WO2003041117A2 - Integrirertes halbleiterbauelement für hochfrequenzmessungen und dessen verwendung - Google Patents

Integrirertes halbleiterbauelement für hochfrequenzmessungen und dessen verwendung Download PDF

Info

Publication number
WO2003041117A2
WO2003041117A2 PCT/DE2002/003004 DE0203004W WO03041117A2 WO 2003041117 A2 WO2003041117 A2 WO 2003041117A2 DE 0203004 W DE0203004 W DE 0203004W WO 03041117 A2 WO03041117 A2 WO 03041117A2
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor component
layer
integrated semiconductor
component according
oscillator
Prior art date
Application number
PCT/DE2002/003004
Other languages
English (en)
French (fr)
Other versions
WO2003041117A3 (de
Inventor
Ewald Schmidt
Heinz Pfizenmaier
Hans Irion
Juergen Hasch
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE10295162T priority Critical patent/DE10295162D2/de
Priority to EP02754529A priority patent/EP1446824A2/de
Priority to US10/494,660 priority patent/US7109917B2/en
Priority to AU2002320950A priority patent/AU2002320950A1/en
Priority to JP2003543063A priority patent/JP2005509286A/ja
Priority to KR10-2004-7006706A priority patent/KR20040053271A/ko
Publication of WO2003041117A2 publication Critical patent/WO2003041117A2/de
Publication of WO2003041117A3 publication Critical patent/WO2003041117A3/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/864Transit-time diodes, e.g. IMPATT, TRAPATT diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • H01Q9/0435Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • H03B9/147Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance the frequency being determined by a stripline resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode

Definitions

  • the invention relates to an integrated semiconductor component for high-frequency measurements and the use thereof.
  • non-contact sensors are used for the above-mentioned exemplary fields of application, which emit a measuring beam of a certain frequency, which reflects on the object to be measured. tiert and is detected and evaluated again by means of a receiver unit.
  • Measuring devices in the microwave range with approximately 2 to 24 GHz which operate either according to the FMCW principle or as pulse radar, are known for level measurements.
  • Fill level sensors of this type are implemented on robust substrates such as Teflon or RT-Duriod for robust, stationary use under problematic ambient conditions - for example in containers with flammable substances or at high ambient temperatures.
  • Teflon or RT-Duriod for robust, stationary use under problematic ambient conditions - for example in containers with flammable substances or at high ambient temperatures.
  • short-range radar systems for motor vehicles which serve as parking aids or as pre-crash sensors and have a measurement frequency in the range of approximately 20 GHz.
  • the integrated semiconductor component according to the invention for high-frequency measurements enables the implementation of distance measuring devices which allow highly precise measurements with very small dimensions.
  • the semiconductor component is characterized by the fact that it is part of a semiconductor circuit comprising a first silicon layer, a subsequent silicon dioxide layer (insulating layer) and a subsequent further silicon layer (structural layer) (SOI wafer).
  • the semiconductor device consists of
  • Impatt oscillator with a resonator which has a metallized cylinder made of silicon arranged in the structure layer, a coupling disk covering the cylinder in the region of the first layer and a connection to the cylinder of the resonator via a recess in the coupling disk
  • Impatt diode as well
  • the measurement in the microwave range enables high beam bundling (less than ⁇ 5 ° half-width), so that a quasi-optical antenna serving as the receiver unit can also have a lens diameter of ⁇ 30 mm.
  • the semiconductor material used allows the integration of the required planar components in microstrip line technology on the silicon membrane etched free in the vicinity of the cylindrical resonators or also in coplanar technology on the surrounding silicon base substrate. All passive components, such as micromechanically structured resonators, Schottky diodes, varactor diodes, and all active components, such as Impatt diodes, are integrated on the semi-insulating SOI wafer. In particular, it is advantageously achieved that no connection with a high-frequency signal leads down from the system. It is therefore possible to integrate a complete radar system on one chip.
  • the Impatt oscillator preferably generates a fixed frequency in the range from 80 to 500 GHz, in particular from 100 to 150 GHz.
  • the reference oscillator is preferably designed to generate a fixed frequency in the range from 1 to 70 GHz, in particular from 20 to 50 GHz.
  • the cylinders of the resonators are covered with an approximately 1 ⁇ m thick aluminum layer as a metallization.
  • the coupling disks covering the resonators are dimensioned such that no disruptive transmission energy in the microwave range can escape at their edge.
  • the Impatt oscillator is voltage-controlled and a varactor diode is implanted on the edge of the coupling disk for actuation.
  • the Impatt diode is preferably supplied with voltage via two low-pass filters.
  • the conductor layer of the semiconductor circuit serves as a carrier substrate for a microstrip circuit arranged thereon.
  • a patch antenna can be integrated into the semiconductor circuit.
  • the patch antenna functions as a common circularly polarized transmitting and receiving antenna.
  • a bistatic version is of course also conceivable separate linearly or circularly polarized transmit and receive antennas.
  • the transmission energy generated by the Impatt oscillator is fed into the surrounding microstrip circuit via a coupling element.
  • branchline couplers can be provided for decoupling parts of the transmission energy into the patch antenna and for frequency stabilization with the reference oscillator.
  • the active oscillator circuit can preferably be mounted on the semiconductor circuit as an additional semiconductor circuit using conventional hybrid technology or can be implemented as a discrete individual transistor. In the latter case, it is preferred to integrate the required matching circuit in coplanar or microstrip technology in the semiconductor circuit. It is also advantageous to use a further branchline coupler to split a transmission signal into an in-phase and quadrature component. In the case of a monostatic embodiment, this coupler also serves for the transmission and reception signal separation.
  • the semiconductor components according to the invention are preferably used as components of a sensor for distance measurement.
  • the sensor is to be used in particular in the motor vehicle for blind spot detection, pre-crash and side-crash detection, distance measurement or as a parking aid.
  • FIG. 4 shows a perspective side view of a resonator for an oscillator
  • Figure 5 is a schematic plan view of an Impatt oscillator
  • FIG. 6 shows a cross section through the semiconductor component in the region of an Impatt diode
  • FIG. 7 shows a block diagram of a monostatic embodiment
  • Figure 8 is a block diagram of a bistatic
  • FIG. 9 shows a further illustration of a monostatic embodiment according to FIG. 7;
  • Figure 11 shows a schematic structure of a sensor for distance measurement.
  • FIG. 1 shows a schematic sectional view of a section of a commercially available SOI (Silicon on Insulator) wafer, which is used to manufacture a semiconductor circuit 10 with the semiconductor components according to the invention.
  • SOI Silicon on Insulator
  • the wafer consists of a 675 ⁇ m thick semi-insulating, p ⁇ -doped structure layer 16 made of silicon. It has a specific resistance in the range from 500 to 1000 ⁇ cm, in particular 750 ⁇ cm.
  • the structure layer 16 is covered by an approximately 300 n thick insulating layer 14 made of silicon dioxide, on which a 50 ⁇ m thick, p ⁇ -doped layer 12 made of silicon is applied.
  • the layer 14 made of silicon dioxide serves as an etching stop during the trench etching of the micromechanical structures in the structure layer 16.
  • the trench etching process exposes a membrane, consisting of the precise 50 ⁇ m thick layer 12 and the 300 nm thick layer 14, which makes it Formation of a free space 19 comes in the layer 16.
  • a cylinder 18 made of silicon projects into this free space 19 (FIG. 2), which is quasi surrounded by the free space 19. This structuring is possible by appropriate masking during trench etching.
  • the resulting cylindrical structure 18 is coated with an approximately 1 ⁇ m thick aluminum layer 20 by vapor deposition or sputtering (FIG. 3).
  • the cylinder 18 thus metallized serves as a high-quality resonator 24 (Qw200) filled with semi-insulating silicon, which can be selectively excited in TMoio mode or TEm mode depending on the requirements. There is no need for an additional copper layer in the region of the resonator 24 which is necessary for conventional heat dissipation.
  • a region of the layer 12 above the cylinder 18 is vapor-coated with a coupling disk 28, which extends beyond the cylinder 18 underneath
  • Recess 38 structured (in particular as a slot).
  • the coupling disk 28 is dimensioned such that no microwave energy can escape at its edge.
  • the resonator 24 is suitable - both with different dimensions and power supply - both as a transmitter and as a reference source.
  • the resonator 24 for an Impatt oscillator 30 to be explained in more detail has a height of approximately 725 ⁇ m and a radius of 242 ⁇ m which is tuned to the desired resonator frequency 122.3 GHz. For a reference frequency of 40 GHz, the radius is 800 ⁇ m with a height of 725 ⁇ m.
  • FIG. 5 shows a top view of an Impatt oscillator 30 as it is used to generate a transmission Signal in the microwave range is needed.
  • the Impatt oscillator 30 comprises an Impatt diode 32, which is supplied with voltage via two low-pass filters 34, 36.
  • the Impatt diode 32 sits in the recess 38 of the coupling disk 28 and enables the connection to a microstrip circuit integrated in the layer 12.
  • the generated transmission energy of the Impatt oscillator 30 is fed into the surrounding microstrip line circuit via a coupling element 40.
  • the Impatt oscillator 30 can be operated in the particularly favorable TEui mode.
  • a varactor diode 42 is implanted on the edge of the coupling disk 28 (see FIG. 9).
  • FIG. 6 shows a cross section through the semiconductor circuit 10 in the region of the Impatt diode 32.
  • the Impatt diode 32 comprises an aluminum layer 33, a p + -doped silicon layer 3.5, an epi-silicon layer 37 and an n + -doped layer 39.
  • FIG. 7 shows a block diagram of a monostatic embodiment with a common circularly polarized transmitting and receiving antenna.
  • the arrangement comprises the Impatt oscillator 30, which generates a high-frequency transmission signal in the range of 122 GHz, and the reference oscillator 46, which is used for frequency stabilization and linearization. For this, a fixed reference signal in the range of 40 GHz is generated.
  • the transmission signal is fed into a patch antenna 48 via a coupling 40.
  • the entire semiconductor circuit 10 is protected against environmental influences with an indicated superstrate 50 as a housing.
  • a lens 52 which can have a diameter of less than 30 mm, focuses the emitted measuring beam.
  • transmitting and receiving antennas can also be implemented as separate linearly or circularly polarized units.
  • FIG. 8 shows a separate patch antenna 54 and a receiver antenna 56 that is independent of it.
  • FIG. 7 shows the main components of the Impatt oscillator (transmitter) 30, frequency conditioning 31 with reference source (reference oscillator 46), antenna system 49 and reception mixer 51 with integrated Schottky diodes. These are integrated on a compact chip. No high-frequency connection (in the microwave range) is led outside.
  • FIG. 9 shows another illustration of the monostatic embodiment according to FIG. 7, which is suitable for radar systems for distance measurement
  • Frequency stabilization is an active oscillator circuit 58 - here in the form of an additional GaAs semiconductor circuit which is mounted using flip-chip technology.
  • the active oscillator circuit 58 can be implemented by a conductively glued, discrete single transistor.
  • the adaptation circuit required in this case can also be coplanar and microstriped in the layer 12 of FIG .
  • Semiconductor circuit 10 are integrated.
  • the transmission energy generated by the Impatt oscillator 30 is used in parts via branchline couplers 60, 62 for frequency stabilization with the reference oscillator 46.
  • a further branchline coupler 64 splits the transmission signal into an in-phase and quadrature component for feeding the circularly polarized patch antenna 48 and at the same time manages the transmission and reception signal separation of the monostatic system.
  • a ratrace mixer receives the received signal from the branchline coupler 64 in one input and the oscillator energy from the reference oscillator 46 in the second input.
  • FIG. 10 shows a further embodiment in which the oscillator 46 serving as reference is mounted on the semiconductor circuit 10 as a SiGe semiconductor circuit by means of flip-chip bonding.
  • FIG. 11 the structure of a radar system with superstrate 50 and antenna lens 52 is again shown schematically in a manner that is not to scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Waveguide Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft ein integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung. Es ist vorgesehen, dass das Halbleiterbauelement Bestandteil einer Halbleiterschaltung (10) aus einer ersten Siliziumschicht (12), einer sich anschliessenden Siliziumdioxidschicht (Isolierschicht (14)) und einer nachfolgenden weiteren Siliziumschicht (Strukturschicht (16)) ist (SOI-Wafer), und das Halbleiterbauelement aus einem Impatt-Oszillator (30) mit einem Resonator (24), der einen in der Strukturschicht (16) angeordneten metallisierten Zylinder (18) aus Silizium, eine den Zylinder (18) im Bereich der ersten Schicht (12) überdeckende Ankopplungsscheibe (28) und eine über eine Ausnehmung (38) der Ankopplungsscheibe (28) mit dem Zylinder (18) des Resonators (24) in Verbindung stehende Impatt-Diode (32) umfasst, sowie einem Referenz-Oszillator (46) niedrigerer Frequenz mit einem Resonator (24), der einen in der Strukturschicht (16) angeordneten metallischen Zylinder (18) aus Silizium und den Zylinder im Bereich der ersten Schicht (12) überdeckende Ankopplungsscheibe (28) und einem über eine Ausnehmung (38) der Ankopplungsscheibe (28) mit dem Zylinger (18) des Resonators (24) in Verbindung stehenden Mikrowellenleiter umfasst, wobei der Referenz-Oszillator über eine aktive Oszillatorschaltung (58) einer Frequenzstabilisierung des Impatt-Oszillators (30) dient, einem Empfangsmischer mit integrierten Schotty-Dioden und einer Sende- und Empfangsantenne besteht.

Description

Integriertes Halbleiterbauelement für Hoch.frequen.s- messungen und dessen Verwendung
Die Erfindung betrifft ein integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung .
Stand der Technik
Die Halbleitertechnologie findet in zunehmendem Maße Einzug in die Kraftfahrzeugtechnik. Die Miniaturisierung ermöglicht nicht nur eine verbesserte Steue- rungs- und Regelungstechnik der motorspezifischen Funktionen, sondern öffnet auch den Weg für neue Sicherheits- und FahrkomfortSysteme, wie beispielsweise Einparkhilfen, Precrash- und Sidecrash-Funktio- nen, Toter-Winkel-Erkennung, Füllstandsmessungen und Abstandsmessungen. Für alle steuerungs- und regelungstechnischen Vorgänge uss eine - nach Möglichkeit miniaturisierte - Sensorik im Kraftfahrzeug vorhanden sein.
In der Regel werden für die oben genannten beispielhaften Anwendungsgebiete berührungslose Sensoren verwendet, die einen Messstrahl bestimmter Frequenz emittieren, der an dem zu messenden Objekt, reflek- tiert und mittels einer Empfängereinheit wieder erfasst und ausgewertet wird.
Für Füllstandsmessungen sind Messgeräte im Mikrowel- lenbereich mit etwa 2 bis 24 GHz, die entweder nach dem FMCW-Prinzip oder als Pulsradar arbeiten, bekannt. Derartige Füllstandssensoren werden für den robusten stationären Gebrauch unter problematischen Umgebungsbedingungen - beispielsweise in Behältern mit brennbaren Stoffen oder bei hohen Umgebungstemperaturen - auf Trägersubstraten wie Teflon oder RT- Duriod realisiert. Des Weiteren bekannt sind Kurzstreckenradarsysteme für Kraftfahrzeuge, die zur Einparkhilfe oder als Precrash-Sensoren dienen und eine Messfrequenz im Bereich von etwa 20 GHz aufweisen.
Für Abstandsmessungen bis zu Reichweiten von 150 m wurden Sensoren mit verschiedenen Lösungsansätzen entwickelt. Sehr kostengünstig, dafür aber aufgrund der geringen Strahlbündelung relativ ungenau, sind Ultraschallgeräte. Wesentlich präziser sind Laserentfernungsmesser, die sich allerdings nicht beliebig miniaturisieren lassen und sehr teuer sind. Weiterhin sind Abstandssensoren bekannt, mit denen Messungen im Mikrowellenbereich durchgeführt werden können. Die dazu notwendigen Sensoren basieren zwar auf Halbleiterschaltungen, jedoch sind die notwendigen Anregungsquellen (Oszillatoren) erst nachträglich durch übliche Hybridtechnik auf der Halbleiterschaltung montiert. Nachteilig hieran ist, dass der Miniaturisierung schon aufgrund der schwierigen Reproduzierbarkeit der Kopplung der Sendeeinheiten an die Halbleiterschaltung Grenzen gesetzt sind. Darüber hinaus müssen die nachträglich auf der Halbleiterschaltung montierten Oszillatoren aufwendig abgeglichen werden. Die Genauigkeit der Messungen hängt unter anderem auch von der Stabilität der Sendefrequenz ab. Zur Frequenzstabilisierung benötigte Referenz-Oszillato^- ren müssen dann ebenfalls montiert und justiert werden .
Vorteile der Erfindung
Das erfindungsgemäße integrierte Halbleiterbauelement für Hochfrequenzmessungen ermöglicht die Realisation von Abstandsmessgeräten, die bei sehr geringen Abmessungen hochpräzise Messungen erlauben. Das Halblei- terbauele ent zeichnet sich dadurch aus, dass es Bestandteil einer Halbleiterschaltung aus einer ersten Siliziumschicht, einer sich anschließenden Siliziumdioxidschicht (Isolierschicht) und einer nachfolgenden weiteren Siliziumschicht (Struktur- schicht) ist (SOI-Wafer) . Das Halbleiterbauelement besteht aus
(a) einem Impatt-Oszillator mit einem Resonator, der einen in der Strukturschicht- angeordneten metal- lisierten Zylinder aus Silizium, eine den Zylinder im Bereich der ersten Schicht überdeckende Ankopplungsscheibe und eine über eine Aüsnehmung der Ankopplungsscheibe mit dem Zylinder des Resonators in Verbindung stehende Impatt-Diode umfasst, sowie
(b) einem Referenz-Oszillator niedrigerer Frequenz mit einem Resonator, der einen in der Struktur- Schicht angeordneten metallisierten Zylinder aus Silizium und den Zylinder im Bereich der ersten Schicht überdeckende Ankopplungsscheibe und einem über eine Ausnehmung der Ankopplungsscheibe mit dem Zylinder des Resonators in Verbindung stehenden Mikrowellenleiter umfasst, wobei der Referenz-Oszillator über eine aktive Oszillatorschaltung einer Frequenzstabilisierung des Impatt- Oszillators dient,
,c) einem Empfangsmischer mit integrierten Schottky- Dioden und
d) einer Sende- und Empfangsantenne.
Damit ist ein System geschaffen, das eine Messung unter sehr hohen Betriebsfrequenzen im Millimeterwellenbereich (120 bis 130 GHz) gewährt. Die Messung im Mikrowellenbereich ermöglicht eine hohe Strahlbünde- lung (kleiner ± 5° Halbwertsbreite), so dass auch eine als Empfängereinheit dienende, quasioptische Antenne Linsendurchmesser von < 30 mm haben kann. Das eingesetzte Halbleitermaterial erlaubt die Integration der benötigten planaren Komponenten in Mikro- streifenleiter-Technik auf der in der Umgebung der zylinderförmigen Resonatoren freigeätzten Siliziummembran oder auch in Koplanar-Technik auf dem umgebenden Siliziumbasissubstrat. Alle passiven Komponenten, wie mikromechanisch strukturierte Resonatoren, Schottky-Dioden, Varaktor-Dioden, sowie alle aktiven Komponenten, wie Impatt-Dioden, werden auf dem semiisolierenden SOI-Wafer integriert. Insbesondere wird so vorteilhaft erreicht, dass kein Anschluss mit hochfrequentem Signal von dem .System herunterführt. Es ist somit möglich, ein komplettes Radarsystem auf einen Chip zu integrieren.
Der Impatt-Oszillator erzeugt vorzugsweise eine feste Frequenz im Bereich von 80 bis 500 GHz, insbesondere von 100 bis 150 GHz. Der Referenz-Oszillator ist vorzugsweise zur Erzeugung einer festen Frequenz im Bereich von 1 bis 70 GHz, insbesondere von 20 bis 50 GHz, ausgelegt. Die Zylinder der Resonatoren werden von einer jeweils etwa 1 μm dicken Aluminiumschicht als Metallisierung bedeckt. Die die Resonatoren überdeckenden Ankopplungsscheiben sind so dimensioniert, dass an ihrem Rand keine störende Sendeenergie im Mikrowellenbereich austreten kann.
In einer bevorzugten Ausgestaltung der Erfindung ist der Impatt-Oszillator spannungsgesteuert und eine Varaktor-Diode ist zur Ansteuerung am Rande der Ankopplungsscheibe implantiert. Die Spannungsversorgung der Impatt-Diode erfolgt vorzugsweise über zwei Tiefpassfilter.
Die Leiterschicht der Halbleiterschaltung dient als Trägersubstrat für eine darauf angeordnete Mikro- streifenleiter-Schaltung. In die Halbleiterschaltung kann dabei eine Patch-Antenne integriert werden. In einer bevorzugten monostatischen Ausführungsform fun- giert die Patch-Antenne als gemeinsame zirkulär polarisierte Sende- und Empf ngsantenne. Denkbar ist natürlich auch eine bistatische Ausführungsfor mit getrennten linear oder zirkulär polarisierten Sende- und Empfangsantennen.
Eine Einspeisung der erzeugten Sendeenergie des Impatt-Oszillators in die umgebende Mikrostreifenlei- ter-Schaltung erfolgt über ein Koppelelement. Es können insbesondere Branchline-Koppler zur Auskopplung von Teilen der Sendeenergie in die Patch-Antenne und zur Frequenzstabilisierung mit dem Referenz-Oszilla- tor vorhanden sein. Die aktive Oszillatorschaltung kann vorzugsweise als zusätzliche Halbleiterschaltung mittels üblicher Hybridtechnik auf der Halbleiterschaltung montiert werden oder als diskreter Einzeltransistor realisiert werden. Im letzteren Falle ist bevorzugt, die erforderliche Anpassungsschaltung in Koplanar- oder Mikrostreifenleiter-Technik in der Halbleiterschaltung zu integrieren. Ferner ist es vorteilhaft, einen weiteren Branchline-Koppler zur Aufteilung eines Sendesignals in einer Inphase- und Quadratur-Komponente einzusetzen. Dieser Koppler dient im Falle einer monostatischen Ausführungsform zusätzlich zur Sende- und Emp angssignaltrennung.
Die erfindungsgemäßen Halbleiterbauelemente finden bevorzugt Einsatz als Bestandteile eines Sensors zur Entfernungsmessung. Der Sensor soll dabei insbesondere im Kraftfahrzeug zur Toten-Winkel-Erkennung, Precrash- und Sidecrash-Erkennung, Abstandsmessung oder als Einparkhilfe genutzt werden.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Merkmalen . Zeichnungen
Die Erfindung wird nachfolgend in Ausführungsbeispie- len anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figuren schematische Schnittansichten durch Halb-
1 bis 3 leiterbauelemente für Hochfrequenzanwen- düngen in verschiedenen Herstellungs- stadien;
Figur 4 eine perspektivische Seitenansicht auf einen Resonator für einen Oszillator;
Figur 5 eine schematische Draufsicht auf einen Impatt-Oszillator;
Figur 6 einen Querschnitt durch das Halbleiter- bauelement im Bereich einer Impatt-Diode;
Figur 7 ein Blockschaltbild einer monostatischen Ausführungsform;
Figur 8 ein Blockschaltbild einer bistatischen
Ausführungsform;
Figur 9 eine weitere Darstellung einer monostati- schen Ausführungsform gemäß Figur 7;
Figur 10 eine Ausführungsform mit einem Referenz- Oszillator in einer zusätzlich montierten Halbleiterschaltung und Figur 11 einen schematischen Aufbau eines Sensors zur Entfernungsmessung.
Beschreibung der Ausführungsbeispiele
Die Figur 1 zeigt in einer schematischen Schnittan- sicht einen Ausschnitt aus einem handelsüblichen SOI (Silicon on Insulator ) -Wafer, der zur Herstellung einer Halbleiterschaltung 10 mit den erfindungsgemäßen Halbleiterbauelementen dient. Die in Koplanar- oder Planartechnik bekannte Herstellung aller Komponenten der Halbleiterschaltung 10 in einem gemeinsamen Herstellungsschritt wird hier - da allgemein bekannt - nicht näher erläutert. Der Wafer besteht aus einer 675 μm dicken semiisolierenden, p~-dotier- ten Strukturschicht 16 aus Silizium. Sie weist einen spezifischen Widerstand im Bereich von 500 bis 1000 Ωcm, insbesondere 750 Ωcm, auf. Die Strukturschicht 16 wird von einer etwa 300 n dicken Isolierschicht 14 aus Siliziumdioxid bedeckt, auf der eine 50 μm dicke, p~-dotierte Schicht 12 aus Silizium aufgebracht ist.
Die Schicht 14 aus Siliziumdioxid dient als Ätzstopp beim Trench-Ätzen der mikromechanischen Strukturen in die Strukturschicht 16. Der Trench-Ätzprozess legt eine Membran, bestehend aus der präzisen 50 μm dicken Schicht 12 und der 300 nm dicken Schicht 14, frei, wodurch es zur Ausbildung eines Freiraumes 19 in der Schicht 16 kommt. In diesem Freiraum 19 kragt ein Zylinder 18 aus Silizium ein (Figur 2), der quasi von dem Freiraum 19 umgeben ist. Diese Strukturierung ist durch entsprechende Maskierungen während des Trench- Ätzens möglich.
Die entstandene zylinderförnnige Struktur 18 wird durch Bedampfung oder Sputtern mit einer zirka 1 μm dicken Aluminiumschicht 20 überzogen (Figur 3) . Der hierdurch metallisierte Zylinder 18 dient als mit semiisolierendem Silizium gefüllter Resonator 24 hoher Güte (Qw200) , der gezielt je nach Anforderungs- bedingungen im TMoio-Mode oder TEm-Mode angeregt werden kann. Auf eine nach herkömmlicher Technik zur Wärmeabfuhr notwendige zusätzliche Kupferschicht im Bereich des Resonators 24 kann verzichtet werden.
Ein Bereich der Schicht 12 oberhalb des Zylinders 18 wird mit einer Ankopplungsscheibe 28, die über den darunter liegenden Zylinder 18 hinausreicht, bedampft
(Figur 4) . In der Ankopplungsscheibe 28 wird eine
Ausnehmung 38 (insbesondere als Schlitz) struktu- riert. Die Ankopplungsscheibe 28 ist so dimensioniert, dass an deren Rand keine Mikrowellenenergie austreten kann. Der Resonator 24 eignet sich - mit jeweils unterschiedlicher Dimensionierung und Spannungsversorgung - sowohl als Sender als auch als Referenzquelle. Der Resonator 24 für einen noch näher erläuterten Impatt-Oszillator 30 hat eine Höhe von zirka 725 μm und einen auf die gewünschte Resonatorfrequenz 122,3 GHz abgestimmten Radius von 242 μm. Für eine Referenzfrequenz von 40 GHz beträgt der Radius 800 μm bei einer Höhe von 725 μm.
Die Figur 5 zeigt eine Draufsicht auf einen Impatt- Oszillator 30, wie er für die Erzeugung eines Sende- Signals im Mikrowellenbereich benötigt wird. Neben dem Resonator 24 umfasst der Impatt-Oszillator 30 eine Impatt-Diode 32, die über zwei Tiefpassfilter 34, 36 mit Spannung versorgt wird. Die Impatt-Diode 32 sitzt in der Ausnehmung 38 der Ankopplungsscheibe 28 und ermöglicht die Verbindung zu einer in die Schicht 12 integrierten Mikrostreifenleiter-Schaltung. Die erzeugte Sendeenergie des Impatt-Oszillators 30 wird über ein Koppelelement 40 in die umge- bende Mikrostreifenleiter-Schaltung eingespeist. Der Impatt-Oszillator 30 kann im besonders günstigen TEui-Mode betrieben werden. Für den Fall eines spannungsgesteuerten Oszillators wird zusätzlich zur Impatt-Diode 32 eine Varaktor-Diode 42 am Rande der Ankopplungsscheibe 28 implantiert (siehe Figur 9) .
Die Figur 6 zeigt einen Querschnitt durch die Halbleiterschaltung 10 im Bereich der Impatt-Diode 32. Derartige Dioden sind bekannt, daher wird auf eine detaillierte Beschreibung der einzelnen Schichten beziehungsweise Funktionselemente an dieser Stelle verzichtet. Aufeinander folgend umfasst die Impatt- Diode 32 eine Aluminiumschicht 33, eine p+-dotierte Siliziumschicht 3.5, eine Epi-Siliziumschicht 37 und eine n+-dotierte Schicht 39.
Der Aufbau eines Referenz-Oszillators 46 (Figur 9) ist prinzipiell gleich dem Aufbau des Impatt-Oszillators 30. Für den Betrieb im TM0ιo_Mode kann die Anbin- d ng jedoch nicht über eine Impatt-Diode 32 erfolgen, sondern es ist ein anderer geeigneter Mittelleiter einzusetzen. Der' TM0ιo-Mode erlaubt die Erzeugung besonders stabiler Referenzsignale. Figur 7 zeigt ein Blockschaltbild einer monostatischen Ausführungsform mit einer gemeinsamen zirkulär polarisierten Sende- und Empfangsantenne. Die Anord- nung umfasst den Impatt-Oszillator 30, der ein hochfrequentes Sendesignal im Bereich von 122 GHz erzeugt, und den Referenz-Oszillator 46, der zur Frequenzstabilisierung und -linearisierung dient. Dazu wird ein festes Referenzsignal im Bereich von 40 GHz erzeugt. Das Sendesignal wird über eine Kopplung 40 in eine Patch-Antenne 48 eingespeist. Die gesamte Halbleiterschaltung 10 ist mit einer angedeuteten Superstrate 50 als Gehäuse vor Umwelteinflüssen geschützt. Eine Linse 52, die einen Durchmesser geringer als 30 mm haben kann, fokussiert den emittierten Messstrahl. Neben der dargestellten monostatischen Ausführungsform können Sende- und Empfangsantennen auch als getrennte linear oder zirkulär polarisierte Einheiten realisiert werden. So zeigt Figur 8 eine getrennte Patch-Antenne 54 und eine davon unabhängige Empfängerantenne 56.
Figur 7 zeigt die Hauptbestandteile Impatt-Oszillator (Sender) 30, Frequenzaufbereitung 31 mit Referenz- quelle (Referenz-Oszillator 46), Antennensystem 49 und Empfangsmischer 51 mit integrierten Schottky- Dioden. Diese sind auf einen kompakten Chip integriert. Es ist kein Hochfrequenzanschluss (im Mikro- wellenbereich) nach außen geführt.
Eine weitere Darstellung der monostatischen Ausführungsform gemäß Figur 7, die für Radarsysteme zur Abstandsmessung geeignet ist, zeigt Figur 9. Für die Frequenzstabilisierung ist eine aktive Oszillator- schaltung 58 - hier in Form einer zusätzlichen GaAs- Halbleiterschaltung, die in Flip-Chip-Technik montiert wird - vorhanden. Alternativ kann die aktive Oszillatorschaltung 58 durch einen leitend aufgeklebten, diskreten Einzeltransistor verwirklicht werden. Die in diesem Fall erforderliche Anpassungsschaltung kann in Koplanar- und in Mikrostreifenleiter-Technik ebenfalls in die Schicht 12 der. Halbleiterschaltung 10 integriert werden.
Die vom Impatt-Oszillator 30 erzeugte Sendeenergie wird über Branchline-Koppler 60, 62 in Teilen zur Frequenzstabilisierung mit dem Referenz-Oszillator 46 genutzt. .Ein weiterer Branchline-Koppler 64 spaltet das Sendesignal in eine Inphase- und Quadratur-Komponente zur Speisung der zirkulär polarisierten Patch- Antenne 48 und bewerkstelligt gleichzeitig die Sende- und Empfangssignaltrennung des monostatischen Sys- tems. Einem Ratrace-Mischer wird in einem Eingang das Empfangssignal aus dem Branchline-Koppler 64 und im zweiten Eingang die Oszillatorenergie aus dem Referenz-Oszillator 46 zugeführt.
Figur 10 zeigt eine weitere Ausführungsform, bei der der als Referenz dienende Oszillator 46 als SiGe- Halbleiterschaltung mittels Flip-Chip-Bonding auf der Halbleiterschaltung 10 montiert ist.
In Figur 11 ist zur Veranschaulichung nochmals schematisch der Aufbau eines Radarsystems mit Superstrate 50 und Antennenlinse 52 in' nicht maßstabsgetreuer Weise dargestellt.

Claims

Patentansprüche
1. Integriertes Halbleiterbauelement für Hochfrequenzmessungen, dadurch ge ennεeiσhnet, dass das Halbleiterbauelement Bestandteil einer Halbleiter- schaltung (10) aus einer ersten Siliziumschicht (12)-, einer sich anschließenden Siliziumdioxidschicht (Isolierschicht (14)) und einer nachfolgenden weiteren Siliziumschicht (Strukturschicht (16)) ist (SOI- Wafer) , und das Halbleiterbauelement aus
(a) einem Impatt-Oszillator (30) mit einem Resonator
(24), der einen in der Strukturschicht (16) angeordneten metallisierten Zylinder (18) aus Silizium, eine den Zylinder (18) im Bereich der ers- ten Schicht (12) überdeckende Ankopplungsscheibe (28) und eine über eine Ausnehmung (38) der Ankopplungsscheibe (28) mit dem Zylinder (18) des Resonators (24) in Verbindung stehende Impatt- Diode (32) umfasst, sowie
(b) einem Referenz-Oszillator (46) niedrigerer Frequenz mit einem Resonator (24), der einen in der Strukturschicht (16) angeordneten metallischen Zylinder (18) aus Silizium und den Zylinder im Bereich der ersten Schicht (12) überdeckende Ankopplungsscheibe (28) und einem über eine Ausnehmung (38) der Ankopplungsscheibe (28) mit dem Zylinder (18) des Resonators (24) in Verbindung stehenden Mikro ellenleiter umfasst, wobei der Referenz-Oszillator über eine aktive Oszillatorschaltung (58) einer Frequenzstabilisierung des Impatt-Oszillators (30) dient,
(c) einem Empfangsmischer (51) mit integrierten Schottky-Dioden und
(d) einer Sende- und Empfangsantenne (49)
besteht .
2. Integriertes Halbleiterbauelement nach Anspruch 1, dadurch gekennzeichnet, dass der Impatt-Oszillator (30) eine feste Frequenz im Bereich von 80 bis 500 GHz, insbesondere von 100 bis 150 GHz, erzeugt.
3. Integriertes Halbleiterbauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Referenz- Oszillator ( 4 6 ) eine feste Frequenz im Bereich von 1 bis 70 GHz, insbesondere von 30 bis 50 GHz, erzeugt.
4. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zylinder (18) der Resonatoren (24) von einer Metallschicht (20) , insbesondere aus Aluminium, bedeckt sind .
5. Integriertes Halbleiterbauelement nach Anspruch 4, dadurch gekennzeichnet, dass die Ankopplungsscheiben
(28) der Resonatoren (24) so dimensioniert sind, dass an deren Rand keine Sendeenergie austreten kann.
6. Integriertes Halbleiterbauelement nach, Anspruch 4, dadurch gekennzeichnet, dass der Impatt-Oszillator
(30) spannungsgesteuert ist und eine Varaktor-Diode (42) am Rand der Ankopplungsscheibe (28) implantiert ist .
7. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Spannungsversorgung der Impatt-Diode (32) über zwei Tiefpassfilter (32, 34) erfolgt.
8. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schicht (12) als Trägersubstrat für eine Mikrostrei- fenleiter-Schaltung dient.
9. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Halbleiterschaltung (10) eine Patch-Antenne (48) als integrierten Empfänger aufweist.
10. Integriertes Halbleiterbauelement nach Anspruch 9, dadurch gekennzeichnet, dass die Patch-Antenne (48) als gemeinsame, zirkulär polarisierte Sende- und Empfangsantenne dient (monostatische Ausführungsform) .
11. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Referenz-Oszillator (46) Bestandteil einer in Hybridtechnik auf der Halbleiterschaltung (10) montierten eigenständigen Schaltung ist.
12. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass eine Einspeisung der erzeugten Senderenergie des Impatt- Oszillators (30) in die umgebende Mikrostreifenlei- ter-Schaltung über ein Koppelelement (40) erfolgt.
13. Integriertes Halbleiterbauelement nach Anspruch 12, dadurch gekennzeichnet, dass Branchline-Koppler (60, 62) zur Auskopplung von Teilen der Senderenergie in die Patch-Antenne (48) und zur Frequenzstabilisierung mit dem Referenz-Oszillator (46) vorhande sind.
14. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die aktive Oszillatorschaltung (58) eine zusätzliche Halbleiterschaltung ist.
15. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die aktive Oszillatorschaltung (58) ein diskreter Einzeltransistor ist.
16. Integriertes Halbleiterbauelement nach Anspruch 15, dadurch gekennzeichnet, dass die erforderliche Anpassungsschaltung in Koplanar- oder Mikrostreifen- leiter-Technik in der Halbleiterschaltung (10) integriert ist.
17. Integriertes Halbleiterbauelement nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass ein weiterer Branchline-Koppler (64) zur Aufteilung eines Sendesignal in eine Inphase- und Quadratur-Komponente vorhanden ist.
18. Integriertes Halbleiterbauelement nach Anspruch 17, dadurch gekennzeichnet, dass der weitere Branchline-Koppler (64) in der onostatischen Ausführungs- form zur Sende- und Empfangssignaltrennung dient.
19. Verwendung des integrierten Halbleiterbauelementes nach einem der Ansprüche 1 bis 18, dadu-rch gekennzeichnet, dass das Halbleiterbauelement Bestandteil eines Sensors zur Entfernungsmessung ist.
20. Verwendung nach Anspruch 19, dadurch gekennzeichnet, dass der Sensor im einem Kraftfahrzeug zur Toten-Winkel-Erkennung, Precrash- und Sidecrash- Erkennung, Einparkhilfe und Abstandsmessung Einsatz findet .
PCT/DE2002/003004 2001-11-09 2002-08-16 Integrirertes halbleiterbauelement für hochfrequenzmessungen und dessen verwendung WO2003041117A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10295162T DE10295162D2 (de) 2001-11-09 2002-08-16 Integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung
EP02754529A EP1446824A2 (de) 2001-11-09 2002-08-16 Integrirertes halbleiterbauelement fur hochfrequenzmessungen und dessen verwendung
US10/494,660 US7109917B2 (en) 2001-11-09 2002-08-16 Intergrated semiconductor component for high-frequency measurement and use thereof
AU2002320950A AU2002320950A1 (en) 2001-11-09 2002-08-16 Integrated semiconductor component for conducting high-frequency measurements and the use thereof
JP2003543063A JP2005509286A (ja) 2001-11-09 2002-08-16 高周波測定用集積半導体素子およびその使用
KR10-2004-7006706A KR20040053271A (ko) 2001-11-09 2002-08-16 고주파 측정용 집적 반도체 소자 및 그의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156258A DE10156258A1 (de) 2001-11-09 2001-11-09 Integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung
DE10156258.6 2001-11-09

Publications (2)

Publication Number Publication Date
WO2003041117A2 true WO2003041117A2 (de) 2003-05-15
WO2003041117A3 WO2003041117A3 (de) 2003-09-18

Family

ID=7705944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003004 WO2003041117A2 (de) 2001-11-09 2002-08-16 Integrirertes halbleiterbauelement für hochfrequenzmessungen und dessen verwendung

Country Status (7)

Country Link
US (1) US7109917B2 (de)
EP (1) EP1446824A2 (de)
JP (1) JP2005509286A (de)
KR (1) KR20040053271A (de)
AU (1) AU2002320950A1 (de)
DE (2) DE10156258A1 (de)
WO (1) WO2003041117A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045466A1 (en) * 2003-11-04 2005-05-19 Cmte Development Limited Cavity monitoring system
US11175173B2 (en) 2018-01-16 2021-11-16 Vega Grieshaber Kg Radar transceiver chip

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156258A1 (de) * 2001-11-09 2003-05-28 Bosch Gmbh Robert Integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung
DE10156257A1 (de) * 2001-11-09 2003-05-28 Bosch Gmbh Robert Mikromechanischer Resonator
US7796080B1 (en) * 2004-12-08 2010-09-14 Hrl Laboratories, Llc Wide field of view millimeter wave imager
DE102007034329A1 (de) * 2007-07-24 2009-01-29 Robert Bosch Gmbh Radarvorrichtung
US7830301B2 (en) * 2008-04-04 2010-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for automotive radars
US20100152972A1 (en) * 2008-12-15 2010-06-17 Joe Charles Attard Parallel park assist
DE102010042276A1 (de) * 2010-10-11 2012-04-12 Robert Bosch Gmbh Sensor, Justageverfahren und Vermessungsverfahren für einen Sensor
JP5880508B2 (ja) * 2013-09-24 2016-03-09 日本電気株式会社 配線基板およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978729A2 (de) * 1998-08-07 2000-02-09 Hitachi, Ltd. Hochfrequenz-Sende-Empfangsvorrichtung für Fahrzeug-Radarsysteme
EP0995126A1 (de) * 1997-07-08 2000-04-26 Robert Bosch Gmbh Kraftfahrzeug-radarsystem
DE19931928A1 (de) * 1999-07-08 2001-01-11 Bosch Gmbh Robert Radarsender

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882419A (en) * 1974-03-01 1975-05-06 Rca Corp Varactor tuned impatt diode microwave oscillator
US4514707A (en) * 1982-06-15 1985-04-30 Motorola, Inc. Dielectric resonator controlled planar IMPATT diode oscillator
DE3322304A1 (de) * 1983-06-21 1985-01-03 Siemens AG, 1000 Berlin und 8000 München Streifenleitungsdopplerradar
US5511238A (en) * 1987-06-26 1996-04-23 Texas Instruments Incorporated Monolithic microwave transmitter/receiver
US4931799A (en) * 1989-04-24 1990-06-05 Hughes Aircraft Company Short-range radar transceiver employing a FET oscillator
US4982168A (en) * 1989-11-01 1991-01-01 Motorola, Inc. High peak power microwave oscillator
US5204641A (en) * 1992-03-11 1993-04-20 Space Systems/Loral, Inc. Conducting plane resonator stabilized oscillator
US6133795A (en) * 1994-06-24 2000-10-17 Williams; Roscoe Charles Oscillator circuit
GB2291551B (en) * 1994-06-24 1998-03-18 Roscoe C Williams Limited Electronic viewing aid
US5432482A (en) * 1994-07-28 1995-07-11 Bailey; Michael J. Variable-frequency microwave oscillator with multi-resonator matching circuit
DE10156255A1 (de) * 2001-11-09 2003-05-22 Bosch Gmbh Robert Hochfrequenz-Oszillator für eine integrierte Halbleiterschaltung und dessen Verwendung
DE10156258A1 (de) * 2001-11-09 2003-05-28 Bosch Gmbh Robert Integriertes Halbleiterbauelement für Hochfrequenzmessungen und dessen Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995126A1 (de) * 1997-07-08 2000-04-26 Robert Bosch Gmbh Kraftfahrzeug-radarsystem
EP0978729A2 (de) * 1998-08-07 2000-02-09 Hitachi, Ltd. Hochfrequenz-Sende-Empfangsvorrichtung für Fahrzeug-Radarsysteme
DE19931928A1 (de) * 1999-07-08 2001-01-11 Bosch Gmbh Robert Radarsender

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045466A1 (en) * 2003-11-04 2005-05-19 Cmte Development Limited Cavity monitoring system
US11175173B2 (en) 2018-01-16 2021-11-16 Vega Grieshaber Kg Radar transceiver chip

Also Published As

Publication number Publication date
EP1446824A2 (de) 2004-08-18
DE10156258A1 (de) 2003-05-28
AU2002320950A1 (en) 2003-05-19
US20050001632A1 (en) 2005-01-06
JP2005509286A (ja) 2005-04-07
DE10295162D2 (de) 2004-11-11
KR20040053271A (ko) 2004-06-23
WO2003041117A3 (de) 2003-09-18
US7109917B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
EP0495206B1 (de) Flip-Chip-MMIC-Resonatorschaltung mit koplanarem Induktor auf separatem Substrat
DE69014828T2 (de) Radar-sender und -empfänger für kurze entfernung unter verwendung eines fet-oszillators.
EP1825561B1 (de) Antennenanordnung für einen radar-transceiver
DE10355796B4 (de) Integrierte Schaltung zur Abstands- und/oder Geschwindigkeitsmessung von Objekten
DE102012201367B4 (de) Millimeterwellen-Radar
DE3855146T2 (de) Monolithischer Mikrowellen-Sender/Empfänger
EP2820674B1 (de) Halbleitermodul mit integrierten antennenstrukturen
WO2006061310A1 (de) Single-chip radar für kraftfahrzeug-anwendungen
EP1446824A2 (de) Integrirertes halbleiterbauelement fur hochfrequenzmessungen und dessen verwendung
DE102007046471B4 (de) Gekapselte Antenne und Verfahren zu deren Herstellung
WO2005034288A1 (de) Vorrichtung sowie verfahren zum abstrahlen und/oder zum empfangen von elektromagnetischer strahlung
DE102007046566B4 (de) HF-Frontend für ein Radarsystem
EP1958002A1 (de) Antennenanordnung für einen radar-sensor
EP1449255B1 (de) Hochfrequenz-oszillator für eine integrierte halbleiterschaltung und dessen verwendung
DE102007046480A1 (de) Radarsystem mit mehreren Entfernungsmessbereichen
WO2009082300A1 (en) Tuneable antenna arrangement
JP2989391B2 (ja) 高周波信号発生器
US20040070460A1 (en) Microwave oscillator
WO2005091437A1 (de) Antennenanordnung und verfahren zum herstellen derselben
EP1474841A1 (de) Mikromechanischer resonator
JPH06177650A (ja) Fmレーダーモジュールのfm信号発生器及び高周波 信号発生器
Descamps et al. Advanced Microwave Sensors for Transportation Applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TN TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002754529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047006706

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003543063

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002754529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10494660

Country of ref document: US

REF Corresponds to

Ref document number: 10295162

Country of ref document: DE

Date of ref document: 20041111

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10295162

Country of ref document: DE