WO2003042281A1 - Verfahren zur herstellung von polyetheralkoholen - Google Patents

Verfahren zur herstellung von polyetheralkoholen Download PDF

Info

Publication number
WO2003042281A1
WO2003042281A1 PCT/EP2002/012493 EP0212493W WO03042281A1 WO 2003042281 A1 WO2003042281 A1 WO 2003042281A1 EP 0212493 W EP0212493 W EP 0212493W WO 03042281 A1 WO03042281 A1 WO 03042281A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene oxides
polyether
amines
compounds
polyether alcohols
Prior art date
Application number
PCT/EP2002/012493
Other languages
English (en)
French (fr)
Inventor
Bernd Güttes
Kathrin Harre
Gottfried Knorr
Marita Schuster
Monika Wetterling
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/495,199 priority Critical patent/US20050004403A1/en
Priority to EP02802999A priority patent/EP1448665A1/de
Publication of WO2003042281A1 publication Critical patent/WO2003042281A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2672Nitrogen or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/482Mixtures of polyethers containing at least one polyether containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2290/00Compositions for creating anti-fogging

Definitions

  • the invention relates to a process for the preparation of polyether alcohols by reacting H-functional starter substances with alkylene oxides.
  • polyether alcohols by reacting H-functional starter substances, in particular alcohols and primary and / or secondary amines with alkylene oxides, is generally known.
  • the reaction of the alkylene oxides with the H-functional starter substances is usually carried out in the presence of catalysts, for example basic or acidic substances or multi-metal cyanide catalysts.
  • catalysts for example basic or acidic substances or multi-metal cyanide catalysts.
  • Potassium hydroxide is usually used as a catalyst, which is separated from the polyether alcohol after the synthesis by purification operations such as neutralization, distillation, and filtration. Only these pure polyether polyols are used for the reaction with di- and / or polyisocyanates to form polyurethanes.
  • aminic substances such as triethylamine or, as described in WO 9825878, of alkanolamines as catalysts is also known.
  • the separation of these substances from the polyether alcohol is usually technically difficult. Traces of these amines used as catalysts, however, frequently interfere with the subsequent conversion of the polyether alcohols into polyurethanes.
  • US Pat. No. 3,346,557 describes a process for the preparation of polyether alcohols in which a mixture of solid alcohols and liquid amines is used as the starting substance.
  • the A in serves both as a solvent for the solid alcohols and as a catalyst for the addition of the alkylene oxides.
  • a prepolymer is produced from the solid alcohol and alkylene oxide in the presence of the amines in a first step, which is reacted with further solid alcohol and further amine with alkylene oxides in a second step.
  • the amine is added to the reaction mixture at the beginning of each stage.
  • US Pat. No. 4,228,310 describes a process for the production of polyether alcohols which are suitable for the production of polyisocyanurate foams.
  • carbamate salts, aminophenols, hexahydrotriazines and tetrahydrooxadiazines are used as catalysts.
  • the catalysts are added once at the beginning of the addition of the alkylene oxides. Since the compounds used as catalysts also act as catalysts act for the formation of isocyanurates, they can remain in the product after the production of the polyether alcohols.
  • the object of the invention was to develop a process for the preparation of polyether alcohols using amine catalysts which proceeds in a high space / time yield and in which side reactions are avoided as far as possible, the catalysts remaining in the polyether alcohol after the reaction and at the use of these polyether alcohols for the production of polyurethanes can act as a catalyst.
  • the object is achieved in that amines are used as catalysts in the production of polyether alcohols by reacting alkylene oxides with H-functional starters, the amines being added at least once before or at the beginning of the addition of the alkylene oxides and in the course of the reaction , the repeated addition of the catalyst at the point of the reaction at which there is a strong course of side reactions, and / or when the alkylene oxides in the polyether chain change.
  • the invention relates to a process for the preparation of polyether alcohols by catalytic addition of alkylene oxides to H-functional starter substances using amines as catalysts, characterized in that the addition of the amines to the reaction mixture before or at the beginning of the addition of the alkylene oxides and in the course of the reaction is carried out at least once more, the catalyst being added again at the point of the reaction at which there is a strong course of side reactions and / or when the alkylene oxides in the polyether chain change.
  • the invention further relates to the polyether alcohols produced by the process according to the invention.
  • the invention furthermore relates to the use of the polyether alcohols according to the invention for the production of polyurethanes.
  • the invention further relates to a process for the production of polyurethanes by reacting
  • At least one polyether alcohol according to the invention is used as compounds having at least two hydrogen atoms b) reactive with isocyanate groups.
  • the addition of catalyst can be adjusted accordingly.
  • the catalyst In order to effectively suppress side reactions, the catalyst must be added before the rate of aldehyde formation exceeds 100 ppm aldehyde / 100 g molecular weight build-up.
  • the amount of aldehydes in the reaction mixture can be routinely easily determined in the industrial production of polyether alcohols.
  • the reaction mixture becomes further Amine catalyst added.
  • Amines which can be used as catalysts in the process according to the invention are aliphatic and / or aromatic amines with primary, secondary or tertiary amino groups. Amines with a ring structure in which the nitrogen atom is incorporated in the ring are also particularly suitable.
  • Preferred ring-shaped amines are piperazine derivatives such as 1,4-dimethylpiperazine, N-hydroxyethylpiperazine, 1,3,5-tris (dimethylaminopropyl) hexahydro-s-triazine, and / or N, N-dimethylcyclohexylamine, dimethylbenzylamine and / or 2,2'-bis (2-ethyl-2-azobicycloether) and / or 1,8-diazabicyclo- (5,4,0) undecen-7 and / or morpholine derivatives such as 4-methyl and / or 4-ethyl morpholine and / or 2,2-dimorpholinethyl ether and / or imidazole derivatives such as 1-methyl- and / or 1, 2-dimethylimidazole and / or N- (3-aminopropyl) imidazole, diazobicyclooctane (sold under the name Dabco® by
  • Those amines which are usually used as catalysts for the production of polyurethanes, in particular imidazoles and / or diazobicyclooctane and its derivatives, are preferably used.
  • the reaction products of the amines mentioned with alkylene oxides, in particular, can also be used as catalysts
  • Ethylene oxide and / or propylene oxide, particularly preferably propylene oxide, can be used. These reaction products preferably have a molar mass in the range between 160 to 500 g / mol.
  • the amines with primary and secondary amino groups or hydroxyl groups used according to the invention not only act as catalysts in the preparation of the polyether alcohols.
  • Alkylene oxides can also attach to their free hydrogen atoms. This means that they also act as starting substances in the method according to the invention. By the addition of alkylene oxides to the free hydrogen atoms of the amino groups in the amines used, these amino groups are converted into tertiary amino groups.
  • amines are used which have at least one tertiary amino group and at least one reactive hydrogen atom in the molecule.
  • the reactive hydrogen atoms can preferably come from primary and / or secondary amino groups and / or hydroxyl groups. Since alkylene oxides also attach to these reactive hydrogen atoms and the polyether chains thus formed carry hydroxyl groups at the chain end, these compounds act as built-in catalysts in the formation of polyurethane.
  • the advantage of the built-in catalysts is that they are built into the polyurethane matrix and therefore cannot diffuse out of the foam. The diffusion out of the polyurethane catalysts used is undesirable since they mostly have a strong odor and high fogging and VOC values. VOC values mean the value for volatile organic components.
  • Examples of compounds with tertiary amino groups and reactive hydrogen atoms are N- (2-hydroxyethylmorpholine), N-3 (aminopropyl) imidazole, dirnethylaminopropylamine, diethylaminoethylamine.
  • the amines used according to the invention are preferably used in the preparation of the polyether alcohols in an amount of 0.01 to 50 g, in particular 0.2 to 2 g, per 100 g of starting substance.
  • polyether alcohols for the production of flexible polyurethane foams and rigid polyurethane foams can be produced by the process according to the invention.
  • alcohols with 2 or 3 hydroxyl groups are mostly used as starting substances.
  • Preferred starter substances are glycerol, trimethylolpropane, ethylene glycol, diethylene glycol, propylene glycol, propylene glycol and any mixtures of at least two of the alcohols mentioned.
  • alkylene oxides mostly ethylene oxide and propylene oxide are used alone or together. When using mixtures of ethylene oxide and propylene oxide, the alkylene oxides can be added individually one after the other in so-called blocks or mixed with one another as so-called statistics.
  • an ethylene oxide block can be added to the end of the polyether chain.
  • the polyether alcohols which are used for the production of flexible polyurethane foams usually have a molecular weight M n in the range between 1000 and 10000, in particular 1000 to 7000 g / mol.
  • polyether alcohols which are used in the production of rigid polyurethane foams, mostly starting substances with at least 4 active hydrogen atoms, preferably at least 4-valent alcohols and / or amines with at least 4 reactive hydrogen atoms are used. Both aliphatic and aromatic amines can be used. Aromatic amines are preferred.
  • Examples of at least 4-valent alcohols are sugar alcohols, such as glucose, sorbitol, sucrose, mannitol. Since these compounds are mostly solid, they are usually reacted with the alkylene oxides in a mixture with liquid compounds such as water, glycerol and / or ethylene glycol. In principle, it is also possible in the process according to the invention to use mixtures of the solid compounds mentioned and the amines used according to the invention as the starting substance.
  • Toluene diamine, diphenyl methane diamine and mixtures of diphenyl methane diamine and polyphenylene polymethylene polyamines are mostly used as aromatic amines.
  • As aliphatic amines mostly uses ethylenediamine, diethylenetriamine, dimethylpropylamine or their higher homologues.
  • the reaction of the starting substance with the alkylene oxides is carried out at the pressures customary for this in the range between 0.1 and 1.0 MPa and the customary temperatures in the range between 80 and 140 ° C.
  • the metering of the alkylene oxides is usually followed by a post-reaction phase for the complete reaction of the alkylene oxides.
  • amine catalyst is again added to the reaction mixture at the beginning of the post-reaction phase, preferably immediately after the metering in of the alkylene oxides has ended.
  • the polyether alcohols are usually subjected to a short distillation treatment to remove volatile impurities. If necessary, the polyether alcohol can then be filtered to remove any solid contaminants. It can then be processed into polyurethanes by reaction with polyisocyanates.
  • polyurethanes in particular the polyurethane foams, are produced using the polyether alcohols produced by the process according to the invention by processes known per se by reaction with polyisocyanates, usually in the presence of catalysts, blowing agents, and, if appropriate, chain extenders, crosslinking agents, and auxiliaries and / or additives.
  • Aliphatic and preferably aromatic di- and / or polyisocyanates can be used as polyisocyanates.
  • diisocyanates in particular tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) are mostly used individually or in a mixture with one another or in a mixture with higher-functionality polyisocyanates.
  • Bifunctional and higher-functional polyisocyanates are preferably used in the production of rigid polyurethane foams.
  • Mixtures of diphenyl methane diisocyanate and polyphenylene polymethylene polyisocyanates, often also referred to as crude MDI, are preferably used.
  • the polyether alcohols according to the invention are used as compounds with at least two hydrogen atoms reactive with isocyanate groups, alone or in a mixture with other compounds with at least two hydrogen atoms reactive with isocyanate groups.
  • the other compounds having at least two H atoms reactive toward isocyanate groups are polyether polyols.
  • polyether polyols These are prepared by known processes, for example by anionic polymerization using alkali hydroxides or alkali alcoholates as catalysts and with the addition of at least one starter molecule which contains 2 to 3 reactive hydrogen atoms, from one or more alkylene oxides having 2 to 4 carbon atoms in the alkylene radical.
  • Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide and preferably ethylene oxide and 1,2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures. Mixtures of 1,2-propylene oxide and ethylene oxide are preferred, the ethylene oxide being used in amounts of 10 to 50% as the ethylene oxide end block, so that over 70% of the resulting polyols have primary OH end groups.
  • Suitable starter molecules are water or di- and trihydric alcohols, such as ethylene glycol, 1,2-propanediol, 2,3 and 1,3, diethylene glycol, dipropylene glycol, 1,4-butanediol, glycerol, trimethylolpropane etc.
  • the polyether polyols preferably polyoxypropylene-polyoxyethylene-polyols, have a functionality of 2 to 3 and molecular weights of 1,000 to 8,000, preferably 2,000 to 7,000.
  • polyetherols are polymer-modified polyether polyols, preferably graft polyether polyols, in particular those based on styrene and / or acrylonitrile, which are prepared by in situ polymerization of acrylonitrile, styrene or preferably mixtures of styrene and acrylonitrile.
  • Polyester polyols are also suitable. These can be prepared, for example, from organic dicarboxylic acids with 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids with 4 to 6 carbon atoms, polyhydric alcohols, preferably diols, with 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
  • dicarboxylic acids Wise consider: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isdphthalic acid and terephthalic acid.
  • the dicarboxylic acids can be used both individually and in a mixture with one another.
  • dicarboxylic acid derivatives such as, for example, dicarboxylic acid esters of alcohols having 1 to 4 carbon atoms or dicarboxylic acid anhydrides, can also be used.
  • Dicarboxylic acid mixtures of succinic, glutaric and adipic acid and aromatic diacids are preferably used.
  • dihydric and polyhydric alcohols are: ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,1 10-decanediol, glycerol and trimethylolpropane, and also dialcohols which contain aromatic or aliphatic ring systems, such as 1,4-bisdihydroxymethylbenzene or 1,4-bisdihydroxyethylbenzene.
  • Ethanediol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol are preferably used.
  • Polyester polyols from lactones, for example e-caprolactone or hydroxycarboxylic acids, for example w-hydroxycaproic acid, can also be used.
  • Mixing systems which contain both polyesterols and polyetherols can also be used.
  • mixtures of at least two hydrogen atoms reactive with isocyanate groups from mixtures of conventional polyols and polyether alcohols with tertiary amino groups described above which are obtained by reacting amines selected from the group described above containing piperazine derivatives such as 1,4-dimethylpiperazine, N-hydroxyethylpiperazine,
  • 1,3,5-tris (dimethylaminopropyl) hexahydro-s-triazine, and / or N, N-dimethylcyclohexylamine, dimethylbenzylamine and / or 2,2'-bis (2-ethyl-2-azobicycloether) and / or 1, 8-diazabicyclo- (5, 4, 0) - undecene-7 and / or morpholine derivatives such as 4-methyl and / or 4-ethylmorpholine and / or 2,2-dimorpholinethyl ether and / or
  • Imidazole derivatives such as 1-methyl- and / or 1,2-dimethylimidazole and / or N- (3-aminopropyl) imidazole, diazobicyclooctane, triethylamine, dimethylaminopropylamine, diethylaminoethylamine or any mixtures of at least two of the amines mentioned with alkylene oxides were used .
  • the amines are reacted with alkylene oxides without the presence of further starting substances, and the polyether alcohols thus obtained are mixed with other polyether alcohols before the reaction with the polyisocyanates.
  • So-called chain extenders and / or crosslinkers are also often used to produce the polyurethanes. Chain extenders and crosslinking agents are usually two or more functional alcohols or amines with molecular weights in the range between 60 and 400 g / mol.
  • blowing agent Water which reacts with the isocyanate groups with the elimination of carbon dioxide and / or compounds which are inert to the starting compounds of the polyurethane reaction and which evaporate as a result of the heat of reaction during the formation of polyurethane, so-called physical blowing agents, can preferably be used as blowing agent.
  • physical blowing agents are aliphatic hydrocarbons with 3 to 8 carbon atoms, in particular pentanes, halogenated hydrocarbons, or acetals.
  • gases dissolved under pressure in the starting compounds for example carbon dioxide, nitrogen or noble gases as blowing agents.
  • the amines used as catalysts for the production of the polyether alcohols also act as catalysts for the production of polyurethane.
  • additional catalysts can also be used for the production of polyurethane, in particular compounds with tertiary amino groups and / or organic metal compounds, in particular tin compounds.
  • the above-mentioned reaction products of the amines used as catalysts for the preparation of the polyether alcohols with alkylene oxides, in particular ethylene oxide and / or propylene oxide, particularly preferably propylene oxide, with a molar mass in the range between 160 to 400 g / mol can also be used as catalysts.
  • Stabilizers flame retardants and / or pigments, for example, are used as auxiliaries and / or additives.
  • the polyurethanes can be produced by known processes, for example by the one-shot or the prepolymer process, and the foams can be produced by the block foam technique or the molded foam technique.
  • the method according to the invention has several advantages. Since the same aminic for the successive polyaddition reactions for polyether alcohol and polyurethane production Catalysts can be used, it is possible to do without the complex cleaning operations after the production of the polyether alcohols.
  • the targeted addition of the catalysts at monomer change points or at reaction points before the increased by-product formation increases the space / time yield in the production of the polyether alcohols and suppresses the formation of by-products.
  • the polyurethanes produced using the polyether alcohols produced by the process according to the invention are less prone to fogging and are largely odorless. This is due on the one hand to the significantly reduced amount of by-products and on the other hand to the fixation of the catalyst in the polyurethane structure.
  • the foam produced in this way had a density of 29 g / l when foamed freely in the foam cup.
  • the compressive strength of a foam produced with these starting materials in a closed mold with a 10% compression was 0.14 N / mm 2 .
  • Example 4 The procedure was as in Example 4, but instead of the polyether alcohol from Example 3, 82.95 parts by weight of a polyether alcohol based on glycerol, propylene oxide and ethylene oxide with a hydroxyl number of 28 mgKOH / g and an additional 0.35 part by weight of amine catalyst dimethylpropyl diamine were used.
  • Example 6 The procedure was as in Example 6, but instead of 83.3 parts by weight, 82.95 parts by weight of the polyether alcohol based on glycerol, propylene oxide and ethylene oxide with a hydroxyl number of 28 mgKOH / g, 0.5 part by weight of glycerol, 5 parts by weight of amine catalyst Dabco® 2025 from Air Products, no polyether alcohol based on dimethylpropyl diamine and Propylene oxide and 0.35 parts by weight of dimethylpropyldiamine.
  • VOC volatile organic chemicals
  • FOG is a measure of condensable emissions from the foam.

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyetheralkoholen durch katalytische Anlagerung von Alkylen-oxiden an H-funktionelle Startsubstanzen unter Verwendung von Aminen als Katalysatoren, dadurch gekennzeichnet, dass die Zugabe der Amine zur Reaktionsmischung von oder zu Beginn der Anlagerung der Alkylenoxide sowie im Verlaufe der Umsetzung noch mindestens einmal erfolgt, wobei die nochmalige Zugabe des Katalysators an dem Punkt der Reaktion, bei dem es zu einem starken Ablauf von Nebenreaktionen kommt, und/oder bei Wechsel der Alkylenoxide in der Polyetherkette erfolgt.

Description

Verfahren zur Herstellung von Polyetheralkoholen
Die Erfindung betrifft ein Verfahren zur Herstellung von Poly- etheralkoholen durch Umsetzung von H-funktioneilen Startsubstanzen mit Alkylenoxiden.
Die Herstellung von Polyetheralkoholen durch Umsetzung von H-funktionellen Startsubstanzen, insbesondere Alkoholen und pri- mären und/oder sekundären Aminen mit Alkylenoxiden ist allgemein bekannt . Die Umsetzung der Alkylenoxide mit den H-funktionellen Startsubstanzen erfolgt üblicherweise in Gegenwart von Katalysatoren, beispielsweise basischen oder sauren Substanzen oder Multi etallcyanidkatalysatoren. Zumeist wird als Katalysator Kaliumhydroxid eingesetzt, das nach der Synthese durch Reinigungsoperationen wie Neutralisation, Destillation, Filtration vom Polyetheralkohol abgetrennt wird. Erst diese reinen Polyether- polyole werden zur Umsetzung mit Di- und/oder Polyisocyanaten zu Polyurethanen verwendet. Weiterhin ist auch die Verwendung von aminischen Substanzen wie Triethylamin oder, wie in WO 9825878 beschrieben wird, von Alkanolaminen als Katalysatoren bekannt. Die Abtrennung dieser Substanzen vom Polyetheralkohol ist technisch zumeist schwierig. Spuren dieser als Katalysatoren eingesetzten Amine stören jedoch häufig die nachfolgende Umsetzung der Polyetheralkohole zu Polyurethanen.
In US-A-3 ,346, 557 wird ein Verfahren zur Herstellung von Polyetheralkoholen beschrieben, bei dem als Startsubstanz ein Gemisch aus festen Alkoholen und flüssigen Aminen eingesetzt wird. Das A in dient hierbei sowohl als Lösemittel für die festen Alkohole als auch als Katalysator für die Anlagerung der Alkylenoxide. In einer Ausführungsform dieses Verfahrens wird in einem ersten Schritt aus dem festen Alkohol und Alkylenoxid in Anwesenheit der Amine ein Vorpolymer erzeugt, das in einem zweiten Schritt mit weiterem festen Alkohol und weiterem Amin mit Alkylenoxiden umgesetzt wird. Das Amin wird jeweils am Beginn jeder Stufe der Reaktionsmischung zugesetzt.
In US-A-4, 228, 310 wird ein Verfahren zur Herstellung von Poly- etheralkoholen, die für die Herstellung von Polyisocyanuratschäu- men geeignet sind, beschrieben. Um die Verwendung von alkalischen Katalysatoren, deren Abbauprodukte bei der Verwendung von Isocya- nurat-Katalysatoren sehr störend sind, zu vermeiden, werden als Katalysatoren Carbamatsalze, Aminophenole, Hexahydrotriazine und Tetrahydrooxadiazine verwendet. Die Katalysatoren werden einmalig zu Beginn der Anlagerung der Alkylenoxide zugegeben. Da die als Katalysatoren eingesetzten Verbindungen auch als Katalysatoren für die Isocyanuratbildung wirken, können sie nach der Herstellung der Polyetheralkohole im Produkt verbleiben.
Da in den Verfahren nach US-A-3,346, 557 und US-A-4, 228, 310 die Zugabe der Amine unabhängig von der ablaufenden Gesamtreaktion und vor allem von den bei der Anlagerung der Alkylenoxide ablaufenden Nebenreaktionen erfolgt, steht die für den jeweiligen Verfahrensschritt optimale Menge an Katalysator nicht immer zur Verfügung, und es kommt durch momentane Über- oder auch Unterka- talysierungen zu verstärkten Nebenproduktbildungen bzw. Kettenabbrüchen.
Aufgabe der Erfindung war es, ein Verfahren zur Herstellung von Polyetheralkoholen unter Verwendung von Aminkatalysatoren zu ent- wickeln, das in hoher Raum/Zeit-Ausbeute verläuft und bei dem Nebenreaktionen nach Möglichkeit vermieden werden, wobei die Katalysatoren nach der Umsetzung im Polyetheralkohol verbleiben und bei der Verwendung dieser Polyetheralkohole zur Herstellung von Polyurethanen als Katalysator wirken können.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass bei der Herstellung von Polyetheralkoholen durch Umsetzung von Alkylenoxiden mit H-funktionellen Startsubstanzen als Katalysatoren Amine eingesetzt werden, wobei die Zugabe der Amine vor oder zu Beginn der Anlagerung der Alkylenoxide sowie im Verlaufe der Umsetzung noch mindestens einmal erfolgt, wobei die nochmalige Zugabe des Katalysators an dem Punkt der Reaktion, bei dem es zu einem starken Ablauf von Nebenreaktionen kommt, und/oder bei Wechsel der Alkylenoxide in der Polyetherkette erfolgt.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyetheralkoholen durch katalytische Anlagerung von Alkylenoxiden an H-funktionelle Startsubstanzen unter Verwendung von Aminen als Katalysatoren, dadurch gekennzeichnet, daß die Zugabe der Amine zur Reaktionsmischung vor oder zu Beginn der Anlagerung der Alkylenoxide sowie im Verlaufe der Umsetzung noch mindestens einmal erfolgt, wobei die nochmalige Zugabe des Katalysators an dem Punkt der Reaktion, bei dem es zu einem starken Ablauf von Nebenreaktionen kommt, und/oder bei Wechsel der Alkylenoxide in der Polyetherkette erfolgt.
Gegenstand der Erfindung sind weiterhin die nach dem erfindungsgemäßen Verfahren hergestellten Polyetheralkohole. Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungsgemäßen Polyetheralkohole zur Herstellung von Polyurethanen.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von Polyurethanen durch Umsetzung von
a) Polyisocyanaten mit
b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen,
dadurch gekennzeichnet, daß als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) mindestens ein erfindungsgemäßer Polyetheralkohol eingesetzt wird.
Da die Aldehydbildung während der Anlagerung der Alkylenoxide ein leicht meßbares Anzeichen für ablaufende Nebenreaktionen ist, kann die Katalysatorzugabe daran ausgerichtet werden. Um Neben- reaktionen wirksam zu unterdrücken, muß die Katalysatorzugabe erfolgen, bevor die Geschwindigkeit der Aldehydbildung den Wert von 100 ppm Aldehyd/100 g Molgewiσhtsaufbau übersteigt.
Die Menge an Aldehyden in der Reaktionsmischung kann bei der technischen Herstellung von Polyetheralkoholen routinemäßig leicht bestimmt werden.
Auch bei Wechsel der Alkylenoxide, beispielsweise von Propylen- oxid zu Ethylenoxid und umgekehrt, bei Wechsel der Dosierung von einem Alkylenoxid zu einem statistischem Gemisch von zwei oder mehreren Alkylenoxiden und/oder bei Wechsel der Anteile der Alkylenoxide in einem statistischen Gemisch zueinander wird der Reaktionsmischung weiterer Aminkatalysator zugegeben.
Amine, die beim erfindungsgemäßen Verfahren als Katalysator verwendet werden können, sind aliphatische und/oder aromatische Amine mit primären, sekundären oder tertiären Aminogruppen. Besonders geeignet sind auch Amine mit ringförmigem Aufbau, bei denen das Stickstoffatom im Ring eingebaut ist.
Vorzugsweise werden als ringförmige Amine Piperazinderivate wie 1, 4-Dimethylpiperazin, N-Hydroxyethylpiperazin, 1, 3 ,5-Tris (di- methylaminopropyl)hexahydro-s-triazin, und/oder N,N-Dimethylcy- clohexylamin, Dimethylbenzylamin und/oder 2, 2'-bis-(2-ethyl- 2-azobicycloether) und/oder 1, 8-Diazabicyclo-(5,4, 0)undecen-7 und/oder Morpholinderivate wie 4-Methyl- und/oder 4-Ethyl- morpholin und/oder 2,2-Dimorpholinethylether und/oder Imidazol- derivate wie 1-Methyl- und/oder 1, 2-Dimethylimidazol und/oder N-(3-Aminopropyl) -imidazol, Diazobicyclooctan (vertrieben unter der Bezeichnung Dabco® von der Firma Air Products) , Triethylamin, Dirnethylaminopropylamin, Diethylaminoethylamin oder beliebigen Gemische aus mindestens zwei der genannten Amine eingesetzt. Bevorzugt werden solche Amine eingesetzt, die üblicherweise als Katalysatoren für die Herstellung von Polyurethanen verwendet werden, insbesondere Imidazole und/oder Diazobicyclooctan und seine Derivate. Als Katalysatoren können auch die Umsetzungspro- dukte der genannten Amine mit Alkylenoxiden, insbesondere
Ethylenoxid und/oder Propylenoxid, besonders bevorzugt Propylen- oxid, eingesetzt werden. Diese Umsetzungsprodukte haben vorzugsweise eine Molmasse im Bereich zwischen 160 bis 500 g/mol.
Die erfindungsgemäß eingesetzten Amine mit primären und sekundären Aminogruppen oder Hydroxylgruppen wirken bei der Herstellung der Polyetheralkohole nicht nur als Katalysatoren. An ihre freien Wasserstoffatome können sich ebenfalls Alkylenoxide anlagern. Damit wirken sie bei dem erfindungsgemäßen Verfahren auch mit als StartSubstanz. Durch die Anlagerung von Alkylenoxiden an die freien Wasserstoffatome der Aminogruppen bei den eingesetzten Aminen werden diese Aminogruppen in tertiäre Aminogruppen umgewandelt .
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden Amine eingesetzt, die mindestens eine tertiäre Aminogruppe und mindestens ein reaktives Wasserstoffatom im Molekül aufweisen. Die reaktiven Wasserstoffatome können vorzugsweise von primären und/oder sekundären Aminogruppen und/ oder Hydroxylgruppen kommen. Da sich an diese reaktiven Wasserstoffatome ebenfalls Alkylenoxide anlagern und die so gebildeten Polyetherketten am Kettenende Hydroxylgruppen tragen, wirken diese Verbindungen bei der Polyurethanbildung als einbaubare Katalysatoren. Der Vorteil der einbaubaren Katalysatoren besteht darin, daß sie in die Polyurethanmatrix eingebaut werden und somit nicht aus dem Schaum diffundieren können. Das Herausdiffundieren der eingesetzten Polyurethankatalysatoren ist unerwünscht, da diese zumeist einen starken Geruch und hohe Fogging- und VOC- Werte aufweisen. Unter VOC-Werten wird der Wert für flüchtige organische Komponenten verstanden.
Beispiele für Verbindungen mit tertiären Aminogruppen und reaktiven Wasserstoffatomen sind N-(2-Hydroxyethylmorpholin) , N-3 (Aminopropyl) imidazol, Dirnethylaminopropylamin, Diethylamino- ethylamin. Die erfindungsgemäß eingesetzten Amine werden bei der Herstellung der Polyetheralkohole vorzugsweise in. einer Menge von 0,01 bis 50 g, insbesondere 0,2 bis 2 g auf 100 g Startsubstanz eingesetzt.
Nach dem erfindungsgemäßen Verfahren können insbesondere Polyetheralkohole für die Herstellung von Polyurethan-Weichschaumstoffen und Polyurethan-Hartschaumstoffen hergestellt werden.
Bei der Herstellung von Polyetheralkoholen, die für die Herstellung von Polyurethan-Weichschaumstoffen eingesetzt werden, werden als Startsubstanzen zumeist Alkohole mit 2 oder 3 Hydroxylgruppen eingesetzt. Bevorzugte Startsubstanzen sind Glyzerin, Trimethy- lolpropan, Ethylenglykol, Diethylenglykol, Propylenglykol, Di- propylenglykol sowie beliebige Mischungen aus mindestens zwei der genannten Alkohole. Als Alkylenoxide werden zumeist Ethylenoxid und Propylenoxid allein oder gemeinsam eingesetzt. Bei der Verwendung von Mischungen aus Ethylenoxid und Propylenoxid können die Alkylenoxide einzeln hintereinander in sogenannten Blöcken oder gemischt miteinander als sogenannte Statistik angelagert werden. Für bestimmte Einsatzgebiete, beispielsweise für die Herstellung von Kaltformschäumen, kann am Ende der Polyetherkette ein Ethylenoxidblock angelagert werden. Die Polyetheralkohole, die für die Herstellung von Polyurethan-Weichschaumstoffen einge- setzt werden, haben üblicherweise ein Molekulargewicht Mn im Bereich zwischen 1000 und 10000, insbesondere 1000 bis 7000 g/mol.
Bei Polyetheralkoholen, die bei der Herstellung von Polyurethan- Hartschaumstoffen eingesetzt werden, werden als zumeist Start- Substanzen mit mindestens 4 aktiven Wasserstoffatomen, vorzugsweise mindestens 4-wertige Alkohole und/oder Amine mit mindestens 4 reaktiven Wasserstoffatomen eingesetzt. Es können sowohl aliphatische als auch aromatische Amine eingesetzt werden. Bevorzugt sind aromatische Amine.
Beispiele für mindestens 4-wertige Alkohole sind Zuckeralkohole, wie Glucose, Sorbit, Saccharose, Mannit. Da diese Verbindungen zumeist fest sind, erfolgt ihre Umsetzung mit den Alkylenoxiden zumeist im Gemisch mit flüssigen Verbindungen, wie Wasser, Glyze- rin und/oder Ethylenglykol. Es ist bei dem erfindungsgemäßen Verfahren prinzipiell auch möglich, als Startsubstanz Mischungen aus den genannten festen Verbindungen und den erfindungsgemäß eingesetzten Aminen zu verwenden.
Als aromatische Amine werden zumeist Toluylendiamin, Diphenyl- methandiamin und Gemische aus Diphenylmethandiamin und Polypheny- lenpolymethylenpolyaminen verwendet. Als aliphatische Amine wer- den zumeist Ethylendiamin, Diethylentriamin, Dimethylpropylamin oder deren höhere Homologe verwendet.
Die Umsetzung der Startsubstanz mit den Alkylenoxiden wird bei den hierfür üblichen Drücken im Bereich zwischen 0,1 und 1,0 MPa und den üblichen Temperaturen im Bereich zwischen 80 und 140 °C durchgeführt. An die Dosierung der Alkylenoxide schließt sich zumeist eine Nachreaktionsphase zum vollständigen Abreagieren der Alkylenoxide an. In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird zu Beginn der Nachreaktionsphase, vorzugsweise unmittelbar nach Abschluß der Dosierung der Alkylenoxide, der Reaktionsmischung nochmals Aminkatalysator zugesetzt.
Nach der Anlagerung der Alkylenoxide, werden die Polyetheralkohole zumeist einer kurzen destillativen Behandlung zur Abtrennung leichtflüchtiger Verunreinigungen unterzogen. Falls erforderlich, kann der Polyetheralkohol anschließend filtriert werden, um eventuell vorhandene feste Verunreinigungen zu entfer- nen. Danach kann er durch Umsetzung mit Polyisocyanaten zu Polyurethanen verarbeitetet werden.
Die Herstellung der Polyurethane, insbesondere der Polyurethanschäume unter Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten Polyetheralkohole erfolgt nach an sich bekannten Verfahren durch Umsetzung mit Polyisocyanaten, zumeist in Anwesenheit von Katalysatoren, Treibmitteln, sowie gegebenenfalls Kettenverlängerungsmitteln, Vernetzern, sowie Hilfs- und/oder Zusatzstoffen.
Zu den verwendeten Einsatz- sowie Hilfs- und/oder Zusatzstoffen ist im einzelnen folgendes zu sagen.
Als Polyisocyanate können aliphatische und vorzugsweise aromati- sehe Di- und/oder Polyisocyanate eingesetzt werden. Bei der Herstellung von Polyurethan-Weichschaumstoffen werden zumeist Diiso- cyanate, insbesondere Toluylendiisocyanat (TDI) und Diphenyl- methandiisoeyanat (MDI) einzeln oder im Gemisch miteinander oder im Gemisch mit höherfunktionellen Polyisocyanaten eingesetzt.
Bei der Herstellung von Polyurethan-Hartschaumstoffen werden vorzugsweise zwei- und höherfunktionelle Polyisocyanate eingesetzt. Vorzugsweise verwendet werden Mischungen aus Diphenyl- methandiisoeyanat und Polyphenylenpolymethylenpoyisocyanaten, häufig auch als Roh-MDI bezeichnet. Für bestimmte Einsatzzwecke ist es vorteilhaft, die Polyisocyanate durch den Einbau von Gruppen, beispielsweise Urethan-, Allophanat- oder Isocyanuratgruppen, zu modifizieren.
Als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen werden die erfindungsgemäßen Polyetheralkohole allein oder im Gemisch mit anderen Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen eingesetzt.
In einer bevorzugten Ausführungsform sind die anderen Verbindungen mit mindestens zwei gegenüber Isocyanatgruppen reaktiven H- Atomen Polyetherpolyole . Diese werden nach bekannten Verfahren, beispielsweise durch anionische Polymerisation mit Alkali- hydroxiden oder Alkalialkoholaten als Katalysatoren und unter Zusatz mindestens eines Startermoleküls, das 2 bis 3 reaktive Wasserstoff tome gebunden enthält, aus einem oder mehreren Alkylenoxiden mit 2 bis 4 Kohlenstoffatomen im Alkylenrest hergestellt. Geeignete Alkylenoxide sind beispielsweise Tetrahydro- furan, 1, 3-Propylenoxid, 1,2- bzw. 2, 3-Butylenoxid und vorzugsweise Ethylenoxid und 1, 2-Propylenoxid. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Bevorzugt werden Mischungen aus 1,2-Propylenoxid und Ethylenoxid, wobei das Ethylenoxid in Mengen von 10 bis 50 % als Ethylenoxid-Endblock eingesetzt wird, so dass die entstehenden Polyole zu über 70 % primäre OH-Endgruppen aufweisen.
Als Startermolekül kommen Wasser oder 2- und 3-wertige Alkohole in Betracht, wie Ethylenglykol, Propandiol-1, 2 und -1,3, Diethy- lenglykol, Dipropylenglykol, Butandiol-1, 4, Glycerin, Trimethy- lolpropan usw. Die Polyetherpolyole, vorzugsweise Polyoxypropy- len-polyoxyethylen-polyole, besitzen eine Funktionalität von 2 bis 3 und Molekulargewichte von 1.000 bis 8.000, vorzugsweise 2.000 bis 7.000.
Als Polyetherole eignen sich ferner polymermodifizierte Polyetherpolyole, vorzugsweise Pfropfpolyetherpolyole, insbesondere solche auf Styrol- und/oder Acrylnitrilbasis , die durch in situ Polymerisation von Acrylnitril, Styrol oder vorzugsweise Mischungen aus Styrol und Acrylnitril, hergestellt werden.
Weiterhin geeignet sind Polyesterpolyole. Diese können beispielsweise aus organischen Dicarbonsäuren mit 2 bis 12 Kohlenstoffatomen, vorzugsweise aliphatischen Dicarbonsäuren mit 4 bis 6 Kohlenstoffatomen, mehrwertigen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen hergestellt werden. Als Dicarbonsäuren kommen beispiels- weise in Betracht: Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isdphthalsäure und Tereph- thalsäure . Die Dicarbonsäuren können dabei sowohl einzeln als auch im Gemisch untereinander verwendet werden. Anstelle der freien Dicarbonsäuren können auch die entsprechenden Dicarbon- säurederivate, wie z.B. Dicarbonsäureester von Alkoholen mit 1 bis 4 Kohlenstoffatomen oder Dicarbonsäureanhydride eingesetzt werden. Vorzugsweise verwendet werden Dicarbonsäuregemische aus Bernstein-, Glutar- und Adipinsäure und aromatische Di-Säuren. Beispiele für zwei- und mehrwertige Alkohole, insbesondere Diole sind: Ethandiol, Diethylenglykol, 1,2- bzw. 1, 3-Propandiol, Dipropylenglykol, 1, 4-Butandiol, 1, 5-Pentandiol, 1, 6-Hexandiol, 1, 10-Decandiol, Glycerin und Trimethylolpropan, ferner auch Dial- kohole, die aromatische oder aliphatische Ringsysteme enthalten, wie z.B. 1,4-Bisdihydroxymethylbenzol oder 1, 4-Bisdihydroxyethyl- benzol. Vorzugsweise verwendet werden Ethandiol, Diethylenglykol, 1,4-Butandiol, 1, 5-Pentandiol und 1, 6-Hexandiol. Eingesetzt werden können ferner Polyesterpolyole aus Lactonen, z.B. e-Caprolac- ton oder Hydroxycarbonsäuren, z.B. w-Hydroxycapronsäure. Ebenfalls können Mischsysteme, die sowohl Polyesterole als auch Poly- etherole enthalten, verwendet werden.
In einer besonderen Ausführungsform der erfindungsgemäßen Her- Stellung der Polyurethane werden als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen Gemische aus üblichen, oben beschriebenen Polyolen und Polyetheralkoholen mit tertiären Aminogruppen, die durch Umsetzung von Aminen, ausgewählt aus der oben beschriebenen Gruppe, enthaltend Piperazin- derivate wie 1,4-Dimethylpiperazin, N-Hydroxyethylpiperazin,
1,3, 5-Tris (dimethylaminopropyl)hexahydro-s-triazin, und/oder N,N- Dimethylcyclohexylamin, Dimethylbenzylamin und/oder 2,2'-bis- (2-ethyl-2-azobicycloether) und/oder 1, 8-Diazabicyclo-(5, 4, 0) - undecen-7 und/oder Morpholinderivate wie 4-Methyl- und/oder 4-Ethylmorpholin und/oder 2,2-Dimorpholinethylether und/oder
Imidazolderivate wie 1-Methyl- und/oder 1,2-Dirnethylimidazol und/ oder N- (3-Aminopropyl) -imidazol, Diazobicyclooctan, Triethylaminy Dimethylaminopropylamin, Diethylaminoethylamin oder beliebigen Gemischen aus mindestens zwei der genannten Amine mit Alkylen- oxiden hergestellt wurden, eingesetzt. Dabei werden die Amine ohne die Anwesenheit weiterer Startsubstanzen mit Alkylenoxiden umgesetzt und die so erhaltenen Polyetheralkohole vor der Umsetzung mit den Polyisocyanaten mit anderen Polyetheralkoholen gemischt . Zur Herstellung der Polyurethane werden häufig auch sogenannte Kettenverlängerer und/oder Vernetzer eingesetzt. Als Ketten- verlängerer und Vernetzer werden zumeist zwei- oder höherfunk- tionelle Alkohole oder Amine mit Molekulargewichten im Bereich zwischen 60 und 400 g/mol eingesetzt.
Als Treibmittel kann vorzugsweise Wasser, das mit den Isocyanatgruppen unter Abspaltung von Kohlendioxid reagiert, und/oder gegenüber den Ausgangsverbindungen der Polyurethan-Reaktion inerte Verbindungen, die durch die Reaktionswärme bei der Polyurethanbildung verdampfen, sogenannte physikalische Treibmittel, verwendet werden. Beispiele für physikalische Treibmittel sind aliphatische Kohlenwasserstoffe mit 3 bis 8 Kohlenstoffatomen, insbesondere Pentane, halogenierte Kohlenwasserstoffe, oder Acetale. Eine weitere Möglichkeit ist die Verwendung von unter Druck in den Ausgangsverbindungen gelösten Gasen, beispielsweise Kohlendioxid, Stickstoff oder Edelgasen als Treibmittel.
Wie oben bereits erwähnt, wirken die als Katalysatoren für die Herstellung der Polyetheralkohole eingesetzten Amine auch als Katalysatoren für die Poyurethan-Herstellung. Für bestimmte Einsatzgebiete können zur Polyurethan-Herstellung zusätzlich noch weitere Katalysatoren eingesetzt werden, insbesondere Verbindungen mit tertiären Aminogruppen und/oder organische Metall- Verbindungen, insbesondere Zinnverbindungen. Als Katalysatoren können auch die oben genannten Umsetzungsprodukte der als Katalysatoren für die Herstellung der Polyetheralkohole eingesetzten Amine mit Alkylenoxiden, insbesondere Ethylenoxid und/oder Propylenoxid, besonders bevorzugt Propylenoxid, mit einer Molmasse im Bereich zwischen 160 bis 400 g/mol eingesetzt werden.
Als Hilfs- und/oder Zusatzstoffe werden beispielsweise Stabilisatoren, Flammschutzmittel und/oder Pigmente eingesetzt.
Die Herstellung der Polyurethane kann nach bekannten Verfahren erfolgen, beispielsweise nach dem one-shot- oder dem Prepolymer- verfahren, die Schaumstoffe können nach der Blockschaumtechnik oder der Formschaumtechnik hergestellt werden.
Weitere Angaben zu den verwendeten Einsatzstoffen und zur Herstellung der Schaumstoffe finden sich beispielsweise im Kunststoffhandbuch, Band 7, Polyurethane, Carl-Hanser-Verlag München, 1. Auflage 1966, 2. Auflage 1983 und 3. Auflage, 1993.
Das erfindungsgemäße Verfahren hat mehrere Vorteile. Da für die nacheinander ablaufenden Polyadditionsreaktionen zur Polyetheralkohol- und zur Polyurethanherstellung die gleichen aminischen Katalysatoren eingesetzt werden können, ist es möglich, auf die aufwendigen Reinigungsoperationen nach der Herstellung der Polyetheralkohole zu verzichten.
Durch die gezielte Zugabe der Katalysatoren an Monomerwechsel- stellen bzw. an Reaktionsstellen vor der verstärkten Nebenproduktbildung wird die Raum/Zeitausbeute bei der Herstellung der Polyetheralkohole erhöht sowie die Bildung von Nebenprodukten unterdrückt . Die unter Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten Polyetheralkohole hergestellten Polyurethane neigen weniger zum Fogging und sind weitgehend geruchlos . Dies ist zum einen auf die deutlich verringerte Menge an Nebenprodukten und zum anderen auf die Fixierung des Katalysators im Polyurethan-Gerüst zurückzuführen.
Die Erfindung soll an den nachfolgenden Beispielen näher erläutert werden.
Beispiel 1
In einem 1 1-Druckautoklaven wurden nacheinander 71 g Diethylenglykol, 162 g Saccarose und 2 g Dimethylcxclohexylamin eingefüllt, mit Stickstoff gespült und auf 110°C erwärmt. Nach Erreichen dieser Temperatur wurden nacheinander 100 g Ethylenoxid in das gerührte Reaktionsgemisch eindosiert und zur Umsetzung gebracht. Danach wurden weitere 5 g Dirnethylcyclohexylamin dem Reaktionsgemisch zugefügt . Nach der Katalysatorzugabe wurden bei 120°C 300 g Propylenoxid eindosiert und zur Umsetzung gebracht. Der Polyetheralkohol wurde zur Entfernung leichtflüchtiger Verun- reinigungen bis zu einem Wassergehalt von 0,02 Prozent zwei Stunden bei 115°C destilliert und hatte folgende Kennzahlen:
Hydroxylzahl : 441 mg KOH/g Viskosität bei 25°C: 5870 mPas pH-Wert: 10,1.
Beispiel 2
Herstellung eines Polyurethan-Hartschaums
54 Gewichtsteile des Polyetheralkohole aus Beispiel 1, 4,2 Gewichtsteile Glycerin, 21,1 Gewichtsteile eines Polyetheralkohole aus Basis von Monoethylenglykol und Propylenoxid mit einer Hydroxylzahl von 105 mgKOH/g, ein Gewichtsteil Silikon- Stabilisator Tegostab® B 8409 der Firma Goldschmidt AG,
1,8 Gewichtsteile Dimethylcyclohexylamin, 2,4 Gewichteile Wasser und 15,5 Gewichtsteile Cyclopentan wurden zu einer Polyolkompo- nente vereinigt und danach mit 125 Gewichtsteilen Roh-MDI mit einem NCO-Gehalt von 31.5 Gew.-% intensiv vermischt.
Der so hergestellte Schaum wies freigeschäumt im Schaumbecher eine Dichte von 29 g/1 auf.
Die Druckfestigkeit eines mit diesen Ausgangsstoffen in einer geschlossenen Form mit einer 10 %-igen Verdichtung hergestellten Schaums betrug 0, 14 N/mm2.
Beispiel 3
In einem Autoklaven wurden nacheinander 100 g Vorpolymer, hergestellt durch Anlagerung von 90 g Propylenoxid an 10 g Glyzerin, katalysiert mit 2 g Diazobicyclooctan, und 7 g Diazobicyclooctan eingefüllt, mit Stickstoff gespült und auf 120 °C erwärmt. Bei dieser Temperatur wurden nacheinander 350 g Propylenoxid eindosiert und zur Umsetzung gebracht, wobei am Beginn der Anlagerung des Propylenoxids die Aldehydbildung bei analogen KOH-kata- lysierten Polyetherolsynthesen einen Wert von 100 ppm Aldehyd / 100 g Molgewichtsaufbau überstieg. Nach Abschluss der Anlagerung des Propylenoxids wurde der Polyetheralkohol durch Strippen mit Stickstoff von Restmengen an nicht umgesetztem Propylenoxid befreit. Anschließend wurden 500 g Ethylenoxid eindosiert und zur Umsetzung gebracht. Der entstandene Polyetheralkohol hatte folgende Kennzahlen:
Hydroxylzahl: 33,5 mg KOH/g, Wasser-Gehalt : 0,1 Gew. -% pH-Wert: 9,8.
Herstellung von Polyurethan-Weichschaumstoffen
Beispiel 4
83,3 Gewichtsteile Polyetheralkohol aus Beispiel 3, 10 Gewichtsteile eines Graftpolyols auf Basis von Styrol und Acrynitril mit einer Hydroxylzahl von 25 mgKOH/g, 0,5 Gewichtsteile Glycerin, 1 Gewichtsteil eines Polyetheralkohole auf der Basis von Glyce- rin, Ethylenoxid und Propylenoxid mit einer Hydroxylzahl von 42 mgKOH/g, 0,5 Gewichtsteile Ainkatalysator Dabco® 2025 der Firma Air Products, 0,5 Gewichtsteile Aminkatalysator Lupragen® N 211 der BASF AG, 0,4 Gewichtsteile Silikonstablisator Tegostab® 8680 der Firma Goldschmidt AG und 3,8 Gewichtsteile Wasser wurden zu einer Polyolkomponente vereinigt. Diese wurde mit einem NCO- Gruppen enthaltenden Prepolymeren auf Basis von MDI mit einem NCO-Gehalt von 27,5 Gew.-% bei einem Index von 100 vermischt, in eine offene Form gegossen und dort aushärten gelassen.
Die Eigenschaften des resultierenden Schaums sind in Tabelle 1 festgehalten.
Beispiel 5 (Vergleich)
Es wurde verfahren wie in Beispiel 4, jedoch wurden an Stelle des Polyetheralkohols aus Beispiel 3 82,95 Gewichtsteile eines Polyetheralkohols auf Basis von Glycerin, Propylenoxid und Ethylenoxid mit einer Hydroxylzahl von 28 mgKOH/g und zusätzlich 0,35 Gewichtsteile Aminkatalysator Dimethylpropyldiamin eingesetzt.
Die Eigenschaften des resultierenden Schaums sind in Tabelle 1 festgehalten.
Beispiel 6 (erfindungsgemäß)
83 , 3 Gewichtsteile eines Polyetheralkohols auf Basis von Glycerin, Propylenoxid und Ethylenoxid mit einer Hydroxylzahl von 28 mgKOH/g, 10 Gewichtsteile eines Graftpolyols auf Basis von Styrol und Acrynitril mit einer Hydroxylzahl von 25 mg KOH/g, 1 Gewichtsteil eines Polyetheralkohols auf der Basis von Glycerin, Ethylenoxid und Propylenoxid mit einer Hydroxylzahl von 42 mgKOH/g, 1 Gewichtsteil eines Polyetheralkohols auf der Basis von Dimethylpropyldiamin und Propylenoxid mit einer Hydroxylzahl von 324mgKOH/g, 0,5 Gewichtsteile Aminkatalysator Lupragen® N 211 der BASF AG, 0,4 Gewichtsteile Silikonstablisator Tegostab® 8680 der Firma Goldschmidt AG und 3,8 Gewichtsteile Wasser wurden zu einer Polyolkomponente vereinigt. Diese wurde mit einem NCO-Grup- pen enthaltenden Prepolymeren auf Basis von MDI mit einem NCO-Gehalt von 27,5 Gew.-% bei einem Index von 100 vermischt, in eine offene Form gegossen und dort aushärten gelassen.
Die Eigenschaften des resultierenden Schaums sind in Tabelle 1 festgehalten.
Beispiel 7 (Vergleich)
Es wurde verfahren wie in Beispiel 6, jedoch wurden an Stelle von 83,3 Gewichtsteilen 82,95 Gewichtsteile des Polyetheralkohols auf Basis von Glycerin, Propylenoxid und Ethylenoxid mit einer Hydro- xylzahl von 28 mgKOH/g, 0,5 Gewichtsteile Glycerin, 0,5 Gewichtsteile Aminkatalysator Dabco® 2025 der Firma Air Products, kein Polyetheralkohol auf der Basis von Dimethylpropyldiamin und Propylenoxid und dafür 0,35 Gewichtsteile Dimethylpropyldiamin eingesetzt.
Die Eigenschaften des resultierenden Schaums sind in Tabelle 1 festgehalten.
Figure imgf000014_0001
VOC (volatile organic chemicals) ist ein Maß für die gasförmige Emission von Komponenten aus dem Schaum.
FOG ist ein Maß für kondensierbare Emissionen aus dem Schaum.
n. b. nicht bestimmt .

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polyetheralkoholen durch kata- lytische Anlagerung von Alkylenoxiden an H-funktioneile
Startsubstanzen unter Verwendung von Aminen als Katalysatoren, dadurch gekennzeichnet, daß die Zugabe der Amine zur Reaktionsmischung vor oder zu Beginn der Anlagerung der Alkylenoxide sowie im Verlaufe der Umsetzung noch mindestens ein- mal erfolgt, wobei die nochmalige Zugabe des Katalysators an dem Punkt der Reaktion, bei dem es zu einem starken Ablauf von Nebenreaktionen kommt, und/oder bei Wechsel der Alkylenoxide in der Polyetherkette erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das
Amin ausgewählt ist aus der Gruppe, enthaltend 1, 4-Dimethyl- piperazin, , N-Hydroxyethylpiperazin, 1,3 ,5-Tris(dimethyl- aminopropyl)hexahydro-s-triazin, N,N-Dimethylcyclohexylamin, Dirnethylbenzylamin, 1, 8-Diazabicyclo- (5,4,0)undecen-7 4-Methylmorpholin, 4-Ethylmorpholin, 2, 2-Dimorpholinethyl- ether, 1-Methyl- und/oder 1,2-Dimethylimidazol, N-(3-Amino- propyl) -imidazol, Triethylamin, 2, 2 λ-bis-(2-ethyl-2-azobi- cycloether) , Diazobicyclooctan, Dirnethylaminopropylamin, Diethylaminoethylamin sowie beliebige Gemische aus mindestens zwei der genannten Verbindungen.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Amine solche eingesetzt werden, die mindestens eine tertiäre Aminogruppe und mindestens ein mit Alkylenoxiden reaktives Wasserstoffatom im Molekül enthalten.
4. Polyetheralkohole, herstellbar nach einem der Ansprüche 1 bis 3.
5. Verwendung von Polyetheralkoholen, herstellbar nach einem der Ansprüche 1 bis 3, zur Herstellung von Polyurethanen.
6. Verfahren zur Herstellung von Polyurethanen durch Umsetzung von
a) Polyisocyanaten mit
b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen,
dadurch gekennzeichnet, daß als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b)
Polyetheralkohole, herstellbar nach einem der Ansprüche 1 bis 3, eingesetzt werden.
7. Verfahren zur Herstellung von Polyurethanen durch Umsetzung von
a) Polyisocyanaten mit
b) Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen,
dadurch gekennzeichnet, daß die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) mindestens einen Polyetheralkohol mit mindestens einer tertiären Aminogruppe, herstellbar durch Umsetzung mindestens eines Amins, ausgewählt aus der Gruppe, enthaltend 1, 4-Dimethyl- piperazin, N-Hydroxyethylpiperazin, 1,3, 5-Tris (dimethylamino- propyl) hexahydro-s-triazin, N,N-Dimethylcyclohexylamin, Dirnethylbenzylamin, 1 , 8-Diazabicyclo- (5,4,0) undecen-7 4-Methylmorpholin, 4-Ethylmorpholin, 2,2-Dimorpholinethyl- ether, 1-Methyl- und/oder 1, 2-Dimethylimidazol, N-(3-Amino- propyl) -imidazol, Triethylamin, 2, 2 ,-bis-(2-ethyl-2-azobicy- cloether) , Diazobicyclooctan, Dimethylaminopropylamin, Diethylammoethylamin sowie beliebige Gemische aus mindestens zwei der genannten Verbindungen, enthalten.
PCT/EP2002/012493 2001-11-15 2002-11-08 Verfahren zur herstellung von polyetheralkoholen WO2003042281A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/495,199 US20050004403A1 (en) 2001-11-15 2002-11-08 Method for producing polyether alcohols
EP02802999A EP1448665A1 (de) 2001-11-15 2002-11-08 Verfahren zur herstellung von polyetheralkoholen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156014.1 2001-11-15
DE10156014A DE10156014A1 (de) 2001-11-15 2001-11-15 Verfahren zur Herstellung von Polyetheralkoholen

Publications (1)

Publication Number Publication Date
WO2003042281A1 true WO2003042281A1 (de) 2003-05-22

Family

ID=7705775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012493 WO2003042281A1 (de) 2001-11-15 2002-11-08 Verfahren zur herstellung von polyetheralkoholen

Country Status (4)

Country Link
US (1) US20050004403A1 (de)
EP (1) EP1448665A1 (de)
DE (1) DE10156014A1 (de)
WO (1) WO2003042281A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134630A1 (en) 2008-04-29 2009-11-05 Dow Global Technologies, Inc. Heterocyclic amine catalyst compositions for the alkoxylation of alcohols to glycol ethers
WO2011107374A1 (de) * 2010-03-02 2011-09-09 Basf Se Verfahren zur herstellung von polyurethan-hartschaumstoffen
WO2011107366A1 (de) * 2010-03-02 2011-09-09 Basf Se Verfahren zur herstellung von polyurethanen

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041299A1 (de) 2004-08-25 2006-03-09 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
DE102005024144A1 (de) * 2005-05-23 2006-11-30 Basf Ag Verfahren zur Herstellung von viskoelastischen Polyurethan-Weichschaumstoffen
US20070203319A1 (en) * 2006-02-27 2007-08-30 Dexheimer Edward M Process of forming a polyol
US20070199976A1 (en) * 2006-02-27 2007-08-30 Mao-Yao Huang Process of forming a polyol
JP5468013B2 (ja) * 2007-12-19 2014-04-09 ビーエーエスエフ ソシエタス・ヨーロピア ポリエーテルアルコール類の製造方法
US20110218259A1 (en) * 2010-03-02 2011-09-08 Basf Se Preparing polyurethanes
US20110218262A1 (en) * 2010-03-02 2011-09-08 Basf Se Preparing rigid polyurethane foams
US8927614B2 (en) * 2010-04-26 2015-01-06 Basf Se Process for producing rigid polyurethane foams
US20120214891A1 (en) * 2011-02-23 2012-08-23 Basf Se Polyester polyols based on aromatic dicarboxylic acids
US20130030074A1 (en) * 2011-07-26 2013-01-31 Basf Se Process for the continuous production of polyetherols
US10472454B2 (en) * 2012-01-18 2019-11-12 Basf Se Preparing rigid polyurethane foams
WO2013139781A1 (de) * 2012-03-23 2013-09-26 Basf Se Verfahren zur herstellung von polyurethan-hartschäumen und polyisocyanurat-hartschäumen
US20130324632A1 (en) * 2012-05-30 2013-12-05 Basf Se Polyesterols for producing rigid polyurethane foams
US11629225B2 (en) 2020-05-26 2023-04-18 Covestro Llc Processes for producing aromatic diamine-initiated polyether polyols
CN115044031B (zh) * 2022-06-10 2023-08-15 浙江恒丰新材料有限公司 一种生物质基阻燃聚醚多元醇的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190927A (en) * 1960-04-13 1965-06-22 Wyandotte Chemicals Corp Process for oxyalkylating solid polyols
US3346557A (en) * 1965-06-04 1967-10-10 Wyandotte Chemicals Corp Process for oxyalkylating solid polyols
US3357970A (en) * 1964-06-10 1967-12-12 Pfizer & Co C Oxyalkylation of solid polyols
US4228310A (en) * 1979-03-19 1980-10-14 Texaco Development Corp. Polyol preparation
GB2076413A (en) * 1980-05-21 1981-12-02 Texaco Development Corp Polyether polyol preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317508A (en) * 1964-11-09 1967-05-02 Union Carbide Corp Process for making alkylene oxidepolyol adducts
EP0045544B1 (de) * 1980-08-06 1985-03-20 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Polyätherpolyolen und deren Verwendung zur Herstellung von Polyurethanen
FR2779149B1 (fr) * 1998-05-29 2000-09-15 Witco Procede de fabrication de mousse de polyurethane, polyester polyol amine utilise dans ce procede et mousse obtenue
DE10111823A1 (de) * 2001-03-13 2002-09-26 Basf Ag Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190927A (en) * 1960-04-13 1965-06-22 Wyandotte Chemicals Corp Process for oxyalkylating solid polyols
US3357970A (en) * 1964-06-10 1967-12-12 Pfizer & Co C Oxyalkylation of solid polyols
US3346557A (en) * 1965-06-04 1967-10-10 Wyandotte Chemicals Corp Process for oxyalkylating solid polyols
US4228310A (en) * 1979-03-19 1980-10-14 Texaco Development Corp. Polyol preparation
GB2076413A (en) * 1980-05-21 1981-12-02 Texaco Development Corp Polyether polyol preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134630A1 (en) 2008-04-29 2009-11-05 Dow Global Technologies, Inc. Heterocyclic amine catalyst compositions for the alkoxylation of alcohols to glycol ethers
WO2011107374A1 (de) * 2010-03-02 2011-09-09 Basf Se Verfahren zur herstellung von polyurethan-hartschaumstoffen
WO2011107366A1 (de) * 2010-03-02 2011-09-09 Basf Se Verfahren zur herstellung von polyurethanen
CN102781997A (zh) * 2010-03-02 2012-11-14 巴斯夫欧洲公司 生产聚氨酯的方法

Also Published As

Publication number Publication date
EP1448665A1 (de) 2004-08-25
DE10156014A1 (de) 2003-06-05
US20050004403A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
EP1797129B1 (de) Verfahren zur herstellung von polyurethan-weichschaumstoffen
WO2003042281A1 (de) Verfahren zur herstellung von polyetheralkoholen
DE2040644C3 (de) Verfahren zur herstellung von polyurethankunststoffen
EP0819712B1 (de) Verfahren zur Herstellung von Polyurethanweichschaumstoffen
DE3241450A1 (de) Fluessige urethangruppen enthaltende polyisocyanatmischungen auf diphenylmethan-diisocyanat-basis, verfahren zu deren herstellung und deren verwendung zur herstellung von polyurethan-weichschaumstoffen
WO2011134866A2 (de) Verfahren zur herstellung von polyetheralkoholen
WO2001016209A1 (de) Polyetheralkohole
DE2758614A1 (de) Polyaetherpolyole
EP1630185B2 (de) Verfahren zur Herstellung von Polyurethan-Weichschaumstoffen
EP1656406B1 (de) Verfahren zur herstellung von autokatalytischen polyetheralkoholen
EP0747411B1 (de) Verfahren zur Herstellung von Aromaten enthaltenden Polyetherpolyolen
DE4417938B4 (de) Isocyanatgruppenhaltige Prepolymere
DE19705993A1 (de) Verfahren zur Herstellung einer homogenen entmischungsstabilen Polyolkomponente
EP0696580B1 (de) Carbonat- und Urethangruppen aufweisende tertiäre Amine und ihre Verwendung als Katalysatoren bei der Herstellung von Polyurethankunststoffen
DE1243865B (de) Polyisocyanatmischungen zur Herstellung von Kunststoffen
DE102005011572A1 (de) Verfahren zur Herstellung von Polyurethan-Halbhartschäumen
EP0148462B1 (de) Verfahren zur in situ-Herstellung von Harnstoffgruppen-enthaltenden Diisocyanaten in Polyolen, dem Verfahren entsprechende Dispersionen oder Lösungen sowie ihre Verwendung
EP2044136B1 (de) Polyharnstoff-polyurethan-formkörper und verfahren zu ihrer herstellung
DE1803723C3 (de) Gemische auf Basis aromatischer Polyisocyanate, Verfahren zu ihrer Herstellung und Verwendung zur Herstellung von Polyurethanschaumstoffen
DE19752037B4 (de) Verfahren zur Herstellung von Polyurethanen
DE4408430A1 (de) Verfahren zur Herstellung von hochelastischen Polyurethan-Weichschaumstoffen
EP1041098A2 (de) Verfahren zur Herstellung von Polyurethanen
EP4299656A1 (de) Herstellung von propoxylierten benzoldicarbonsäureamiden und dem entsprechenden polyurethanschaum
DE10357531A1 (de) Verfahren zur Herstellung von Polyetheralkoholen
DE2040650A1 (de) Neue aromatische Diamine,ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Polyurethanen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002802999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10495199

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002802999

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP