WO2003043957A2 - Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede - Google Patents

Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede Download PDF

Info

Publication number
WO2003043957A2
WO2003043957A2 PCT/FR2002/003980 FR0203980W WO03043957A2 WO 2003043957 A2 WO2003043957 A2 WO 2003043957A2 FR 0203980 W FR0203980 W FR 0203980W WO 03043957 A2 WO03043957 A2 WO 03043957A2
Authority
WO
WIPO (PCT)
Prior art keywords
initial
phase
waste
mixture
compost
Prior art date
Application number
PCT/FR2002/003980
Other languages
English (en)
Other versions
WO2003043957A3 (fr
Inventor
Katia De Souza
Original Assignee
Katia De Souza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katia De Souza filed Critical Katia De Souza
Priority to AU2002365958A priority Critical patent/AU2002365958A1/en
Publication of WO2003043957A2 publication Critical patent/WO2003043957A2/fr
Publication of WO2003043957A3 publication Critical patent/WO2003043957A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to methods for obtaining compost, as well as a compost obtained by such a method. It relates more particularly to a process for the accelerated production of a compost, in particular from lignocellulosic residues such as bagasse there.
  • composting is a controlled biological process for the conversion and recovery of organic substances by decomposition of heterogeneous fermentable organic waste such as proteins, lipids, cellulose, lignin by diverse microbial populations such as actinomycete bacteria and fungi in an aerobic environment and humid where successive mesophilic and thermophilic conditions result in a final mature product, deodorized, stabilized, hygienic and rich in humic substances called compost.
  • Any composting begins with the so-called stabilization phase, during which aerobic degradation of organic matter begins very quickly thanks to the microorganisms naturally contained in the mixture of organic residues. It is the easily biodegradable substances such as sugars, starch, proteins, amino acids which are used first. This use is accompanied by mineralization during which oxygen is consumed and CO 2 is released. During this "combustion”, there is also production of H 2 O: this is the mesophilic phase.
  • thermophilic phase we observe a change in the nature of the microflora and we witness the elimination of certain pathogenic germs. Lipid and protein compounds are strongly broken down, cellulose and hemicelluloses are weakened; lignin, on the other hand, is practically not attacked.
  • the stabilization phase essentially corresponds to the elimination of easily biodegradable substances, the fact remains that it is also a prehumification phase. Indeed, there would be a beginning of humification of the lignocellulosic compounds which would copolymerize with certain compounds resulting from microbial syntheses. This essentially results in the appearance of a humus odor and a brown coloration of the product.
  • the end of the stabilization phase is characterized by a decrease in temperature and respiratory intensity.
  • the microbiological activity continues at a slower pace: it is the beginning of the maturation phase. During this phase, the microbial degradation and synthesis processes initiated during the previous phase continue.
  • microflora and the organic substances concerned are no longer the same.
  • the majority microorganisms are essentially lignocellulolytics which use the most resistant compounds such as celluloses, lignins, tannins as carbon source.
  • the transformation of these compounds results in phenolic compounds which, through secondary condensation and polymerization reactions with nitrogenous compounds such as amino acids or peptides form, under oxidizing conditions, humic acids resistant to the attack of microorganisms.
  • the product obtained then has characteristics favorable to the development of plants.
  • the main characteristic of the maturation phase is in fact the synthesis of humic compounds from lignin, and no longer solely from compounds of microbial origin.
  • the duration of this maturation phase is very variable and can last from 2 months to 1 year depending on the nature of the starting organic compounds, depending on the treatment process used, but also depending on the destination or the end use strategy of the products obtained. at the end of this phase.
  • the products to be composted are characteristic of their predominantly organic nature.
  • Carbon as the main constituent of organic molecules, is used mainly by microorganisms as a source of energy and as a constituent element.
  • Nitrogen is also used by microbial populations, but in smaller quantities and mainly for the production of their proteins.
  • the growth of microorganisms during composting therefore depends first and foremost on the nutrients available to them and largely on the relative proportions of the above-mentioned compounds given in relation to C / N (carbonate / nitrogen).
  • Theoretical C / N of microorganisms is close to 8, we can consider that a ratio initial close to 30 would be ideal for the composting mixture. In fact in practice, the C / N ratio varies between 20 and 70 depending on the composition of the substrates.
  • a substrate rich in easily degradable carbon compounds such as oses and lipids will have a low C / N of between 15 and 20. This is the case of food or animal waste. These relatively low C / N ratios correspond to a high nitrogen content which is released in the form of ammonia by aerobic decomposition. Under these conditions, the speed of composting will be regulated by the carbon content available for the microorganisms.
  • a substrate rich in carbonaceous substances very resistant to the attack of microorganisms like for example lignin or cellulose, will have a higher C / N varying between 50 and 250. This is the case of waste of vegetable origin , bark, sawdust. For composting, this too high C / N ratio corresponds to a nitrogen deficit preventing the development of microorganisms. The composting speed will then be regulated by the availability of nitrogen.
  • Another important parameter of composting is the regular supply of oxygen to microorganisms. The efficiency of the oxygenation of composts is very largely dependent on the diffusion of air in the mass. Aerobiosis is maintained as long as the residual oxygen content remains between 5% and 10-15%.
  • the optimum air flows are 3 1 / h / kg of dry matter (DM) for the bark, 16 1 / h / kgMS for garden waste and 28 1 / h / kgMS for household waste .
  • DM dry matter
  • the dissolution in CO 2 water produced during composting can also contribute to this decrease in pH.
  • thermophilic bacteria The installation of thermophilic bacteria is only done at pH above 6 while the proliferation of thermophilic fungi is favored by pH below this value.
  • optimal pH values must be those which are most conducive to the development of the various microbial populations involved in composting and must therefore generally be between 5 and 8.
  • the process according to the invention is an accelerated bioreactor process allowing the rapid stabilization of fermentable organic waste and the control of the main physico-chemical parameters of the stabilization phase. This accelerated process allows stabilization of the product after 7 to 10 days against 2 to 3 months in natural composting.
  • the bioreactor is a closed enclosure, preferably cylindrical to facilitate mixing. Following the loading of the waste to be treated into the reactor, the latter is closed by a sealed cover. It is preferably fixed on a pivoting support allowing easy loading and unloading of materials.
  • the assembly can be insulated by an external coating of thermal insulation.
  • the stirring device has a rotary central axis carrying pallets. The axis is driven by an electric motor controlled by a programmer imposing on it the frequency and duration of the shuffles.
  • the forced ventilation of the waste is ensured by air inlets located at the bottom of the enclosure.
  • the quantities of air used and the residual O 2 level are continuously recorded, which makes it possible to determine the consumption of O 2 by the microorganisms.
  • the fermentation gases are recovered at an outlet located on the upper part of the reactor where there are two containers, one receiving the condensation water, the other containing IN sulfuric acid fixing the nitrogen possibly lost in the form ammonia.
  • the O 2 content of the gases is measured and recorded using an oximeter and makes it possible to adjust the air flow which passes through the enclosure.
  • the verification of the residual O 2 level must take place every 2 hours during the temperature rise phase.
  • the O 2 content at the outlet must be greater than 3% in order to avoid any anaerobiosis.
  • thermocouple placed in the enclosure, in the center of the mixture to be composted and connected to a recorder.
  • bagasse has mainly been used for energy production for self-consumption in sugar factories and distilleries.
  • the surplus is generally either piled up outside on large areas, either stored in spill sheds until this area is cleaned for the next harvest, or else burned "wild".
  • bagasse can be the best valued. At present, it is found in animal feed in direct use, mixed with molasses or cane juice or in indirect use after various treatments promoting its digestibility. It is also used as a mulch or in the composition of litter boxes for various animals.
  • the invention aims to provide a composting process for the recovery of waste consisting of lignocellulosic residues such as bagasse, sawdust, coconut fibers etc. This responds to the current concerns of the public: the protection of the environment and the recovery of organic waste whose tonnage is colossal.
  • the subject of the invention is a process for the accelerated production of a compost comprising a phase of preparation of organic waste in a bioreactor, a stabilization phase therein, and a maturation phase outside said bioreactor, the method comprising the stages consisting in: during the preparation phase
  • said organic waste consists essentially of lignocellulosic residues in relatively fine fractions, and in that, before carrying out said initial mixing, nitrogenous liquid waste is added to obtain a mixture in which the proportion of lignocellulosic residues / waste nitrogen is such that it ensures an initial carbon / nitrogen ratio (C / N) of said mixture of about 25 to about 40, and an initial pH of between about 5.2 and about 5.5 is ensured.
  • the lignocellulosic residues consist of candy bagasse; - the lignocellulosic residues consist of crushed distillery bagasse to obtain fractions of about 8 mm;
  • - nitrogenous liquid waste consists of residual sludge obtained by biological means; - compared to the total dry weight, approximately 20% of residual sludge is added to the bagasse;
  • the initial carbon / nitrogen ratio (C / N) of said mixture is 40;
  • the initial pH is obtained by acidification using the addition of iron chloride, phosphoric acid or propionic acid;
  • the stabilization phase lasts from 7 to 10 days
  • the stabilization phase is carried out with an initial air flow of the order of 8 1 / h / kgMS, and is continuous and gradually increased to 15 to 20 1 / h / kgMS when the microbiological activity is at its maximum so as to ensure a residual O 2 level between 6% and 9%, thereby eliminating any risk of anaerobiosis.
  • the organic waste mainly consists of bagasse from a distillery or a sugar refinery.
  • the bagasse In the first case, it is necessary to grind the bagasse in order to obtain fractions of a size of about 8 mm, while the candy bagasse is already sufficiently fine.
  • This residue is mainly composed of celluloses, pentosans and lignin.
  • the distillery bagasse On leaving the factory, the distillery bagasse has an average water content of 50% (dry weight) and sugar of 3 to 6%.
  • this very dense, low density residue is difficult to biodegrade because it is poor in assimilable mineral elements and rich in silica, which makes it particularly resistant to attack by microorganisms.
  • the bagasse is loaded in sufficient quantity into the enclosure of a bioreactor of the type described above.
  • approximately 20%, based on the total dry weight, of nitrogenous liquid waste is brought to the bagasse in the form of residual sludge, which brings the initial C / N ratio of the mixture from approximately 25 to approximately 40, and preferably to about 40.
  • the water content then corresponds to a value from about 65% to about 68%, which is an optimal range.
  • Residual sludge is sludge obtained by the purification of waste water by biological means which is the most used process in terms of collective sanitation. This microbiological process consists in favoring the development of microorganisms which will feed on the degradable pollutant matter of the effluent (organic matter).
  • This biological purification can also be carried out in an aquatic environment, that is to say in a natural environment by lagooning or in a controlled environment in a treatment plant or in a terrestrial environment by spreading on the soil.
  • Sewage sludge concentrates both the active microorganisms in the biological purification of effluent in flocculated colloids and settled suspended matter, pathogenic germs and parasites with a dominance of enteric microorganisms from stool and urine.
  • the essential characteristic of the invention thus resides in optimal composting involving the mixing of materials of different origins and having C / N ratios which are balanced. Residues rich in nitrogen, which are very fermentable, such as urban sludge, slaughterhouse and legume plant waste may be associated with carbon-rich residues such as straw, lignocellulosic products.
  • the optimum C / N ratio is between approximately 25 and approximately 40 and is preferably approximately 40.
  • the pH of the mixture is generally around 6.5, it is necessary to acidify the mixture, which can be done by the addition of iron, phosphoric acid, propionic acid or by vinasses from a distillery or a sugar refinery, the pH of which is generally around 3.5.
  • the initial pH should be one unit lower than that normally obtained for a bagasse and 20% mud mixture (without the addition of acidifying products).
  • a pH of 5.2 at the start of composting is optimal.
  • the starting temperature of the mixture must be between 24.5 ° and 26.5 ° and then maintained during the stabilization phase for 2 to 3 days at 60 ⁇ 5 ° C maximum.
  • the mixture thus prepared is then homogenized by an initial stirring for 20 to 30 minutes. Brewing is then carried out during the stabilization phase which lasts from
  • the stabilization phase of the composting is finished when: - the temperature inside the compost has dropped to a value close to ambient temperature and is maintained there for 24 to 48 hours;
  • the compost thus obtained after a stabilization phase varying between 7 and 10 days is then preferably placed in perforated plastic bags where it undergoes a maturation phase of approximately 2 months.
  • the compost obtained by the process according to the invention also has physico-chemical and microbiological characteristics allowing it to be the subject of agronomic recovery and of recovery as a biological control tool. It can also be used either as an organic amendment in viticulture, arboriculture, open market gardening or field crops, or as a culture medium in containers, mainly in horticulture.
  • composts as a biological control tool is possible insofar as certain composts are indeed capable of rendering a soil or a support resistant to one or more diseases, that is to say that they can to reduce the development of these diseases: such a support is said to be resistant or suppressive.
  • the compost obtained according to the process of the invention can also constitute a biological control tool, since it allows in particular the suppression of the fungus Fusarium solani, very ubiquitous and at the origin of daunting root rot in humid tropical conditions.
  • the invention is not limited to the use of bagasse as a starting point for composting, but it includes all the lignocellulosic residues that can be envisaged by those skilled in the art, such as sawdust, coconut etc.
  • nitrogenous waste is used in the form of sludge from sewage treatment plants, the person skilled in the art can envisage other sources such as for example chicken poultry, slaughterhouse residues, etc. ., without departing from the scope of the invention.
  • the composting process according to the invention thus makes it possible, by the compost obtained, to reduce the use of synthetic chemicals such as fertilizers and pesticides in crops, but also to reduce the risks of environmental pollution by these resistance products and appearance in phytopathogenic microorganisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

Le procédé comporte les étapes suivantes consistant à, lors de la phase de préparation : charger les déchets à traiter dans le bioréacteur, assurer une teneur en eau optimale comprise entre 60% et 70%, homogénéiser le mélange par un brassage initial; lors de la phase de stabilisation : effectuer une aération forcée en continu, effectuer un brassage à des intervalles réguliers; lors de la phase de maturation : laisser le compost reposer avec accès à l'air ambiant. Les déchets organiques sont essentiellement constitués de résidus lignocellulosiques en fractions relativement fines, et, avant d'effectuer ledit brassage initial, on ajoute des déchets liquides azotés pour obtenir un mélange dans lequel la proportion résidus lignocellulosiques/déchets azotés est telle qu'elle assure un rapport carbone/azote (C/N) initial dudit mélange d'environ 25 à environ 40, et on assure un pH initial compris entre environ 5,2 et environ 5,5.

Description

Procédé d'obtention accélérée d'un compost, et compost obtenu par un tel procédé
La présente invention est relative aux procédés d'obtention de composts, ainsi qu'un compost obtenu par un tel procédé. Elle concerne plus particulièrement un procédé d'obtention accélérée d'un compost, notamment à partir de résidus lignocellulosiques tels que là bagasse.
Il est bien connu que les sociétés industrielles modernes engendrent des quantités considérables de sous-produits et de déchets qui constituent un véritable problème. Outre les risques de pollution, il y a un gaspillage flagrant de matières premières, puisque ces matériaux contiennent souvent des teneurs importantes en matière organique et en éléments fertilisants.
D'un autre côté, l'intensification de l'utilisation des engrais minéraux, la pratique de techniques culturales extractives, ainsi que l'emploi abusif de désherbants et de pesticides ont eu comme conséquences directes une accumulation très importante des phosphates, une forte pollution des eaux souterraines par lessivage des nitrates et une érosion continue des sols.
Le recyclage agricole des déchets organiques apparaît dès lors comme la solution la plus logique pour restituer au sol la matière organique dont il a besoin. Cependant, l'utilisation directe de ces résidus comporte des dangers en raison de nombreux risques et contraintes liés à leur manipulation tels qu'odeurs nauséabondes, caractéristiques physico-chimiques rendant le stockage et le transport difficile, et à leur emploi qui peut entraîner des contaminations organiques, microbiologiques ou chimiques des sols et des eaux, accumulation de substances phytotoxiques libérées par les fermentations, présence de métaux lourds, immobilisation de l'azote du sol etc. Ces résidus doivent donc être conditionnés chimiquement et/ou biologiquement avant toute utilisation agricole.
Parmi les techniques actuelles élaborées pour valoriser les résidus organiques, la plus porteuse en termes d'environnement et de récupération efficace d'énergie sous foπne d'engrais organique est le compostage, et en particulier le compostage accéléré en bioréacteur qui est une méthode biotechnologique pratique et performante, De manière générale, le compostage est un procédé biologique contrôlé de conversion et de valorisation des substances organiques par décomposition de déchets organiques hétérogènes fermentescibles tels que protéines, lipides, cellulose, lignine par des populations microbiennes diversifiées telles que bactéries actinomycètes et champignons dans un environnement aérobie et humide où se succèdent des conditions mésophiles et thermophiles aboutissant à un produit final mâture, désodorisé, stabilisé, hygiénique et riche en substances humiques appelé compost.
Tout compostage débute par la phase dite de stabilisation au cours de laquelle s'amorce très rapidement la dégradation aérobie des matières organiques grâce aux microorganismes naturellement contenus dans le mélange de résidus organiques. Ce sont les substances facilement biodégradables telles que sucres, amidon, protéines, acides aminés qui sont utilisées les premières. Cette utilisation s'accompagne d'une minéralisation au cours de laquelle de l'oxygène est consommé et du CO2 est dégagé. Durant cette "combustion", il y a également production d'H2O : c'est la phase mésophile.
Cette "combustion" génère aussi un dégagement important de calories qui élève la température du milieu jusqu'à des valeurs critiques dépassant couramment 45°C et pouvant atteindre 75°C, voire plus. Ces températures élevées sont à éviter, car elles aboutissent à une véritable stérilisation du substrat. Les réactions biochimiques sont relayées par des réactions chimiques proprement dites du fait de la dénaturation irréversible de la plupart des enzymes de ces microorganismes.
Au cours de cette phase dite thermophile, on observe un changement de la nature de la microflore et on assiste à l'élimination de certains germes pathogènes. Les composés lipidiques et protéiques sont fortement décomposés, la cellulose et les hémicelluloses sont fragilisées ; la lignine, par contre, n'est pratiquement pas attaquée.
Si la phase de stabilisation correspond essentiellement à l'élimination des substances facilement biodégradables, il n'en demeure pas moins qu'elle est aussi une phase de préhumification. En effet, il y aurait un début d'humification des composés lignocellulosiques qui se copolymériseraient avec certains composés résultant des synthèses microbiennes. Ceci se traduit essentiellement par l'apparition d'une odeur d'humus et d'une coloration brune du produit. La fin de la phase de stabilisation est caractérisée par un abaissement de la température et de l'intensité respiratoire. L'activité microbiologique se poursuit à un rythme plus faible : c'est le début de la phase de maturation. Au cours de cette phase, les processus de dégradation et de synthèse microbiennes amorcés au cours de la phase précédente se poursuivent.
Cependant, la microflore et les substances organiques concernées ne sont plus les mêmes. Les microorganismes majoritaires sont essentiellement des lignocellulolytiques qui utilisent les composés les plus résistants tels que celluloses, lignines, tannins comme source carbonée. De la transformation de ces composés résulte des composés phénoliques qui, par des réactions secondaires de condensation et de polymérisation avec des composés azotés comme les acides aminés ou les peptides forment dans des conditions oxydantes, des acides humiques résistants à l'attaque des microorganismes. Le produit obtenu présente alors des caractéristiques favorables au développement des végétaux. La caractéristique principale de la phase de maturation est en fait la synthèse de composés humiques à partir de la lignine, et non plus uniquement à partir de composés d'origine microbienne. La durée de cette phase de maturation est très variable et peut durer de 2 mois à 1 an selon la nature des composés organiques de départ, selon le procédé de traitement employé, mais aussi suivant la destination ou la stratégie d'utilisation finale des produits obtenus à l'issue de cette phase.
Les produits à composter ont comme caractéristique leur nature à dominante organique. Le carbone est en tant que principal constituant des molécules organiques est utilisé en majorité par les microorganismes comme source d'énergie et comme élément constitutif. L'azote est également utilisé par les populations microbiennes, mais en quantités moindres et essentiellement pour l'élaboration de leurs protéines. La croissance des microorganismes au cours du compostage dépend donc en premier lieu des nutriments mis à leur disposition et en grande partie des proportions relatives des composés précités donnés par rapport C/N (carbonate/azote).
Si on considère que l'essentiel du carbone de la matière organique aisément biodégradable se dégage sous forme de C0 au cours du compostage et que le rapport
C/N théorique des microorganismes est voisin de 8, on peut considérer qu'un rapport initial voisin de 30 serait idéal pour le mélange à composter. En fait dans la pratique, le rapport C/N varie entre 20 et 70 suivant la composition des substrats.
Ainsi, un substrat riche en composés carbonés facilement dégradables tels qu'oses et lipides aura un C/N bas compris entre 15 et 20. Tel est le cas de déchets alimentaires ou animaux. Ces rapports C/N relativement faibles correspondent à une teneur élevée en azote qui est libéré sous forme d'ammoniac par la décomposition aérobie. Dans ces conditions, la vitesse du compostage sera réglée par la teneur en carbone disponible pour les microorganismes.
Contrairement à cela, un substrat riche en substances carbonées très résistantes à l'attaque des microorganismes comme par exemple la lignine ou la cellulose, aura un C/N plus élevé variant entre 50 et 250. Cela est le cas des déchets d'origine végétale, écorces, sciures. Pour le compostage, ce rapport C/N trop élevé correspond à un déficit en azote empêchant le développement des microorganismes. La vitesse de compostage sera alors réglée par la disponibilité de l'azote. Un autre paramètre important du compostage est l'apport régulier d'oxygène aux microorganismes. L'efficacité de l'oxygénation des composts est très largement dépendante de la diffusion de l'air dans la masse. L'aérobiose est maintenue tant que la teneur en oxygène résiduel reste comprise entre 5% et 10-15%. Cependant, pour assurer une oxygénation constante, à un niveau approprié, il est nécessaire de tenir compte des caractéristiques physico-chimiques du substrat et plus particulièrement de leur fermentescibilité. En effet, les quantités d'oxygène à apporter seront d'autant plus importantes que le substrat sera plus fermentescible. Ainsi, les débits d'air optimum sont de 3 1/h/kg de matière sèche (MS) pour les écorces, de 16 1/h/kgMS pour les déchets de jardin et de 28 1/h/kgMS pour les ordures ménagères. La maîtrise des conditions d'aération, c'est-à-dire le débit, la technique d'aération utilisée comme par exemple simple diffusion, ventilation forcée et/ou brassage, permet d'assurer des conditions de biodégradation homogènes et optimales des substrats.
Au cours de la phase de stabilisation, l'oxydation des molécules simples comme les sucres et les lipides par les microorganismes mésophiles libère des acides organiques qui provoquent une acidification du milieu pouvant être très importante, jusqu'à pH =4. La dissolution dans l'eau du CO2 produit au cours du compostage peut également contribuer à cette diminution de pH. Le passage à la phase thermophile s'accompagne d'une augmentation brutale du pH qui se stabilise aux environs de pH = 8-9 du fait de l'hydrolyse bactérienne des matières protéiniques produisant de l'ammoniac. Au cours de la phase de maturation, le pH diminue progressivement vers la neutralité (pH=7) du fait de l'utilisation de l'ammoniac par les microorganismes pour a biosynthèse des matières humiques (Humus), puis se stabilise grâce aux réactions lentes de maturation et du pouvoir tampon de l'Humus.
Le pH a une action directe sur les phénomènes chimiques d'oxydation et sur la volatilisation de l'ammoniac, mais il a aussi une action indirecte par son rôle sélectif sur les microorganismes "acteurs" du compostage. L'installation des bactéries thermophiles ne se fait qu'à des pH supérieurs à 6 alors que la prolifération des champignons thermophiles est favorisée par des pH inférieurs à cette valeur. Ainsi, les valeurs optimales du pH doivent être celles qui sont les plus propices au développement des diverses populations microbiennes intervenant dans les compostages et doivent donc en général être comprises entre 5 et 8.
Par ailleurs, l'évolution du pH est un bon indicateur de l'évolution biologique des composts et de ce fait, il est possible d'intervenir sur ce paramètre pour orienter plus favorablement le procédé de compostage. Comme déjà initialement mentionné, le procédé selon l'invention est un procédé accéléré en bioréacteur permettant la stabilisation rapide des déchets organiques fermentescibles et le contrôle des principaux paramètres physico-chimiques de la phase de stabilisation. Ce procédé accéléré permet d'obtenir une stabilisation du produit après 7 à 10 jours contre 2 à 3 mois en compostage naturel. Le bioréacteur est une enceinte fermée, de préférence cylindrique pour faciliter le brassage. Suite au chargement des déchets à traiter dans le réacteur, celui-ci est fermé par un couvercle étanche. Il est de préférence fixée sur un support pivotant permettant le chargement et le déchargement aisés des matériaux. L'ensemble peut être calorifuge par un revêtement extérieur d'isolant thermique. Le dispositif de brassage comporte un axe central rotatif portant des palettes. L'axe est entraîné par un moteur électrique commandé par un programmateur lui imposant la fréquence et la durée des brassages. L'aération forcée des déchets est assurée par des arrivées d'air situées à la partie inférieure de l'enceinte. Les quantités d'air utilisées et le taux d'O2 résiduel sont enregistrés en continu, ce qui permet de déterminer la consommation d'O2 par les microorganismes . Les gaz de fermentation sont récupérés à une sortie située sur la partie supérieure du réacteur où se trouvent deux récipients, l'un recevant l'eau de condensation, l'autre contenant de l'acide sulfurique IN fixant l'azote éventuellement perdu sous forme d'ammoniac.
La teneur en O2 des gaz est mesurée et enregistrée grâce à un oxymètre et permet de régler le débit d'air qui passe dans l'enceinte. La vérification du taux d'O2 résiduel doit avoir lieu toutes les 2 heures durant la phase de montée en température. La teneur en O2 en sortie doit être supérieure à 3% afin d'éviter toute anaérobiose.
Le contrôle continu de la température au sein du réacteur est assuré par un thermocouple placé dans l'enceinte, au centre du mélange à composter et relié à un enregistreur.
Malgré le fait que le compostage, qu'il soit naturel ou accéléré, permet en général l'obtention d'un nouveau produit valorisé, il existe des déchets organiques qui généralement ne font pas l'objet d'une valorisation pour leur recyclage. Tel est le cas notamment de la bagasse de distillerie ou de sucrerie qui est un résidu lignocellulosique obtenu après broyage de la canne à sucre et extraction du jus sucré très résistant à l'attaque des micro-organismes et qui, par conséquent, est difficilement dégradable par un procédé classique de compostage.
Jusqu'ici, la bagasse a essentiellement été utilisée pour la production d'énergie pour l'autoconsommation des usines sucrières et des distilleries. L'excédent est en général soit entassé à l'extérieur sur des surfaces importantes, soit entreposé dans des hangars de déversement jusqu'au moment du nettoyage de cette aire pour la récolte suivante, ou alors brûlé de manière "sauvage".
C'est cependant dans le secteur purement agricole que la bagasse peut faire l'objet de la meilleure valorisation. A l'heure actuelle, on la retrouve dans l'alimentation animale en utilisation directe, mélangée avec de la mélasse ou du jus de canne ou en utilisation indirecte après divers traitement favorisant sa digestibilité. Elle est aussi utilisée comme mulch ou dans la composition des litières d'animaux divers.
L'invention a pour but de proposer un procédé de compostage permettant la valorisation des déchets constitués par des résidus lignocellulosiques tels que la bagasse, sciure de bois, fibres de coco etc. Cela répond aux préoccupations actuelles du public : la protection de l'environnement et la valorisation des déchets organiques dont le tonnage est colossal.
L'invention a pour objet un procédé d'obtention accélérée d'un compost comprenant une phase de préparation de déchets organiques dans un bioréacteur, une phase de stabilisation dans celui-ci, et une phase de maturation en dehors dudit bioréacteur, le procédé comportant les étapes consistant à : lors de la phase de préparation
- charger les déchets à traiter dans le bioréacteur ;
- assurer une teneur en eau optimale comprise entre 60% et 70% ; - homogénéiser le mélange par un brassage initial ; lors de la phase de stabilisation
- effectuer une aération forcée en continu ;
- effectuer un brassage à des intervalles réguliers ; lors de la phase de maturation - laisser le compost reposer avec accès à l'air ambiant, et brassages hebdomadaires réguliers à l'abri des intempéries. caractérisé par le fait que lesdits déchets organiques sont essentiellement constitués de résidus lignocellulosiques en fractions relativement fines, et en ce que, avant d'effectuer ledit brassage initial, on ajoute des déchets liquides azotés pour obtenir un mélange dans lequel la proportion résidus lignocellulosiques/déchets azotés est telle qu'elle assure un rapport carbone/azote (C/N) initial dudit mélange d'environ 25 à environ 40, et on assure un pH initial compris entre environ 5,2 et environ 5,5.
Selon d'autres caractéristiques de l'invention :
- les résidus lignocellulosiques sont constitués de bagasse de sucrerie ; - les résidus lignocellulosiques sont constitués de bagasse de distillerie broyée pour l'obtention de fractions d'environ 8 mm ;
- les déchets liquides azotés sont constitués par des boues résiduaires obtenues par voie biologique ; - par rapport au poids sec total, environ 20% de boues résiduaires sont ajoutés à la bagasse ;
- le rapport carbone/azote (C/N) initial dudit mélange est de 40 ;
- le pH initial est de 5,2 ;
- le pH initial est obtenu par acidification à l'aide d'ajout de chlorure de fer, d'acide phosphorique ou d'acide propionique ;
- le pH initial est obtenu par acidification à l'aide d'ajout de vinasses de distillerie ou de sucrerie ;
- la phase de stabilisation dure de 7 à 10 jours ;
- la phase de stabilisation est effectuée avec un débit d'air initial de l'ordre de 8 1/h/kgMS, et est continue et augmentée progressivement jusqu'à 15 à 20 1/h/kgMS quand l'activité microbiologique est à son maximum de manière à assurer un taux d'O2 résiduel entre 6% et 9% pour ainsi éliminer tout risque d'anaérobiose.
Elle a également pour objet le compost obtenu par le procédé selon l'invention.
L'invention sera maintenant décrite plus en détail à l'exemple non limitatif d'un mode de réalisation du procédé.
Dans cette exemple, les déchets organiques sont principalement constitués de bagasse de distillerie ou de sucrerie. Dans le premier cas, il est nécessaire de broyer la bagasse afin d'obtenir des fractions d'une taille d'environ 8 mm, alors que la bagasse de sucrerie est déjà suffisamment fine. Ce résidu est essentiellement composé de celluloses, de pentosanes et de lignine. A la sortie de l'usine, la bagasse de distillerie présente une teneur moyenne en eau de 50% (poids sec) et en sucre de 3 à 6%. De plus, ce résidu de faible densité, très volumineux, est difficilement biodégradable car il est pauvre en éléments minéraux assimilables et riche en silice, ce qui le rend particulièrement résistant à l'attaque par les microorganismes. Pendant la phase de préparation, la bagasse est chargée en quantité suffisante dans l'enceinte d'un bioréacteur du genre de celui décrit ci-dessus. Ensuite, on apporte à la bagasse environ 20%, par rapport au poids sec total, de déchets liquides azotés sous forme de boues résiduaires, ce qui amène le rapport C/N initial du mélange d'environ 25 à environ 40, et de préférence à environ 40. La teneur en eau correspond alors à une valeur d'environ 65% à environ 68%, ce qui est une plage optimale.
Les boues résiduaires sont des boues obtenues par l'épuration des eaux usées par voie biologique qui est le procédé le plus utilisé en matière d'assainissement collectif. Ce processus microbiologique consiste à favoriser le développement de microorganismes qui vont se nourrir de la matière polluante dégradable de l'effluent (la matière organique).
Cette épuration biologique peut par ailleurs être effectuée en milieu aquatique, c'est-à-dire en milieu naturel par lagunage ou en milieu contrôlé en station d'épuration ou en milieu terrestre par épandage sur les sols. Les boues d'épuration concentrent à la fois les microorganismes actifs de l'épuration biologique de l'effluent dans les colloïdes floculés et les matières en suspension décantées, les germes pathogènes et les parasites avec une dominance des microorganismes entériques provenant des selles et urines.
La caractéristique essentielle de l'invention réside ainsi dans un compostage optimal impliquant le mélange de matériaux d'origines différentes et ayant des rapport C/N qui s'équilibrent. Ainsi, les résidus riches en azote, très fermentescibles, tels que boues urbaines, déchets d'abattoirs et de plantes légumineuses pourront être associés à des résidus riches en carbone tels que pailles, produits lignocellulosiques. Dans ce cas, le rapport C/N optimum se situe entre environ 25 et environ 40 et est de préférence d'environ 40.
Au cours du processus de biodégradation aérobie, la disparition d'une forte proportion de carbone, qui est métabolisé ou dégagé sous forme de CO2, par rapport à l'azote, fait chuter le rapport C/N qui alors converge vers une valeur comprise entre 10 et 20, et ce quelle que soit sa valeur initiale. Pendant la phase de préparation, il est important de vérifier le pH du mélange pour s'assurer que la température de la masse en cours de compostage n'atteigne des températures supérieures à 65°C, seuil au-delà duquel il se produit une véritable stérilisation du milieu.
Ainsi, si le pH est au-dessus de 5,5, et le pH du mélange est en générale d'environ 6,5, il est nécessaire d'acidifier le mélange, ce qui peut être fait par l'addition de chlorure de fer, d'acide phosphorique, d'acide propionique ou alors par des vinasses de distillerie ou de sucrerie dont le pH est en général d'environ 3,5.
En règle générale, le pH initial doit être d'une unité inférieure à celui normalement obtenu pour un mélange bagasse et 20% de boue (sans adjonction de produits acidifiants). Un pH de 5,2 au départ du compostage est optimal. Pour avoir un compostage optimal, la température de départ du mélange doit être comprise entre 24,5° et 26,5° et maintenue ensuite lors de la phase de stabilisation pendant 2 à 3 jours à 60±5°C maximum.
Le mélange ainsi préparé est ensuite homogénéisé par un brassage initial pendant 20 à 30 minutes. Des brassages sont ensuite effectués lors de la phase de stabilisation qui dure de
7 à 10 jours. Ces brassages sont programmés à raison de 5 minutes toutes les 4 heures. Cette fréquence permet un maintien des conditions aérobies dans tout le mélange en compostage, assure l'homogénéisation du produit, la régénération des colonies microbiennes et la redistribution de métabolites au sein du compost. L'aération du mélange, avec un débit d'air initial de l'ordre de 8 1/h/kgMS, est continue et augmentée progressivement jusqu'à 15 à 20 1/h/kgMS quand l'activité microbiologique est à son maximum. Pour éliminer tout risque d'anaérobiose, le taux d'O2 résiduel doit être maintenu entre 6% et 9%.
On considère que la phase de stabilisation du compostage est terminée lorsque : - la température au sein du compost est redescendue à une valeur voisine de la température ambiante et s'y maintient pendant 24 à 48 heures ;
- la consommation d'O2 est minimale, c'est-à-dire de l'ordre de 0,4 1/h kgMS.
Le compost ainsi obtenu après une phase de stabilisation variant entre 7 et 10 jours est ensuite de préférence placé dans des sacs plastiques perforés où il subit une phase de maturation d'environ 2 mois. Le compost obtenu par le procédé selon l'invention présente par ailleurs des caractéristiques physico-chimiques et microbiologiques lui permettant de faire l'objet d'une valorisation agronomique et d'une valorisation comme outil de lutte biologique. Il peut aussi être utilisé soit en tant qu'amendement organique en viticulture, arboriculture, maraîchage de plein champ ou grande culture, soit comme support de culture en conteneurs, principalement en horticulture.
L'utilisation des composts en tant qu'outil de lutte biologique est possible dans la mesure où certains composts sont en effet capables de rendre un sol ou un support résistant à une ou plusieurs maladies, c'est-à-dire qu'ils peuvent permettre de réduire le développement de ces maladies : un tel support est dit résistant ou suppressif. Le compost obtenu selon le procédé de l'invention peut aussi constituer un outil de lutte biologique, car il permet notamment la suppression du champignon Fusarium solani, très ubiquiste et à l'origine de pourritures racinaires redoutables en conditions tropicales humides. Bien entendu, l'invention n'est pas limitée à l'utilisation de bagasse comme point de départ pour le compostage, mais elle comprend tous les résidus lignocellulosiques envisageables par l'homme du métier, comme par exemple la sciure de bois, fibres de coco etc.
Même si dans l'exemple décrit, on utilise des déchets azotés sous forme de boues de stations d'épuration des eaux usées, l'homme du métier peut envisager d'autres sources comme par exemple des fiantes de volailles, résidus d'abattoirs etc., sans pour autant sortir du cadre de l'invention.
Le procédé de compostage selon l'invention permet ainsi par le compost obtenu de diminuer l'emploi de produits chimiques de synthèse tels que les engrais et les pesticides dans les cultures, mais également d'atténuer les risques de pollution de l'environnement par ces produits et d'apparition de résistance chez les microorganismes phytopathogènes.

Claims

REVENDICATIONS
1. Procédé d'obtention accélérée d'un compost comprenant une phase de préparation de déchets organiques dans un bioréacteur, une phase de stabilisation dans celui-ci, et une phase de maturation en dehors dudit bioréacteur, le procédé comportant les étapes consistant à :
. lors de la phase de préparation
- charger les déchets à traiter dans le bioréacteur ;
- assurer une teneur en eau optimale comprise entre 60% et 70% ;
- homogénéiser le mélange par un brassage initial ; . lors de la phase de stabilisation
- effectuer une aération forcée en continu ;
- effectuer un brassage à des intervalles réguliers ; . lors de la phase de maturation
- laisser le compost reposer avec accès à l'air ambiant et brassages hebdomadaires réguliers, caractérisé par le fait que lesdits déchets organiques sont essentiellement constitués de résidus lignocellulosiques en fractions relativement fines, et en ce que, avant d'effectuer ledit brassage initial, on ajoute des déchets liquides azotés pour obtenir un mélange dans lequel la proportion résidus lignocellulosiques/déchets azotés est telle qu'elle assure un rapport carbone/azote (C/N) initial dudit mélange d'environ 25 à environ 40, et on assure un pH initial compris entre environ 5,2 et environ 5,5.
2. Procédé selon la revendication 1, caractérisé par le fait que les résidus lignocellulosiques sont constitués de bagasse de sucrerie.
3. Procédé selon la revendication 1, caractérisé par le fait que les résidus lignocellulosiques sont constitués de bagasse de distillerie broyée pour l'obtention de fractions d'environ 8 mm.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que les déchets liquides azotés sont constitués par des boues résiduaires obtenues par voie biologique.
5. Procédé selon la revendication 4, caractérisé par le fait que par rapport au poids sec total, environ 20% de boues résiduaires sont ajoutés à la bagasse.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le rapport carbone/azote (C/N) initial dudit mélange est de 40.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le pH initial est de 5,2.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le pH initial est obtenu par acidification à l'aide d'ajout de chlorure de fer, d'acide phosphorique ou d'acide propionique.
9. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé par le fait que le pH initial est obtenu par acidification à l'aide d'ajout de vinasses de distillerie ou de sucrerie.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la phase de stabilisation dure de 7 à 10 jours.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que la phase de stabilisation est effectuée avec un débit d'air initial de l'ordre de 8 1/h/kgMS, et est continue et augmentée progressivement jusqu'à 15 à 20 1/h/kgMS quand l'activité microbiologique est à son maximum de manière à assurer un taux d'O résiduel entre 6% et 9% pour ainsi éliminer tout risque d'anaérobiose.
12. Compost obtenu par le procédé selon l'une quelconque des revendications précédentes.
PCT/FR2002/003980 2001-11-21 2002-11-20 Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede WO2003043957A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002365958A AU2002365958A1 (en) 2001-11-21 2002-11-20 Method for accelerated production of a compost, and compost obtained by said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0115031A FR2832404B1 (fr) 2001-11-21 2001-11-21 Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede
FR01/15031 2001-11-21

Publications (2)

Publication Number Publication Date
WO2003043957A2 true WO2003043957A2 (fr) 2003-05-30
WO2003043957A3 WO2003043957A3 (fr) 2003-12-11

Family

ID=8869609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003980 WO2003043957A2 (fr) 2001-11-21 2002-11-20 Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede

Country Status (3)

Country Link
AU (1) AU2002365958A1 (fr)
FR (1) FR2832404B1 (fr)
WO (1) WO2003043957A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009924A1 (fr) * 2003-07-24 2005-02-03 Samuel Gerardo Silva Arias Procede de production d'engrais organiques, et produit ainsi obtenu
DE102007008188A1 (de) * 2007-02-12 2008-08-28 Linke, Torsten Bodensubstrat aus kompostierten Fäkalien und Verfahren zu dessen Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210713A (zh) * 2013-05-05 2013-07-24 涂维浩 一种大棚土壤肥力改良及土传病防治的方法
FR3110323A1 (fr) * 2020-05-20 2021-11-26 André Thien Ah Koon Substrat de culture de gazon, procédé de préparation et de culture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2125168A1 (en) * 1971-02-16 1972-09-29 Cidr Complete fertilizer - by continuous composting of waste organic matter with added complete mineral fertilizer
GB1600412A (en) * 1977-04-07 1981-10-14 Mizraim Ag Process for producing biological organic and humomineral fertilisers from solid and urban refuse and organic waste material
EP0090091A1 (fr) * 1982-03-27 1983-10-05 Epandage-Vinasse-Ausbringungs-GmbH Procédé pour l'accélération de la pourriture de paille et d'autre déchets de récolte ainsi que leur incorporation dans la matière organique du sol en avançant simultanément l'activité du sol
WO1990007282A1 (fr) * 1988-12-23 1990-07-12 Vertikum Magas- És Mélyépitményjavitó Kisszövetkezet Procede de production de fourrage et/ou d'ameliorants du sol a partir de dechets
EP0908432A2 (fr) * 1997-09-16 1999-04-14 S.I.T. Società Igiene Territorio s.r.l. Procédé de production d'engrais organique à partir des déchets urbains solides, de la fraction organique de ces derniers ou de residus "verts".

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2125168A1 (en) * 1971-02-16 1972-09-29 Cidr Complete fertilizer - by continuous composting of waste organic matter with added complete mineral fertilizer
GB1600412A (en) * 1977-04-07 1981-10-14 Mizraim Ag Process for producing biological organic and humomineral fertilisers from solid and urban refuse and organic waste material
EP0090091A1 (fr) * 1982-03-27 1983-10-05 Epandage-Vinasse-Ausbringungs-GmbH Procédé pour l'accélération de la pourriture de paille et d'autre déchets de récolte ainsi que leur incorporation dans la matière organique du sol en avançant simultanément l'activité du sol
WO1990007282A1 (fr) * 1988-12-23 1990-07-12 Vertikum Magas- És Mélyépitményjavitó Kisszövetkezet Procede de production de fourrage et/ou d'ameliorants du sol a partir de dechets
EP0908432A2 (fr) * 1997-09-16 1999-04-14 S.I.T. Società Igiene Territorio s.r.l. Procédé de production d'engrais organique à partir des déchets urbains solides, de la fraction organique de ces derniers ou de residus "verts".

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE COMPENDEX [en ligne] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; BOUCHER V DAREES ET AL: "Reducing ammonia losses by adding FeCl3 during composting of sewage sludge" Database accession no. EIX99334708330 XP002214134 & WATER AIR SOIL POLLUT;WATER, AIR AND SOIL POLLUTION 1999 KLUWER ACADEMIC PUBLISHERS, DORDRECHT, NETHERLANDS, vol. 112, no. 3, 1999, pages 229-239, *
M. TUOMELA ET AL.: "Biodegradation of lignin in a compost environment; a review" BIORESOURCE TECHNOLOGY, vol. 72, 2000, pages 169-183, XP002214136 *
M.J. NEGRO ET AL.: "Composting of sweet sorghum bagasse with other wastes." BIORESOURCE TECHNOLOGY, vol. 67, 1999, pages 89-92, XP002214135 *
V.K. SHARMA ET AL.: "Processing of urban and Agro-Industrial Residues by Aerobic Composting: Review" ENERGY CONVERS. MGMT., vol. 38, no. 5, 1997, pages 453-478, XP002214137 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009924A1 (fr) * 2003-07-24 2005-02-03 Samuel Gerardo Silva Arias Procede de production d'engrais organiques, et produit ainsi obtenu
DE102007008188A1 (de) * 2007-02-12 2008-08-28 Linke, Torsten Bodensubstrat aus kompostierten Fäkalien und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
AU2002365958A8 (en) 2003-06-10
FR2832404B1 (fr) 2004-07-23
WO2003043957A3 (fr) 2003-12-11
FR2832404A1 (fr) 2003-05-23
AU2002365958A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
EP0952972B1 (fr) Procede de fermentation aerobie thermophile pour dechets organiques
Verdonck Composts from organic waste materials as substitutes for the usual horticultural substrates
CN1891677A (zh) 一种苹果渣综合利用处理方法
EP2828225B1 (fr) Procédé de compostage d'un compost épuisé de champignons
JP2007175048A (ja) 農作物の有機栽培で用いる培地
EP0360945A1 (fr) Procédé de valorisation des lisiers de porc et dispositif pour sa mise en oeuvre
WO2003043957A2 (fr) Procede d'obtention acceleree d'un compost, et compost obtenu par un tel procede
JP2008050248A (ja) イネ科植物由来の有機発酵肥料及びその製造方法
US20200377427A1 (en) Efficient delivery of microorganisms produced from vermicomposting to soil
US20230082338A1 (en) Method for converting an organic material into a catalyst for biological hydrosynthesis
CZ32099A3 (cs) Způsob a zařízení pro výrobu kompostu
CN107162736A (zh) 通过污泥发酵沼渣制备有机肥的方法
EP0221219A1 (fr) Amendement biologique pour l'agriculture, préparé à partir de boues résiduaires de stations d'épuration et son procédé de fabrication
JP2000327465A (ja) 未利用水産廃棄物の利用方法
JPH11199357A (ja) 水生植物類を利用した半発酵肥料
JP2008013380A (ja) 堆肥製造方法
KR102664238B1 (ko) 가축분뇨를 이용한 액비의 제조방법 및 액비화 시스템
KR102249102B1 (ko) 유기성폐기물 자원화 방법 및 이를 이용한 친환경 고기능성 퇴비
KR20010100145A (ko) 축분을 이용한 고체 및 액체 유기질 비료의 제조 방법
JPS6138697A (ja) 酵母培養型醗酵による高水分含有廃棄物の処理方法
CA2287089A1 (fr) Procede pour la transformation et la deshydratation de residus organiques, ses produits et ses equipements
FR2626571A1 (fr) Procede de preparation d'un amendement-engrais et produit obtenu
Tleuova et al. Stabilization of organic municipal solid waste by composting
JP2008142022A (ja) 養鶏システム
JPH07315972A (ja) コンポストの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP