above-mentioned “rate of change” included in such a command, thereby obtaining “ Advance or delay the phase of the “synchronous clock signal” as appropriate.
すなわち、 同期発振器 6 1によって生成される 「同期クロック」 の位相は、 系 構成が更新される度に特定の方向に偏ることなく、 かつ目標値との差が大きいほ ど高い頻度あるいは速度で可変される。  In other words, the phase of the “synchronous clock” generated by the synchronous oscillator 61 is not biased in a specific direction every time the system configuration is updated, and changes with a higher frequency or speed as the difference from the target value increases. Is done.
したがって、 本実施形態によれば、 「現用伝送路」 が頻繁に更新される場合で あっても、 既述の 「位相偏差」 の如何にかかわらず、 「位相フラグ」 の論理値に 基づいて一定の速度でその 「位相偏差」 の圧縮が図られる第一の実施形態に比べ て確度高く、 その位相が特定の方向に更新され続けることが回避される。  Therefore, according to the present embodiment, even if the “working transmission path” is updated frequently, it is constant based on the logical value of the “phase flag” regardless of the “phase deviation” described above. It is more accurate than in the first embodiment in which the "phase deviation" is compressed at the speed of, and the phase is prevented from being continuously updated in a specific direction.
なお、 本実施形態では、 「位相偏差」は、 系構成情報に基づいて識別された「先 行現用伝送路」 と 「現用伝送路」 とにそれそれ対応するクロック信号の位相差と して計測されている。  In the present embodiment, the “phase deviation” is measured as the phase difference between the clock signal corresponding to the “working transmission line” and the “working transmission line” identified based on the system configuration information. Have been.
しかし、 本発明はこのような構成に限定されず、 例えば、 系構成情報の如何に かかわらず、 「位相偏差」 がクロック信号 0の位相とクロック信号 1との位相の 差として計測され、 かつ伝送路 6 0 -1、 6 0 -2の内、 その系構成情報で示される 「先行現用伝送路」 ( 「現用伝送路」 ) に応じて、 この 「位相偏差」 が 1 8 0度 との和 (または 3 6 0度との差) に変換された後に、 既述の演算に適用されるこ とによって、 構成の簡略化、 もしくは機能や負荷の分散が図られてもよい。 また、 本実施形態では、 「位相偏差」 に適応した異なる 「変化率」 で 「同期ク ロック信号」 の位相が変更されている。  However, the present invention is not limited to such a configuration. For example, regardless of the system configuration information, “phase deviation” is measured as the difference between the phase of the clock signal 0 and the phase of the clock signal 1 and transmitted. According to the “preceding working transmission line” (“working transmission line”) indicated by the system configuration information, the “phase deviation” is the sum of 180 ° and 180 °. (Or a difference from 360 degrees), and then applied to the above-described operation, thereby simplifying the configuration or distributing functions and loads. In the present embodiment, the phase of the “synchronous clock signal” is changed at a different “change rate” adapted to the “phase deviation”.
しかし、 本発明はこのような構成に限定されず、 例えば、 所望の精度で 「位相 偏差」 の圧縮が図られるならば、 「位相偏差」 の如何にかかわらず一定の 「変化 率」 で 「同期クロック信号」 の位相が変更されることによって、 構成の簡略化お よび応答性の向上が図られてもよい。  However, the present invention is not limited to such a configuration. For example, if the “phase deviation” can be compressed with a desired accuracy, the “synchronization” can be performed at a constant “rate of change” regardless of the “phase deviation”. By changing the phase of the “clock signal”, the configuration may be simplified and the responsiveness may be improved.
さらに、 本実施形態では、 既述の第一の実施形態に本発明が適用されている。 しかし、 本発明はこのような構成に限定されず、 例えば、 第二の実施形態に本 発明が併せて適用されることによって、 「同期クロック信号」 の位相が実際に変 更された移相量の積算値が大きいほど、 高速にその位相が更新されてもよい。 また、 本実施形態では、 位相差計測部 4 1によって計測された 「位相偏差」 に 応じて既述の 「変化率」 が更新され、 その 「変化率」 で 「同期クロック信号」 の 位相が更新されている。 Further, in the present embodiment, the present invention is applied to the above-described first embodiment. However, the present invention is not limited to such a configuration. For example, by applying the present invention to the second embodiment, the phase shift amount of the phase of the “synchronous clock signal” that is actually changed The phase may be updated at a higher speed as the integrated value of is larger. In the present embodiment, the “change rate” described above is updated according to the “phase deviation” measured by the phase difference measurement unit 41, and the phase of the “synchronous clock signal” is updated by the “change rate”. Have been.
しかし、 本発明はこのような構成に限定されず、 所望の確度で伝送遅延時間が 一定に保たれ、 かつスリップの発生が回避されるならば、 例えば、 図 3に点線で 示すように位相差計測部 4 1が既述の第一の実施形態に付加され、 かつ始動時に 限って、 「同期クロック信号」 の位相が更新されるべき方向と値との双方もしく は何れか一方の決定に、 その位相差計測部 4 1によって計測された 「位相偏差」 が供されることによって、 無用な応答性の低下や消費電力の増加が回避されても よい。  However, the present invention is not limited to such a configuration. If the transmission delay time is kept constant with a desired accuracy and the occurrence of slip is avoided, for example, the phase difference as shown by the dotted line in FIG. The measuring unit 41 is added to the above-described first embodiment, and only at the time of start-up, the phase and / or value of the phase of the “synchronous clock signal” is determined for determining one or both values. By providing the “phase deviation” measured by the phase difference measurement unit 41, unnecessary decrease in responsiveness and increase in power consumption may be avoided.
さらに、 上述した各実施形態では、 系構成情報で示される 「現用伝送路」 は、 既述の指令が生成される時点毎に識別されている。  Further, in each of the above-described embodiments, the “working transmission line” indicated by the system configuration information is identified at each time when the above-described command is generated.
しかし、 本発明はこのような構成に限定されず、 例えば、 「同期クロック信号」 の位相が更新されている期間に 「現用伝送路」 が更新された場合には、 その期間 の内、 「系構成時点」 以降の期間にこの 「同期クロック信号」 の位相が更新され るべき方向が同期発振器 6 1によって自立的に (あるいは、 位相制御部 3 1、 3 1 Aとの連係の下で) 反対に設定されることによって、 応答性に併せて、 伝送品 質およびサービス品質がさらに高められてもよい。  However, the present invention is not limited to such a configuration. For example, if the “working transmission path” is updated during the period in which the “synchronous clock signal” is updated, the “system” The direction in which the phase of this “synchronous clock signal” should be updated during the period after the “configuration time” is independently autonomously by the synchronous oscillator 61 (or in cooperation with the phase control units 31 and 31A). By setting to, transmission quality and service quality may be further enhanced along with responsiveness.
[実施形態 4 ]  [Embodiment 4]
図 6は、 本発明の第四の実施形態を示す図である。  FIG. 6 is a diagram showing a fourth embodiment of the present invention.
図において、 伝送方向が互いに反対であり、 かつ隣接する 2つの伝送区間に敷 設された 2つのリンク 5 1 -0、 5 1 -1は、縦続接続されたィン夕フェース部 5 2、 通信制御部 5 3およびィン夕フェース部 5 4によってこれらの伝送区間に区分さ れる。 ィン夕フエ一ス部 5 2に備えられ、 かつ上述したリンク 5 1 -0に対応した 出力には、 クロック再生部 5 5の入力が接続される。 イン夕フェース部 5 4に備 えられ、 かつ上述したリンク 5 1 -1に対応した出力には、 クロック再生部 5 6の 入力が接続される。 クロック再生部 5 5、 5 6の出力はクロック切り替え回路 5 7の対応する入力に接続され、 そのクロック切り替え回路 5 7の出力は通信制御 部 5 3のクロック入力に接続される。 通信制御部 5 3およびクロック切り替え回 路 5 7の制御入力には、 系構成情報が与えられる。 In the figure, the transmission directions are opposite to each other, and two links 51-0 and 51-1 laid in two adjacent transmission sections are cascaded interface sections 52 and communication These transmission sections are divided by the control section 53 and the interface section 54. An input of a clock recovery unit 55 is connected to an output provided in the interface unit 52 and corresponding to the link 51-0 described above. The output provided in the interface section 54 and corresponding to the link 51-1 described above is connected to the clock recovery section 56. Input is connected. The outputs of the clock recovery units 55 and 56 are connected to the corresponding inputs of the clock switching circuit 57, and the output of the clock switching circuit 57 is connected to the clock input of the communication control unit 53. System configuration information is given to control inputs of the communication control unit 53 and the clock switching circuit 57.
以下、 図 6を参照して本発明の第四の実施形態の動作を説明する。  Hereinafter, the operation of the fourth embodiment of the present invention will be described with reference to FIG.
ィン夕フェース部 5 2はリンク 5 1 -0を介して受信された信号 (以下、 「信号 0」 という。 ) を通信制御部 5 3およびクロック再生部 5 5に与え、 かつイン夕 フェース部 5 4はリンク 5 1 -1を介して受信された信号 (以下、 「信号 1」 とい う。 ) を通信制御部 5 3およびクロック再生部 5 6に与える。  The interface section 52 supplies a signal (hereinafter, referred to as “signal 0”) received via the link 51-0 to the communication control section 53 and the clock recovery section 55, and the interface section. Numeral 54 gives a signal (hereinafter, referred to as "signal 1") received via the link 51-1 to the communication controller 53 and the clock reproducer 56.
クロック再生部 5 5は、 信号 0に所定の形式で重畳され、 その信号 0に同期し たクロック信号 (以下、 「クロック信号 0」 という。 ) を再生する。  The clock reproducing unit 55 reproduces a clock signal superimposed on the signal 0 in a predetermined format and synchronized with the signal 0 (hereinafter, referred to as “clock signal 0”).
また、 クロック再生部 5 6は、 信号 1に所定の形式で重畳され、 その信号 1に 同期したクロック信号 (以下、 「クロック信号 1」 という。 ) を再生する。  The clock reproducing unit 56 reproduces a clock signal superimposed on the signal 1 in a predetermined format and synchronized with the signal 1 (hereinafter, referred to as “clock signal 1”).
クロック切り替え回路 5 7は、 既述の第一ないし第三の実施形態の何れかにか かわるクロック切り替え回路として構成され、 「現用伝送路」 に同期したクロッ ク信号を安定に供給する。  The clock switching circuit 57 is configured as a clock switching circuit according to any of the first to third embodiments described above, and stably supplies a clock signal synchronized with the “working transmission line”.
通信制御部 5 3は、 そのクロック信号に同期し、 かつ所定の伝送方式、 通信方 式および通信手順に基づいて通信制御を行う。  The communication control unit 53 performs communication control in synchronization with the clock signal and based on a predetermined transmission method, communication method, and communication procedure.
このようなクロック信号については、 既述の系構成情報に応じて系構成 ( 「現 用伝送路」 ) が頻繁に更新され、 または、 上述したクロック信号 0とクロック信 号 1との位相の差が広範に変動し得る場合であっても、 その系構成に際して位相 に大幅な跳躍が生じることなく、この位相の誤差や変動が最小限度に抑えられる。 このように本実施形態によれば、 通信制御部 5 3によって行われる通信制御の 過程では、 伝送遅延時間の無用な積算に併せて、 「同期クロック信号」 の位相が 特定の方向にのみ可変されることに起因するスリップの発生が回避されるので、 サービス品質および伝送品質が高く安定に維持される。  Regarding such a clock signal, the system configuration (“working transmission line”) is frequently updated according to the system configuration information described above, or the phase difference between the clock signal 0 and the clock signal 1 described above. Even if can vary widely, this phase error and variation can be minimized without significant jumps in phase during system configuration. As described above, according to the present embodiment, in the process of the communication control performed by the communication control unit 53, the phase of the “synchronous clock signal” is changed only in a specific direction along with the unnecessary integration of the transmission delay time. Since the occurrence of a slip due to the transmission is avoided, the service quality and the transmission quality are maintained at a high level and stably.
なお、 上述した各実施形態では、 二重化された伝送路を構成する 2つの伝送路 ゃリンクに個別に対応したクロック信号の内、 現用系に対応するクロック信号に 同期したクロック信号を得るために、 本発明が適用されている。 しかし、 本発明は、 このような二重化された系に限定されず、 N + 1方式その 他の方式に基づいて冗長に構成された系にも、 同様に適用可能である。 In each of the above-described embodiments, in order to obtain a clock signal synchronized with the clock signal corresponding to the active system among the two transmission lines constituting the duplexed transmission line and the clock signal individually corresponding to the link, The present invention has been applied. However, the present invention is not limited to such a duplicated system, and is similarly applicable to a system configured redundantly based on the N + 1 system or another system.
また、 上述した各実施形態では、 二重化された伝送系に本発明が適用されてい o  Further, in each of the above-described embodiments, the present invention is applied to a duplex transmission system.
しかし、 本発明は、 このような伝送系に限定されず、 冗長に備えられた要素に 個別に対応したクロックが与えられ、 これらの要素の何れかが所定の系構成の下 で現用に供される多様なシステムや装置において、保守や運用の過程で適宜脱着、 閉塞、 復旧の何れかが図られるパッケージ、 ユニッ ト、 シエルフの何れにも、 同 様に適用可能である。  However, the present invention is not limited to such a transmission system, and a clock corresponding to each of the redundantly provided elements is provided, and any of these elements is provided for a current operation under a predetermined system configuration. In a variety of systems and devices, the same can be applied to any of packages, units, and shelves that can be detached, closed, or restored as needed in the course of maintenance and operation.
さらに、 上述した各実施形態では、 セレクタ 6 0 sの後段に位相同期発振器 6 5が備えられている。  Further, in each of the above-described embodiments, the phase-locked oscillator 65 is provided after the selector 60 s.
しかし、 本発明はこのような構成に限定されず、 系構成に適応して安定に得ら れるべき所望の周波数のクロック信号がセレクタ 6 0 sによって直接与えられる 場合には、 上述した位相同期発振器 6 5は備えられなくてもよい。  However, the present invention is not limited to such a configuration, and when a clock signal of a desired frequency to be stably obtained in accordance with the system configuration is directly provided by the selector 60 s, the above-described phase-locked oscillator 6 5 need not be provided.
また、 「クロック信号 0」 、 「クロック信号 1」 に同期し、 これらのクロック 信号の周波数より速度が高い所望の次群の速度を与えるクロック信号の生成を目 的として位相同期発振器 6 5が備えられる場合には、 その位相同期発振器 6 5に は、 前段に配置されたクロック切り替え回路との連係の下で所望の時定数や応答 性を確保可能な回路や周波数合成の方式が適用されてもよい。  The phase-locked oscillator 65 is provided for the purpose of generating a clock signal that synchronizes with the “clock signal 0” and “clock signal 1” and provides a desired next-group speed higher in speed than the frequency of these clock signals. In this case, a circuit capable of securing a desired time constant and responsiveness and a method of frequency synthesis are applied to the phase-locked oscillator 65 in cooperation with the clock switching circuit disposed in the preceding stage. Good.
さらに、 上述した各実施形態では、 既述の伝送路 6 2 -0、 6 2 -1やリンク 5 1 -0、 5 1 -1 に適用された伝送方式、 転送モード、 通信手順に併せて、 これらの伝 送路 6 2 -0、 6 2 -1やリンク 5 1 -0、 5 1 -1によって構成される網のトポロジー が具体的に示されていない。  Further, in each of the above-described embodiments, in addition to the transmission method, the transfer mode, and the communication procedure applied to the transmission paths 62-0 and 62-1 and the links 51-0 and 51-1 described above, The topology of the network composed of these transmission paths 62-0, 62-1, and links 51-0, 51-1 is not specifically shown.
しかし、 これらの伝送方式、 転送モード、 通信手順およびトポロジーについて は、 伝送路 6 2 -0、 6 2 -1やリンク 5 1 -0、 „5 1 -1が冗長に構成された網や伝送 系の要素である限り、 如何なるものであってもよい。  However, regarding these transmission methods, transfer modes, communication procedures, and topologies, transmission lines 62-0 and 62-1 and links 51-0 and „51-1 have redundant networks and transmission systems. Any element may be used as long as it is an element.
また、 上述した各実施形態では、 「クロック信号 0」 、 「クロック信号 1」 の 供給源が具体的に示されていない。  In each of the above-described embodiments, the supply sources of “clock signal 0” and “clock signal 1” are not specifically shown.
しかし、 これらの 「クロック信号 0」 、 「クロック信号 1」 は、 冗長に構成さ れた系に個別に対応し、 かつ並行して供給される限り、 如何なる供給源によって 供給されてもよい。 However, these “Clock signal 0” and “Clock signal 1” are redundantly configured. It can be supplied by any source as long as it is individually addressed and supplied in parallel.
さらに、 このような 「クロック信号 0」 、 「クロック信号 1」 の供給に供され る伝送路は、 伝送区間毎に供給され、 あるいは D C Sを介して供給されなくても よく、 伝送系や網に形成された特定のパスやリンクと、 これらのパスやリンクと は別に敷設された専用のリンクとの何れであってもよい。  Further, the transmission line used for supplying such “clock signal 0” and “clock signal 1” may be supplied for each transmission section or may not be supplied via DCS, and may be used for transmission systems and networks. It may be either a specific path or link formed or a dedicated link laid separately from these paths and links.
また、 上述した各実施形態では、 同期発振器 6 1は、 可変分周器として構成さ れている。  Further, in each of the above-described embodiments, the synchronous oscillator 61 is configured as a variable frequency divider.
しかし、 このような同期発振器 6 1は、 「先行現用伝送路」 に同期して所望の 周波数の 「同期クロック信号」 を生成できるならば、 如何なる周波数合成の方式 に基づいて実現されてもよい。  However, such a synchronous oscillator 61 may be realized based on any frequency synthesizing method as long as a “synchronous clock signal” having a desired frequency can be generated in synchronization with the “preceding working transmission line”.
さらに、 上述した各実施形態では、 「同期クロック信号」 の位相は、 既述の分 周比が所定の頻度で間欠的に変更されることによって更新されている。  Further, in each of the above-described embodiments, the phase of the “synchronous clock signal” is updated by intermittently changing the above-described division ratio at a predetermined frequency.
しかし、 このような 「同期クロック信号」 の位相は、 例えば、 同期発振器 6 1 の出力端あるいは後段に配置された遅延回路(アナログ回路で構成されてもよく、 かつシフ トレジスタその他のディジタル回路として構成されてもよい。 ) の遅延 量が可変されることによって更新されてもよい。  However, the phase of such a “synchronous clock signal” is determined by, for example, the output terminal of the synchronous oscillator 61 or a delay circuit (an analog circuit that may be configured as an analog circuit, and a shift register or other digital circuit). It may be updated by changing the amount of delay of.
また、 本発明は、 上述した実施形態に限定されるものではなく、 本発明の範囲 において、 多様な形態による実施形態が可能であり、 かつ構成装置の一部もしく は全てに如何なる改良が施されてもよい。 産業上の利用の可能性  Further, the present invention is not limited to the above-described embodiments, and various embodiments can be made within the scope of the present invention, and any or all of the constituent devices can be improved in any way. May be done. Industrial applicability
本発明にかかわる第一のクロック切り替え回路では、 出力されるクロック信号 の位相の誤差が系構成の更新に応じて過大となることが回避される。  In the first clock switching circuit according to the present invention, it is possible to prevent the phase error of the output clock signal from becoming too large according to the update of the system configuration.
また、 本発明にかかわる第二のクロック切り替え回路では、 出力されるクロッ ク信号の位相の誤差が小さな値に維持される。  In the second clock switching circuit according to the present invention, the phase error of the output clock signal is maintained at a small value.
さらに、 本発明にかかわる第三および第六のクロック切り替え回路では、 出力 されるクロック信号の位相の誤差が精度よく小さな値に維持される。  Furthermore, in the third and sixth clock switching circuits according to the present invention, the phase error of the output clock signal is accurately maintained at a small value.
また、 本発明にかかわる第四のクロック切り替え回路では、 個々の要素に対応 したクロック信号の位相が広範に変化し、 これらの位相が大幅に異なる場合であ つても、 出力されるクロック信号の位相は、 無用な変動を伴うことなく適正に、 かつ安定に維持される。 In the fourth clock switching circuit according to the present invention, each element is Even if the phase of the clock signal changes widely, and these phases differ greatly, the phase of the output clock signal is maintained properly and stably without unnecessary fluctuation.
さらに、 本発明にかかわる第五のクロック切り替え回路では、 同期クロックの 位相が可変されるべき方向の決定にかかわる処理が簡略化され、 かつ系構成に対 する応答性が安定に維持される。  Furthermore, in the fifth clock switching circuit according to the present invention, the processing for determining the direction in which the phase of the synchronous clock should be varied is simplified, and the responsiveness to the system configuration is stably maintained.
また、 本発明にかかわる第七のクロック切り替え回路では、 応答性が高められ る。  Further, in the seventh clock switching circuit according to the present invention, the response is improved.
さらに、 本発明にかかわる第八のクロック切り替え回路では、 多様な機器ゃシ ステムに対する柔軟な適用が可能となる。  Further, in the eighth clock switching circuit according to the present invention, it is possible to flexibly apply to various device systems.
また、 本発明にかかわる第一ないし第四のノード装置では、 クロック信号の位 相が特定の方向のみに可変され続けることに起因するスリップの発生と、 伝送遅 延時間の無用な積算とが回避され、 サービス品質および伝送品質が高く安定に維 持される。  Further, in the first to fourth node devices according to the present invention, it is possible to avoid the occurrence of slips due to the phase of the clock signal being continuously varied only in a specific direction and the unnecessary integration of the transmission delay time. The service quality and transmission quality are kept high and stable.
したがって、 本発明が適用された機器やシステムでは、 総合的な信頼性および 性能が高められ、 かつ安定に維持される。  Therefore, in the device or system to which the present invention is applied, the overall reliability and performance are improved and the device is stably maintained.

Claims

請求の範囲 The scope of the claims
( 1 ) 冗長な系を構成する複数の要素に個別に対応した複数のク口ック信号の 内、 現用の要素に対応したクロック信号を系構成に基づいて選択する第一の選択 手段と、 (1) first selection means for selecting a clock signal corresponding to a working element based on the system configuration from among a plurality of connection signals individually corresponding to a plurality of elements constituting a redundant system;
前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク ロック信号に同期した同期クロック信号を生成するクロック再生手段と、  Clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to a previously used element of the plurality of clock signals;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によって計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク 口ック信号を選択する第二の選択手段とを備え、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. And a second selecting means for selecting a clock signal,
前記クロック再生手段は、  The clock reproducing means,
前記現用の要素が更新される度に交互に反対の方向へ前記同期クロック信号の 位相を段階的に可変し、 前記位相差計測手段によって計測される位相の差を圧縮 する  Each time the working element is updated, the phase of the synchronous clock signal is changed stepwise in the opposite direction alternately, and the phase difference measured by the phase difference measuring means is compressed.
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 2 ) 冗長な系を構成する複数の要素に個別に対応した複数のクロック信号の 内、 現用の要素に対応したクロック信号を系構成に基づいて選択する第一の選択 手段と、  (2) first selection means for selecting, based on the system configuration, a clock signal corresponding to a working element among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system;
前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク 口ック信号に同期した同期クロック信号を生成するクロック再生手段と、  Clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to an element which has been used in advance among the plurality of clock signals;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によって計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク 口ック信号を選択する第二の選択手段とを備え、 前記クロック再生手段は、 A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. And a second selecting means for selecting a clock signal, The clock reproducing means,
前記位相差計測手段によって計測された位相の差と、 前記同期クロック信号の 位相が先行して実際に可変された移相量の総和とが減少する移相量に亘つてその 同期クロック信号の位相を段階的に可変する  The phase of the synchronous clock signal over a phase shift amount in which the phase difference measured by the phase difference measuring means and the sum of the phase shift amounts actually changed in advance of the phase of the synchronous clock signal decrease. Step by step
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 3 ) 請求の範囲 2に記載のクロヅク切り替え回路において、  (3) In the clock switching circuit according to claim 2,
前記クロック再生手段は、  The clock reproducing means,
前記移相量の総和の絶対値が大きいほど、 高速に前記同期クロック信号の位相 を可変する  The larger the absolute value of the sum of the phase shift amounts, the faster the phase of the synchronous clock signal is varied.
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 4 ) 冗長な系を構成する複数の要素に個別に対応した複数のクロック信号の 内、 現用の要素に対応したクロック信号を系構成に基づいて選択する第一の選択 手段と、  (4) first selection means for selecting, based on the system configuration, a clock signal corresponding to a working element among a plurality of clock signals individually corresponding to a plurality of elements constituting a redundant system;
前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク ロック信号に同期した同期クロック信号を生成するクロック再生手段と、  Clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to a previously used element of the plurality of clock signals;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によつて計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク ロック信号を選択する第二の選択手段と、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected, and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. Second selection means for selecting a lock signal;
前記複数のクロック信号の内、 現用に供されている要素とその要素に先行して 現用に供されていた要素に個別に対応したクロック信号の位相の差を監視する位 相差監視手段とを備え、  Among the plurality of clock signals, there is provided a phase difference monitoring means for monitoring a phase difference of a clock signal individually corresponding to an element currently used and an element currently used prior to the element. ,
前記クロック再生手段は、 。  The clock reproducing means includes:
前記現用の要素が更新される度に、 前記位相差監視手段によって監視された位 相の差が最短で圧縮される方向に前記同期クロック信号の位相を段階的に可変し、 前記位相差計測手段によって計測される位相の差を圧縮する  Each time the working element is updated, the phase of the synchronous clock signal is varied stepwise in a direction in which the phase difference monitored by the phase difference monitoring means is compressed in the shortest time. The phase difference measured by
ことを特徴とするクロック切り替え回路。 A clock switching circuit, characterized in that:
( 5 ) 二重化された系を構成する 2つの要素に個別に対応した 2つのクロック 信号の内、 現用の要素に対応したクロック信号を系構成に基づいて選択する第一 の選択手段と、 (5) First selection means for selecting, based on the system configuration, a clock signal corresponding to a working element among two clock signals individually corresponding to two elements constituting a duplicated system,
前記 2つのクロック信号の内、 先行して現用に供されていた要素に対応するク 口ック信号に同期した同期クロック信号を生成するクロック再生手段と、  Clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to an element which has been provided for use in advance among the two clock signals;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ始動時、 および前記位相差計測手段によって 計測された位相の差が所定の閾値を下回ったときに、 前記第一の選択手段によつ て選択されたクロック信号を選択する第二の選択手段と、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, Selecting the synchronous clock signal generated by the clock regenerating means, and at the time of starting, and when the phase difference measured by the phase difference measuring means falls below a predetermined threshold value, Second selecting means for selecting the selected clock signal,
前記 2つのクロック信号の内、 現用に供されている要素とその要素に先行して 現用に供されていた要素に個別に対応したクロック信号の位相の差を監視する位 相差監視手段とを備え、  And a phase difference monitoring means for monitoring a phase difference between the clock signal individually corresponding to the element currently used and the element currently used prior to the element among the two clock signals. ,
前記クロック再生手段は、  The clock reproducing means,
前記現用の要素が初めて確定したときに、 前記位相差監視手段によって監視さ れた位相の差が最短で圧縮される方向に前記同期クロック信号の位相を段階的に 可変し、 その現用の要素が更新される度に、 交互に反対の方向へこの同期クロッ ク信号の位相を段階的に可変することによって、 前記位相差計測手段によって計 測される位相の差を圧縮する  When the working element is determined for the first time, the phase of the synchronous clock signal is varied stepwise in a direction in which the phase difference monitored by the phase difference monitoring means is compressed in the shortest time, and the working element is Each time the phase difference is updated, the phase difference measured by the phase difference measuring means is compressed by changing the phase of the synchronous clock signal stepwise in the opposite direction.
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 6 ) 請求の範囲 4に記載のクロヅク切り替え回路において、  (6) In the clock switching circuit according to claim 4,
前記クロック再生手段は、  The clock reproducing means,
前記位相監視手段によって監視された位相の差の絶対値が大きいほど、 高速に 前記同期クロック信号の位相を可変する  The greater the absolute value of the phase difference monitored by the phase monitoring means, the faster the phase of the synchronous clock signal is varied.
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 7 ) 請求の範囲 5に記載のクロック切り替え回路において、  (7) In the clock switching circuit according to claim 5,
前記クロック再生手段は、  The clock reproducing means,
前記位相監視手段によって監視された位相の差の絶対値が大きいほど、 高速に 前記同期クロック信号の位相を可変する The faster the absolute value of the phase difference monitored by the phase monitoring means, the faster Variable phase of the synchronous clock signal
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 8 ) 請求の範囲 5に記載のクロヅク切り替え回路において、  (8) In the clock switching circuit according to claim 5,
前記クロック再生手段は、  The clock reproducing means,
前記同期クロック信号の位相を可変している期間の内、 前記現用の要素が更新 された時点以降の時間に、 この同期クロック信号の位相が可変されるべき方向を 反転させる  In the period in which the phase of the synchronous clock signal is varied, the direction in which the phase of the synchronous clock signal should be varied is inverted at a time after the point at which the working element is updated.
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 9 ) 請求の範囲 1に記載のクロック切り替え回路において、  (9) In the clock switching circuit according to claim 1,
所望の応答性を有し、 かつ前記第二の選択手段によって選択された同期クロッ ク信号またはクロック信号に周波数合成処理を施すことによって信号を生成する 周波数合成手段を有する  A frequency synthesizing unit having a desired response and generating a signal by subjecting the synchronous clock signal or the clock signal selected by the second selecting unit to a frequency synthesizing process;
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 1 0 ) 請求の範囲 2に記載のクロック切り替え回路において、  (10) In the clock switching circuit according to claim 2,
所望の応答性を有し、 かつ前記第二の選択手段によって選択された同期クロッ ク信号またはクロック信号に周波数合成処理を施すことによって信号を生成する 周波数合成手段を有する  A frequency synthesizing unit having a desired response and generating a signal by subjecting the synchronous clock signal or the clock signal selected by the second selecting unit to a frequency synthesizing process;
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 1 1 ) 請求の範囲 4に記載のクロック切り替え回路において、  (11) In the clock switching circuit according to claim 4,
所望の応答性を有し、 かつ前記第二の選択手段によって選択された同期クロッ ク信号またはクロック信号に周波数合成処理を施すことによって信号を生成する 周波数合成手段を有する  A frequency synthesizing unit having a desired response and generating a signal by subjecting the synchronous clock signal or the clock signal selected by the second selecting unit to a frequency synthesizing process;
ことを特徴とするクロック切り替え回路。  A clock switching circuit, characterized in that:
( 1 2 ) 請求の範囲 5に記載のクロック切り替え回路において、  (1 2) In the clock switching circuit according to claim 5,
所望の応答性を有し、 かつ前記クロック再生手段によって生成された同期クロ ックに周波数合成を施すことによって信号を生成する周波数合成手段を有する ことを特徴とするクロック切り替え回路。  A clock switching circuit having a desired responsiveness and having a frequency synthesizing means for generating a signal by performing frequency synthesis on a synchronous clock generated by the clock reproducing means.
( 1 3 ) 冗長に構成された網とのィン夕フェースをとる網ィン夕フェース手段 と、 前記網を構成する複数の要素に個別に対応した複数のクロック信号の内、 現用 の要素に対応したクロック信号を系構成に基づいて選択する第一の選択手段と、 前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク 口ック信号に同期した同期ク口ック信号を生成するク口ック再生手段と、 (13) network interface means for taking an interface with a redundantly configured network; First selecting means for selecting a clock signal corresponding to a working element from among a plurality of clock signals individually corresponding to a plurality of elements constituting the network based on a system configuration; and A clip reproducing means for generating a synchronous clip signal synchronized with a clip signal corresponding to the element which has been previously used in operation;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によって計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク 口ック信号を選択する第二の選択手段と、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. A second selecting means for selecting a clock signal;
前記第二の選択手段によって選択された同期クロック信号およびクロック信号 に同期して前記網ィンタフェース手段と連係し、 所定の通信制御を行う通信制御 手段とを備え、  Communication control means for performing predetermined communication control in cooperation with the network interface means in synchronization with the synchronous clock signal and the clock signal selected by the second selection means,
前記クロック再生手段は、  The clock reproducing means,
前記現用の要素が更新される度に交互に反対の方向へ前記同期クロック信号の 位相を段階的に可変し、 前記位相差計測手段によって計測される位相の差を圧縮 する  Each time the working element is updated, the phase of the synchronous clock signal is changed stepwise in the opposite direction alternately, and the phase difference measured by the phase difference measuring means is compressed.
ことを特徴とするノード装置。  A node device characterized by the above-mentioned.
( 1 4 ) 冗長に構成された網とのィン夕フェースをとる網ィン夕フェース手段 と、  (14) network interface means for taking an interface with a redundantly configured network;
前記網を構成する複数の要素に個別に対応した複数のクロック信号の内、 現用 の要素に対応したクロック信号を系構成に基づいて選択する第一の選択手段と、 前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク ロック信号に同期した同期クロック信号を生成するクロック再生手段と、  First selecting means for selecting a clock signal corresponding to a working element from among a plurality of clock signals individually corresponding to a plurality of elements constituting the network based on a system configuration; and A clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to the element previously used for the current operation;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によって計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク ロック信号を選択する第二の選択手段と、 A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected, and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. Second selection means for selecting a lock signal;
前記第二の選択手段によって選択された同期クロック信号およびクロック信号 に同期して前記網ィン夕フェース手段と連係し、 所定の通信制御を行う通信制御 手段とを備え、  Communication control means for performing predetermined communication control in cooperation with the network interface means in synchronization with the synchronous clock signal and the clock signal selected by the second selection means,
前記クロック再生手段は、  The clock reproducing means,
前記位相差計測手段によって計測された位相の差と、 前記同期クロック信号の 位相が先行して実際に可変された移相量の総和とが減少する移相量に亘つてその 同期クロック信号の位相を段階的に可変する  The phase of the synchronous clock signal over a phase shift amount in which the phase difference measured by the phase difference measuring means and the sum of the phase shift amounts actually changed in advance of the phase of the synchronous clock signal decrease. Step by step
ことを特徴とするノード装置。  A node device characterized by the above-mentioned.
( 1 5 ) 冗長に構成された網とのインタフェースをとる網インタフェース手段 と、  (15) network interface means for interfacing with a redundantly configured network;
前記網を構成する複数の要素に個別に対応した複数のクロック信号の内、 現用 の要素に対応したクロック信号を系構成に基づいて選択する第一の選択手段と、 前記複数のクロック信号の内、 先行して現用に供されていた要素に対応するク ロック信号に同期した同期クロック信号を生成するクロック再生手段と、  First selecting means for selecting a clock signal corresponding to a working element from among a plurality of clock signals individually corresponding to a plurality of elements constituting the network based on a system configuration; and A clock recovery means for generating a synchronous clock signal synchronized with a clock signal corresponding to the element previously used for the current operation;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ前記位相差計測手段によつて計測された位相 の差が所定の閾値を下回ったときに、 前記第一の選択手段によって選択されたク ロック信号を選択する第二の選択手段と、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, When the synchronous clock signal generated by the clock recovery means is selected, and the phase difference measured by the phase difference measurement means falls below a predetermined threshold, the clock selected by the first selection means is selected. Second selection means for selecting a lock signal;
前記複数のクロック信号の内、 現用に供されている要素とその要素に先行して 現用に供されていた要素に個別に対応したクロック信号の位相の差を監視する位 相差監視手段と、  Phase difference monitoring means for monitoring the phase difference between the clock signal individually corresponding to the element currently used and the element previously used for the element among the plurality of clock signals,
前記第二の選択手段によって選択された同期クロック信号およびクロック信号 に同期して前記網ィン夕フェース手段と連係し、 所定の通信制御を行う通信制御 手段とを備え、  Communication control means for performing predetermined communication control in cooperation with the network interface means in synchronization with the synchronous clock signal and the clock signal selected by the second selection means,
前記クロック再生手段は、  The clock reproducing means,
前記現用の要素が更新される度に、 前記位相差監視手段によって監視された位 相の差が最短で圧縮される方向に前記同期クロック信号の位相を段階的に可変し、 前記位相差計測手段によって計測される位相の差を圧縮する Each time the working element is updated, the position monitored by the phase difference monitoring means The phase of the synchronous clock signal is varied stepwise in the direction in which the phase difference is compressed in the shortest time, and the phase difference measured by the phase difference measuring means is compressed.
ことを特徴とするノード装置。  A node device characterized by the above-mentioned.
( 1 6 ) 二重化された網とのィン夕フェースをとる網ィン夕フェース手段と、 前記網を構成する 2つの要素に個別に対応した 2つのクロック信号の内、 現用 の要素に対応したクロック信号を系構成に基づいて選択する第一の選択手段と、 前記 2つのクロック信号の内、 先行して現用に供されていた要素に対応するク ロック信号に同期した同期クロック信号を生成するクロック再生手段と、  (16) A network interface means for taking an interface with a duplicated network, and a clock element corresponding to a working element among two clock signals individually corresponding to the two elements constituting the network. First selecting means for selecting a clock signal based on a system configuration; and generating a synchronous clock signal synchronized with a clock signal corresponding to a previously used element of the two clock signals. Clock recovery means;
前記第一の選択手段によって選択されたクロック信号と前記クロック再生手段 によって生成された同期クロック信号との位相の差を計測する位相差計測手段と、 前記現用の要素が更新されたときに、 前記クロック再生手段によって生成され た同期クロック信号を選択し、 かつ始動時、 および前記位相差計測手段によって 計測された位相の差が所定の閾値を下回ったときに、 前記第一の選択手段によつ て選択されたクロック信号を選択する第二の選択手段と、  A phase difference measuring unit that measures a phase difference between a clock signal selected by the first selecting unit and a synchronous clock signal generated by the clock reproducing unit; and when the current element is updated, Selecting the synchronous clock signal generated by the clock regenerating means, and at the time of starting, and when the phase difference measured by the phase difference measuring means falls below a predetermined threshold value, Second selecting means for selecting the selected clock signal,
前記 2つのクロック信号の内、 現用に供されている要素とその要素に先行して 現用に供されていた要素に個別に対応したクロック信号の位相の差を監視する位 相差監視手段と、  Phase difference monitoring means for monitoring the phase difference between the clock signal individually corresponding to the element currently used and the element currently used prior to the element of the two clock signals;
前記第二の選択手段によって選択された同期クロック信号およびクロック信号 に同期して前記網ィン夕フェース手段と連係し、 所定の通信制御を行う通信制御 手段とを備え、  Communication control means for performing predetermined communication control in cooperation with the network interface means in synchronization with the synchronous clock signal and the clock signal selected by the second selection means,
前記クロック再生手段は、  The clock reproducing means,
前記現用の要素が初めて確定したときに、 前記位相差監視手段によって監視さ れた位相の差が最短で圧縮される方向に前記同期クロック信号の位相を段階的に 可変し、 その現用の要素が更新される度に、 交互に反対の方向へこの同期クロッ ク信号の位相を段階的に可変することによって、 前記位相差計測手段によって計 測される位相の差を圧縮する  When the working element is determined for the first time, the phase of the synchronous clock signal is varied stepwise in a direction in which the phase difference monitored by the phase difference monitoring means is compressed in the shortest time, and the working element is Each time the phase difference is updated, the phase difference measured by the phase difference measuring means is compressed by changing the phase of the synchronous clock signal stepwise in the opposite direction.
ことを特徴とするノード装置。  A node device characterized by the above-mentioned.
PCT/JP2001/010513 2001-11-30 2001-11-30 Clock switching circuit and node device WO2003049356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010513 WO2003049356A1 (en) 2001-11-30 2001-11-30 Clock switching circuit and node device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010513 WO2003049356A1 (en) 2001-11-30 2001-11-30 Clock switching circuit and node device

Publications (1)

Publication Number Publication Date
WO2003049356A1 true WO2003049356A1 (en) 2003-06-12

Family

ID=11737990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010513 WO2003049356A1 (en) 2001-11-30 2001-11-30 Clock switching circuit and node device

Country Status (1)

Country Link
WO (1) WO2003049356A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583238A (en) * 1991-09-20 1993-04-02 Fujitsu Ltd Timing stabilizing method for synchronization timing changeover
JPH05167439A (en) * 1991-12-12 1993-07-02 Hitachi Ltd Phase locked loop circuit
JPH08172380A (en) * 1994-12-19 1996-07-02 Oki Electric Ind Co Ltd Controlling method for counter in clock generation circuit
JPH08265311A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Clock switching circuit
JPH10240375A (en) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp Clock no-hit switching device
JPH1127247A (en) * 1997-07-07 1999-01-29 Nec Corp System switching method
JPH11298460A (en) * 1998-04-15 1999-10-29 Nec Corp Clock changeover circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583238A (en) * 1991-09-20 1993-04-02 Fujitsu Ltd Timing stabilizing method for synchronization timing changeover
JPH05167439A (en) * 1991-12-12 1993-07-02 Hitachi Ltd Phase locked loop circuit
JPH08172380A (en) * 1994-12-19 1996-07-02 Oki Electric Ind Co Ltd Controlling method for counter in clock generation circuit
JPH08265311A (en) * 1995-03-20 1996-10-11 Fujitsu Ltd Clock switching circuit
JPH10240375A (en) * 1997-02-26 1998-09-11 Mitsubishi Electric Corp Clock no-hit switching device
JPH1127247A (en) * 1997-07-07 1999-01-29 Nec Corp System switching method
JPH11298460A (en) * 1998-04-15 1999-10-29 Nec Corp Clock changeover circuit

Similar Documents

Publication Publication Date Title
US10727842B2 (en) Bi-directional interface for device feedback
TW454383B (en) Slave clock generation system and method for synchronous telecommunications networks
JP5350787B2 (en) Time synchronization method and apparatus using time stamp
JP2008193702A (en) Device for generating counter signal, device for reconstructing clock signal, and communication device
JP4719100B2 (en) Dual system type reference frequency signal generator
WO2003049356A1 (en) Clock switching circuit and node device
JP2003209539A (en) System for generating multiple clocks
JPH09247134A (en) Clock signal generating device
JP2019054568A (en) Synchronization control method of inverter system, and inverter system
JPH0818446A (en) High-speed pull-in control circuit for clock subordinate synchronization device
JP2602421B2 (en) Clock reception distribution system
US11967965B2 (en) Generating divided signals from phase-locked loop (PLL) output when reference clock is unavailable
US5867545A (en) Phase-locked loop circuit
JP3489556B2 (en) Clock switching method and clock supply device
JP3612497B2 (en) Clock synchronization system and method for mobile communication base station apparatus
JP2988410B2 (en) Clock synchronization system
JP2008252824A (en) Network synchronizing apparatus for digital network and network synchronizing apparatus provided at station of digital network
JP2725530B2 (en) Clock supply method
JPH0432330A (en) System clock protection system
JP2979811B2 (en) Clock output circuit
JP2002006980A (en) Method and system for selecting doubled clock
KR101408919B1 (en) Apparatus and method for frame synchronization tracking in communication system
JP2009200872A (en) Reference signal synchronization control method in redundant configuration system
JPH11298460A (en) Clock changeover circuit
CN116366197A (en) Method, device and system for locking fast clock in switching between main clock and standby clock

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP