WO2003039010A1 - Appareil d'emission et procede de commande automatique de gain - Google Patents

Appareil d'emission et procede de commande automatique de gain Download PDF

Info

Publication number
WO2003039010A1
WO2003039010A1 PCT/JP2002/009681 JP0209681W WO03039010A1 WO 2003039010 A1 WO2003039010 A1 WO 2003039010A1 JP 0209681 W JP0209681 W JP 0209681W WO 03039010 A1 WO03039010 A1 WO 03039010A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
output
gain
value
transmission
Prior art date
Application number
PCT/JP2002/009681
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Takeno
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2003039010A1 publication Critical patent/WO2003039010A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers

Definitions

  • the present invention relates to a transmission device and an automatic gain control method thereof.
  • the present invention relates to a transmission device and an automatic gain control method thereof, and more particularly, to a transmission device capable of correcting a gain error due to a frequency characteristic of a transmission device and a gain variation due to temperature, and keeping a transmission output of the transmission device constant, Related to gain control method. Background art
  • a base station transmitting apparatus in a mobile communication system such as a mobile phone, includes a transmitter for transmitting a signal of a certain frequency in a predetermined frequency band and a transmission for amplifying a transmission signal with a constant reference gain in a predetermined frequency band. It consists of a power amplifier.
  • FIG. 4 shows an example of this type of conventional base station transmitting apparatus.
  • the base station transmitting apparatus includes a transmitter 5, a transmission power amplifier 6, and an antenna 7.
  • the transmitter 5 compares the modulated signal generation section 51, the variable attenuator 52, the amplification section 53, the power block 54, the detection section 55, and the / 0 conversion section 56 with each other. It is composed of a control unit 57.
  • the modulation signal generator 51 of the transmitter 5 outputs a modulation output signal S51.
  • the variable attenuator 52 receives the modulation output signal S51 as an input, controls the attenuation by the control signal S57, and controls the transmission output of the transmitter 5.
  • the amplifying unit 53 performs power amplification by using the modulated output signal S51, whose power has been controlled by the variable attenuator 52, as an input.
  • the power bra 54 divides the output of the amplifier 53 into two, outputs one as a transmission output S 54, and outputs the other to the detector 55.
  • the detection unit 55 detects the output of the power blur 54 and outputs a detection output S55 which is voltage information.
  • the AZD converter 56 quantizes the detection output S55 and outputs digital transmission power data S56.
  • the comparison control unit 57 receives the transmission power data S 56 as a first input, a reference transmission power value S 58 preset as a transmission output of the transmitter 5 as a second input, and outputs a control signal S 56 5 7 is generated to control the variable attenuation section 52.
  • the transmission power amplifier 6 includes an amplifying unit 64, and amplifies the power of the input transmission output S 54 and outputs it to the antenna 7.
  • the reference transmission power value S58 of the transmitter 5 is set to an arbitrary value within a transmission power range specified in advance by transmission power control means (not shown).
  • the detection output S55 detected by the detection unit 55 is converted into digital transmission power data S56 by the A / D conversion unit 56, and the comparison and control unit 57 transmits the transmission power S56.
  • the control signal S52 controls the attenuation of the variable attenuator S52 so that the difference is minimized, that is, the output of the transmission device is constant. Is output.
  • the gain of the amplifying section 64 of the transmission power amplifier 6 is ideally constant in a predetermined frequency band, but actually changes according to the frequency as shown in FIG. Fig. 4 shows transmission output versus frequency characteristics. That is, since the power level of the transmission output S54 of the transmitter 5 is constant, there is a gain difference A i3 with respect to the reference frequency f O at the transmission frequency (for example: ⁇ ) of the amplification section 64. Therefore, there was a problem that an error of ⁇ occurred in the transmission output of the antenna 7.
  • An object of the present invention is to provide a transmission device capable of correcting a gain error due to a frequency characteristic of a transmission device and a gain variation due to temperature to stabilize a transmission output of the transmission device and an automatic gain thereof in order to solve the above-mentioned problems and the like. It is to provide a control method.
  • a further object of the present invention is to provide a transmission device capable of replacing a transmission power increase ifi device without adjusting a transmission output including a transmission power amplifier, and an automatic gain control method thereof.
  • a transmitting apparatus of the present invention amplifies a radio frequency signal to be transmitted by an amplifying means whose gain is controlled in accordance with a control signal, and makes the output power level constant.
  • a transmission power amplifier that supplies the transmission power amplifier to the transmission power amplifier, and calculates a difference between the gain and a preset reference gain, and outputs the difference as a gain correction value. Means, and means for correcting the gain control signal of the transmitter according to the gain correction value.
  • a transmitter of the above-described transmitting apparatus a modulation signal generating means for outputting a radio frequency modulation output signal corresponding to information to be transmitted, and a transmission output power level of the transmitter by the control signal with the modulation output signal as an input.
  • Amplifying means for performing power amplification with the modulated output signal power-controlled by the variable reducing means as input, and dividing the output of the amplifying means into two and outputting one as a transmission output Distribution means; transmission power measuring means for detecting the other output of the distribution means and outputting it as digital transmission power data indicating the power level of the transmission output; and a preset reference to the transmission power data.
  • a transmission power correction value is calculated from a difference from the transmission power value, and the transmission power correction value is corrected with a gain correction value from the transmission power amplifier to generate the control signal. And having a comparison and control means for outputting to the variable attenuator means.
  • the comparing and controlling means in the above-mentioned transmitter wherein the transmitting power data from the transmitting power measuring means is sequentially accumulated for an arbitrary predetermined time and averaged, and the average processing section outputs an averaged transmitting power data.
  • a comparator that compares the average transmission power value and a reference transmission power value specified in advance and outputs a difference value between them as a transmission power correction value; and a comparator that outputs the transmission power correction value and the transmission power from the transmission power amplifier.
  • An adder that performs addition with the gain correction value and controls the control signal so that the output value of the adder is minimized.
  • the transmission power amplifier of the above-described transmission device the input-side distribution means for dividing the transmission output from the transmitter into two, an amplification means for power-amplifying one output of the input-side distribution means, and the amplification Output means for dividing the output of the means into two parts and outputting one to the antenna, and detecting the other output of the input-side distribution means and outputting it as digital transmission power data indicating the input power level of the transmission output.
  • An input-side transmission power measuring means, and an output-side transmission power measuring means for detecting the other output of the output-side distribution means and outputting as digital transmission power data indicating an output-side power level of the transmission output.
  • the gain of the own transmission power amplifier is calculated from the difference between the transmission power data on the input side and the transmission power data on the output side, and the gain correction value is calculated from the difference between the calculated gain and a preset reference gain value. Comparing means for calculating and outputting to the transmitter.
  • the comparison means of the transmission power amplifier described above comprises: a buffer for sequentially and temporarily storing the transmission power data on the input side to provide a delay time corresponding to the delay time in the amplification means; and a buffer on the input side passing through the buffer.
  • An input-side averaging unit that sequentially accumulates transmission power data over an arbitrary fixed time and outputs an averaged transmission power data on the input side, and an output processing unit that sequentially transmits the transmission power data on the output side.
  • An output-side averaging unit that outputs average transmission power data on the output side accumulated and averaged over time; average transmission power data on the input side and evening output synchronization established by the buffer;
  • a comparator that calculates the gain value of its own transmission power amplifier by comparing the average transmission power data with the average transmission power data, and calculates a difference between the gain value from the comparator and a predetermined reference gain value.
  • a subtractor for outputting the gain correction value.
  • the automatic gain control method of the present invention amplifies a radio frequency signal to be transmitted by amplifying means whose gain is controlled according to a control signal, and according to the output power level so that the output power level becomes constant.
  • An automatic gain control method in a transmitting apparatus comprising: a transmitter that adjusts the control signal; and a transmission power amplifier that power-amplifies an output signal of the transmitter and supplies the output signal to an antenna, wherein a gain value of the transmission power amplifier is measured. Calculating a difference between the gain value and a preset reference gain value to obtain a gain correction value; and a value of a gain control signal of the transmitter corresponding to the gain correction value. And performing a correction of
  • FIG. 1 is a block diagram showing an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the comparison unit shown in FIG.
  • FIG. 3 is a block diagram showing a configuration example of the comparison and control unit shown in FIG.
  • FIG. 4 is a block diagram illustrating an example of a conventional transmission device.
  • FIG. 5 is a diagram illustrating an example of transmission output versus frequency characteristics of a conventional transmission power amplifier. BEST MODE FOR CARRYING OUT THE INVENTION
  • the transmission device of the present invention is used, for example, in a base station of a mobile communication system and incorporates an automatic gain control circuit to amplify a radio frequency-modulated output signal and output the output signal as a constant power level output signal. It has a transmitter and a transmission power amplifier that power-amplifies the output of the transmitter and supplies it to the antenna.
  • the gain of the transmission power amplifier is detected, and if there is a difference from the reference gain value, the gain correction value is output to the automatic gain control circuit of the transmitter, and the output of the transmitter is changed to change the gain correction. It is characterized by making the transmission output level from the transmission power amplifier constant by correcting the value.
  • the transmitter amplifies the generated modulated output signal through a variable attenuator whose attenuation is controlled by the value of the control signal (the voltage value of the analog gain control signal), and amplifies the signal to the transmission power amplifier.
  • the output signal is distributed by a power controller, converted to digital transmission power by the detector and A / D converter, and input to the comparator and controller.
  • the control unit adjusts the value of the control signal according to the difference value between the transmission power data and the reference transmission power value and outputs the result to the variable attenuator, and the output power level to the transmission power amplifier is compared with the reference transmission power value. Automatic gain control is performed to make them equal.
  • the input signal from the transmitter to the transmission power amplifier is distributed by the input power amplifier, converted to digital transmission power by the input detector and AZD converter, and input to the comparator. Is done.
  • the output signal from the transmission power amplifier, which has amplified the input signal is distributed by the output power bracket, converted to digital output power data by the output detector and AZD converter, and input to the comparator. .
  • the comparison section is the input side and output side.
  • the gain of the transmission power amplifier calculated from the difference between the respective transmission power data and the reference gain value is compared, and the gain correction value of the difference is output to the comparison and control unit that performs automatic gain control of the transmitter.
  • the comparison / control unit to which the gain correction value has been input, corrects the value of the control signal and outputs it to the variable attenuator.
  • FIG. 1 is a block diagram showing an embodiment of the present invention, and shows only a part related to the present invention in a base station transmitting apparatus of a mobile communication system.
  • the transmitting apparatus of the present example includes a transmitter 1, a transmission power amplifier 2, and an antenna 3.
  • the transmitter 1 outputs a radio frequency (Radio Frequency: hereinafter referred to as RF) signal obtained by modulating a signal to be transmitted as a transmission output S 14, and includes a modulated signal generator 11 and a variable attenuator 1. 2, an amplifier 13, a power brassier 14, a detector 15, an A / D converter 16, and a comparator / controller 17.
  • RF Radio Frequency
  • the modulation signal generation section 11 of the transmitter 1 outputs a modulation output signal S11 of a radio frequency corresponding to information to be transmitted.
  • the variable attenuator 12 gives an output power to the transmission output S 14 of the transmitter 1 by giving an attenuation corresponding to the value (analog voltage value) of the control signal S 17 to the input modulation output signal S 11.
  • the amplifying unit 13 performs power amplification using the modulated output signal S11, whose power has been controlled by the variable attenuator 12, as an input.
  • the power brassier 14 divides the output of the amplifier 13 into two, outputs one as the transmission output S14, and outputs the other to the detector 15.
  • the detection unit 15 detects the output of the power blur 14 and outputs a detection output S15 that is voltage information.
  • the A / D converter 16 quantizes the detection output S15 at a predetermined clock timing and outputs a digital transmission power data S16.
  • the comparison / control section 17 uses the transmission power data S 16 as the first input and the reference transmission power value S 18 preset as the transmission output (power level) of the transmitter 1 as the second input. Using the gain correction value ⁇ ⁇ ⁇ ⁇ output from the transmission power amplifier 2 as a third input, a control signal S 17 (analog voltage signal) is generated to control the variable attenuator 12.
  • the transmission power amplifier 2 described above amplifies the transmission output S 14 and transmits it to the mobile station from the antenna 3 as a radio wave. 22, an 80 conversion unit 23, an amplification unit 24, a power blur 25, a detection unit 26, an AZD conversion unit 27, and a comparison unit 28.
  • the power amplifier 21 of the transmission power amplifier 2 divides the transmission output S 14 of the transmitter 1 into two, outputs one to the amplifier 24, and outputs the other to the detector 22.
  • the detector 22 detects the output of the coupler 21 and outputs a detection output S22 that is voltage information.
  • the A / D converter 23 quantizes the detection output S22 at a predetermined clock timing and outputs digital transmission power S23.
  • the amplification section 24 power-amplifies the output of the coupler 21.
  • the power bra 25 splits the output of the amplifier 24 into two, outputs one to the antenna 3 and outputs the other to the detector 26.
  • the detection unit 26 detects the output of the power blur 25 and outputs a detection output S 26 that is voltage information.
  • the A / D converter 27 quantizes the detection output S26 at a predetermined clock timing and outputs digital transmission power data S27.
  • the comparison unit 28 receives the transmission power data S 23 as a first input, receives the transmission power data S 27 as a second input, and outputs a reference gain value S 29 preset by the transmission power amplifier 2 to a third input. Then, a gain correction value ⁇ is generated and output to the comparison / control section 17 of the transmitter 1.
  • FIG. 2 is a block diagram showing an example of the configuration of the comparison section 28 of the transmission power amplifier 2 in FIG.
  • the comparison unit 28 includes a buffer 281, an averaging unit 282, 283, a comparator 284, and an arithmetic unit (subtractor) 285. .
  • the buffer 281 of the comparison unit 28 sequentially and temporarily stores the input transmission power data S23, and gives a delay time corresponding to the delay time of the signal amplification in the amplification unit 24.
  • the average processing sound 152 282 outputs the average transmission power data S 282, which is obtained by sequentially storing the transmission power data S 23 via the buffer 281 over an arbitrary period of time and averaging them.
  • the averaging section 283 sequentially outputs the input transmission power data S27, and accumulates and averages the transmission power data S27 for an arbitrary fixed time, and outputs the average transmission power data S283.
  • the comparator 284 stores the average transmission power data S 282 on the input side and the average transmission power on the output side by establishing timing synchronization between the input and output of the amplification section 24 by accumulating it in the transmission power buffer 281.
  • a comparison is made between the power data S 283 and a gain value S 284 of the transmission power amplifier 2 (amplifying unit 24) is calculated.
  • the arithmetic unit (subtractor) 285 is used by the comparator 284
  • a gain value S285 and a reference gain value S29 specified in advance are input, and a gain correction value ⁇ , which is a difference between the two, is calculated and output.
  • the reference gain value S 29 of the transmission power amplifier 2 is set to a value specified in advance by a storage unit (not shown).
  • FIG. 3 is a block diagram showing one configuration example of the comparison / control section 17 of FIG.
  • the comparison / control section 17 is composed of an averaging section 172, an arithmetic unit (adder) 174, and a DZA conversion section 175 with an accumulation function.
  • the average processing section 17 2 sequentially stores the input transmission power data S 16 over an arbitrary fixed time and averages the average transmission power data S 1. 7 2 is output.
  • Comparator 173 compares average transmission power data S 172 with reference transmission power value S 18 specified in advance, and outputs transmission power correction value ⁇ .
  • the arithmetic unit (adder) 174 performs an operation (addition) of the transmission power correction value ⁇ and the gain correction value ⁇ .
  • the DZA converter with accumulation function 175 adds the data stored in the buffer and the data stored in the buffer to the input data and the input data. If it is “negative,” decrease it and decrease it.) And accumulate and store it.
  • the reference transmission power value S 18 of the transmitter 1 is set to an arbitrary value within a transmission power range specified in advance by a transmission power control unit (not shown).
  • the modulation output signal S11 from the modulation signal generation unit 11 is input to the variable attenuator 12 whose attenuation changes according to the control signal S17, and is subjected to power control. After that, the signal is input to the amplification unit 13.
  • the amplification unit 13 performs power amplification for outputting the power-controlled modulated output signal S 13 to the transmission power amplifier 2 as the transmission output S 11.
  • the modulated output signal S 13 whose power has been amplified by the amplifier 13 is distributed to the transmitter output S 14 and the output to the detector 15 by the power bracket 14.
  • the detector 15 detects the input signal by means of envelope detection or the like, and outputs a detection output S15.
  • the detection output S 15 is input to the AZD converter 16 and Log-to-digital conversion is performed and output as transmission power data S 16.
  • the transmission power data S 16 is input to the comparison / control section 17 and compared with the reference transmission power value S 18.
  • the transmission power correction value ⁇ (reference transmission power value S 18 —transmission power data S 16) is calculated.
  • the transmission power correction value ⁇ is a difference in output level due to a change in characteristics of the amplifier 13 due to a temperature or a change over time.
  • the control unit 17 When the gain correction value ⁇ ⁇ ⁇ from the transmission power amplifier 2 has not been input yet (when the value of ⁇ ⁇ is“ 0 ”), the control unit 17 is variable so that the correction value is minimized.
  • the control signal S 17 for controlling the attenuation of the attenuator 12 is output. The operation when the gain correction value ⁇ is input will be described later.
  • the transmitter output S 14 is divided by the power bra 21 into two outputs, an output to the amplifier 24 and an output to the detector 22.
  • the output of the amplifier 24 is divided by the power bra 25 into two, an output to the antenna 3 and an output to the detector 26.
  • the detector 22 and the detector 26 detect the output of the power bra 21 and the power bra 25 by means of envelope detection or the like, and output a detected output S 22 and a detected output S 26.
  • the detection output S22 and the detection output S26 are input to the AZD conversion unit 23 and the AZD conversion unit 27, are converted from analog to digital, and output as transmission power data S23 and transmission power data S27. It is input to the comparison unit 28.
  • the transmission power data S 23 input to the comparison unit 28 (FIGS. 1 and 2) is accumulated in the buffer 281, as shown in FIG. Output as 2 8 2.
  • the input transmission power data S 27 is output from the average processed sound 83 as the average transmission power data S 283.
  • the average transmission power S 282 and the average transmission power data S 283 are input to the comparator 284.
  • the delay amount of the amplifier 24 is corrected by the notifier 28 1, and the timing synchronization is established with the input of the average transmission power — S 283.
  • the average transmission power data S 2 82 and the average transmission power data S 2 83 are converted into transmission power levels based on the conversion table of “average transmission power data versus transmission power level”, and the difference between the two transmission power levels is calculated.
  • the gain value S 2 84 is calculated.
  • the conversion table of “average power data vs. transmission power level” is separately provided in the detectors 22 and 26 of FIG. 2 to minimize errors due to the detection capability of the detector.
  • the arithmetic unit 285 compares the gain value S 2 8.4 with the reference gain value S 2.9 and calculates the difference. 0209681
  • the gain correction value ⁇ (reference gain value S29—gain value S284).
  • the gain correction value ⁇ ⁇ is input to the comparison and control unit 17 of the transmitter 1.
  • the transmission power data S16 input to the comparison / control section 17 (FIGS. 1 and 3) is output from the average processing section 172 as average transmission power data S172, as shown in FIG.
  • the average transmission power data S172 is compared with a reference transmission power value S18 specified in advance by the transmitter 1 by the comparator 173, and the difference is output as a transmission power correction value.
  • the arithmetic unit 174 in FIG. 3 receives the transmission power correction value and the gain correction value ⁇ , and adds the transmission power correction value ⁇ ⁇ and the gain correction value ⁇ to the digital data of the total correction value ( ⁇ + ⁇ ⁇ ). Outputs overnight.
  • the output digital data is sequentially added and accumulated in the DZA conversion unit 175 with an accumulation function, and is subjected to digital-to-analog conversion to be a control signal S 17 (or S 175).
  • the variable attenuator 12 controls the amount of attenuation according to the voltage value of the control signal S12, thereby compensating for variations in characteristics due to the temperature of the transmitter 1 and variations in output level due to aging.
  • the gain fluctuation of the amplifier 2 is also corrected.
  • the reference gain value S29 is 40 dB
  • the reference transmission power value S18 is 0 dBm
  • the antenna 3 output is +40 dBm.
  • the voltage value of the control signal S17 input to the variable attenuator 12 (variable attenuator gain: OdB) of the transmitter 1 at this ideal time is IV
  • the variable attenuator 12 Decrease Assume that the voltage value of the control signal S 17 when the attenuation is reduced by 1 dB (variable attenuator gain: ⁇ 1 dB) is 0.5 V.
  • the actual power level (transmission power value) of the transmission output S 14 is the reference transmission power value. 0 dBm
  • the actual gain of transmit power amplifier 2 is 39 dB.
  • the DZA converter 175 (Fig. 3) with the accumulation function of the comparison controller 17 adds the total correction value to the previous data value and outputs the output voltage based on the preset digital-analog conversion rule. (The control signal S17 is changed from IV to 0.5 V. Thereby, the attenuation of the variable attenuator 12 is reduced by 1 dB.
  • the D / A converter with accumulation function 175 adds the total correction value to the data value up to the previous time, but the total correction value at this time is “0”, so the data value does not change. That is, the output voltage (control signal S17) maintains 0.5V. This state continues until the overall correction value changes.
  • the fact that the sign of the transmission power correction value ⁇ is “1” indicates that the actual transmission power value of the transmitter 1 exceeds the reference transmission power value, and the gain correction value ⁇ ⁇ is not input. Then, the attenuation of the variable attenuator 12 must be increased.
  • the sign of the gain correction value ⁇ being “+” indicates that the actual gain value of the transmission power amplifier 2 is lower than the reference gain value, and the attenuation of the variable attenuator 12 is reduced.
  • the increase Z decrement of the gain correction value ⁇ % is canceled by the decrease / increase of the transmission power correction value ⁇ , that is, the transmission power correction value ⁇ ⁇ and the gain correction Automatic gain control for controlling the attenuation of the variable attenuator 12 is performed so that the total correction value obtained by adding the value ⁇ becomes the minimum (0 d ⁇ ).
  • the gain of the transmission power amplifier including the gain error due to the frequency characteristic and the gain variation due to the temperature is detected in the usable frequency band of the transmission device, and the reference gain value is calculated. If there is a difference, output the gain correction value to the transmitter and correct the gain correction value at the transmitter output to keep the transmission output of the transmitter including the transmission power amplifier constant. Can be. Further, by outputting the gain correction value from the transmission power amplifier, the transmission power amplifier can be replaced without adjusting the transmission output including the transmission power amplifier.

Landscapes

  • Transmitters (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

送信装置及びその自動利得制御方法 技術分野
本発明は、 送信装置及びその自動利得制御方法に関し、 特に、 送信装置周波数 特性による利得誤差や温度による利得変動を補正し、 送信装置の送信出力を一定 にすることができる送信装置と、 その自動利得制御方法と 関する。 背景技術
従来、 携帯電話などの移動通信システムにおいては、 基地局送信装置は、 所定 の周波数帯域のある周波数の信号を送信する送信機と、 所定の周波数帯域で一定 の基準利得で送信信号を増幅する送信電力増幅器で構成される。
この種の従来の基地局送信装置の一例を図 4に示す。
図 4において、 基地局送信装置は、 送信機 5、 送信電力増幅器 6およびアンテ ナ 7から構成される。
さらに、 送信機 5は、 変調信号生成部 5 1と、 可変減衰器 5 2と、 増幅部 5 3 と、 力ブラ 5 4と、 検波部 5 5と、 /0変換部5 6と、 比較 ·制御部 5 7とか ら構成される。
この送信機 5の変調信号生成部 5 1は変調出力信号 S 5 1を出力する。 可変減 衰器 5 2は変調出力信号 S 5 1を入力として制御信号 S 5 7により減衰量の制御 を行い送信機 5の送信出力の制御を行う。 増幅部 5 3は可変減衰器 5 2により電 力制御された変調出力信号 S 5 1を入力として電力増幅を行う。 力ブラ 5 4は、 増幅部 5 3の出力を 2分配し一方を送信出力 S 5 4として出力し、 他方を検波部 5 5に出力する。 検波部 5 5は力ブラ 5 4の出力を検波し電圧情報である検波出 力 S 5 5を出力する。 AZD変換部 5 6は検波出力 S 5 5を量子ィ匕しデジタルの 送信電力データ S 5 6を出力する。 比較 ·制御部 5 7は、 送信電力データ S 5 6 を第 1の入力とし、 送信機 5の送信出力としてあらかじめ設定された基準送信電 力値 S 5 8を第 2の入力とし、 制御信号 S 5 7を生成し可変減衰部 5 2の制御を 行う。 上記送信電力増幅器 6は、 増幅部 6 4で構成され、 入力された送信出力 S 5 4 を電力増幅してアンテナ 7に出力する。
このような送信装置において、 送信機 5の基準送信電力値 S 5 8は、 図示して いない送信電力制御手段によってあらかじめ指定された送信電力範囲内で任意の 値が設定されている。 検波部 5 5で検出された検波出力 S 5 5は、 A/D変換部 5 6でデジタルの送信電力データ S 5 6に変換され、 比較 ·制御部 5 7で送信電 カデ一夕 S 5 6と基準送信電力値 S 5 8の差分の検出を行い、 この差分が最小に なるすなわち一定の送信装置出力となるように可変減衰器 S 5 2の減衰量を制御 するような制御信号 S 5 2を出力する。
上述した従来の送信装置において、 送信電力増幅器 6の増幅部 6 4の利得は、 所定の周波数帯域において一定であるのが理想だが、 実際は図 5に示すような周 波数に応じて利得が変化する送信出力対周波数特性を示す。 すなわち、 送信機 5 の送信出力 S 5 4の電力レベルが一定のために、 増幅部 6 4の送信周波数 (たと えば、 : Π) において、 基準周波数 f Oに対して利得差 A i3があることで、 アンテ ナ 7の送信出力で、 △ βの誤差を生じる問題があった。
また、 送信電力増幅器 6の修理などで交換する毎に、 送信機 5の送信出力を調 整する必要があった。 発明の開示
本発明の目的は、 上記の問題等を解決するために、 送信装置周波数特性による 利得誤差や温度による利得変動を補正し、 送信装置の送信出力を一定にすること ができる送信装置とその自動利得制御方法を提供することにある。
また、 本発明の他の目的は、 送信電力増幅器から利得補正値を出力させること
:より、 送信電力増幅器を含んだ送信出力の調整をすることなく、 送信電力増 ifi 器の交換が可能である送信装置とその自動利得制御方法を提供することにある。
このような目的を達成するために、 本発明の送信装置は、 制御信号に応じて利 得が制御される増幅手段により送信すべき無線周波数信号を増幅するとともに、 出力電力レベルが一定になるように出力電力レベルに応じて前記制御信号を調整 する自動利得制御を行う送信機と、 前記送信機の出力信号を電力増幅 1 02 09681
3 へ供給する送信電力増幅器とを備える送信装置であって、 前記送信電力増幅器の 利得を測定する手段と、 前記利得とあらかじめ設定された基準利得との差分を算 出し、 利得補正値として出力する手段と、 前記利得補正値に対応して前記送信機 の利得制御信号の補正を行う手段とを備えたことを特徴とする。
上述の送信装置の送信機が、 送信すべき情報に対応した無線周波数の変調出力 信号を出力する変調信号生成手段と、 前記変調出力信号を入力として前記制御信 号により送信機の送信出力電力レベルの制御を行うための可変減衰手段と、 前記 可変減手段により電力制御された変調出力信号を入力として電力増幅を行う増幅 手段と、 前記増幅手段の出力を 2分配し一方を送信出力として出力する分配手段 と、 前記分配手段の他方の出力を検波し前記送信出力の電力レベルを示すデジ夕 ルの送信電力データとして出力する送信電力測定手段と、 前記送信電力デ一夕と あらかじめ設定された基準送信電力値との差分より送信電力補正値を算出し、 こ の送信電力補正値を前記送信電力増幅器からの利得補正値で補正して前記制御信 号を発生し、 前記可変減衰手段へ出力する比較 ·制御手段とを有することを特徴 とする。
上述の送信機における前記比較,制御手段が、 前記送信電力測定手段からの送 信電力データを順次、 任意の一定時間に亘つて蓄積し平均化した平均送信電力デ 一夕を出力する平均処理部と、 平均送信電力デ一夕とあらかじめ指定された基準 送信電力値との比較を行いこれらの差分値を送信電力補正値として出力する比較 器と、 前記送信電力補正値と前記送信電力増幅器からの利得補正値との加算を行、 前記加算器の出力値が最小になるように前記制御信号を制御する加算器とを有す ることを特徴とする。
上述の送信装置の前記送信電力増幅器が、 前記送信機からの送信出力を 2分配 する入力側の分配手段と、 前記入力側の分配手段の一方の出力を電力増幅する増 幅手段と、 前記増幅手段の出力を 2分配し、 一方をアンテナに出力する出力側の 分配手段と、 前記入力側の分配手段の他方の出力を検波し送信出力の入力側電力 レベルを示すデジタルの送信電力データとして出力する入力側の送信電力測定手 段と、 前記出力側の分配手段の他方の出力を検波し送信出力の出力側電力レベル を示すデジタルの送信電力データとして出力する出力側の送信電力測定手段と、 前記入力側の送信電力データと前記出力側の送信電力データの差分から自送信電 力増幅器の利得を算出し、 この算出した利得とあらかじめ設定された基準利得値 との差分より前記利得補正値を算出し前記送信機へ出力する比較手段とを有する ことを特徴とする。
上述の送信電力増幅器の前記比較手段が、 前記入力側の送信電力データを順次、 一時蓄積し前記増幅手段における遅延時間分に相当する遅延時間を与えるバッフ ァと、 前記バッファを通した入力側の送信電力データを順次、 任意の一定時間に 亘つて蓄積し平均化した入力側の平均送信電力データを出力する入力側の平均処 理部と、 前記出力側の送信電力データを順次、 任意の一定時間に亘つて蓄積し平 均化した出力側の平均送信電力データを出力する出力側の平均処理部と、 前記バ ッファにより夕イミング同期確立された前記入力側の平均送信電力データと前記 出力側の平均送信電力データとの比較を行い自送信電力増幅器の利得値を算出す る比較器と、 前記比較器からの利得値とあらかじめ指定された基準利得値との差 分を算出し前記利得補正値として出力する減算器とを有することを特徴とする。 本発明の自動利得制御方法は、 制御信号に応じて利得が制御される増幅手段に より送信すべき無線周波数信号を増幅するとともに、 出力電力レベルが一定にな るように出力電力レベルに応じて前記制御信号を調整する送信機と、 前記送信機 の出力信号を電力増幅しアンテナへ供給する送信電力増幅器とを備える送信装置 における自動利得制御方法であって、 前記送信電力増幅器の利得値を測定するス テツプと、 前記利得値とあらかじめ設定された基準利得値との差分を算出して利 得補正値とするステップと、 前記利得補正値に対応して前記送信機の利得制御信 号の値の補正を行うステップとを含むことを特徴とする。
上述の自動利得制御方法において、 前記送信電力増幅器に入力される無線周波 数信号の一部を分配し入力側の送信電力値を算出するステップと、 前記送信電力 増幅器から出力される増幅後の無線周波数信号の一部を分配し出力側の送信電力 値を算出するステップと、 前記入力側の送信電力値に無線周波数信号の増幅にか かる時間分の遅延時間を与えて出力側の送信電力値と比較し、 その差分を前記送 信電力増幅器の利得値とするステップを含むことを特徴とする。 P T/JP02/09681
5 図面の簡単な説明
図 1は、 本発明の一実施の形態を示すブロック構成図である。
図 2は、 図 1に示す比較部の構成例を示すプロック図である。
図 3は、 図 1に示す比較 ·制御部の構成例を示すプロック図である。
図 4は、 従来の送信装置の一例を示すプロック図である。
図 5は、 従来の送信電力増幅器の送信出力対周波数特性例を示す図である。 発明を実施するための最良の形態
まず、 本発明の送信装置の概要を説明する。
本発明の送信装置は、 たとえば、 移動通信システムの基地局に使用されるもの で、 自動利得制御回路を組み込み、 無線周波数に変調された変調出力信号を増幅 し一定電力レベルの出力信号として出力する送信機と、 この送信機の出力を電力 増幅しアンテナへ供給する送信電力増幅器とを有している。 この送信装置におい て、 送信電力増幅器の利得を検出して、 基準利得値に対して差がある場合、 利得 補正値を送信機の自動利得制御回路に出力し、 送信機出力を変化させ利得補正値 分の補正を行うことで、 送信電力増幅器からの送信出力レベルを一定にすること を特徴としている。
より具体的に説明すると、 送信機は、 生成された変調出力信号を制御信号の値 (アナログ利得制御信号の電圧値) により減衰量が制御される可変減衰器を通し て増幅し送信電力増幅器へ出力するとともに、 出力信号を力ブラで分配し、 検波 部及び A/D変換部でデジタルの送信電力デ一夕に変換し比較 ·制御部に入力す る。 比較 ·制御部は、 送信電力データと基準送信電力値との差分値に応じて制御 信号の値を調整して可変減衰器に出力し、 送信電力増幅器への出力電力レベルが 基準送信電力値と等しくなるよう自動利得制御を行う。
一方、 送信機から送信電力増幅器への入力信号は入力側の力ブラで分配され、 入力側の検波部及び AZD変換部でデジタルの入力側の送信電力デ一夕に変換さ れ比較部に入力される。 入力信号を増幅した送信電力増幅器からの出力信号は出 力側の力ブラで分配され、 出力側の検波部及び AZD変換部でデジタルの出力側 の送信電力データに変換され比較部に入力される。 比較部は、 入力側及び出力側 の各送信電力データの差分から算出した送信電力増幅器の利得と基準利得値とを 比較して、 差分の利得補正値を送信機の自動利得制御を行う比較 ·制御部に出力 する。 利得補正値を入力された比較 ·制御部は、 制御信号の値を補正し可変減衰 器に出力する。
次に、 本発明の実施例について図面を参照して詳細に説明する。
図 1は本発明の一実施の形態を示すプロック構成図であり、 移動通信システム の基地局送信装置のうち、 本発明に関わる部分のみを示している。
図 1において、 本例の送信装置は、 送信機 1、 送信電力増幅器 2およびアンテ ナ 3から構成されている。
送信機 1は、 送信すべき信号を変調した無線周波数 (R a d i o F r e q u e n c y :以降 R F ) 信号を送信出力 S 1 4として出力するものであり、 変調信 号生成部 1 1と、 可変減衰器 1 2と、 増幅部 1 3と、 力ブラ 1 4と、 検波部 1 5 と、 A/D変換部 1 6と、 比較 ·制御部 1 7とから構成される。
この送信機 1の変調信号生成部 1 1は、 送信すべき情報に対応した無線周波数 の変調出力信号 S 1 1を出力する。 可変減衰器 1 2は、 入力された変調出力信号 S 1 1に制御信号 S 1 7の値 (アナログ電圧値) に対応した減衰量を与えること により送信機 1の送信出力 S 1 4に対する出力電力レベル制御を行う。 増幅部 1 3は、 可変減衰器 1 2により電力制御された変調出力信号 S 1 1を入力として電 力増幅を行う。 力ブラ 1 4は、 増幅部 1 3の出力を 2分配し一方を送信出力 S 1 4として出力し、 他方を検波部 1 5に出力する。 検波部 1 5は、 力ブラ 1 4の出 力を検波し電圧情報である検波出力 S 1 5を出力する。 A/D変換部 1 6は、 検 波出力 S 1 5を所定のクロックタイミングで量子化しデジタルの送信電力デ一夕 S 1 6を出力する。 比較 ·制御部 1 7は、 送信電力データ S 1 6を第 1の入力と し、 送信機 1の送信出力 (電力レベル) としてあらかじめ設定された基準送信電 力値 S 1 8を第 2の入力とし、 送信電力増幅器 2から出力される利得補正値 Δ χ を第 3の入力として、 制御信号 S 1 7 (アナログ電圧信号) を生成し可変減衰器 1 2の制御を行う。
また、 上述の送信電力増幅器 2は、 送信出力 S 1 4を電力増幅しアンテナ 3か ら電波として移動局に対し送信するものであり、 さらに、 力ブラ 2 1と、 検波部 2 2と、 八 0変換部2 3と、 増幅部 2 4と、 力ブラ 2 5と、 検波部 2 6と、 A ZD変換部 2 7と、 比較部 2 8とから構成される。
この送信電力増幅器 2の力ブラ 2 1は、 送信機 1の送信出力 S 1 4を 2分配し 一方を増幅部 2 4に出力し、 他方を検波部 2 2に出力する。 検波部 2 2は、 カブ ラ 2 1の出力を検波し電圧情報である検波出力 S 2 2を出力する。 A/D変換部 2 3は、 検波出力 S 2 2を所定のクロックタイミングで量子化しデジタルの送信 電力デ一夕 S 2 3を出力する。 増幅部 2 4はカプラ 2 1の出力を電力増幅する。 力ブラ 2 5は、 増幅部 2 4の出力を 2分配し一方をアンテナ 3に出力し、 他方を 検波部 2 6に出力する。 検波部 2 6は、 力ブラ 2 5の出力を検波し電圧情報であ る検波出力 S 2 6を出力する。 A/D変換部 2 7は、 検波出力 S 2 6を所定のク ロックタイミングで量子化しデジタルの送信電力データ S 2 7を出力する。 比較 部 2 8は、 送信電力データ S 2 3を第 1の入力とし、 送信電力データ S 2 7を第 2の入力とし、 送信電力増幅器 2であらかじめ設定された基準利得値 S 2 9を第 3の入力として、 利得補正値 Δ χを生成し送信機 1の比較 ·制御部 1 7に出力す る。
図 2は、 図 1の送信電力増幅器 2の比較部 2 8の一構成例を示すプロック図で ある。
図 2において、 比較部 2 8は、 ノ ッファ 2 8 1と、 平均処理部 2 8 2、 2 8 3 と、 比較器 2 8 4と、 演算器 (減算器) 2 8 5とから構成される。
この比較部 2 8のバッファ 2 8 1は、 入力される送信電力データ S 2 3を順次、 一時蓄積し増幅部 2 4における信号増幅の遅延時間分に相当する遅延時間を与え る。 平均処理音 152 8 2は、 バッファ 2 8 1を経由した送信電力データ S 2 3を順 次、 任意の一定時間に亘つて蓄積し平均化した平均送信電力データ S 2 8 2を出 力する。 平均処理部 2 8 3は、 入力される送信電力デ一夕 S 2 7を順次、 任意の 一定時間に亘つて蓄積し平均化した平均送信電力データ S 2 8 3を出力する。 比 較器 2 8 4は、 送信電力バッファ 2 8 1で蓄積することで増幅部 2 4の入出力間 でタイミング同期確立された入力側の平均送信電力データ S 2 8 2及び出力側の 平均送信電力データ S 2 8 3間の比較を行い送信電力増幅器 2 (増幅部 2 4 ) の 利得値 S 2 8 4を算出する。 演算器 (減算器) 2 8 5は、 比較器 2 8 4からの利 得値 S 2 8 5及びあらかじめ指定された基準利得値 S 2 9を入力し、 両者の差分 である利得補正値 Δ χを算出し出力する。 なお、 送信電力増幅器 2の基準利得値 S 2 9は、 図示していない記憶手段によってあらかじめ指定された値が設定され ている。
図 3は、 図 1の比較 ·制御部 1 7の一構成例を示すプロック図である。
図 3において、 比較 ·制御部 1 7は、 平均処理部 1 7 2と、 演算器 (加算器) 1 7 4と、 累積機能付き DZA変換部 1 7 5とから構成される。
この比較 ·制御部 1 7において、 平均処理部 1 7 2は、 入力される送信電力デ 一夕 S 1 6を順次、 任意の一定時間に亘つて蓄積し平均化した平均送信電力デー 夕 S 1 7 2を出力する。 比較器 1 7 3は、 平均送信電力デ一夕 S 1 7 2とあらか じめ指定された基準送信電力値 S 1 8との比較を行い送信電力補正値 Δ φを出力 する。 演算器 (加算器) 1 7 4は、 送信電力補正値 Δ Φと利得補正値 Δ χとの演 算 (加算) を行う。 累積機能付き DZA変換部 1 7 5は、 データを記憶するバッ ファ、 及びバッファに記憶されたデータに対し入力デ一夕との加算演算 (入力デ 一夕が 「正」 なら増加、 「0」 ならそのまま、 「負」 なら減少) を行い累積記憶さ せる演算器を有し、 一定時間ごとの演算器 1 7 4の出力を順次累積記憶し累積結 果をデジタル—アナログ変換しアナログ電圧信号である制御信号 S 1 7 ( S 1 7 5 ) として出力する。 なお、 送信機 1の基準送信電力値 S 1 8は、 図示していな い送信電力制御手段によってあらかじめ指定された送信電力範囲内で任意の値が 設定されている。
次に、 本例の送信装置の動作について、 図 1〜図 3を参照して詳細に説明する。 送信機 1 (図 1 ) では、 変調信号生成部 1 1からの変調出力信号 S 1 1は、 制 御信号 S 1 7により減衰量が変化する可変減衰器 1 2に入力され、 電力制御を受 けた後、 増幅部 1 3に入力される。 増幅部 1 3は、 電力制御された変調出力信号 S 1 3を送信出力 S 1 1として、 送信電力増幅器 2へ出力するための電力増幅を 行う。 増幅部 1 3にて電力増幅された変調出力信号 S 1 3は、 力ブラ 1 4にて送 信機出力 S 1 4と検波部 1 5への出力の 2つに分配される。
検波部 1 5は、 入力された信号を包絡線検波等の手段により検波を行い、 検波 出力 S 1 5を出力する。 検波出力 S 1 5は、 AZD変換部 1 6に入力されてアナ ログ一デジタル変換されて送信電力データ S 1 6として出力される。 送信電力デ 一夕 S 1 6は、 比較 ·制御部 1 7に入力され基準送信電力値 S 1 8と比較され、 送信電力補正値 Δ Φ (基準送信電力値 S 1 8—送信電力デ一夕 S 1 6 ) が算出さ れる。 送信電力補正値 Δ Φは、 増幅器 1 3の温度による特性の変動や経年変化に よる出力レベルの差分である。 比較 ·制御部 1 7は、 送信電力増幅器 2からの利 得補正値 Δ χがまだ入力されていない時点では (Δ χの値が 「0」 のとき)、 補正 値 が最小になるように可変減衰器 1 2の減衰量を制御する制御信号 S 1 7を 出力する。 利得補正値 Δ χが入力されたときの動作は後に説明する。
送信電力増幅器 2 (図 1 ) では、 送信機出力 S 1 4は、 力ブラ 2 1にて増幅部 2 4への出力と検波部 2 2への出力の 2つに分配される。 増幅部 2 4の出力は、 力ブラ 2 5にてアンテナ 3への出力と検波部 2 6への出力の 2つに分配される。 検波部 2 2及び検波部 2 6は、 力ブラ 2 1及び力ブラ 2 5の出力を包絡線検波等 の手段により検波を行い、 検波出力 S 2 2及び検波出力 S 2 6を出力する。 検波 出力 S 2 2及び検波出力 S 2 6は AZD変換部 2 3及び AZD変換部 2 7に入力 されてアナログ一デジタル変換されて送信電力データ S 2 3及び送信電力データ S 2 7として出力され、 比較部 2 8に入力される。
比較部 2 8 (図 1、 図 2 ) に入力された送信電力データ S 2 3は、 図 2に示す ように、 バッファ 2 8 1で蓄積され、 平均処理部 2 8 2から平均送信電力データ S 2 8 2として出力される。 同様に、 入力された送信電力デ一夕 S 2 7は、 平均 処理音 8 3から平均送信電力データ S 2 8 3として出力される。 平均送信電力 デ一夕 S 2 8 2及び平均送信電力データ S 2 8 3は、 比較器 2 8 4に入力される。 平均送信電力データ S 2 8 2は、 ノ ツファ 2 8 1により増幅部 2 4の遅延量が 補正されており、 平均送信電力 '—夕 S 2 8 3の入力とタイミング同期確立がさ れている。 平均送信電力データ S 2 8 2及び平均送信電力データ S 2 8 3は、 「平 均送信電力データ対送信電力レベル」 の変換テーブルに基づいてそれぞれ送信電 カレベルに換算され、 両送信電力レベルの差分から利得値 S 2 8 4が算出される。 「平均電力データ対送信電力レベル」 の変換テーブルは、 図 2の検波部 2 2及び 検波部 2 6で個別に持ち、 検波部の検波能力による誤差を最小限にしている。 演算器 2 8 5では、 利得値 S 2 8 4と基準利得値 S 2 9とが比較され、 差分が 0209681
10 利得補正値 Δχ (基準利得値 S 29—利得値 S 284) として出力される。 利得 補正値 Δ χは、 送信機 1の比較 ·制御部 17に入力される。
比較 ·制御部 17 (図 1、 図 3) に入力された送信電力デ一夕 S 16は、 図 3 に示すように、 平均処理部 172から平均送信電力データ S 172として出力さ れる。 平均送信電力データ S 172は、 送信機 1であらかじめ指定された基準送 信電力値 S 18と比較器 173で比較され、 差分が送信電力補正値 として出 力される。
図 3の演算器 174は、 送信電力補正値 と利得補正値 Δχとが入力され、 送信電力補正値△ Φと利得補正値 Δ χを加算した総合の補正値 (△ +△ χ ) の デジタルデ一夕を出力する。 出力されたデジタルデータは累積機能付き DZA変 換部 175で順次、 加算蓄積されデジタル—アナログ変換され、 制御信号 S 17 (または、 S 175) とされる。 可変減衰器 12は、 この制御信号 S 12の電圧 値に応じて減衰量を制御することにより、 送信機 1の温度による特性の変動や経 年変化による出力レベルの変動を補正し、 さらに送信電力増幅器 2の利得変動も 補正する。
これらの補正の状況を、 表 1を参照して、 具体的な数値を用いて説明する。
表 1
Figure imgf000012_0001
表 1の 「理想」 欄に示すように、 基準利得値 S 29を 40 dB、 基準送信電力 値 S 18を 0 dBm、 アンテナ 3出力を + 40 d Bmとする。 また、 この理想の ときの送信機 1の可変減衰器 12 (可変減衰器利得: OdB) に入力されている 制御信号 S 17の電圧値は IV、 であるとし、 この状態から可変減衰器 12の減 衰量を 1 d B分減らす (可変減衰器利得:ー 1 d B) ときの制御信号 S 1 7の電 圧値は 0. 5 Vであるとする。
ここで、 仮に表 1の 「補正前」 欄に示すように、 送信機 1による送信出力 S 1 4の変動がなく (実際の送信出力 S 14の電力レベル (送信電力値) が基準送信 電力値と同じ 0 dBm)、 送信電力増幅器 2の実際の利得が 39 dBである場合を 考える。 送信電力増幅器 2の利得補正値 Δ χは 1 d B (基準利得値一実際の利得 =40— 39)、 送信機 1の送信電力補正値 ΔΦは 0 dB (基準送信電力値一実際 の送信電力値 = 0-0) であり、 比較'制御部 1 Ίの総合の補正値 (△ φ + Δ χ) は、 1 dB (=0 + 1) となる。
比較 ·制御部 1 7の累積機能付き DZA変換部 175 (図 3) は、 前回までの データ値に総合の補正値を加算し、 あらかじめ設定されたデジタル—アナログの 変換規則に基づいて、 出力電圧 (制御信号 S 17が IVから 0. 5 Vに変化する ようにする。 これにより、 可変減衰器 12の減衰量が 1 dB分減らされる。
アンテナ 3出力が一時的に + 39 dBmになったとしても、 比較'制御部 17 から出力される総合の補正値 (Δφ + Δ χ) に対応した制御信号 S 17により可 変減衰器 12の減衰量が 1 dB減らされ、 表 1の 「補正後」 欄に示すように、 送 信出力 S 14が + 1 dBmになり、 アンテナ 3出力は +40 dBm (=1 + 3 9) が保たれる。 なお、 このときの送信機 1の送信電力補正値 ΔΦは一 1 dB (=0- 1) となるが、 送信電力増幅器 2の利得補正値 Δχは 1 dBのままのた め、 総合の補正値 Δψ + Δ χは 0 dBとなる。
累積機能付き D/A変換部 1 75は、 前回までのデータ値に総合の補正値を加 算するが、 このときの総合の補正値が 「0」 のため、 デ一夕値は変化しない。 す なわち、 出力電圧 (制御信号 S 17) は 0. 5Vを維持する。 この状態は、 総合 の補正値に変化があるまで持続する。
ところで、 送信電力補正値 ΔΦの符号が 「一」 であることは、 送信機 1の実際 の送信電力値が基準送信電力値を上回っていることを示し、 利得補正値 Δ χが入 力されない状態では、 可変減衰器 12の減衰量を増やさなければならない。
一方、 利得補正値 Δχの符号が 「 +」 であることは、 送信電力増幅器 2の実際 の利得値が基準利得値を下回っていることを示し、 可変減衰器 12の減衰量を減 9681
12 らさなければならない。 そこで本発明においては上述したように、 利得補正値 Δ %の増 Z減分を送信電力補正値 Δ φの減/増分でキヤンセルするように、 すなわ ち、 送信電力補正値△ Φと利得補正値 Δ χとを加算して得られた総合の補正値が 最小 ( 0 d Β) になるように可変減衰器 1 2の減衰量を制御する自動利得制御が 行われる。
以上説明したように、 本発明によれば、 送信装置の使用可能な周波数帯域にお いて、 周波数特性による利得誤差や温度による利得変動を含む送信電力増幅器の 利得を検出して、 基準利得値に対して差がある場合に、 利得補正値を送信機に出 力し、 送信機出力で利得補正値の補正を行うことで、 送信電力増幅器を含んだ送 信装置の送信出力を一定にすることができる。 また、 送信電力増幅器から利得補 正値を出力させることにより、 送信電力増幅器を含んだ送信出力の調整をするこ となく、 送信電力増幅器の交換が可能である。

Claims

請求の範囲
1 . 制御信号に応じて利得が制御される増幅手段により送信すべき無線周波数 信号を増幅するとともに、 出力電力レベルが一定になるように出力電力レベルに 応じて前記制御信号を調整する自動利得制御を行う送信機と、 前記送信機の出力 信号を電力増幅しアンテナへ供給する送信電力増幅器とを備える送信装置であつ て、
前記送信電力増幅器の利得を測定する手段と、
前記利得とあらかじめ設定された基準利得との差分を算出し、 利得補正値とし て出力する手段と、
前記利得補正値に対応して前記送信機の利得制御信号の補正を行う手段と を備えたことを特徴とする送信装置。
2 . 前記送信機が、
送信すべき情報に対応した無線周波数の変調出力信号を出力する変調信号生成 手段と、
前記変調出力信号を入力として前記制御信号により送信機の送信出力電力レべ ルの制御を行うための可変減衰手段と、
前記可変減手段により電力制御された変調出力信号を入力として電力増幅を行 う増幅手段と、
前記増幅手段の出力を 2分配し一方を送信出力として出力する分配手段と、 前記分配手段の他方の出力を検波し前記送信出力の電力レベルを示すデジタル の送信電力データとして出力する送信電力測定手段と、
前記送信電力デ一夕とあらかじめ設定された基準送信電力値との差分より送信 電力補正値を算出し、 この送信電力補正値を前記送信電力増幅器からの利得補正 値で補正して前記制御信号を発生し、 前記可変減衰手段へ出力する比較 ·制御手 段と
を有することを特徴とする請求の範囲 1記載の送信装置。
3 . 前記比較 '制御手段が、
前記送信電力測定手段からの送信電力データを順次、 任意の一定時間に亘って 蓄積し平均化した平均送信電力デー夕を出力する平均処理部と、 平均送信電力デ一夕とあらかじめ指定された基準送信電力値との比較を行いこ れらの差分値を送信電力補正値として出力する比較器と、
前記送信電力補正値と前記送信電力増幅器からの利得補正値との加算を行、 前 記加算器の出力値が最小になるように前記制御信号を制御する加算器と
を有することを特徴とする請求の範囲 2記載の送信装置。
4. 前記送信電力増幅器が、
前記送信機からの送信出力を 2分配する入力側の分配手段と、
前記入力側の分配手段の一方の出力を電力増幅する増幅手段と、
前記増幅手段の出力を 2分配し、 一方をアンテナに出力する出力側の分配手段 と、
前記入力側の分配手段の他方の出力を検波し送信出力の入力側電力レベルを示 すデジタルの送信電力データとして出力する入力側の送信電力測定手段と、 前記出力側の分配手段の他方の出力を検波し送信出力の出力側電力レベルを示 すデジタルの送信電力データとして出力する出力側の送信電力測定手段と、 前記入力側の送信電力データと前記出力側の送信電力データの差分から自送信 電力増幅器の利得を算出し、 この算出した利得とあらかじめ設定された基準利得 値との差分より前記利得補正値を算出し前記送信機へ出力する比較手段とを有す ることを特徴とする請求の範囲 1記載の送信装置。
5 . 前記比較手段が、
前記入力側の送信電力データを順次、 一時蓄積し前記増幅手段における遅延時 間分に相当する遅延時間を与えるバッファと、
前記バッファを通した入力側の送信電力デ一夕を順次、 任意の一定時間に亘っ て蓄積し平均化した入力側の平均送信電力デ一タを出力する入力側の平均処理部 と、
前記出力側の送信電力データを順次、 任意の一定時間に亘って蓄積し平均化し た出力側の平均送信電力データを出力する出力側の平均処理部と、
前記バッファにより夕イミング同期確立された前記入力側の平均送信電力デ一 夕と前記出力側の平均送信電力データとの比較を行い自送信電力増幅器の利得値 を算出する比較器と、
前記比較器からの利得値とあらかじめ指定された基準利得値との差分を算出し 前記利得補正値として出力する減算器とを有することを特徴とする請求の範囲 4 記載の送信装置。
6 . 制御信号に応じて利得が制御される増幅手段により送信すべき無線周波数 信号を増幅するとともに、 出力電力レベルが一定になるように出力電力レベルに 応じて前記制御信号を調整する送信機と、 前記送信機の出力信号を電力増幅しァ ンテナへ供給する送信電力増幅器とを備える送信装置における自動利得制御方法 であって、
前記送信電力増幅器の利得値を測定するステップと、
前記利得値とあらかじめ設定された基準利得値との差分を算出して利得補正値 とするステップと、
前記利得補正値に対応して前記送信機の利得制御信号の値の補正を行うステツ プと
を含むことを特徴とする自動利得制御方法。
7 . 前記送信電力増幅器に入力される無線周波数信号の一部を分配し入力側の 送信電力値を算出するステップと、
前記送信電力増幅器から出力される増幅後の無線周波数信号の一部を分配し出 力側の送信電力値を算出するステップと、
前記入力側の送信電力値に無線周波数信号の増幅にかかる時間分の遅延時間を 与えて出力側の送信電力値と比較し、 その差分を前記送信電力増幅器の利得値と するステップと
を含むことを特徴とする請求の範囲 6記載の自動利得制御方法。
PCT/JP2002/009681 2001-10-29 2002-09-20 Appareil d'emission et procede de commande automatique de gain WO2003039010A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001330986A JP3669497B2 (ja) 2001-10-29 2001-10-29 送信装置、及びその自動利得制御方法
JP2001-330986 2001-10-29

Publications (1)

Publication Number Publication Date
WO2003039010A1 true WO2003039010A1 (fr) 2003-05-08

Family

ID=19146631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009681 WO2003039010A1 (fr) 2001-10-29 2002-09-20 Appareil d'emission et procede de commande automatique de gain

Country Status (2)

Country Link
JP (1) JP3669497B2 (ja)
WO (1) WO2003039010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395964C (zh) * 2004-03-31 2008-06-18 华为技术有限公司 功率放大方法
CN114221668A (zh) * 2021-12-20 2022-03-22 湖南迈克森伟电子科技有限公司 一种自适应功率的增益控制方法及接收机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171392A (ja) * 2008-01-18 2009-07-30 Sumitomo Electric Ind Ltd 通信装置及び送信方法
CN102448103B (zh) * 2010-10-11 2014-07-02 中兴通讯股份有限公司 一种分布式网络无线射频指标智能实时改进的方法及装置
JP2012186530A (ja) * 2011-03-03 2012-09-27 Nec Saitama Ltd 電力増幅装置、基地局装置、利得調整システム、及び利得調整方法
NL2019267B1 (en) * 2017-07-18 2019-01-30 Ampleon Netherlands Bv Rf power amplifier system
CN109088648A (zh) * 2017-09-26 2018-12-25 南京正銮电子科技有限公司 一种高速大动态稳幅电路
WO2023224329A1 (ko) * 2022-05-17 2023-11-23 삼성전자 주식회사 듀플렉서로부터 증폭기로 향하는 신호에 기반하여 증폭기와 관련된 이득을 조절하는 전자 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376430A (ja) * 1989-08-18 1991-04-02 Nec Corp 携帯無線機
JPH05160771A (ja) * 1991-12-10 1993-06-25 Matsushita Electric Ind Co Ltd 携帯電話装置
JPH06338839A (ja) * 1993-05-28 1994-12-06 Sanyo Electric Co Ltd デジタルセルラー電話機
JPH09148865A (ja) * 1995-11-22 1997-06-06 Oki Electric Ind Co Ltd 電力ブースタ及び無線装置
WO1998044654A2 (en) * 1997-03-27 1998-10-08 Nokia Telecommunications Oy Power control of rf signals with booster module
JP2000078033A (ja) * 1998-08-27 2000-03-14 New Japan Radio Co Ltd 衛星通信用システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773222B2 (ja) * 1987-07-16 1995-08-02 松下電器産業株式会社 安定化送信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376430A (ja) * 1989-08-18 1991-04-02 Nec Corp 携帯無線機
JPH05160771A (ja) * 1991-12-10 1993-06-25 Matsushita Electric Ind Co Ltd 携帯電話装置
JPH06338839A (ja) * 1993-05-28 1994-12-06 Sanyo Electric Co Ltd デジタルセルラー電話機
JPH09148865A (ja) * 1995-11-22 1997-06-06 Oki Electric Ind Co Ltd 電力ブースタ及び無線装置
WO1998044654A2 (en) * 1997-03-27 1998-10-08 Nokia Telecommunications Oy Power control of rf signals with booster module
JP2000078033A (ja) * 1998-08-27 2000-03-14 New Japan Radio Co Ltd 衛星通信用システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395964C (zh) * 2004-03-31 2008-06-18 华为技术有限公司 功率放大方法
CN114221668A (zh) * 2021-12-20 2022-03-22 湖南迈克森伟电子科技有限公司 一种自适应功率的增益控制方法及接收机

Also Published As

Publication number Publication date
JP2003133969A (ja) 2003-05-09
JP3669497B2 (ja) 2005-07-06

Similar Documents

Publication Publication Date Title
EP1836779B1 (en) Method and system for controlling the gain of an amplifier by continuously alternating closed and open loop power control
US9793858B2 (en) Transfer function regulation
US6236267B1 (en) Linearization for power amplifiers using feed-forward and feedback control
US20150249444A1 (en) Apparatus and method of correcting output characteristics in a power combination apparatus
JP2002100940A (ja) 歪補償増幅器
JP2009273110A (ja) ポーラ変調送信装置及びポーラ変調送信方法
JPH11308126A (ja) 無線装置、無線装置における送信電力制御方法および記録媒体
JP6351911B1 (ja) 出力電力安定化回路及びそれを用いた高出力増幅装置
JPH11505380A (ja) 温度補償自動ゲイン制御
JPWO2008023414A1 (ja) ポーラ変調送信装置及びポーラ変調送信方法
US20030032397A1 (en) Method and transmission circuit for generating a transmission signal
JP4455605B2 (ja) 信号発生装置
US7558540B2 (en) Method and apparatus for regulating the transmitted power in multi-rate wireless communication systems
WO2004105236A1 (ja) 検波回路及び検波回路の調整方法
WO2003039010A1 (fr) Appareil d'emission et procede de commande automatique de gain
US20070165744A1 (en) Transmission circuit and communication apparatus comprising the same
WO2011148584A1 (ja) 送信回路及び送信方法
US8792579B2 (en) Continuous open loop control to closed loop control transition
WO2010016111A1 (ja) 送信装置および調整値測定方法
US20040240582A1 (en) Apparatus and method for stabilization of the transmission power of radios
JP2015154464A (ja) 無線通信装置
JP2011071834A (ja) 無線通信装置
JP4342642B2 (ja) 無線ユニット
US20230412201A1 (en) Transmitter and related gain control method
EP3605865B1 (en) Signal correction method and signal correction system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase